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ABSTRACT

In this paper, we propose an efficient sparse convolution-based architecture called
ESS3D for 3D visual grounding. Conventional 3D visual grounding methods
are difficult to meet the requirements of real-time inference due to the two-stage
or point-based architecture. Inspired by the success of multi-level fully sparse
convolutional architecture in 3D object detection, we aim to build a new 3D vi-
sual grounding framework following this technical route. However, as in visual
grounding task the 3D scene representation should be deeply interacted with text
features, sparse convolution-based architecture is inefficient for this interaction
due to the large amount of voxel features. To this end, we propose text-guided
pruning (TGP) and completion-based addition (CBA) to deeply fuse 3D scene
representation and text features in an efficient way by gradual region pruning and
target completion. Specifically, TGP iteratively sparsifies the 3D scene repre-
sentation and thus efficiently interacts the voxel features with text features by
cross-attention. To mitigate the affect of pruning on delicate geometric infor-
mation, CBA adaptively fixes the over-pruned region by voxel completion with
negligible computational overhead. Compared with previous single-stage meth-
ods, ESS3D achieves top inference speed and surpasses previous fastest method
by 100% FPS. ESS3D also achieves state-of-the-art accuracy even compared with
two-stage methods, with +1.13 lead of Acc@0.5 on ScanRefer, and +5.4 and
+5.0 leads on NR3D and SR3D respectively. The code will be released soon.

1 INTRODUCTION

Incorporating multi-modal information to guide 3D visual perception is a promising direction. In
these years, 3D visual grounding (3DVG), also known as 3D instance referencing, has been paid
increasing attention as a fundamental multi-modal 3D perception task. The aim of 3DVG is to locate
an instance in the scene using 3D bounding box, where this instance is described by a free-form
query language. 3DVG is challenging since it requires understanding of both 3D scene and language
description. Recently, with the development of 3D scene perception and vision-language models,
3DVG methods have shown remarkable progress (Jain et al., 2022; Luo et al., 2022). However, with
3DVG being widely applied in fields like robotics and AR / VR where inference speed is the main
bottleneck, how to construct efficient real-time 3DVG model remains a challenging problem.

Since the output format of 3DVG is similar with 3D object detection, early 3DVG methods (Yuan
et al., 2021; Yang et al., 2021) usually adopt a two-stage framework, which first conducts 3D object
detection to locate all objects in a scene, and then selects the target object by incorporating text
information. As there are many similarities between 3D object detection and 3DVG (e.g. both of
them need to extract the representation of the 3D scene), there will be much redundant feature
computation during the independent adoption of the two models. As a result, two-stage methods are
usually slow and hard to handle real-time tasks. To solve this problem, single-stage methods (Luo
et al., 2022) are presented, which generates the bounding box of the target object directly from point
clouds. This integrated design makes single-stage methods more compact and efficient. However,
current single-stage 3DVG methods mainly build on point-based architecture (Qi et al., 2017), where
the feature extraction contains time-consuming operations like furthest point sampling and kNN,
especially for large scenes. They also need to aggressively downsample the point features to reduce
computational cost, which might hurt the geometric information of small and thin objects (Xu et al.,
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2024). Due to these reasons, current single-stage methods are still far from real-time (< 6 FPS) and
their performance is inferior to two-stage methods.

In this paper, we propose a new single-stage framework for 3DVG based on sparse convolution,
namely ESS3D. Inspired by state-of-the-art 3D object detection methods (Rukhovich et al., 2022; Xu
et al., 2024) which achieves both leading accuracy and speed with multi-level sparse convolutional
architecture, we build the first sparse single-stage 3DVG network. However, different from 3D
object detection, in 3DVG the 3D scene representation should be deeply interacted with text features.
Since the amount of voxels is very large in sparse convolution-based architecture, deep multi-modal
interaction like cross-attention becomes infeasible due to unaffordable computational cost. To this
end, we propose text-guided pruning (TGP), which first utilize text information to jointly sparsify the
3D scene representation and enhance the voxel and text features. To mitigate the affect of pruning on
delicate geometric information, we further present completion-based addition (CBA) to adaptively
fix the over-pruned region with negligible computational overhead. Specifically, TGP prunes the
voxel features according to the object distribution. It gradually removes background features and
features of irrelevant objects through iterative pruning and feature upsampling, which generates
high-resolution and text-aware voxel features around the target object for accurate bounding box
prediction. Since pruning may mistakenly remove the representation of target object, CBA utilizes
text features to query a small set of voxel features from the complete backbone features, followed by
pruned-aware addition and voxel concatenation to fix the over-pruned region. We conduct extensive
experiments on the popular ScanRefer (Chen et al., 2020) and ReferIt3D (Achlioptas et al., 2020)
datasets. Compared with previous single-stage methods, ESS3D achieves top inference speed and
surpasses previous fastest single-stage method by 100% FPS. ESS3D also achieves state-of-the-art
accuracy even compared with two-stage methods, with +1.13 lead of Acc@0.5 on ScanRefer, and
+5.4 and +5.0 leads on NR3D and SR3D respectively.

