
Published as a conference paper at ICLR 2023

SAFE REINFORCEMENT LEARNING FROM PIXELS
USING A STOCHASTIC LATENT REPRESENTATION

Yannick Hogewind, Thiago D. Simão, Tal Kachman & Nils Jansen
Radboud University, Nijmegen
{yannick.hogewind,thiago.simao,nils.jansen}@ru.nl
tal.kachman@donders.ru.nl

ABSTRACT

We address the problem of safe reinforcement learning from pixel observations.
Inherent challenges in such settings are (1) a trade-off between reward optimiza-
tion and adhering to safety constraints, (2) partial observability, and (3) high-
dimensional observations. We formalize the problem in a constrained, partially
observable Markov decision process framework, where an agent obtains distinct
reward and safety signals. To address the curse of dimensionality, we employ a
novel safety critic using the stochastic latent actor-critic (SLAC) approach. The
latent variable model predicts rewards and safety violations, and we use the safety
critic to train safe policies. Using well-known benchmark environments, we
demonstrate competitive performance over existing approaches regarding com-
putational requirements, final reward return, and satisfying the safety constraints.

1 INTRODUCTION

As reinforcement learning (RL) algorithms are increasingly applied in the real-world (Mnih et al.,
2015; Jumper et al., 2021; Fu et al., 2021), their safety becomes ever more important with the
increase of both model complexity, and uncertainty. Considerable effort has been made to increase
the safety of RL (Liu et al., 2021). However, major challenges remain that prevent the deployment
of RL in the real-world (Dulac-Arnold et al., 2021). Most approaches to safe RL are limited to
fully observable settings, neglecting issues such as noisy or imprecise sensors. Moreover, realistic
environments exhibit high-dimensional observation spaces and are largely out of reach for the state-
of-the-art. In this work, we present an effective safe RL approach that handles partial observability
with high-dimensional observation spaces in the form of pixel observations.

In tandem with prior work, we formalize the safety requirements using a constrained Markov de-
cision process (CMDP; Altman, 1999). The objective is to learn a policy that maximizes a reward
while constraining the expected return of a scalar cost signal below a certain value (Achiam et al.,
2017). According to the reward hypothesis, it could be possible to encode safety requirements di-
rectly in the reward signal. However, as argued by Ray et al. (2019), safe RL based only on a scalar
reward carries the issue of designing a suitable reward function. In particular, balancing the trade-
off between reward optimization and safety within a single reward is a difficult problem. Moreover,
over-engineering rewards to complex safety requirements runs the risk of triggering negative side
effects that surface after integration into broader system operation (Abbeel & Ng, 2005; Amodei
et al., 2016). Constrained RL addresses this issue via a clear separation of reward and safety.

Reinforcement learning from pixels typically suffers from sample inefficiency, as it requires many
interactions with the environment. In the case of safe RL, improving the sample efficiency is espe-
cially crucial as each interaction with the environment, before the agent reaches a safe policy, has
an opportunity to cause harm (Zanger et al., 2021). Moreover, to ensure safety, there is an incentive
to act pessimistic with regard to the cost (As et al., 2022). This conservative assessment of safety, in
turn, may yield a lower reward performance than is possible within the safety constraints.

Our contribution. We propose Safe SLAC, an extension of the Stochastic Latent Actor Critic ap-
proach (SLAC; Lee et al., 2020) to problems with safety constraints. SLAC learns a stochastic latent
variable model of the environment dynamics, to address the fact that optimal policies in partially ob-

1

Published as a conference paper at ICLR 2023

servable settings must estimate the underlying state of the environment from the observations. The
model predicts the next observation, the next latent state, and the reward based on the current ob-
servation and current latent state. This latent state inferred by the model is then used to provide the
input for an actor-critic approach (Konda & Tsitsiklis, 1999). This algorithm involves learning a
critic function that estimates the utility of taking a certain action in the environment, which serves
as a supervision signal for the policy, also named the actor. The SLAC method has excellent sample
efficiency in the safety-agnostic partially observable setting, which renders it a promising candidate
to adapt to high-dimensional settings with safety constraints. At its core, SLAC is an actor-critic ap-
proach, carrying the potential for a natural extension to safety with a safety critic. We extend SLAC
in three ways to create our safe RL approach under partial observability (Safe SLAC): (1) the latent
variable model also predicts cost violations, (2) we learn a safety critic that predicts the discounted
cost return, and (3) we modify the policy training procedure to optimize a safety-constrained objec-
tive by use of a Lagrangian relaxation, solved using dual gradient descent on the primary objective
and a Lagrange multiplier to overcome the inherent difficulty of constrained optimization.

We evaluate Safe SLAC using a set of benchmark environments introduced by Ray et al. (2019). The
empirical evaluation shows competitive results compared with complex state-of-the-art approaches.

2 RELATED WORK

Established baseline algorithms for safe reinforcement learning in the fully observable setting in-
clude constrained policy optimization (CPO; Achiam et al., 2017), as well as trust region policy
optimization (TRPO)-Lagrangian (Ray et al., 2019), a cost-constrained variant of the existing trust
region policy optimization (TRPO; Schulman et al., 2015). While TRPO-Lagrangian uses an adap-
tive Lagrange multiplier to solve the constrained problem with primal-dual optimization, CPO solves
the problem of constraint satisfaction analytically during the policy update.

