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ABSTRACT

Relying on prior knowledge accumulated from related tasks, meta-learning offers
a powerful approach to learning a novel task from limited training data. Recent
approaches parameterize the prior with a family of probability density functions
or recurrent neural networks, whose parameters can be optimized by utilizing val-
idation data from the observed tasks. While these approaches have appealing
empirical performance, the expressiveness of their prior is relatively low, which
limits the generalization and interpretation of meta-learning. Aiming at expres-
sive yet meaningful priors, this contribution puts forth a novel prior representation
model that leverages the notion of algorithm unrolling. The key idea is to unroll
the proximal gradient descent steps, where learnable piecewise linear functions
are developed to approximate the desired proximal operators within tight theoreti-
cal error bounds established for both smooth and non-smooth proximal functions.
The resultant multi-block neural network not only broadens the scope of learnable
priors, but also enhances interpretability from an optimization viewpoint. Numer-
ical tests conducted on few-shot learning datasets demonstrate markedly improved
performance with flexible, visualizable, and understandable priors.

1 INTRODUCTION

While deep learning has achieved documented success in a broad range of applications (Silver et al.,
2016; He et al., 2016; Vaswani et al., 2017), it often requires huge data records to train large-scale
and high-capacity models. In contrast, human intelligence is capable of identifying new objects or
concepts from merely a few samples. How to incorporate this ability into “machine intelligence”
has garnered great attention and interest in a number of domains, especially when data are scarce or
costly to collect. Examples of such applications include drug molecule discovery (Altae-Tran et al.,
2017), low-resource machine translation (Gu et al., 2018), and robotics (Clavera et al., 2019).

Motivated by the fact that humans acquire new knowledge efficiently from past experiences, a prin-
cipled framework has been investigated to mimic this ability of humans, known as learning-to-learn
or meta-learning (Thrun & Pratt, 1998). Meta-learning aims to identify a task-invariant prior from
a class of (partially) related tasks, which can be used to facilitate the learning of new tasks from
the same class. The underlying assumption of meta-learning is that all tasks of interest are linked
through their data distribution or latent problem structure. Thus, task-invariant common prior knowl-
edge can be acquired as an inductive bias, and thereby transferred to new tasks (Thrun & Pratt, 1998).
By doing so, even a couple of training data can suffice for learning a new task.

Conventional meta-learning methods rely on prescribed criteria to extract the prior; see
e.g., (Schmidhuber, 1993; Bengio et al., 1995). With recent advances of deep learning, these hand-
crafted approaches have been replaced by data-driven ones, where a meta-learner captures the prior
information across tasks, while a base-learner utilizes this prior to aid per-task learning. The desired
prior is encoded in the base-learner parameters shared across tasks, and can be learned by optimizing
a loss over the given tasks. Early attempts to this end utilize a neural network (NN) to represent the
prior (Santoro et al., 2016; Mishra et al., 2018; Ravi & Larochelle, 2017). The base-learner employs
e.g., recurrent neural networks (RNNs) with input training data per task, and output parameters for
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the task-specific model. However, the choices of the NNs heavily depend on the task-specific model,
and the black-box nature of NNs makes them susceptible to poor interpretability and reliability.

As opposed to model-based meta-learning, model-agnostic meta-learning (MAML) extracts the
prior without presuming the task-specific model beforehand (Finn et al., 2017). MAML resorts
to an iterative optimizer to obtain the per-task model parameters. The prior information is reflected
in the initialization of the model parameters, which is shared across tasks. Building upon MAML,
various optimization-based meta-learning algorithms have been investigated to further improve its
performance; see e.g., (Li et al., 2017; Bertinetto et al., 2019; Lee et al., 2019). Convergence guar-
antees have also been established to gain insights about these methods (Fallah et al., 2020; Ji et al.,
2020; 2022). Interestingly, (Grant et al., 2018) pointed out that the initialization learned in MAML is
approximately tantamount to the mean of a Gaussian prior probability density function (pdf) over the
model parameters. This motivates well Bayesian formulations of meta-learning to further quantify
the uncertainty in model parameters (Finn et al., 2018; Ravi & Beatson, 2019; Nguyen et al., 2020;
Zhang et al., 2023). Nevertheless, the priors learned by these MAML-variants are confined to spe-
cific pdfs, including the Gaussian and degenerate ones. As a result, generalizing optimization-based
meta-learning to practical domains that may require sophisticated priors is challenging.

This work advocates a novel meta-learning approach termed MetaProxNet that offers sufficient prior
expressiveness, while maintaining the highly desirable interpretability. Our contribution is fourfold.

i) A prior representation framework is introduced using the algorithm unrolling technique. The
novel framework overcomes the interpretability challenge and breaks the expressiveness bottle-
neck, thus enabling one to meta-learn complicated yet interpretable priors.

ii) Instead of employing a fixed proximal operator induced by a certain prior pdf, piecewise linear
functions (PLFs) are developed to learn further generalized priors.

iii) Theoretical analysis provides tight PGD error bounds between the learnable PLFs and the opti-
mal proximal operators, which can be readily minimized under mild conditions.

iv) Numerical tests compare MetaProxNet with state-of-the-art methods having different priors,
and confirm superiority of MetaProxNet. PLFs are visualized to depict the explainable prior.