2 RELATED WORK

2.1 3D VISUAL GROUNDING

3D visual grounding aims to locate a target object within a 3D scene based on natural language de-
scriptions. Existing methods are typically categorized into two-stage and single-stage approaches.
Two-stage methods follow a detect-then-match paradigm. In the first stage, they independently ex-
tract features from the language query using pre-trained language models (Devlin, 2018; Pennington
et al., 2014) and predict candidate 3D objects using pre-trained 3D detectors (Qi et al., 2019; Liu
et al., 2021). In the second stage, they focus on aligning the vision and text features to identify the
target object. Techniques for feature fusion include attention mechanisms with Transformers (He
et al., 2021; Zhao et al., 2021), contrastive learning (Abdelreheem et al., 2022), and graph-based
matching (Feng et al., 2021). Single-stage methods integrate object detection and feature extrac-
tion, allowing for direct identification of the target object. Methods in this category include guiding
keypoint selection using textual features (Luo et al., 2022), and measuring similarity between words
and objects inspired by 2D image-language pre-trained models like GLIP (Li et al., 2022), as in
BUTD-DETR (Jain et al., 2022). And methods like EDA (Wu et al., 2023) and G3-LQ (Wang et al.,
2024) advance single-stage 3D visual grounding by enhancing multimodal feature discriminability
through explicit text-decoupling, dense alignment, and semantic-geometric modeling.

However, existing two-stage and single-stage methods generally have high computational costs,
hindering real-time applications. Our work aims to address these efficiency challenges by proposing
an efficient single-stage method with multi-level sparse convolutional architecture.

2.2 MULTI-LEVEL SPARSE CONVOLUTIONAL ARCHITECTURES

Recently, multi-level sparse convolutional architecture has achieved great success in the field of 3D
object detection. Built on the voxel-based representation (Wang et al., 2022) and sparse convolution
operation (Choy et al., 2019; Graham et al., 2018; Xu et al., 2023), this kind of methods show great
efficiency and accuracy when processing scene-level 3D data. GSDN (Gwak et al., 2020) first adopts
sparse convolution in 3D object detection by constructing multi-level architecture with generative
feature upsampling. FCAF3D (Rukhovich et al., 2022) simplifies the multi-level architecture with
anchor-free design and rotation-aware object assignment strategy, which achieves leading accuracy
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with even faster speed. Aimed at real-time 3D object detection, TR3D (Rukhovich et al., 2023) fur-
ther accelerates FCAF3D by removing unnecessary layers and introducing category-aware proposal
assignment method. Additionally, DSPDet3D Xu et al. (2024) introduces the multi-level architec-
ture to 3D small object detection and demonstrates great accuracy and efficiency, even being able to
process building-level 3D scenes.

Our proposed method draws inspiration from these approaches, utilizing a sparse multi-level archi-
tecture with sparse convolutions and an anchor-free design. This allows for efficient processing of
3D data, enabling real-time performance in 3D visual grounding tasks.

3 METHOD

In this section, we describe our ESS3D for efficient single-stage 3DVG. We first analyze existing
pipelines to identify current challenges and motivate our approach (Sec. 3.1). We then introduce the
text-guided pruning, which leverages text features to guide feature pruning (Sec. 3.2). To address the
potential risk of pruning key information, we propose the completion-based addition for multi-level
feature fusion (Sec. 3.3). Finally, we detail the training loss (Sec. 3.4).

3.1 MULTI-LEVEL SPARSE CONVOLUTIONAL ARCHITECTURE

Top-performance 3DVG methods (Wang et al., 2024; Wu et al., 2023; Shi et al., 2024), are mainly
two-stage, which is a serial combination of 3D object detection and 3D object grounding. This
separate calls of two approaches result in redundant feature extraction and complex pipeline, thus
making the two-stage methods less efficient. To demonstrate the efficiency of the two-stage methods,
we conduct a comparison of accuracy and speed among several representative methods on ScanRe-
fer (Chen et al., 2020), as shown in Fig. 1. It can be seen that two-stage methods struggle in speed
(< 3 FPS) due to the additional detection stage. Since 3D visual grounding is usually adopted in
practical scenarios that require real-time inference under limited resources, such as embodied robots
and VR/AR, the low speed of two-stage methods make them less practical in real applications. On
the other side, single-stage methods (Luo et al., 2022), which directly predicts refered bounding box
from the observed 3D scene, are more suitable choices due to their streamlined processes. We also
list the accuracy-speed tradeoff of single-stage methods in Fig. 1. It is shown that they are much
more efficient than the two-stage counterparts.

Speed (frames per second)
3 6 9 12

40

45

50

55

ESS3D 
(ours)

EDA (two-stage)

EDA (single-stage)BUTD-DETR 
(two-stage)

BUTD-DETR (single-stage)3D-SPS
(two-stage)

3D-SPS (single-stage)

3D-VisTA
SAT

ESS3D-B
(ours)

A
cc

ur
ac

y 
(A

cc
@

0.
25

) 

Figure 1: Comparison of state-of-the-
art 3DVG methods on ScanRefer.

However, existing single-stage methods are mainly built
on point-based backbone (Qi et al., 2017), where the scene
representation is extracted with time-consuming opera-
tions like furthest point sampling and set abstraction. They
also employ large transformer decoder to fuse text and 3D
features for several iterations. Therefore, the inference
speed of current single-stage methods is still far from real-
time (< 6 FPS). Inspired by the success of single-stage
fully sparse convolutional architecture in the field of 3D
object detection (Rukhovich et al., 2023), which achieves
both leading accuracy and speed, we propose to build the
first sparse convolution-based single-stage 3DVG pipeline.