The method closest related to ours is Lagrangian model-based agent (LAMBDA; As et al., 2022),
which also addresses the problem of learning a safe policy from pixel observations under high partial
observability. LAMBDA uses the partially stochastic dynamics model introduced by (Hafner et al.,
2019). The authors take a Bayesian approach on the dynamics model, sampling from the posterior
over parameters to obtain different instantiations of this model. For each instantiation, simulated
trajectories are sampled. Then, the worst cost return and best reward return are used to train critic
functions that provide a gradient to the policy. LAMBDA shows competitive performance with base-
line algorithms, however, there are two major trade-offs. First, by taking a pessimistic approach, the
learned policy attains a lower cost return than the allowed cost budget. A less pessimistic approach
that uses the entirety of the allowed cost budget may yield a constraint-satisfying policy with a
higher reward return. Second, the LAMBDA training procedure involves generating many samples
from their variable model to estimate the optimistic/pessimistic temporal difference updates.

While the reinforcement learning literature has numerous safety perspectives (Garcı́a & Fernández,
2015; Pecka & Svoboda, 2014), we focus on constraining the behavior of the agent on expectation.
A method called shielding ensures safety already during training, using temporal logic specifications
for safety (Alshiekh et al., 2018; Jansen et al., 2020). Such methods, however, require extensive prior
knowledge in the form of a (partial) model of the environment (Carr et al., 2023).

3 CONSTRAINED PARTIALLY OBSERVABLE MARKOV DECISION PROCESSES

In reinforcement learning, an agent learns to sequentially interact with an environment to maxi-
mize some signal of utility. This problem setting is typically modeled as a Markov decision pro-
cess (MDP; Sutton & Barto, 2018), in which the environment is composed of a set of states S and
a set of actions A. At each timestep t, the agent receives the current environment state st ∈ S
and executes an action at ∈ A, according to the policy π: at ∼ π(at | st). This action results in a
new state according to the transition dynamics st+1 ∼ p(st+1 | st, at) and a scalar reward signal
rt = r(st, at) ∈ R, where r is the reward function. The goal is for the agent to learn an optimal
policy π⋆ such that the expectation of discounted, accumulated reward in the environment under
that policy is maximized, i.e. π⋆ = argmaxπ E [

∑
t γ

trt] with γ ∈ [0, 1). We use ρπ to denote the
distribution over trajectories induced in the environment by a policy π.

2

Published as a conference paper at ICLR 2023

In a partially observable Markov decision process (POMDP; Kaelbling et al., 1998), the agent cannot
observe the true state st of the MDP and instead receives some observation xt ∈ X that provides
partial information about the state, sampled from the observation function xt ∼ X(st). In this
setting, learning a policy π is more difficult than in MDPs since the true state of the underlying
MDP is not known and must be inferred from sequences of observations to allow the policy to
be optimal. Therefore, the optimal policy is a function of a history of observations and actions
π(at | x1:t, a1:t−1). In practice, representing such policy can be infeasible, so the policy is often
conditioned on a compact representation of the history.

While the reward hypothesis states that desired agent behavior can plausibly be represented in a
single scalar reward signal, in practice it can be difficult to define a reward function that balances
different objectives (Vamplew et al., 2022; Roy et al., 2022). The same is true for safety: as ar-
gued by Ray et al. (2019), a useful definition of safety is a constraint on the behavior, stating the
problem as a constrained MDPs (CMDP; Altman, 1999), with analogous definitions for constrained
POMDPs (CPOMDP; Isom et al., 2008; Lee et al., 2018; Walraven & Spaan, 2018). A scalar cost
variable ct ∈ R at each time step of the C(PO)MDP, according to a cost function ct = c(st, at),
serves as a measure of safety violation. The objective of the reinforcement learning problem then
changes to constrain the accumulated cost under a given safety threshold d ∈ R:

π∗ = argmax
π

E

[∑
t

γtrt

]
s. t. E

[∑
t

ct

]
< d. (1)

Next, we review RL algorithms for POMDPs and CMDPs, laying the foundations for the safe RL
algorithm we propose in Section 5 dedicated to CPOMDPs with unknown environment dynamics.

4 STOCHASTIC LATENT ACTOR-CRITIC

Soft actor-critic (SAC; Haarnoja et al., 2018a) is an RL approach based on the maximum entropy
framework. Besides the traditional reinforcement learning objective of maximizing the reward, it
also aims to maximize the entropy of the policy. The sampling of states that allow high-entropy
action distributions is maximized. This approach can be robust to disturbances in the dynamics
of the environment (Eysenbach & Levine, 2022). In practice, it can be challenging to determine
a weight for the entropy term in the objective a priori, so instead, the entropy is constrained to a
minimum value (Haarnoja et al., 2018b). A stochastic policy is particularly interesting to our work
since a deterministic policy might be suboptimal in the CPOMDP setting (Kim et al., 2011).

Stochastic latent actor-critic (SLAC; Lee et al., 2020) is an RL algorithm that addresses partial
observability and high-dimensional observations by combining a probabilistic sequential latent vari-
able model with an actor-critic approach. The sequential latent variable model aims to infer the true
state of the environment by considering the environment as having an unseen true latent state zt
and latent dynamics p(zt+1 | zt,at). This model generates observations xt ∼ p(xt | zt) and rewards
rt ∼ p(rt | zt,at, zt+1). By approximating these latent dynamics in the latent variable model using
approximate variational inference, the learned model can infer the latent state from previous obser-
vations and actions as q(zt |x0:t,a0:t). Consequently, SLAC can be viewed as an adaption of SAC
to POMDPs, using the inferred latent state z as input for the critic in SAC.

Equation 2 describes the latent variable model M , which is parameterized by ψ. This model
infers a low-dimensional latent state representation z from a history of high-dimensional ob-
servations x and actions a gathered through interaction with the environment. This model is
trained by sampling trajectories from the environment and inferring a latent state from each
trajectory according to the distributions given in Equation 3. The model uses this inferred latent
state to predict the next observation and reward according to the distributions in Equation 3.

z1 ∼ p(z1).
zt+1 ∼ pψz (zt+1 | zt,at).
xt ∼ pψx(xt | zt).
rt ∼ pψr (rt | zt,at, zt+1).