2 PROBLEM SETUP

Meta-learning extracts task-invariant prior information from a collection of relevant tasks to aid
the learning of new tasks, even if only a small number of training data are available. Formally,
let t = 1, . . . , T index the aforementioned relevant tasks, each with corresponding dataset Dt :=

{(xnt , ynt )}
Nt
n=1 comprising Nt input-output data pairs. Set Dt is formed with a training subset

Dtrn
t ⊂ Dt and a validation subset Dval

t := Dt \ Dtrn
t . Likewise, a new task (with subscript ⋆) will

comprise a training subset Dtrn
⋆ , and a test input xtst

⋆ , for which the corresponding output ytst⋆ is to be
predicted. Typically, |Dtrn

⋆ | is rather small compared to what is required in supervised deep learning
tasks. Due to the limited training data, directly learning the new task by optimizing its task-specific
model over Dtrn

⋆ is infeasible. However, since T can be considerably large, one prudent remedy is
to leverage the cumulative prior knowledge across other related tasks.

Let θt ∈ Rd denote the task-specific model parameter for task t, and θ ∈ RD the prior parameter
shared across tasks. The prior can be learned via empirical risk minimization (ERM) alternating
between i) base-learner optimization per t that estimates θt using Dtrn

t and θ; and, ii) meta-learner
optimization that updates the estimate of θ using {Dval

t }Tt=1. This nested structure can be intrinsi-
cally characterized by a bilevel optimization problem

min
θ

T∑
t=1

L(θ∗t (θ);Dval
t ) (1a)

s.to θ∗t (θ) = argmin
θt

L(θt;Dtrn
t ) +R(θt;θ), ∀t (1b)

where L is the loss function assessing the performance of the model, and R is the regularizer that
captures the task-invariant prior. From the Bayesian viewpoint, L(θt;Dtrn

t ) and R(θt;θ) in (1b)
are typically selected to be the negative log-likehood (nll) − log p(ytrn

t |θt;Xtrn
t ), and negative log-

prior (nlp) − log p(θt;θ), where matrix Xtrn
t is formed by all input vectors in Dtrn

t , and ytrn
t is the

vector collecting their corresponding outputs. Hence, (1b) can be interpreted as the maximum a
posteriori (MAP) estimator θ∗t (θ) = argmaxθt

p(θt|ytrn
t ;Xtrn

t ,θ) upon invoking Bayes rule.
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It is worth stressing that R(θt;θ) is instrumental in learning task t, when |Dtrn
t | is small. Without

it, an over-parameterized model such as a deep NN could easily overfit Dtrn
t . Moreover, it is gen-

erally infeasible to reach the global minimum θ∗t , especially with a highly non-convex optimization
involved in learning the task-specific model. Thus, a practical alternative is to rely on a suboptimal
solution θ̂t obtained by a parameterized base-learner B. Then, problem (1) boils down to

min
θ

T∑
t=1

L(θ̂t(θ);Dval
t ) (2a)

s.to θ̂t(θ) = B(Dtrn
t ;θ), ∀t. (2b)

Depending on the choices of B, meta-learning approaches can be either NN-based or optimization-
based ones. The former typically employ an RNN to learn the mapping from Dtrn

t to θ̂
∗
t , using the

premise that the recurrent cells of an RNN correspond to the iterations for optimizing (1b) (Ravi
& Larochelle, 2017). However, there is no analytical guarantee regarding the convergence of this
“RNN-based optimization,” and it is also hard to specify what priors have been learned by these
RNNs. In contrast, the optimization-based approaches solve (1b) through an iterative optimizer,
with R being the nlp term linked with a preselected pdf. For example, it has been reported in (Grant
et al., 2018) that the optimization strategy adopted by MAML (Finn et al., 2017) corresponds up to an
implicit Gaussian pdf p(θt;θ) = N (θ,Qt), where Qt is associated with the hyperparameters of B.
Besides implicit prior pdfs, their explicit counterparts have also been investigated; see e.g., isotropic
Gaussian (Rajeswaran et al., 2019), and diagonal Gaussian (Ravi & Beatson, 2019) examples.

3 INTERPRETABLE AND GENERALIZED PRIORS USING UNROLLED NNS

Existing meta-learning algorithms rely on either a blackbox NN or a preselected pdf (such as a
Gaussian one) to parameterize the prior. However, the NN often lacks interpretability and the chosen
pdf can have limited expressiveness. Consider for instance a preselected Gaussian prior pdf, which
is inherently unimodal, symmetric, log-concave, and infinitely differentiable by definition. Such a
prior may not be well-suited for tasks with multimodal or asymmetric parametric pdfs; see App. I
for a case study. To enhance the prior expressiveness as well as offer the desired interpretability,
our key idea is to learn a data-driven regularizer R, which dynamically adjusts its form to fit the
provided tasks. This learnable R is effected by an unrolled NN, which drives our base-learner B.

3.1 PRIOR REPRESENTATION VIA ALGORITHM UNROLLING

Algorithm unrolling was introduced in (Gregor & LeCun, 2010) to learn the optimal update rule for
the reconstruction of sparse signals from their low-dimensional linear measurements. In particular,
algorithm unrolling involves unfolding the iterations of an optimization algorithm to create repeating
blocks of an NN. In doing so, the desired prior is parameterized using learnable weights of the NN;
see App J for a brief introduction. Following this work, several unrolling methods have been reported
to learn interpretable priors for natural and medical signals, especially for images (Monga et al.,
2021). Algorithm unrolling is also adopted here, but for a different purpose. While earlier efforts
focus on learning the prior for a single task in the (transformed) signal space X ⊆ Rdim(xn

t ), here it
is employed for task-invariant prior extraction in the model parameter space Θt ⊆ Rd; that is, the
prior we aim to learn is p(θt), ∀t rather than p(xnt ) for t given. The widely adopted convolutional
(C)NNs, which exhibit remarkable effectiveness in representing priors for 2-dimensional images,
may not fit well with the 1-dimensional θt. A better alternative will be sought after the ensuing
discussion that links prior representation with proximal function learning.