ESS3D-B. Here we propose a baseline framework
based on sparse convolution, namely ESS3D-B. Follow-
ing the simple and effective multi-level architecture of
FCAF3D (Rukhovich et al., 2022), ESS3D-B utilizes 3 levels of sparse convolutional blocks for
scene representation extraction and bounding box prediction, as shown in Fig. 2 (a). Specifically,
the input pointclouds P ∈ RN×6 with 6-dim features (3D position and RGB) are first voxelized
and then fed into three sequential MinkResBlocks (Choy et al., 2019) with stride 2, which generates
three levels of voxel features Vl (l = 1, 2, 3). With the increase of l, the spatial resolution of Vl

decreases and the context information increases. Concurrently, the free-form text with l words is
encoded by the pre-trained RoBERTa (Liu, 2019) and produce the vanilla text tokens T ∈ Rl×d.
With the extracted 3D and text representations, we iteratively upsample V3 and fuse it with T to
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Figure 2: Illustration of ESS3D. ESS3D bulids on multi-level sparse convolutional architecture. It
iteratively upsamples the voxel features with text-guided pruning (TGP), and fuses multi-level fea-
tures via completion-based addition (CBA). (a) to (d) on the right side illustrate various options
for feature upsampling. (a) refers to simple concatenation with text features, which is fast but less
accurate. (b) refers to feature interaction through cross-modal attention mechanisms, which is con-
strained by the large amount of voxels. (c) represents our proposed TGP, which first prunes voxel
features under textual guidance and thus enables efficient interaction between voxel and text features.
(d) shows a simplified version of TGP that removes feature sampling and interpolation, combines
multi-modal feature interactions into a whole and moves it before pruning.

generate high-resolution and text-aware scene representation:

Ul = UG
l + Vl, UG

l = GeSpConv(U ′
l+1), U ′

l+1 = Concat(Ul+1, T ) (1)

where U3 = V3, GeSpConv means generative sparse convolution (Gwak et al., 2020) with stride
2, which upsamples the voxel features and expands their spatial locations for better bounding box
prediction. Concat is voxel-wise feature concatenation by duplicating T . The final upsampled
feature map U1 is concatenated with T and fed into a convolutional head to predict the objectness
scores and regress the 3D bounding box, where each voxel feature is regarded as an object proposal
and used to predict box. We select the box with highest objectness score as the grounding result.

As shown in Fig. 1, ESS3D-B achieves an inference speed of 14.58 FPS, which is significantly faster
than previous single-stage methods and demonstrates great potential for real-time 3DVG.

3.2 TEXT-GUIDED PRUNING

Though efficient, ESS3D-B exhibits poor performance due to the inadequate interaction between
3D scene representation and text features. Motivated by previous 3DVG methods (Jain et al., 2022),
a simple solution is to replace Concat with cross-modal attention to update voxel and text features
with two intertwined transformer decoders that process them jointly via cross-attention, as shown
in Fig. 2 (b). However, different from point-based architectures where the scene representation is
usually aggressively downsampled to control the computational cost, the amount of voxels in multi-
level sparse convolutional framework is very large. In practical implementation, we find that the
voxels expand almost exponentially with each upsampling layer, leading to a substantial computa-
tional burden for the self-attention and cross-attention of scene features. To address this issue, we
introduce text-guided pruning (TGP) to construct ESS3D, as illustrated in Fig. 2 (c). The core idea
of TGP is to reduce feature size by pruning redundant voxels and guide the network to gradually
focus on the final target based on textual features.

Overall Architecture. TGP can be regarded as a modified version of cross-modal attention, which
reduces the amount of voxels before attention operation to reduce the computational cost. To min-
imize the affect of pruning on the final prediction, we propose to prune the scene representation
gradually. At higher level where the amount of voxels is not too large yet, TGP prunes less voxels.
While at lower level where the amount of voxels is significantly increased by upsampling operation,
TGP prunes the voxel features more aggressively. The multi-level architecture of ESS3D consists
of three levels and includes two feature upsampling operations. Therefore, we correspondingly con-
figure two TGPs with different functions, which are referred as scene-level TGP (level 3 to 2) and
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target-level TGP (level 2 to 1) respectively. Scene-level TGP aims to distinguish between objects
and the background within the scene, specifically pruning the voxels on background. Target-level
TGP focuses on regions mentioned in the text, intending to preserve the target object and referential
objects while removing other regions.

Details of TGP. Since the pruning is relevant to the description, we need to make the voxel features
text-aware to predict a proper pruning mask. To reduce the computational cost, we perform farthest
point sampling (FPS) on the voxel features to reduce their size while preserving the basic distribution
of the scene. Next, we utilize cross-attention to interact with the text features and employ a simple
MLP to predict the probability distribution M̂ for retaining each voxel. To prune the features Ul, we
binarize and interpolate the M̂ to obtain the pruned mask. This process can be expressed as:

UP
l = Ul ⊙Θ(I(M̂, Ul)− σ), M̂ = MLP(CrossAtt(FPS(Ul),SelfAtt(T ))) (2)

where UP
l is the pruned features, Θ is Heaviside step function, ⊙ is matrix dot product, σ is the

pruning threshold, and I represents linear interpolation based on the positions specified by Ul. After
pruning, the scale of the scene features is significantly reduced, enabling internal feature interactions
based on self-attention. Subsequently, we utilize self-attention and cross-attention to perceive the
relative relationships among objects within the scene and to fuse multimodal features, resulting in
updated features U ′

l . Finally, through generative sparse convolutions, we obtain UG
l−1.