(2)
z1 ∼ qψ0(z1 | x1).

zt+1 ∼ qψz (zt+1 | xt+1, zt,at).
(3)

Hereinafter, we use M to refer to the functions of the model (pψz ,pψx , pψr , qψ0 , qψz), and use ψ
without the superscript to simplify the notation. Furthermore, following Lee et al. (2020), in our

3

Published as a conference paper at ICLR 2023

implementation we decompose the latent variable z in two parts (see Appendix A for more details).
The parameters of the model ψ are trained to optimize the objective in Equation 4, in which DKL is
the Kullback-Leibler divergence, an asymmetric measure of the difference between two distributions
commonly used in variational inference (Kingma & Welling, 2014):

JM (ψ) = E
z1:τ+1∼qψ

[
τ∑
t=0

− log pψ(xt+1 | zt+1)− log pψ(rt+1 | zt+1)
+DKL(qψ(zt+1 | xt+1, zt, at) pψ(zt+1 | zt,at))

]
. (4)

The resulting inferred latent state, which captures information about previous observations and ex-
pected reward in future time steps, serves as the input for the critic in SAC.

In practice, the probability distributions in Equations 2 and 3 are set to follow Gaussian distributions
with diagonal covariance matrices, where the means and variances are the output of neural networks,
optimized using the reparametrization trick (Kingma & Welling, 2014). The neural network that
models qψ(z11 |x1) treats a lower-dimensional feature vector, extracted from the high-dimensional
observation using a convolutional neural network. For further details, we refer the interested reader
to Lee et al. (2020).

We can solve this problem taking a Lagrangian relaxation of the constrained problem and optimizing
the unconstrained dual problem through dual gradient descent (Geibel & Wysotzki, 2005; Stooke
et al., 2020). SAC-Lagrangian uses this approach, to bring SAC to the safety-constrained CMDP
setting, where it may constrain the step-wise cost (Ha et al., 2020) or cost return (Yang et al., 2021).
In the next section, we present our approach to adapt SLAC for the CPOMDP setting.

5 SAFE SLAC

The Safe SLAC model is an adaption of SLAC for the safety-constrained setting under partial ob-
servability. There are three steps to this adaption. First, we adapt the latent variable model to include
information related to safety in the latent state. Second, we train a safety critic to predict the ex-
pected cost return resulting from a given action. Third, we constrain the policy objective and use its
Lagrangian relaxation to train the actor.

Latent variable model with cost prediction. We include a notion of safety in the latent state by
changing the generative part of the model to predict the cost at the next time step, in addition to
predicting the observation and reward. This introduces the conditional probability distribution ct ∼
pψc(ct | zt,at, zt+1) to the generative component of the model, analogous to the component that
predicts reward. Using the simplified notation of the parameters (ψ), the resulting model objective is:

JM (ψ)= E
z1:τ+1∼qψ

[
τ∑
t=0

− log pψ(xt+1|zt+1)− log pψ(rt+1|zt+1)− log pψ(ct+1|zt+1)
+DKL(qψ(zt+1 | xt+1, zt,at) ∥ pψ(zt+1 | zt,at))

]
. (5)

While the other probability distributions in the model are Gaussian variables with a diagonal co-
variance matrix, we follow As et al. (2022) and use a Bernoulli distribution for the conditional cost
distribution, since the cost is binary in the environments we consider.

Safety critic. As an integral part of Safe SLAC, we train a safety critic. First, the reward critic
Qr with parameters θ remains unchanged from SLAC and estimates the expected discounted reward
return for a given latent state and action pair under the current policy, as well as the expected entropy
of the policy after taking the given action in the environment. To this end, Qr optimizes the soft
Bellman residual in Equation 6.

JQr (θ) = E
z1:τ+1∼qψ

[
1

2
(Qrθ(zτ ,aτ)− (rτ + γVθ̄(zτ+1)))

2

]
. (6)

Vθ(zτ+1) = E
aτ+1∼πϕ

[Qrθ(zτ+1,aτ+1)− α log πϕ(aτ+1 | x1:τ+1,a1:τ)] . (7)

In addition to the reward critic, we train the safety critic Qc with parameters ζ that predicts the
expected discounted cost return for a given latent state and action. The loss function for the safety
critic, given in Equation 8, is similar to Equation 6 but does not include an entropy term.

4

Published as a conference paper at ICLR 2023

JQc(ζ) = E
z1:τ+1∼qψ

[
1

2
(Qcζ(zτ ,aτ)− (cτ + γ E

aτ+1∼πϕ
Qcζ̄(zτ+1,aτ+1)))

2

]
. (8)

Safe SLAC policy objective. SLAC follows the maximum entropy framework objec-
tive (Haarnoja et al., 2018b), using the latent state as input for the critics. We adjust this to be
constrained to safe behavior. The policy objective in safety-indifferent SLAC maximizes both the
entropy of the policy, which ensures sufficient exploration, and the soft action-value estimate as
predicted by the reward critic Qrθ:

Jπ(ϕ) = E
zt:τ+1∼qψ

[
E

aτ+1∼πϕ
[α log πϕ(aτ+1 | x1:τ+1,a1:τ)−Qrθ(zτ+1,aτ+1)]

]
. (9)

Analogously to the safety critic term in SAC-Lagrangian (Ha et al., 2020), we obtain the objective for
the safety-constrained policy by including a term to minimize the expected cost return as estimated
by the safety critic Qcζ , weighted by the Lagrange multiplier λ:

Jπ(ϕ) = E
zt:τ+1∼qψ
aτ+1∼πϕ

[
α log πϕ(aτ+1 | x1:τ+1,a1:τ)−Qrθ(zτ+1,aτ+1) + λQcζ(zτ+1,aτ+1)

]
. (10)

As we discussed in Section 3, it is not practical to condition the policy on the full history. To
circumvent this problem, Lee et al. (2020) use a truncated history of observations and actions as
input for the policy; however, we find empirically that using the latent state as input for the actor
yields better results in our setting. As such, in our training procedure the policy takes as input the
current latent state z, which is updated after each environment step. When using the latent state as
input for the policy, occurrences of πϕ in Equations 6, 9 and 10 and Algorithm 1 can instead be read
as modeling the distribution πϕ(aτ+1 | zτ+1) and πϕ(at | zt), respectively. In the gradient steps, we
infer the latent state from a truncated history of observations and actions that is sampled from the
replay buffer, rather than from the full history.