To solve the regularized problem (1b), we consider unrolling the proximal gradient descent (PGD)
algorithm (Parikh et al., 2014), which allows one to “divide and conquer” the objective function by
separately optimizing L and R. Each PGD iteration indexed by k includes two steps: i) optimization
of L(θk−1

t ;Dtrn
t ) wrt θk−1

t using GD, with the update represented by an auxiliary variable zkt ∈ Rd;
and ii) optimization of R(θk−1

t ;θ) using zkt to update θk−1
t . An upshot of the PGD algorithm is

that it only requires L(θt; ·) to be differentiable wrt θt, while R(θt; ·) can be non-differentiable and
even discontinuous. Thus, the expanded choices of R broaden the range of representable priors. The
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Algorithm 1: Vanilla PGD algorithm for solving (1b)
Input: Dtrn

t , hyperparameters θ, step size α, and maximum iteration K.
Initialization: initialize θ0t according to θ, and z0t = θ

0
t .

1 for k = 1, . . . ,K do
2 Descend zkt = θk−1

t − α∇θk−1
t

L(θk−1
t ;Dtrn

t );

3 Update θkt = proxR,α(z
k−1
t );

4 end
Output: θ̂t = θKt .

Figure 1: Illustrating diagram of the multi-block NN by unrolling the PGD algorithm.

steps of PGD are summarized in Algorithm 1, where the so-termed proximal operator is

proxR,α(z) := argmin
θt

1

2α
∥θt − z∥22 +R(θt;θ). (3)

For a broad range of R, their corresponding proxR,α has an analytical form. One well-known exam-
ple is the indicator function R = IS for some set S, which is discontinuous and non-differentiable.
However, it corresponds to a well-defined proxR,α, namely the projection operator PS onto set S.

Using algorithm unrolling, our idea is to search for the unknown optimal regularizing function R∗

(i.e., the one minimizing (1)) through learning its corresponding proximal operator proxR∗,α with
an unrolled NN. In particular, each PGD iteration indexed by k is replaced by a block consisting
of a data consistency (DC) module, and a learnable NN-based ˇproxk. While the former ensures
that the task-specific estimate θ̌

k−1

t of the unrolled NN is consistent with Dtrn
t (by minimizing

L(θ̌k−1

t ;Dtrn
t ) wrt θ̌

k−1

t ), the latter looks for the optimal per-step prior that calibrates θ̌
k−1

t . The
pipeline of this unrolled NN is illustrated in Fig. 1, where the DC module can be either a naı̈ve GD
as in line 4 of Algorithm 1, or, a data-driven rule such as GD with a learnable α. Let us for simplicity
adopt the naı̈ve GD as DC module, which aligns with MAML (Finn et al., 2017), and can be readily
generalized to other iterative descent rules (Li et al., 2017; Lee & Choi, 2018; Park & Oliva, 2019;
Flennerhag et al., 2020). The typical choice for each ˇproxk is an NN. Although p(θt;θ) may not be
available since the NN mapping is nonlinear, it can serve as a generalized prior, if properly scaled.

Unlike previous works (Mardani et al., 2018; Hosseini et al., 2020) that model { ˇproxk}Kk=1 with 2-
dimensional convolutions, here the input and output of ˇproxk are both 1-dimensional vectors in Rd;
cf. (3). Our motivation comes from the two most widely-used priors in optimization-based meta-
learning. The first prior is the diagonal Gaussian one with R(θt;θ) =

1
2 (θt−θ

init)⊤ diag(λ)(θt−
θinit), where θinit = θ0t is the task-invariant initialization of (1b), and θ := [θinit⊤,λ⊤]⊤ is the
vector parameterizing R (Ravi & Beatson, 2019; Rajeswaran et al., 2019; Nguyen et al., 2020). It
can be easily verified that proxR,α(z) = (z− θinit)/(1d + αλ) + θinit, with / being the element-
wise division and 1d ∈ Rd denoting the constant vector of all 1’s. The second example is the shifted
sparse prior that shares a pre-defined portion of θt across tasks (Raghu et al., 2020; Bertinetto et al.,
2019; Lee et al., 2019). Here, we consider its variant R(θt;θ) = ∥Λ(θt − θinit)∥1 that can be
learned (Tian et al., 2020b). This results in proxR,α(z) = Sαλ(z− θinit) + θinit, where Sαλ is the
element-wise shrinkage (a.k.a. soft-thresholding) operator such that its i-th element

[Sαλ(z)]i := Sαλi
(zi) :=


zi + αλi, zi < −αλi
0, −αλi ≤ zi < αλi
zi − αλi, zi ≥ αλi

.

For notational simplicity, denote by shifted vectors θ̄kt := θkt − θ
init, z̄kt := zkt − θ

init, shifted loss
L̄(θ; ·) := L(θ+θinit; ·), and shifted proximal operator ¯proxR,α(z) := proxR,α(z+θ

init)−θinit.
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(a) (b) (c)
Figure 2: Proximal operators for: (a) Gaussian prior; (b) sparse prior; (c) unrolling-based prior.