Supervision for Pruning. The binary supervision mask Msce for scene-level TGP is generated
based on the centers of all objects in the scene, and the mask M tar for target-level TGP is based on
the target and relevant objects mentioned in the descriptions:

Msce =

N⋃
i=1

M(Oi), M tar =M(Otar) ∪
K⋃
j=1

M(Orel
j ) (3)

where {Oi|1 ≤ i ≤ N} indicates all objects in the scene. Otar and Orel refer to target and relevant
objects respectively.M(O) represents the mask generated from the center of object O. It generates
a L×L×L cube centered at the center of O to construct the supervision mask M , where locations
inside the cube is set to 1 while others set to 0.

Simplification. Although the above mentioned method can effectively prune the voxel features
based on text description to reduce the computational cost of cross-modal attention, there are some
inefficient operations in the pipeline: (1) FPS is time-consuming, especially for large scenes; (2)
there are two times of interactions between voxel features and text features, the first is to guide
pruning and the second is to enhance the representation, which is a bit redundant. We also empiri-
cally observe that the amount of voxels is not large in level 3. To this end, we propose a simplified
version of TGP, as shown in Fig. 2 (d). We remove the FPS and merge the two multi-modal in-
teractions into one. We also move the merged interaction operation before pruning. In this way,
voxel features and text features are first deeply interacted for both feature enhancement and pruning.
Because in level 3 the amount of voxels is small and in level 2 / 1 the voxels are already pruned, the
computational cost of self-attention and cross-attention is always kept at a relatively low level.

Effectiveness of TGP. After pruning, the voxel scale of U1 is reduced to nearly 15% of its origi-
nal size without TGP, while the 3DVG performance is significantly boosted. TGP serves multiple
functions, including: (1) facilitating the interaction of multi-modal features through cross-attention,
(2) reducing the feature scale (amount of voxels) through pruning, and (3) gradually guiding the
network to focus on the mentioned target based on text features.

3.3 COMPLETION-BASED ADDITION

During the pruning process, some targets may be mistakenly removed, especially small or narrow
objects, as shown in Fig. 3 (b). Therefore, the addition operation between the upsampled pruned
features UG

l and backbone features Vl described in Equation (1) play an important role to mitigate
the affect of over-pruning.

There are two alternative addition operation: (1) Full Addition. For the intersecting regions of Vl

and UG
l , features are directly added. For voxel features outside the intersection of UG

l and Vl which
lack corresponding features in the other map, the missing voxel features are interpolated from the
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other before addition. Due to pruning process, UG
l is sparser than Vl. In this way, full addition can

fix almost all the pruned region to avoid any risk. But this operation is computationally heavy and
cannot make the scene representation focus on relevant objects, which deviates the core idea of TGP.
(2) Pruning-aware Addition. The addition is constrained to the locations of UG

l . For voxel in UG
l

but not in Vl, interpolation from UG
l is applied to complete the missing locations in Vl. It restricts

the addition operation to the shape of the pruned features, potentially leading to an over-reliance on
the results of the pruning process. If some important regions are over-pruned, the network might
struggle to detect small or narrow targets whose geometric information is seriously damaged.

(a) Grounding truth (b) Pruned Features

(c) Completion Features (d) Prediction

bench sofa ...

right of table

CASA

SA MLP

Compare &
Interpolate Cat

...

...

Figure 3: Illustration of completion-based addi-
tion. The above (b) illustrate an example of over-
pruning on the target. (c) refers to the completed
features predicted by CBA. The lower diagram
demonstrates how CBA predicts target distribu-
tion under textual guidance and adaptively com-
pletes the pruned features.

Considering the unavoidable risk of pruning
the query target or important relevant objects,
we introduce the completion-based addition
(CBA). CBA is designed to mitigate the draw-
back of both full and pruning-aware addition
by providing a more targeted and efficient way
of integrating multi-level features, ensuring that
essential details are preserved during the fea-
ture fusion process while the additional compu-
tational overhead is negligible.

Details of CBA. We first enhance the backbone
features Vl with the text features T through
cross-attention, obtaining V ′

l . Then a MLP is
adopted to predict the probability distribution
of target for region selection:

M tar
l = Θ(MLP(V ′

l )− τ) (4)
where Θ is the step function, and τ is the
threshold determining voxel relevance. M tar

l
is a binary mask indicating potential regions
of the mentioned target. Then, comparison of
M tar

l with Ul identifies missing voxels. The
missing mask Mmis

l is derived as follows:

Mmis
l = M tar

l ∧ (¬ C(UG
l , Vl)) (5)

where C(A,B) denotes the generation of a bi-
nary mask for A based on the shape of B. For
positions in B, if there are corresponding voxel
features in A, the mask for that position is set
to 1. Otherwise it is set to 0. Missed voxel features in UG

l that correspond to Mmis
l are interpo-

lated from UG
l , filling in gaps identified by the missing mask. The completed feature map U cpl

l is
computed by:

U cpl
l = V ′

l ⊙Mmis
l + I(UG

l ,Mmis
l ) (6)

where I represents linear interpolation on the feature map based on the positions specified in the
mask. Finally, the original upsampled features are combined with the backbone features according
to the pruning-aware addition, and merged with the completion features to yield the updated Ul:

Ul = Concat(UG
l ← Vl, U

cpl
l ) (7)

where← denotes the pruning-aware addition, and Concat means concatenation of voxel features.