Note that Safe SLAC carries the same limitation as SLAC. Overall, even in the unconstrained case,
conditioning the policy on the latent variable is not guaranteed to result in the optimal policy of the
underlying POMDP (see Lee et al., 2020). To find an optimal policy, we must condition the policy
in the history or a belief state that provides sufficient statistics of the history, which may lead the
agent to take actions to gather information (Cassandra et al., 1994; Thrun, 1999).

The entropy and expected cost-return are constrained, therefore, α and λ are adjusted dynamically
to incentivize the policy to adhere to the constraints. α is tuned using the procedure and hyperpa-
rameters as in (Haarnoja et al., 2018b). Next, we describe how to adjust λ during training.

5.1 SAFETY LAGRANGE MULTIPLIER LEARNING

We use on-policy data to adjust the Lagrange safety multiplier. Previous work in the fully observable
setting has adjusted the Lagrange multiplier by estimating the cost return as the mean prediction of
the safety critic over states sampled from the replay buffer(Yang et al., 2021). It has been shown
for Q-learning (Thrun & Schwartz, 1993) and policy gradient methods (Fujimoto et al., 2018), that
using function approximators such as neural networks to estimate state and action value functions
can result in biased value estimates. While bias in value estimation can result in suboptimal policy
learning, the induced bias is doubly important if the safety critic not only serves to provide a gradient
to the agent, but its magnitude is also used to determine the Lagrange multiplier. We have found
in our experiments that for the given environments, this bias was sufficient to prevent the learning
of safe policies and we were unable to mitigate this using the techniques proposed by Fujimoto
et al. (2018). We attribute this to the high degree of partial observability in the environments, the
off-policy nature of the learning algorithm, and the use of 0-step temporal difference error for value
updating. Consequently, we adjust the Lagrange multiplier λ based on the real undiscounted cost
return incurred in each training episode. This is expressed in the following loss, where λ is changed
to minimize the incurred cost return less the allowed cost budget:

Js(λ) = E
ρ∼ρπ

[
λ

T∑
t=1

ct − d
]
, (11)

5

Published as a conference paper at ICLR 2023

Algorithm 1 Safe SLAC
Input: Empty replay buffer D, environment E , and initialized parameters ψ, θ1, θ2, ζ, and ϕ
Hyperparameter: Number of warmup interactions Wp and warmup training steps Wt

Output: Optimized parameters
1: Sample Wp transitions from E using a stochastic policy and store these in D.
2: for i=1 to Wt do
3: Sample experience from D
4: Update ψ according to Equation 5
5: end for
6: while not converged do
7: for each environment step at time t do
8: at ∼ πϕ(at |x1:t,a1:t−1)
9: Obtain (xt+1, rt+1, ct+1) by executing at in E

10: D ← D ∪ (xt+1,at, rt+1, ct+1)
11: Update λ by minimizing Equation 11
12: end for
13: for each gradient step do
14: (x1:τ+1,a1:τ , r1:τ+1, c1:τ+1) ∼ D
15: Update θ1, θ2 according to Equation 6
16: Update ψ according to Equation 5
17: Update ϕ according to Equation 10
18: Update ζ according to Equation 8
19: θ̄1 ← νθ1 + (1− ν)θ̄1
20: θ̄2 ← νθ2 + (1− ν)θ̄2
21: ζ̄ ← νζ + (1− ν)ζ̄
22: end for
23: end while

where ρ is a trajectory and d is the budget. Intuitively, the weight of the safety critic in the policy
loss is increased when the policy is unsafe and decreased when the policy is safe. In practice, we
found this procedure to be stable and effective for a sufficiently low learning rate. We stress that the
evaluation episodes are not used for policy learning, including adjustment of the Lagrange multiplier.

5.2 TRAINING PROCEDURE

Safe SLAC is described in Algorithm 1. The training procedure starts initializing the replay buffer
by taking actions under a stochastic policy for 60k environment steps, with actions sampled from a
truncated diagonal Gaussian distribution. It then trains an initial latent variable model for 30k steps
on sequences uniformly sampled from the replay buffer, minimizing the objective in Equation 5.
After this warm-up procedure, we alternate between collecting experiences and training the latent
variable model, actor, and critics.

To improve stability during training, we maintain target networks for the critics, which are updated
using exponential averaging (Lines 19 to 21). The neural networks that parameterize the model,
actor, and critics have the same architecture as in SLAC, with hyperparameters as detailed in Ap-
pendix B. Except for the safety Lagrange multiplier, we optimize all parameters using the Adam
optimizer (Kingma & Ba, 2014).

Whereas Lee et al. (2020) indicate that the optimal additive noise added to the observation prediction
during latent variable model training is of low variance for most environments, we find better results
with a large variance (0.4). This is consistent with their hypothesis that a strong noise yields better
results for environments with large differences between subsequent observations, as is the case in
our environments.

We follow both SLAC and LAMBDA in using two action repeats on these environments, meaning
that we transform the base environment so that each action executed in it is performed twice before
the agent receives a new observation. We aggregated both the reward and cost incurred in the
transitions induced by these repeated actions to scalar values by summing them.