The PGD iteration can be thus reformulated as
z̄kt = θ̄

k−1
t − α∇θ̄k−1

t
L̄(θ̄k−1

t ;Dtrn
t ) (4a)

θ̄
k
t = ¯proxR,α(z̄

k
t ), k = 1, . . . ,K (4b)

with initialization θ̄0t = z̄0t = 0d and output θ̂t = θ̄
K
t + θinit. Further, the ¯proxR,α(z) operator of

the forgoing two examples reduces to z/(1d + αλ) and Sαλ(z), respectively.

Inspired by the fact that ¯proxR,α(z) of both examples belongs to the family of piecewise linear
functions (PLFs), the fresh idea is to parameterize the shifted per-step ˇ̄proxk(z;θ) := ˇproxk(z +

θinit)−θinit of the unrolled NN using learnable PLFs. We first show that the wanted ˇ̄proxk : Rd 7→
Rd can be effectively decomposed and thus simplified under the following assumption that is widely
adopted in meta-learning (Ravi & Beatson, 2019; Rajeswaran et al., 2019; Nguyen et al., 2020).
Assumption 3.1. The optimal regularizer R∗ factorizes across its input dimensions; that is,
R∗(θt;θ) =

∑d
i=1 R∗

i ([θt]i;θ).

With Assumption 3.1 in effect, an immediate result is the element-wise proximal operator

[proxR∗,α(z)]i = argmin
[θt]i

1

2α
∥θt − z∥22 +

d∑
i=1

R∗
i ([θt]i;θ)

= argmin
[θt]i

1

2α
([θt]i − zi)

2 +R∗
i ([θt]i;θ) := proxR∗

i ,α
(zi), i = 1, . . . , d. (5)

This observation suggests that we can alternatively model the dimension-wise decomposition
ˇ̄proxki := [ ˇ̄proxk]i for each i = 1, . . . , d, with a handy 1-dimensional PLF

ˇ̄proxki (zi) =


ψk

i,0(ζ
k
i,1−zi)+ψ

k
i,1(zi−ζ

k
i,0)

ζki,1−ζki,0
, zi < ζki,1

ζki,c−1 ≤ zi < ζki,cψk
i,c−1(ζ

k
i,c−zi)+ψ

k
i,c(zi−ζ

k
i,c−1)

ζki,c−ζki,c−1

, and c = 2, . . . C − 1
ψk

i,C(ζki,C+1−zi)+ψ
k
i,C+1(zi−ζ

k
i,C)

ζki,C+1−ζki,C
, zi ≥ ζki,C−1

(6)

where C ≥ 1 is a pre-selected constant indicating the total number of pieces, and {(ζki,c, ψki,c)}Cc=0

are the learnable control points parametrizing ˇ̄proxki . To ensure ˇ̄proxki is a valid function, we further
require ζki,0 ≤ . . . ≤ ζki,C for ∀i, k. To this end, the problem of finding a proper task-invariant prior
p(θt;θ) boils down to learning the parameters of PLFs that are shared across tasks. Comparison of
the pdf-based and PLF-based proximal operators can be visualized in Fig. 2.

3.2 PRIOR LEARNING VIA ALTERNATING OPTIMIZATION

Building upon the unrolling-based prior information representation, we are ready to elucidate how
the prior can be learned by alternately optimizing the meta-learner and base-learner. We term the
proposed method as meta-learning via proximal networks (MetaProxNet).

Let r and k denote iteration indices for (1a) and (1b), respectively. For notational brevity, de-
fine vectors ζk := [ζk1,0, . . . , ζ

k
d,C ]

⊤ and ψk := [ψk1,0, . . . , ψ
k
d,C ]

⊤ of the PLF control points, and
θr the concatenation of θinit,r, ζ1,r, . . . , ζK,r,ψ1,r, . . . ,ψK,r in the r-th iteration of (1a). Given
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Algorithm 2: MetaProxNet algorithm

Input: {Dt}Tt=1, step sizes α and β, batch size B, and maximum iterations K and R.
Initialization: randomly initialize θ0.

1 for r = 1, . . . , R do
2 Randomly sample a mini-batch T r ⊂ {1, . . . , T} of cardinality B;
3 for t ∈ T r do
4 Initialize ˇ̄θ0t = ˇ̄z0t = 0d;
5 for k = 1, . . . ,K do
6 Descend ˇ̄zkt (θ

r−1) = ˇ̄θk−1
t (θr−1)− α∇ˇ̄θk−1

t
L̄(ˇ̄θk−1

t (θr−1);Dtrn
t );

7 Update ˇ̄θkt (θ
r−1) = ˇ̄proxk(ˇ̄zkt (θ

r−1); ζk,r,ψk,r);
8 end
9 Shift θ̂t(θr−1) = ˇ̄θKt (θr−1) + θinit,r;

10 end
11 Update θr = θr−1 − β 1

B

∑
t∈T r ∇θr−1L(θ̂t(θr−1);Dval

t );
12 end

Output: θ̂ = θR.

{Dtrn
t }Tt=1, the goal of (1b) is to learn the task-specific estimate θ̂t(θr) that depends on θr per task

t. This can leverage the current base-learner estimate B(·;θr), which is the unrolled multi-block
NN of our MetaProxNet. In the k-th block, its DC module and PLFs optimize (1b) through

ˇ̄zkt (θ
r) = ˇ̄θk−1

t (θr)− α∇ˇ̄θk−1
t

L̄(ˇ̄θk−1
t (θr);Dtrn

t ) (7a)

ˇ̄θkt (θ
r) = ˇ̄proxk(ˇ̄zkt (θ

r); ζk,r,ψk,r), k = 1, . . . ,K. (7b)

where ˇ̄zkt and ˇ̄θkt denote the shifted iterative variables of the unrolled NN as in (4).