3.4 TRAIN LOSS

The loss of ESS3D is composed of several components: pruning loss for TGP, completion loss
for CBA, and objectness loss as well as bounding box regression loss for the head. Pruning loss,
completion loss and objectness loss employ the focal loss to handle class imbalance. Supervision for
completion and classification losses are the same, which sets voxels near the target object center as
positives while leaving others as negatives. For bounding box regression, we use the Distance-IoU
(DIoU) loss. The total loss function is computetd as the sum of these individual losses:

Ltotal = λ1Lpruning + λ2Lcom + λ3Lclass + λ4Lbbox

where λ1, λ2, λ3 and λ4 are the weights of different parts.
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Table 1: Comparison of methods on the ScanRefer dataset evaluated at IoU thresholds of 0.25 and
0.5. ESS3D achieves state-of-the-art accuracy even compared with two-stage methods, with +1.13
lead on Acc@0.5. Notably, we are the first to comprehensively evaluate inference speed for 3DVG
methods. The inference speeds of other methods are obtained through our reproduction.

Method Venue Pipeline Input Accuracy Inference
0.25 0.5 Speed (FPS)

ScanRefer (Chen et al., 2020) ECCV’20 Two-stage 3D+2D 41.19 27.40 6.72
TGNN (Huang et al., 2021) AAAI’21 Two-stage 3D 37.37 29.70 3.19

InstanceRefer (Yuan et al., 2021) ICCV’21 Two-stage 3D 40.23 30.15 2.33
SAT (Yang et al., 2021) ICCV’21 Two-stage 3D+2D 44.54 30.14 4.34

FFL-3DOG (Feng et al., 2021) ICCV’21 Two-stage 3D 41.33 34.01 Not release
3D-SPS (Luo et al., 2022) CVPR’22 Two-stage 3D+2D 48.82 36.98 3.17

BUTD-DETR (Jain et al., 2022) ECCV’22 Two-stage 3D 50.42 38.60 3.33
EDA (Wu et al., 2023) CVPR’23 Two-stage 3D 54.59 42.26 3.34

3D-VisTA (Zhu et al., 2023) ICCV’23 Two-stage 3D 45.90 41.50 2.03
VPP-Net (Shi et al., 2024) CVPR’24 Two-stage 3D 55.65 43.29 Not release
G3-LQ (Wang et al., 2024) CVPR’24 Two-stage 3D 56.90 45.58 Not release

3D-SPS (Luo et al., 2022) CVPR’22 Single-stage 3D 47.65 36.43 5.38
BUTD-DETR (Jain et al., 2022) ECCV’22 Single-stage 3D 50.22 37.87 5.91

EDA (Wu et al., 2023) CVPR’23 Single-stage 3D 53.83 41.70 5.98
G3-LQ (Wang et al., 2024) CVPR’24 Single-stage 3D 55.95 44.72 Not release

ESS3D (Ours) —– Single-stage 3D 56.45 46.71 12.43

4 EXPERIMENTS

4.1 DATASETS

We maintain the same experimental settings with previous works, employing ScanRefer (Chen et al.,
2020) and SR3D/NR3D (Achlioptas et al., 2020) as datasets. ScanRefer: Built on the ScanNet
framework, ScanRefer includes 51,583 descriptions across scenes, with an average of 13.81 objects
per scene. Evaluation metrics focus on Acc@mIoU, categorizing predictions into “unique” and
“multiple” based on object singularity within the scene. ReferIt3D: Also based on ScanNet, this
dataset splits into Nr3D, with 41,503 human-generated descriptions, and Sr3D, containing 83,572
synthetic expressions. ReferIt3D simplifies the task by providing segmented point clouds for each
object, requiring only classification and selection of target objects. The primary evaluation metric is
accuracy in target object selection.

4.2 IMPLEMENTATION DETAILS

ESS3D is implemented using PyTorch and MinkowskiEngine. The pruning thresholds are set at
σsce = 0.7 and σtar = 0.3, and the completion threshold in CBA is τ = 0.15. The initial voxelization
of the point cloud has a voxel size of 1cm, while the voxel size for level i features scales to 2i+2

cm. The supervision for pruning uses L = 7. The weights for all components of the loss function,
λ1, λ2, λ3, λ4, are equal to 1. Training is conducted using four GPUs, while inference speeds are
evaluated using a single consumer-grade GPU, RTX 3090, with a batch size of 1.

4.3 QUANTITATIVE COMPARISONS

Performance on ScanRefer. We carry out comparisons with SOTA methods on ScanRefer dataset,
as detailed in Tab. 1. The inference speeds of other methods are obtained through our reproduc-
tion with a single RTX 3090 and a batch size of 1. For two-stage methods, the inference speed
includes the time taken for object detection in the first stage. For methods using 2D image fea-
tures and 3D point clouds as inputs, we do not account for the time spent extracting 2D features,
assuming they can be obtained in advance. However, in practical applications, the acquisition of 2D
features also impacts overall efficiency. ESS3D achieves state-of-the-art accuracy even compared
with two-stage methods, with +1.13 lead on Acc@0.5. Notably, in the single-stage setting, ESS3D
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Table 2: Quantitative comparisons on Nr3D and Sr3D dataset. We evaluate under three pipelines,
noting that the Two-stage using Ground-Truth Boxes is impractical for real-world applications.
ESS3D exhibits significant superiority, with leads of +5.4% and +5.0% on NR3D and SR3D.