6

Published as a conference paper at ICLR 2023

PointGoal1 PointGoal2 DoggoGoal1 CarGoal1 PointPush1 PointButton1

Figure 1: Six SG6 environments used in our experiments. Top row shows the first-person camera
pixel image that our agent observes. Bottom row gives a top-down overview of the environment. In
all environments, the agent (red) must reach the goal (green) while avoiding the hazards (blue and
purple). In PointPush1, the agent must push the yellow box into the green goal to receive a reward.

6 EMPIRICAL EVALUATION

We evaluate our approach on a set of six SafetyGym benchmark environments introduced by Ray
et al. (2019) as SG6, shown in Figure 1. For all environments, we use the standard cost return budget
of 25 per episode. As training progresses, we frequently evaluate the performance of the policy in 10
evaluation episodes. The mean reward and cost return during these evaluation episodes are shown
in Figure 2 for three different random seeds per environment. We calculate the normalized reward
and cost return using the performance in the last 5 evaluations, as proposed by Ray et al. (2019).
We compare our results with the final results from basic algorithms, including the unconstrained
proximal policy optimization (PPO; Schulman et al., 2017), using sensor observations, and with
LAMBDA trained on pixel observations, as reported by As et al. (2022); see Section 2 for a descrip-
tion of these algorithms. Figures 2 and 3 compile the results obtained in the SG6 set. Appendix D
presents a qualitative analysis of the results.

Figure 2 shows that Safe SLAC converges on a safe policy for nearly all environments and attains
a competitive reward return. Safe SLAC reaches a higher reward return than LAMBDA compared
to other baselines such as PointGoal1 and CarGoal1 environments. In PointGoal2, we also reach a
higher reward return than LAMBDA, but only after 2 million environment steps. The results shown
for LAMBDA in PointGoal2 used training for only 1 million steps; we reach the same performance
as LAMBDA using approximately 40% more samples and continue to improve after this.

Safety and reward tradeoff. In the DoggoGoal1 environment, we observe that while the reward
return of Safe SLAC is significantly better than for the other algorithms, the mean cost return is
slightly larger than the allowed limit and is only better than CPO. This indicates that the tradeoff
between reward and safety is balanced too far towards reward. Adjusting the learning rate for the
safety Lagrange multiplier from the default 2 ∗ 10−6 to 6 ∗ 10−6, we obtain the results indicated
in Figure 3 as Safe SLAC+, which increases the reward return in PointGoal2. From this effect, we
conclude that our policy makes a meaningful tradeoff between optimizing reward and cost return,
and that the current training procedure for the Lagrange multiplier is sensitive to the learning rate.

Challenges in strong partial-observability. Like LAMBDA, our approach fails to make substan-
tial improvement in reward return in PointPush1, although the policy is safe. We attribute this to the
strong partial observability due to the pixel observations: while the box is pushed, the agent cannot
observe its surroundings and so must rely entirely on its belief or latent state. This is supported by
the fact that the baselines that use sensor observations are able to attain a much higher reward return.

Normalized metrics. To summarize the performance of our algorithm, we normalize the mean
reward return and cost return for each environment at the end of training by dividing them by the
performance of unconstrained PPO, as proposed by Ray et al. (2019). The resulting normalized
metrics, shown in Figure 3, indicate that Safe SLAC improves over the baselines and is competitive

7

Published as a conference paper at ICLR 2023

0.2 0.4 0.6 0.8 1.0
×106

0

20
C

ar
G

oa
l1

Reward Return

0.2 0.4 0.6 0.8 1.0
×106

0

100

Cost return

0.0 0.5 1.0 1.5 2.0
×106

0

2

4

Po
in

tP
us

h1

0.0 0.5 1.0 1.5 2.0
×106

0

100

0.0 0.5 1.0 1.5 2.0
×106

0

20

40

D
og

go
G

oa
l1

0.0 0.5 1.0 1.5 2.0
×106

0

100

200

0.0 0.5 1.0 1.5 2.0
×106

0

10

20

Po
in

tG
oa

l2

0.0 0.5 1.0 1.5 2.0
×106

0

100

0.0 0.5 1.0 1.5 2.0
×106

0

10

20

Po
in

tB
ut

to
n1

0.0 0.5 1.0 1.5 2.0
×106

0

50

100

0.2 0.4 0.6 0.8 1.0
×106

0

10

20

Po
in

tG
oa

l1

0.2 0.4 0.6 0.8 1.0
×106

25

50

75

Environment steps

Te
st

re
w

ar
d/

co
st

re
tu

rn

median of Safe SLAC
5th to 95th percentile Safe SLAC
Budget

Final CPO (sensor)
Final TRPO Lagrangian (sensor)

Final LAMBDA
Final PPO (sensor)

Figure 2: Evaluation reward and cost return. Note that for PointGoal2, the final results for LAMBDA
are calculated after 1 million environment steps, whereas we use 2 million.

with LAMBDA. We exclude DoggoGoal1 from this figure, as Safe SLAC is not safe for our standard
learning rate as discussed above. The normalized reward return is so large for Safe SLAC that it
obscures the performance in other environments. The same figure with DoggoGoal1 included can
be seen in Figure 5 (Appendix C).

History as actor input. As discussed in Section 5, we deviate from the suggestion by Lee et al.
(2020) to use the truncated history as input for the actor and instead use the latent state inferred
from the full history to select actions. In Figure 4, we compare the performance of these two policy
inputs on the PointGoal2 environment. While both variants converge to a safe policy, the reward
performance of the latent state policy is higher than that of the history policy.