After obtaining θ̂t(θr) = ˇ̄θKt (θr)+θinit,r, the next step is to optimize (1a) by updating θr. A pop-
ular strategy is the mini-batch stochastic GD (SGD). Specifically, a subset T r ⊂ {1, . . . , T} of tasks
are randomly selected to assess the performance of θr on Dval

t , which yields a loss L(θ̂t(θr);Dval
t )

for ∀t ∈ T r. Then, θr+1 is reached by descending the averaged loss with step size β, that is

θr+1 = θr − β
1

|T r|
∑
t∈T r

∇θrL(θ̂t(θr);Dval
t ). (8)

The step-by-step pseudo-codes for our novel MetaProxNet approach are listed under Algorithm 2.

In practice however, simultaneously optimizing both {ζk}Kk=1 and {ψk}Kk=1 incurs cumbersome
gradient computations due to the entangled structure of (1). To relieve this burden, we fix the former
by uniformly partitioning a closed interval [−A,A], while optimizing only the latter. In other words,
we let ζki,c = ( 2cC − 1)A, ∀c, i, k, where A > 0 is a pre-selected constant that is sufficiently large;
see Assumption A.3. In fact, this setup can be viewed as a uniform discretization of the continuous
variable ζki ∈ R on [−A,A]. Non-uniform discretization can be alternatively sought, if p(ζki ) or its
estimate is available a priori.

3.3 ERROR BOUNDS FOR PLF-BASED PROXIMAL OPERATOR

Having introduced how to model and learn priors using unrolled NNs, this subsection analyzes
the performance by bounding the approximation error on θ̂t induced by replacing the unknown
optimal ¯proxR∗,α with the learned PLF-based ˇ̄proxk. Sharp bounds will be separately established
for smooth and non-smooth ¯proxR∗,α operators under mild conditions. Utilizing these bounds, a
quantitative criterion will be provided for choosing the hyperparameter C. All proofs and technical
assumptions can be found in Apps. A-C. Smooth ¯proxR∗,α ∈ C1([−A,A]d) will be first considered.
The following theorem offers an upper bound for the normalized error on (shifted) θ̂t.
Theorem 3.2 (Finite-step PGD error for smooth proximal operators). Consider ˇ̄proxk defined
by (6) with fixed ζki,c = ( 2cC − 1)A, and let Ψ := [ψ1, . . . ,ψK ] denote the matrix parameteriz-

ing { ˇ̄proxk}Kk=1. Let θ̄Kt and ˇ̄θKt be the K-step PGD outputs using ¯proxR∗,α ∈ C1([−A,A]d) and
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ˇ̄proxk, respectively. Under mild assumptions, it holds for t = 1, . . . , T that

min
Ψ

1√
d

∥∥θ̄Kt − ˇ̄θKt (Ψ)
∥∥
2
= O(

1

C2
). (9)

This bound is tight when ψki,0 = ¯proxR∗
i ,α

(−A) and ψki,C = ¯proxR∗
i ,α

(A), ∀k, i.

Theorem 3.2 asserts that by optimizing over Ψ of the PLFs, ˇ̄proxk can approximate any smooth
¯proxR∗,α with K-step PGD error in the order O( 1

C2 ). In other words, an ϵ-approximant ˇ̄θKt of θ̄Kt
can be obtained upon choosing C = Ω( 1√

ϵ
) and optimizing Ψ. The tightness of the bound implies

that there exists at least one ¯proxR∗,α that reaches the upper bound when enforcing the first and last
control points of each PLF to align with the desired ¯proxR∗

i ,α
operator.

Unfortunately, directly optimizing the left-hand side of (9) is impossible, because the optimal
¯proxR∗,α corresponding to the oracle prior p(θt;θ∗) is unknown. A feasible alternative is to per-

form the ERM in (1) by leveraging the datasets {Dt}Tt=1 generated with θt ∼ p(θt;θ
∗). As a result,

the (unknown) optimal PLF parameters Ψ∗ = argminΨ
∥∥θ̄Kt − ˇ̄θKt (Ψ)

∥∥
2
, and the sub-optimal

estimate Ψ̂ obtained by solving (1), satisfy the inequality
1√
d

∥∥θ̄Kt − ˇ̄θKt (Ψ̂)
∥∥
2
≤ 1√

d

∥∥θ̄Kt − ˇ̄θKt (Ψ∗)
∥∥
2
+

1√
d

∥∥ˇ̄θKt (Ψ̂)− ˇ̄θKt (Ψ∗)
∥∥
2
. (10)

The extra error 1√
d

∥∥ˇ̄θKt (Ψ̂)− ˇ̄θKt (Ψ∗)
∥∥
2

can be further bounded in linear order O( 1√
d
∥Ψ̂−Ψ∗∥1)

of the normalized ERM error; see App. C for further elaboration.

Aside from smooth ones, non-smooth ¯proxR∗,α has gained attention in various PGD-guided appli-
cations. The next theorem forgoes the smooth assumption to yield a more generic but looser bound.

Theorem 3.3 (Finite-step PGD error for continuous proximal operators). Consider the notational
conventions of Theorem 3.2 with continuous ¯proxR∗,α ∈ C0([−A,A]d). Under mild assumptions,
it holds for t = 1, . . . , T that

min
Ψ

1√
d

∥∥θ̄Kt − ˇ̄θKt (Ψ)
∥∥
2
= O(

1

C
). (11)

This bound is tight when ψki,0 = ¯proxR∗
i ,α

(−A) and ψki,C = ¯proxR∗
i ,α

(A), ∀k, i.