Method Venue Pipeline Accuracy
Nr3D Sr3D

InstanceRefer (Yuan et al., 2021) ICCV’21 Two-stage (gt) 38.8 48.0
LanguageRefer (Roh et al., 2022) CoRL’22 Two-stage (gt) 43.9 56.0

3D-SPS (Luo et al., 2022) CVPR’22 Two-stage (gt) 51.5 62.6
MVT (Huang et al., 2022) CVPR’22 Two-stage (gt) 55.1 64.5

BUTD-DETR (Jain et al., 2022) ECCV’22 Two-stage (gt) 54.6 67.0
EDA (Wu et al., 2023) CVPR’23 Two-stage (gt) 52.1 68.1

VPP-Net (Shi et al., 2024) CVPR’24 Two-stage (gt) 56.9 68.7
G3-LQ (Wang et al., 2024) CVPR’24 Two-stage (gt) 58.4 73.1

InstanceRefer (Yuan et al., 2021) ICCV’21 Two-stage (det) 29.9 31.5
LanguageRefer (Roh et al., 2022) CoRL’22 Two-stage (det) 28.6 39.5
BUTD-DETR (Jain et al., 2022) ECCV’22 Two-stage (det) 43.3 52.1

EDA (Wu et al., 2023) CVPR’23 Two-stage (det) 40.7 49.9

3D-SPS (Luo et al., 2022) CVPR’22 Single-stage 39.2 47.1
BUTD-DETR (Jain et al., 2022) ECCV’22 Single-stage 38.7 50.1

EDA (Wu et al., 2023) CVPR’23 Single-stage 40.0 49.7
ESS3D —– Single-stage 48.7 57.1

achieves real-time performance, which is unprecedented among the existing methods. This signif-
icant improvement is attributed to our method’s efficient use of a multi-level architecture based on
3D sparse convolutions, coupled with the text-guided pruning. By focusing computation only on
salient regions of the point clouds, determined by textual cues, our model effectively reduces com-
putational overhead while maintaining high accuracy. This enables our system to provide a viable
solution for real-time efficient 3D visual grounding. ESS3D also sets a benchmark for inference
speed comparisons for future methodologies.

Performance on Nr3D/Sr3D. We evaluate our method on the SR3D and NR3D datasets, following
the evaluation protocols of prior works like EDA (Wu et al., 2023) and BUTD-DETR (Jain et al.,
2022) by using Acc@0.25 as the primary accuracy metric. The results are shown in Tab. 2. Given
that SR3D and NR3D provide ground-truth boxes and categories for all objects within a scene, we
consider three different pipelines for evaluation: (1) Two-stage using Ground-Truth Boxes, (2) Two-
stage using Detected Boxes, and (3) Single-stage. In practical applications, the Two-stage using
Ground-Truth Boxes pipeline is unrealistic because obtaining all ground-truth boxes in a scene is
infeasible. This approach can also oversimplify certain evaluation scenarios, rendering them less
meaningful. For example, if there are no other objects of the same category as the target in the
scene, the task reduces to relying on the provided ground-truth category. Under the Single-stage
setting, we achieve peak performance of 48.7% and 57.1% on Nr3D and Sr3D. ESS3D exhibits
significant superiority, even outperforming previous works under the pipeline of Two-stage using
Detected Boxes, with leads of +5.4% and +5.0% on NR3D and SR3D datasets.

4.4 ABLATION STUDY

Effectiveness of Proposed Components. To investigate the effects of our proposed TGP and CBA,
we conduct ablation experiments with module removal as shown in the Tab. 3. When TGP is not
used, multi-modal feature concatenation is employed as a replacement, as shown in Fig. 2 (a). When
CBA is not used, it is substituted with a pruning-based addition. The results demonstrate that TGP
significantly enhances performance without notably impacting inference time. This is because TGP,
while utilizing a more complex multi-modal attention mechanism for stronger feature fusion, signif-
icantly reduces feature scale through text-guided pruning. Additionally, the performance improve-
ment is also due to the gradual guidance towards the target object by both scene-level and target-level
TGP. Implementing CBA on top of TGP further enhances performance, as CBA dynamically com-
pensates for some of the excessive pruning by TGP, thus increasing the network’s robustness.
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Table 3: Effectiveness of the proposed TGP
and CBA. Evaluated on the ScanRefer dataset.

ID TGP CBA Accuracy Speed (FPS)0.25 0.5

(a) 40.13 32.87 14.58
(b) ✓ 55.20 46.15 13.22
(c) ✓ 41.34 33.09 13.51
(d) ✓ ✓ 56.45 46.71 12.43

Table 4: Influence of the two CBAs at different
levels. Evaluated on the ScanRefer dataset.

ID CBA CBA Accuracy Speed (FPS)(level 1) (level 2) 0.25 0.5

(a) 55.20 46.15 13.22
(b) ✓ 55.17 46.06 12.79
(c) ✓ 56.45 46.71 12.43
(d) ✓ ✓ 56.22 46.68 12.19

Integration of the Two CBAs. To explore the impact of CBAs at two different levels, we conduct
ablation experiments as depicted in Tab. 4. In the absence of CBA, we use pruning-based addition
as a substitute. The results indicate that the CBA at level 2 has negligible effects on the 3DVG
task. This is primarily because the CBA at level 2 mainly serves to supplement the scene-level
TGP, which is tasked with pruning the background—a relatively straightforward process. Moreover,
although some target features are pruned, they are compensated by two subsequent generative sparse
convolutions. However, the CBA at level 1 enhances performance by adapt completion for the
target-level TGP. It is challenging for the target-level TGP to fully preserve target objects through
upsampling features, especially for smaller or narrower targets. The CBA at level 1, based on high-
resolution backbone features, effectively complements the TGP.