8

Published as a conference paper at ICLR 2023

0.0 0.5 1.0 1.5

Normalized Reward Return

PointGoal1

PointGoal2

CarGoal1

PointButton1

PointPush1

Mean

E
nv

ir
on

m
en

t

0.0 0.2 0.4 0.6

Normalized Cost Return
Task Objective Safety

Metric

0.0

0.5

1.0

N
or

m
al

iz
ed

M
et

ri
c

Safe SLAC
Safe SLAC+
CPO
TRPO Lagrangian
LAMBDA

Figure 3: Normalized reward return and normalized cost return performance of Safe SLAC com-
pared to LAMBDA and the baselines. “Safe SLAC” indicates our approach evaluated using a single
set of hyperparameters for all environments and after 1 million environments steps on PointGoal2, to
match LAMBDA. “Safe SLAC+” shows results using an adjusted learning rate on the DoggoGoal1
environment and 2 million steps on PointGoal2.

0.0 0.5 1.0 1.5 2.0
×106

0

5

10

15

M
ea

n
re

w
ar

d
re

tu
rn

0.0 0.5 1.0 1.5 2.0
×106

0

50

100

150

M
ea

n
co

st
re

tu
rn

Latent policy
History policy
Budget

Environment steps

Figure 4: Comparison of latent state and truncated history as actor input on the PointGoal2 environ-
ment. While both are safe at the end of training, the latent state policy shows higher reward return.

Safe SLAC may be less pessimistic than LAMBDA. For PointGoal2, LAMBDA was trained
only with 1M environment steps. For this computational budget, Safe SLAC is able to find a safe
policy, however, we notice it has not converged yet, and the reward return is slightly lower than the
final reward return from LAMBDA. Nevertheless, with more time Safe SLAC clearly outperforms
LAMBDA, whose reward return in this environment plateaus before reaching 1 million environment
steps (Figure 5 from As et al., 2022). In summary, Safe SLAC can keep improving while LAMBDA
stagnates as we use more of the allowed cost budget.

Computational requirements. Our approach is less complex than LAMBDA, as it does not re-
quire costly sampling of Bayesian world models, or generating synthetic experience using the latent
variable model. Thus, we conjecture that Safe SLAC also has lower computational requirements. As
an example, training our approach for 1 million base environment steps on PointGoal1 takes a total
of 10 hours and 14 minutes. For contrast, LAMBDA takes 13 hours and 20 minutes (measured on
the same hardware). Nevertheless, this improvement might also be due to implementations details.

7 CONCLUSION

This paper proposes Safe SLAC, a safety-constrained RL approach for partially observable settings,
which uses a stochastic latent variable model combined with a safety critic. Empirically, it shows
competitive performance with state-of-the-art methods while having a less complex training proce-
dure. Safe SLAC often derives policies with higher reward returns, while still satisfying the safety
constraint. Future work includes using a distributed critic to increase the control over the safety
violations (Yang et al., 2022) and improving the optimization of the Lagrange multiplier (Stooke
et al., 2020), which is currently sensitive to its learning rate as seen in the DoggoGoal1 experiments.

9

Published as a conference paper at ICLR 2023

ACKNOWLEDGMENTS

This work was funded by the ERC Starting Grant 101077178 (DEUCE) and the NWO grant
NWA.1160.18.238 (PrimaVera). We thank Toshiki Watanabe for their reimplementation of SLAC
in PyTorch, which served as the basis for our code.

REPRODUCIBILITY STATEMENT

The code for our implementation of Safe SLAC is available on GitHub at https://github.
com/lava-lab/safe-slac. The repository contains implementations for the Safe SLAC ac-
tor, critics, model and training procedure. This includes the necessary code to interface with the pub-
licly available SafetyGym environments using pixel observations, as well as instructions to install
the required dependencies and reproduce our experiments. In addition, the default hyperparameters
are specified in a configuration file.

REFERENCES

Pieter Abbeel and Andrew Y. Ng. Exploration and apprenticeship learning in reinforcement learning.
In ICML, volume 119 of ACM International Conference Proceeding Series, pp. 1–8. ACM, 2005.

Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In
ICML, volume 70 of Proceedings of Machine Learning Research, pp. 22–31. PMLR, 2017.

Mohammed Alshiekh, Roderick Bloem, Rüdiger Ehlers, Bettina Könighofer, Scott Niekum, and
Ufuk Topcu. Safe reinforcement learning via shielding. In AAAI, pp. 2669–2678. AAAI Press,
2018.

Eitan Altman. Constrained Markov Decision Processes: Stochastic Modeling. Routledge, 1999.

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané. Con-
crete problems in AI safety. arXiv preprint arXiv:1606.06565, 2016.

Yarden As, Ilnura Usmanova, Sebastian Curi, and Andreas Krause. Constrained policy optimization
via Bayesian world models. In ICLR. OpenReview.net, 2022.

Steven Carr, Nils Jansen, Sebastian Junges, and Ufuk Topcu. Safe reinforcement learning via shield-
ing under partial observability. In AAAI, 2023.

Anthony R. Cassandra, Leslie Pack Kaelbling, and Michael L. Littman. Acting optimally in partially
observable stochastic domains. In AAAI, pp. 1023–1028. AAAI Press / The MIT Press, 1994.

Gabriel Dulac-Arnold, Nir Levine, Daniel J. Mankowitz, Jerry Li, Cosmin Paduraru, Sven Gowal,
and Todd Hester. Challenges of real-world reinforcement learning: definitions, benchmarks and
analysis. Mach. Learn., 110(9):2419–2468, 2021.

Benjamin Eysenbach and Sergey Levine. Maximum entropy RL (provably) solves some robust RL
problems. In ICLR. OpenReview.net, 2022.

Justin Fu, Andrea Tacchetti, Julien Pérolat, and Yoram Bachrach. Evaluating strategic structures in
multi-agent inverse reinforcement learning. J. Artif. Intell. Res., 71:925–951, 2021.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. In ICML, volume 80 of Proceedings of Machine Learning Research, pp.
1582–1591. PMLR, 2018.