Compared to the smooth case, the error bound in Theorem 3.3 has an order of O( 1
C ). This implies

that by selecting C = Ω( 1ϵ ), operator ˇ̄proxk can approximate any continuous ¯proxR∗,α with nor-
malized K-step PGD error no larger than ϵ. This increased order implies that one can easily expand
the range of learnable priors with a larger C. Moreover, the discussion following (10) regarding the
sub-optimality of Ψ̂, applies to Theorem 3.3 too, and it is deferred to App. C.

4 NUMERICAL TESTS

In this section, numerical tests are presented on several meta-learning benchmark datasets to evaluate
the empirical performance of MetaProxNet. Hyperparameters and datasets are described in App. E.
All experiments are run on a server with RTX A5000 GPU, and our codes are available online at
https://github.com/zhangyilang/MetaProxNet.

4.1 COMPARISON OF META-LEARNING METHODS HAVING DIFFERENT PRIORS

The first test is on few-shot classification datasets miniImageNet (Vinyals et al., 2016) and Tiered-
ImageNet (Ren et al., 2018), where “shot” signifies the per-class number of labeled training data for
each t. The default model is a standard 4-layer CNN (Vinyals et al., 2016), each layer comprising a
3 × 3 convolution operation of 64 channels, a batch normalization, a ReLU activation, and a 2 × 2
max pooling. A linear regressor with softmax is appended to perform classification.

To demonstrate the superiority of unrolling-based priors over the RNN-based and handcrafted ones,
we first compare MetaProxNet against several state-of-the-art meta-learning methods. As discussed
in Sec. 3.1, our MetaProxNet can be readily integrated with other optimization-based meta-learning
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Table 1: Comparison of MetaProxNet against meta-learning methods with different priors. The
highest accuracy as well as mean accuracies within its 95% confidence interval are bolded.

Method Prior 5-class miniImageNet 5-class TieredImageNet
1-shot (%) 5-shot (%) 1-shot (%) 5-shot (%)

LSTM (Ravi & Larochelle, 2017) RNN-based 43.44±0.77 60.60±0.71 − −
MAML (Finn et al., 2017) implicit Gaussian 48.70±1.84 63.11±0.92 51.67±1.81 70.30±1.75

ProtoNets (Snell et al., 2017) shifted sparse 49.42±0.78 68.20±0.66 53.31±0.87 72.69±0.74

R2D2 (Bertinetto et al., 2019) shifted sparse 51.8±0.2 68.4±0.2 − −
MC (Park & Oliva, 2019) block-diag. Gaussian 54.08±0.93 67.99±0.73 − −
L2F (Baik et al., 2020) implicit Gaussian 52.10±0.50 69.38±0.46 54.40±0.50 73.34±0.44

KML (Abdollahzadeh et al., 2021) shifted sparse 54.10±0.61 68.07±0.45 54.67±0.39 72.09±0.27

MeTAL (Baik et al., 2021) implicit Gaussian 52.63±0.37 70.52±0.29 54.34±0.31 70.40±0.21

MinimaxMAML (Wang et al., 2023) inverted nlp 51.70±0.42 68.41±1.28 − −
MetaProxNet+MAML unrolling-based 53.70±1.40 70.08±0.69 54.56±1.44 71.80±0.73

MetaProxNet+MC unrolling-based 55.94±1.39 71.97±0.67 57.34±1.42 73.38±0.73

Table 2: Ablation tests of MetaProxNet using miniImageNet dataset with a 4-layer 32-channel CNN.

Method Preset prior? DC 5-class 10-class
1-shot (%) 5-shot (%) 1-shot (%) 5-shot (%)

MAML Yes GD 48.70±1.84 63.11±0.92 31.27±1.15 46.92±1.25

PGD-Gaussian Yes PGD 48.58±1.40 64.56±0.70 30.04±0.83 47.30±0.49

MetaProxNet+MAML No PGD 53.58±1.43 67.88±0.72 34.80±0.91 51.03±0.51

methods through a simple substitution of the DC module. Tab. 1 lists the performance of MetaProx-
Net assessed using 1, 000 random new tasks, with MAML (Finn et al., 2017) and MetaCurvature
(MC) (Park & Oliva, 2019) serving as backbones. For an apples-to-apples comparison, methods that
use different models (e.g., residual networks) or pretrained feature extractors are not included in the
table. It is seen that our MetaProxNet performs competitively in terms of classification accuracy
when compared to state-of-the-art meta-learning methods. This empirically confirms the effective-
ness of MetaProxNet. Additional discussions regarding the efficiency of MetaProxNet and extra
tests with tied weights can be found in the Apps. F and G.

4.2 ABLATION TESTS

Figure 3: Classification accuracy against the
number C of PLF pieces.

Ablation tests are also carried out to investigate
the essential reason for the performance gain of
MetaProxNet. Evidently, MetaProxNet+MAML
differs from its backbone MAML in two key as-
pects: task-level optimization algorithm (PGD vs.
GD) and prior (unrolled-NN based vs. Gaussian).
To assess which of the two contributes more to the
performance gain of MetaProxNet, the ablation tests
compare three methods: i) MAML that employs GD
and Gaussian prior; ii) a variant with PGD and Gaus-
sian prior; and, iii) MetaProxNet+MAML that uti-
lizes PGD and an unrolled-NN based prior. To avoid
overfitting in MAML, the models for all methods are
fixed to a 4-layer 32-channel CNN. Tab. 2 lists the
performance of the three methods. It is seen that the PGD baseline and MAML exhibit comparable
performance, while MetaProxNet outperforms both in all 4 tests. This reveals that the key factor
contributing to MetaProxNet’s success is the more expressive prior relative to PGD.