Table 5: Influence of different feature upsampling
methods. Evaluated on the ScanRefer dataset.

ID Method Accuracy Speed (FPS)0.25 0.5

(a) Simple concatenation 40.13 32.87 14.58
(b) Attention mechanism — — —
(c) Text-guided pruning 56.27 46.58 10.11
(d) Simplified TGP 56.45 46.71 12.43

Feature Upsampling Techniques. We
conduct ablation experiments to assess
the effects of different feature upsampling
techniques, as detailed Tab. 5. As depicted
in Fig. 2 (a), using simple feature concate-
nation, while fast in inference speed, re-
sults in poor performance. When we at-
tempt to utilize an attention mechanism
with stronger feature interaction capabil-
ities, as shown in Fig. 2 (b), the computa-
tion exceeds the limits of GPU due to the
large number of voxels, making it impractical for real-world applications. Consequently, we employ
TGP to reduce the feature scale, as illustrated in Fig. 2 (c), which significantly improves performance
and enables practical deployment. Building on TGP, we propose simplified TGP, as shown in Fig. 2
(d), that merges feature interactions before and after pruning, achieving performance consistent with
the original TGP while enhancing inference speed.

4.5 QUALITATIVE RESULTS

Text-guided Pruning. To visually demonstrate the process of our TGP, we visualize the results
of two pruning phases, as shown in Fig. 4. In each example, the voxel features after scene-level
pruning, the features after target-level pruning, and the features after target-level generative sparse
convolution are displayed from top to bottom. It is evident that both pruning stages effectively
achieve our intended effect: the scene-level pruning filters out the background and retained object
voxels, and the target-level pruning preserves relevant and target objects. Moreover, during the
feature upsampling process, the feature count nearly exponentially increases with the resolution
enhancement due to generative upsampling. Without TGP, the voxel coverage would far exceed the
range of the scene point cloud, which is unacceptable for inference. This also intuitively explains
the significant impact of our TGP on both performance and inference speed.

Completion-based Addition. To clearly illustrate the function of our CBA, we visualize the adapt
completion process in Fig. 5. The images below showcase several instances of excessive pruning.
TGP performs pruning based on deep and low-resolution features, which can lead to excessive prun-
ing, potentially removing entire or partial targets. This over-pruning is more likely to occur with
small, as shown in Fig. 5 (a) and (c), narrow, as in Fig. 5 (b), or elongated targets, as in Fig. 5
(d). Based on this, our CBA effectively supplements the process using higher-resolution backbone
features, thus dynamically integrating multi-level features.
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(a) It is a gray trash can. 
The trash can sits in the 
corner by where the tv is.

(b) The chair is on the northwest side 
of the table that is furthest northeast 
in the room. The chair has a curved 

backside and four legs.

(c) A chrome water 
fountain. Is the lowest 
of two water fountains.

(d) There is a rectangular 
shelf. It is the one closest 

to the curtain.

Figure 4: Visualization of the text-guided pruning process. In each example, the voxel features after
scene-level TGP, target-level TGP and the last upsampling layer are presented from top to bottom.
The blue boxes represent the ground truth of the target, and the red boxes denote the bounding
boxes of relevant objects. ESS3D reduces the scale of features through two stages of pruning and
progressively guides the network focusing towards the target.

(a) The brown square trash can is 
to the right of the lamp. It is also 
behind the chair and to the right.

(b) The whiteboard is next to 
two doors. The whiteboard is 

a long, white rectangle.

(d) The book rack is left of the 
bookshelf that looks like a right 

angle with another.  The book rack 
is black and has as circular bottom.

(c) This is a monitor in black color. 
The monitor is next to the wall 

and at the back of maroon chair.

Figure 5: Visualization of the completion-based addition process. The blue points represent the
voxel features output by the target-level TGP, while the red points are the completion features pre-
dicted by the CBA. The blue boxes indicate the ground truth boxes. CBA adaptively supplements
situations where excessive pruning has occurred.

5 CONCLUSION

In this paper, we present ESS3D, an efficient sparse single-stage method for real-time 3D visual
grounding. Different architecture from previous 3D visual grounding (3DVG) methods, ESS3D
builds on multi-level sparse convolutional architecture for efficient and fine-grained scene represen-
tation extraction. To enable the interaction between voxel and textual features, we propose text-
guided pruning (TGP), which reduces the feature scale and guides the network to progressively
focus on the target object. We further introduce completion-based addition (CBA) for adaptive
multi-level feature fusion, effectively compensating for instances of over-pruning. Extensive ex-
periments demonstrate the effectiveness of our proposed modules, resulting in an efficient 3DVG
method that achieves state-of-the-art accuracy and inference speed.

Potential Limitations. Despite of the leading accuracy and inference speed, there are still some
limitations of ESS3D. First, the speed of ESS3D is bit slower than ESS3D-B. Although ESS3D
utilizes TGP to enable deep interaction between voxel and text features in an efficient way, it un-
avoidably introduces additional computational overhead compared with naive concatenation. In the
future work, we aim to work on designing new operations for multi-modal feature interaction to
replace the heavy cross-attention mechanism. Second, currently the input of 3DVG methods is a
reconstructed point clouds. We will work on extending it to online setting with streaming RGB-D
videos as input, which can support a wider range of practical application.
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A APPENDIX

We provide detailed results for different subsets on ScanRefer (Chen et al., 2020), and qualitative
comparisons of EDA (Wu et al., 2023) and ESS3D in the appendix.