Javier Garcı́a and Fernando Fernández. A comprehensive survey on safe reinforcement learning. J.
Mach. Learn. Res., 16:1437–1480, 2015.

Peter Geibel and Fritz Wysotzki. Risk-sensitive reinforcement learning applied to control under
constraints. J. Artif. Intell. Res., 24:81–108, 2005.

Sehoon Ha, Peng Xu, Zhenyu Tan, Sergey Levine, and Jie Tan. Learning to walk in the real world
with minimal human effort. In CoRL, volume 155 of Proceedings of Machine Learning Research,
pp. 1110–1120. PMLR, 2020.

10

https://github.com/lava-lab/safe-slac
https://github.com/lava-lab/safe-slac

Published as a conference paper at ICLR 2023

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In ICML, volume 80 of
Proceedings of Machine Learning Research, pp. 1856–1865. PMLR, 2018a.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Soft actor-critic algo-
rithms and applications. arXiv preprint arXiv:1812.05905, 2018b.

Danijar Hafner, Timothy P. Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and
James Davidson. Learning latent dynamics for planning from pixels. In ICML, volume 97 of
Proceedings of Machine Learning Research, pp. 2555–2565. PMLR, 2019.

Joshua D. Isom, Sean P. Meyn, and Richard D. Braatz. Piecewise linear dynamic programming for
constrained POMDPs. In AAAI, pp. 291–296. AAAI Press, 2008.

Nils Jansen, Bettina Könighofer, Sebastian Junges, Alex Serban, and Roderick Bloem. Safe re-
inforcement learning using probabilistic shields (invited paper). In CONCUR, volume 171 of
LIPIcs, pp. 3:1–3:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žı́dek, Anna Potapenko, et al. Highly accurate
protein structure prediction with AlphaFold. Nature, 596(7873):583–589, 2021.

Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning and acting in
partially observable stochastic domains. Artif. Intell., 101(1-2):99–134, 1998.

Dongho Kim, Jaesong Lee, Kee-Eung Kim, and Pascal Poupart. Point-based value iteration for
constrained POMDPs. In IJCAI, pp. 1968–1974. IJCAI/AAAI, 2011.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1511.07289, 2014.

Diederik P. Kingma and Max Welling. Auto-encoding variational Bayes. In ICLR, 2014.

Vijay R. Konda and John N. Tsitsiklis. Actor-critic algorithms. In NIPS, pp. 1008–1014. The MIT
Press, 1999.

Alex X. Lee, Anusha Nagabandi, Pieter Abbeel, and Sergey Levine. Stochastic latent actor-critic:
Deep reinforcement learning with a latent variable model. In NeurIPS, 2020.

Jongmin Lee, Geon-hyeong Kim, Pascal Poupart, and Kee-Eung Kim. Monte-Carlo tree search for
constrained POMDPs. In NeurIPS, pp. 7934–7943, 2018.

Yongshuai Liu, Avishai Halev, and Xin Liu. Policy learning with constraints in model-free rein-
forcement learning: A survey. In IJCAI, pp. 4508–4515. ijcai.org, 2021.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin A. Riedmiller, Andreas Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wier-
stra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nat., 518(7540):529–533, 2015.

Martin Pecka and Tomás Svoboda. Safe exploration techniques for reinforcement learning - An
overview. In MESAS, volume 8906 of Lecture Notes in Computer Science, pp. 357–375. Springer,
2014.

Alex Ray, Joshua Achiam, and Dario Amodei. Benchmarking safe exploration in deep reinforcement
learning, 2019. URL https://cdn.openai.com/safexp-short.pdf.

Julien Roy, Roger Girgis, Joshua Romoff, Pierre-Luc Bacon, and Christopher J. Pal. Direct behavior
specification via constrained reinforcement learning. In ICML, volume 162 of Proceedings of
Machine Learning Research, pp. 18828–18843. PMLR, 2022.

11

https://cdn.openai.com/safexp-short.pdf

Published as a conference paper at ICLR 2023

John Schulman, Sergey Levine, Pieter Abbeel, Michael I. Jordan, and Philipp Moritz. Trust region
policy optimization. In ICML, volume 37 of JMLR Workshop and Conference Proceedings, pp.
1889–1897. JMLR.org, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Adam Stooke, Joshua Achiam, and Pieter Abbeel. Responsive safety in reinforcement learning by
PID lagrangian methods. In ICML, volume 119 of Proceedings of Machine Learning Research,
pp. 9133–9143. PMLR, 2020.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT Press,
2018.

Sebastian Thrun. Monte Carlo POMDPs. In NIPS, pp. 1064–1070. The MIT Press, 1999.

Sebastian Thrun and Anton Schwartz. Issues in using function approximation for reinforcement
learning. In Proceedings of the Fourth Connectionist Models Summer School, pp. 1–9, 1993.

Peter Vamplew, Benjamin J. Smith, Johan Källström, Gabriel de Oliveira Ramos, Roxana Rad-
ulescu, Diederik M. Roijers, Conor F. Hayes, Fredrik Heintz, Patrick Mannion, Pieter J. K. Libin,
Richard Dazeley, and Cameron Foale. Scalar reward is not enough: a response to Silver, Singh,
Precup and Sutton (2021). Auton. Agents Multi Agent Syst., 36(2):41, 2022.

Erwin Walraven and Matthijs T. J. Spaan. Column generation algorithms for constrained POMDPs.
J. Artif. Intell. Res., 62:489–533, 2018.

Qisong Yang, Thiago D. Simão, Simon H. Tindemans, and Matthijs T. J. Spaan. WCSAC: Worst-
case soft actor critic for safety-constrained reinforcement learning. In AAAI, pp. 10639–10646.
AAAI Press, 2021.

Qisong Yang, Thiago D Simão, Simon H Tindemans, and Matthijs TJ Spaan. Safety-constrained
reinforcement learning with a distributional safety critic. Mach. Learn., pp. 1–29, 2022.

Moritz A. Zanger, Karam Daaboul, and J. Marius Zöllner. Safe continuous control with constrained
model-based policy optimization. In IROS, pp. 3512–3519. IEEE, 2021.

12

Published as a conference paper at ICLR 2023

A LATENT VARIABLE MODEL

Following the observations from Lee et al. (2020, Appendix B), we implemented a model composed
of two latent variables z1 and z2. Equations 12 and 13 provide the detailed description of this model.

z11 ∼ p(z11). (12a)

z21 ∼ pψz02(z21 | z11). (12b)

z1t+1 ∼ pψz1(z1t+1 | z2t ,at). (12c)

z2t+1 ∼ pψz2(z2t+1 | z1t+1, z
2
t ,at). (12d)

xt ∼ pψx(xt | z1t , z2t). (12e)

rt ∼ pψr (rt | z1t , z2t ,at, z1t+1, z
2
t+1). (12f)

z11 ∼ qψz01(z11 | x1). (13a)

z21 ∼ pψz02(z21 | z11). (13b)

z1t+1 ∼ qψz1(z1t+1 | xt+1, z
2
t ,at). (13c)

z2t+1 ∼ pψz2(z2t+1 | z1t+1, z
2
t ,at). (13d)

Notice that in this factorization the generative and variational models share some parts, namely
Equations 13b and 13d are the same as Equations 12b and 13d, respectively. As Lee et al. (2020)
shows, this allow us to compute the KL-divergence DKL(qψ(zt+1 | xt+1, zt,at) ∥ pψ(zt+1 |
zt,at)) based only on the z1, which simplifies the training process. We refer the reader to Lee et al.
(2020) for further details of the implementation.

B HYPERPARAMETERS

Table 1: Hyperparameters used for safe SLAC

Parameter Value

Action repeat 2
Image size 64× 64× 3
Image reconstruction noise 0.4
Length of sequences sampled from replay buffer 10
Discount factor 0.99
Cost discount factor 0.995
z1 size 32
z2 size 200
Replay buffer size 2 ∗ 105
Latent model update batch size 32
Actor-critic update batch size 64
Latent model learning rate 1 ∗ 10−4

Actor-critic learning rate 2 ∗ 10−4

Safety Lagrange multiplier learning rate 2e− 4
Initial value for α 4 ∗ 10−3

Initial value for λ 2 ∗ 10−2

Warmup environment steps 60 ∗ 103
Warmup latent model training steps 30 ∗ 103
Gradient clipping max norm 40
Target network update exponential factor 5 ∗ 10−3

13

Published as a conference paper at ICLR 2023

C NORMALIZED RESULTS INCLUDING DOGGOGOAL1

0 5

PointGoal1

PointGoal2

CarGoal1

PointButton1

PointPush1

DoggoGoal1

Mean

E
nv

ir
on

m
en

t

25 30

Normalized Reward Return
0.0 0.2 0.4 0.6

Normalized Cost Return
Task Objective Safety

Metric

0.0

0.5

1.0

N
or

m
al

iz
ed

M
et

ri
c

Safe SLAC
Safe SLAC+
CPO
TRPO Lagrangian
LAMBDA

Figure 5: Normalized reward return and normalized cost return performance of Safe SLAC com-
pared to LAMBDA and the baselines. “Safe SLAC” indicates our approach evaluated using a single
set of hyperparameters for all environments and after 1 million environments steps on PointGoal2, to
match LAMBDA. “Safe SLAC+” shows results using an adjusted learning rate on the DoggoGoal1
environment and 2 million steps on PointGoal2.

D QUALITATIVE ANALYSIS OF THE RESULTS

(a) CarGoal1 (b) DoggoGoal1 (c) PointButton1

(d) PointGoal1 (e) PointGoal2 (f) PointPush1

Figure 6: Sample from the roll-outs of the final policies in each environment.

Using the final policy computed by Safe SLAC, we collected a few trajectories in each environment
to make a qualitative analysis. Figure 6 shows one time-step for each environment. For each en-
vironment, we have three videos showing the observation, the latent variable model reconstruction,
and an overview of the environment.1

We observe that Safe-SLAC can effectively solve the PointGoal1, PointGoal2, and CarGoal1 tasks.
In these environments, the agent has an exploration strategy of turning 180 degrees in place when the
target is not visible. In PointGoal2, we also see the agent carefully crossing spaces between hazards.
As expected, the agent mostly moves forward in these environments, while the agents using sensor
observations also move backward. 2

In the PointButton1 environment, we observe that the agent can reach the target a few times but
might fail when the goal is not in the field of vision of the agent.

In the DoggoGoal1 environment, the agent can also reach the goal. However, the spaces between
the hazards can be small compared to the robot’s size. We suspect this makes this task considerably
more complex than the remaining tasks in terms of safety.

Finally, in the PointPush1 environment, the agent goes to the box. However, it does not move the
box to the goal position. This is due to the strong partial observability of this environment since the
agent cannot observe the goal when the box is between the agent and the goal position.

1Videos are available at https://github.com/lava-lab/safe-slac#sample-rollouts.
2https://openai.com/blog/safety-gym/

14

https://github.com/lava-lab/safe-slac#sample-rollouts
https://openai.com/blog/safety-gym/

	Introduction
	Related work
	Constrained partially observable Markov decision processes
	Stochastic latent actor-critic
	Safe SLAC
	Safety Lagrange multiplier learning
	Training procedure

	Empirical evaluation
	Conclusion
	Latent Variable Model
	Hyperparameters
	Normalized results including DoggoGoal1
	Qualitative analysis of the results