A.1 DETAILED RESULTS ON SCANREFER

To provide a detailed account of ESS3D’s performance, we include the accuracy of ESS3D across
various subsets of the ScanRefer dataset, as shown in Fig. 6. ESS3D achieves state-of-the-art ac-
curacy, even when compared with two-stage methods, leading by +1.13 in Acc@0.5. In various
subsets, ESS3D maintains comparable accuracy to both single-stage and two-stage state-of-the-art
methods, while also demonstrating a level of efficiency that previous methods lack. Notably, the
“multi-object” subset involves distinguishing the target object among numerous distractors of the
same category within a more complex 3D scene. In this setting, ESS3D achieves a commendable
performance of 42.37 in Acc@0.5, further demonstrating that ESS3D enhances attention to the tar-
get object in complex environments through text-guided pruning and completion-based addition,
enabling accurate predictions of both the location and shape of the target.
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Table 6: Detailed Comparison of methods on the ScanRefer dataset evaluated at IoU thresholds of
0.25 and 0.5. ESS3D achieves state-of-the-art accuracy even compared with two-stage methods,
with +1.13 lead on Acc@0.5. In various subsets, ESS3D achieves comparable accuracy to both
single-stage and two-stage state-of-the-art methods. Additionally, ESS3D demonstrates a level of
efficiency that previous methods lack.

Method Pipeline Unique (∼19%) Multiple (∼81%) Accuracy Inference
0.25 0.5 0.25 0.5 0.25 0.5 Speed (FPS)

ScanRefer Two-stage 76.33 53.51 32.73 21.11 41.19 27.40 6.72
TGNN Two-stage 68.61 56.80 29.84 23.18 37.37 29.70 3.19

InstanceRefer Two-stage 77.45 66.83 31.27 24.77 40.23 30.15 2.33
SAT Two-stage 73.21 50.83 37.64 25.16 44.54 30.14 4.34

FFL-3DOG Two-stage 78.80 67.94 35.19 25.7 41.33 34.01 Not release
3D-SPS Two-stage 84.12 66.72 40.32 29.82 48.82 36.98 3.17

BUTD-DETR Two-stage 82.88 64.98 44.73 33.97 50.42 38.60 3.33
EDA Two-stage 85.76 68.57 49.13 37.64 54.59 42.26 3.34

3D-VisTA Two-stage 77.40 70.90 38.70 34.80 45.90 41.50 2.03
VPP-Net Two-stage 86.05 67.09 50.32 39.03 55.65 43.29 Not release
G3-LQ Two-stage 88.09 72.73 51.48 40.80 56.90 45.58 Not release

3D-SPS Single-stage 81.63 64.77 39.48 29.61 47.65 36.43 5.38
BUTD-DETR Single-stage 81.47 61.24 44.20 32.81 50.22 37.87 5.91

EDA Single-stage 86.40 69.42 48.11 36.82 53.83 41.70 5.98
G3-LQ Single-stage 88.59 73.28 50.23 39.72 55.95 44.72 Not release

ESS3D (Ours) Single-stage 87.25 71.41 51.04 42.37 56.45 46.71 12.43

A.2 QUALITATIVE COMPARISONS

To qualitatively demonstrate the effectiveness of our proposed ESS3D, we visualize the 3DVG re-
sults of ESS3D alongside EDA (Wu et al., 2023) on the ScanRefer dataset (Chen et al., 2020). As
shown in Fig. 6, the ground truth boxes are marked in blue, with the predicted boxes for EDA and
ESS3D displayed in red and green, respectively. EDA encounters challenges in locating relevant
objects, identifying categories, and distinguishing appearance and attributes, as illustrated in Fig. 6
(a), (c), and (d). In contrast, our ESS3D gradually focuses attention on the target and relevant ob-
jects under textual guidance and enhances resolution through multi-level feature fusion, showcasing
commendable grounding capabilities. Furthermore, Fig. 6 (b) illustrates that ESS3D performs better
with small or narrow targets, as our proposed completion-based addition can adaptively complete
the target shape based on low-resolution feature maps.
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This is the brown arm chair that is at the 
end of the chalk board. to the left of it 
there is a small bookshelf, it is brown. 
To the right of it and at the table is a 

blue chair. The brown chair is not under 
the table it is just next to the table.

It is a silver stainless steel 
refrigerator with a freezer 
on bottom. It is at the end 
of the cabinets under the 

window to the left.

It is a gray trash 
can. The trash can 

sits in the corner by 
where the tv is.

A black office chair. 
It is in between of a 
cabinet and the wall.

The chair is the middle 
one on the north side of 
the table. The chair is 
red and has two arms.

This is a cushion chair
with no arms. The chair 

is next to building.

There is a black table with 
a rectangular glass top. It 
is to the right of a black 
dresser, of similar height 
that also has glass top.

A small document 
organizer with 

shelves. There is a 
door entry near it.

(a) Missing Relevant Objects (b) Narrow  or Small Targets

(c) Category Error (d) Appearance and Attributes

GT

EDA

ESS3D

GT

EDA

ESS3D

Figure 6: Qualitative results of EDA (Wu et al., 2023) and our ESS3D on ScanRefer dataset (Chen
et al., 2020). In each description, the red annotations indicate the target object. The orange anno-
tations in (a) refer to relevant objects, while the yellow annotations in (d) denote the appearance or
attributes of the target. ESS3D demonstrates exceptional performance in locating relevant objects,
narrow or small targets, identifying categories, and distinguishing appearance and attributes.
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