4.3 IMPACT OF HYPEREPARAMETER C

Numerical tests are also carried out to verify the theoretical analysis in Sec. 3.3, which upper bounds
the ℓ-2 error between two PGD optimization outputs: one using the optimal prior and the other using
a PLF-induced prior. Specifically, Theorems 3.2 and 3.3 state that this ℓ-2 error bounds will reduce
as C increases, thus offering a better calibrated θ̂t. To examine the qualities of θ̂t with different

8
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(a) (b)
Figure 4: Visualization of the learned PLFs averaged across CNN layers; (a) first layer; (b) last layer.

C, Fig. 3 depicts the test accuracies of MetaProxNet+MAML on 5-class 1-shot miniImageNet as a
function of C. It can be observed that the accuracy improves with C increasing, which corroborates
with our theories. Moreover, C = 5 suffices to achieve satisfactory performance, while larger
values of C only have a minor impact on MetaProxNet’s empirical performance. This suggests that
the constants hidden within the error bounds O( 1

C ) and O( 1
C2 ) can be small enough in practice. To

avoid potential overfitting of priors, we set C = 5 in all the tests.

4.4 INTERPRETING UNROLLING-BASED PRIORS BY VISUALIZING THE LEARNED PLFS

From an optimization viewpoint, the learned PLFs correspond to an implicit prior pdf that gener-
ally comes with no analytical expression. These PLFs can be visualized to further understand the
behavior of the unrolled NN. Figs. 4a and 4b respectively depict the averaged ˇ̄proxki for i’s that
correspond to the first and last CNN layers. The visualization showcases that the averaged PLF for
the first layer is similar to the soft shrinkage function Sαλi of the sparse prior mentioned in Sec. 3.1,
while the last layer tends to have a linear PLF, which resembles that of a Gaussian prior.

In practice, the visualization of the PLFs can be utilized to examine the impact of the prior when
updating model parameters, thus guiding the model training process. In Fig. 4, the acquired PLFs
keep shallow layer weights being sparse around the initial value θinit (that is, less updated) when
k is small, while deep layers can be updated freely along its gradient directions. This suggests,
when fine-tuning a pre-trained large-scale model on a specific task, it is advisable to freeze the
weights of the embedding function and exclusively train the last few layers with a relatively large
step size in the initial epochs. Once these deep layers have attained sufficient training, one can then
gradually unfreeze the shallow layers and proceed with fine-tuning the entire model. This learned
update strategy closely aligns with the widely adopted “gradual unfreezing” training approach for
fine-tuning large-scale models, which has been proven effective in various practical applications;
see e.g., (Howard & Ruder, 2018).

5 CONCLUSIONS AND OUTLOOK

A novel prior information representation approach was pursued in this work using algorithm un-
rolling to learn more flexible and generalized priors. Under this framework, a meta-learning method
termed MetaProxNet was developed with learnable PLFs effecting an implicit prior. The learned
prior enjoys interpretability from an optimization vantage point, and can be well explained by vi-
sualizing its PLFs. Further, performance analysis established that the PLFs are capable of fitting
smooth/continuous proximal functions with a proper selection of C. Numerical tests further cor-
roborated empirically the superiority of MetaProxNet relative to meta-learning alternatives in prior
representation and learning.

Our future research agenda includes exciting themes on i) investigating various optimizers besides
PGD; ii) implementing MetaProxNet with more complicated backbones and DC modules; and, iii)
establishing bilevel convergence guarantees for MetaProxNet.
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Marcin Andrychowicz, Misha Denil, Sergio Gómez, Matthew W Hoffman, David Pfau, Tom Schaul,
Brendan Shillingford, and Nando de Freitas. Learning to learn by gradient descent by gradient
descent. In Proc. Adv. Neural Info. Process. Systems, volume 29, 2016.

Sungyong Baik, Seokil Hong, and Kyoung Mu Lee. Learning to forget for meta-learning. In Proc.
Conf. Computer Vision and Pattern Recognition, June 2020.

Sungyong Baik, Janghoon Choi, Heewon Kim, Dohee Cho, Jaesik Min, and Kyoung Mu Lee. Meta-
learning with task-adaptive loss function for few-shot learning. In Proc. Int. Conf. Computer
Vision, pp. 9465–9474, October 2021.

Samy Bengio, Yoshua Bengio, and Jocelyn Cloutier. On the search for new learning rules for anns.
Neural Processing Letters, 2(4):26–30, 1995.

Luca Bertinetto, Joao F. Henriques, Philip Torr, and Andrea Vedaldi. Meta-learning with differen-
tiable closed-form solvers. In Proc. Int. Conf. Learn. Represention, 2019.

Ignasi Clavera, Anusha Nagabandi, Simin Liu, Ronald S. Fearing, Pieter Abbeel, Sergey Levine,
and Chelsea Finn. Learning to adapt in dynamic, real-world environments through meta-
reinforcement learning. In Proc. Int. Conf. Learn. Represention, 2019.

Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. On the convergence theory of gradient-
based model-agnostic meta-learning algorithms. In Proc. Int. Conf. Artif. Intel. and Stats., volume
108, pp. 1082–1092, 26–28 Aug 2020.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In Proc. Int. Conf. Machine Learn., volume 70, pp. 1126–1135, 06–11 Aug
2017.

Chelsea Finn, Kelvin Xu, and Sergey Levine. Probabilistic model-agnostic meta-learning. In Proc.
Adv. Neural Info. Process. Systems, volume 31, 2018.

Sebastian Flennerhag, Andrei A. Rusu, Razvan Pascanu, Francesco Visin, Hujun Yin, and Raia
Hadsell. Meta-learning with warped gradient descent. In Proc. Int. Conf. Learn. Represention,
2020.

Jonathan Gordon, John Bronskill, Matthias Bauer, Sebastian Nowozin, and Richard Turner. Meta-
learning probabilistic inference for prediction. In Proc. Int. Conf. Learn. Represention, 2019.

Erin Grant, Chelsea Finn, Sergey Levine, Trevor Darrell, and Thomas Griffiths. Recasting gradient-
based meta-learning as hierarchical bayes. In Proc. Int. Conf. Learn. Represention, 2018.

Karol Gregor and Yann LeCun. Learning fast approximations of sparse coding. In Proc. Int. Conf.
Machine Learn., pp. 399–406, 2010. ISBN 9781605589077.
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A PROOF OF THEOREM 3.2.

Smooth ¯proxR∗,α ∈ C1([−A,A]d) will be first considered under the following four technical as-
sumptions.
Assumption A.1. ¯proxR∗,α ∈ C1([−A,A]d) has G1-Lipschitz gradient on [−A,A]d.

Assumption A.2. L̄ ∈ C1([−A,A]d) has G2-Lipschitz gradient on [−A,A]d.
Assumption A.3. Constant A is sufficiently large so that ˇ̄zkt , z̄

k∗
t ∈ [−A,A]d, ∀t, k, where z̄k∗t is

the PGD auxiliary variable generated with ¯proxR∗,α.

Assumption A.4. Operator ¯proxR∗,α ∈ C0([−A,A]d) is L-Lipschitz on [−A,A]d.

Remark A.5 (Mild assumptions). In Assumption A.1 and A.2, the optimal ¯proxR∗,α and the loss L̄
are only assumed to be Lipschitz smooth on the compact subset [−A,A]d ⊂ Rd, without imposing
any strong premise regarding their convexity or Lipschitz continuity.
For Assumption A.3, the existence of such an A can be easily guaranteed when e.g., task-level step
size α ≤ 2/G2, and level sets {θt | L̄(θt;Dtrn

t ) ≤ L̄(0d;Dtrn
t )}, {θt | Ř(θt;θ) ≤ Ř(0d;θ)} and

{θt | R∗(θt) ≤ R∗(0d)} are bounded.
In addition, Assumption A.4 can be readily satisfied as well. For example, when R∗ has GR-
Lipschitz gradient on [−A,A]d and α < 1/GR, it follows from the stationary condition of (3)
that 1

α (proxR∗,α(z) − z) + ∇R∗(proxR∗,α(z)) = 0. Hence, it holds for ∀z, z′ ∈ [−A,A]d that
∥z−z′∥2 ≥

∣∣∥proxR∗,α(z)−proxR∗,α(z
′)∥2−α∥∇R∗(proxR∗,α(z))−∇R∗(proxR∗,α(z

′))∥2
∣∣ =

(1 − αGR)∥ proxR∗,α(z) − proxR∗,α(z
′)∥2. In other words, the Lipschitz constant in this case is

upper bounded by L ≤ 1/(1− αGR).

To prove Theorem 3.2, we first show a lemma that is important for bounding the error
| ˇ̄proxki − ¯proxR∗

i ,α
| on [−A,A].

Lemma A.6. Let f ∈ C1(R) : R 7→ R be a function with G-Lipschitz gradient. For ∀ζ1, ζ2 ∈ R
and ζ1 ̸= ζ2, define

f̂(z) :=
(ζ2 − z)f(ζ1) + (z − ζ1)f(ζ2)

ζ2 − ζ1
. (12)

It then holds for ∀γ ∈ [0, 1] that∣∣f((1− γ)ζ1 + γζ2
)
− f̂

(
(1− γ)ζ1 + γζ2

)∣∣ ≤ G

8
(ζ2 − ζ1)

2. (13)

Proof. For notational convenience, let g(γ) :=
∣∣f((1− γ)ζ1 + γζ2

)
− f̂

(
(1− γ)ζ1 + γζ2

)∣∣. Using
the definition of f̂ and g, it can be easily verified for ∀γ ∈ (0, 1) that g ∈ C0(R) and

g(γ) ≥ g(0) = g(1) = 0. (14)
Therefore, there exits at least one maximizer γ∗ = argmaxγ∈(0,1) g(γ) inside the open interval
(0, 1). For brevity, define the corresponding ζ∗ = (1− γ∗)ζ1 + γ∗ζ2. Through Fermat’s stationary
point theorem (a.k.a. interior extremum theorem), it turns out that g′(γ∗) = 0, which implies

(ζ1 − ζ2)f
′(ζ∗) = (ζ1 − ζ2)f̂

′(ζ∗). (15)
Since ζ1 ̸= ζ2, we obtain

f ′(ζ∗) = f̂ ′(ζ∗). (16)

Next, we discuss the following two possible cases of γ∗.

Caes i) γ∗ ∈ (0, 1/2]

It follows from (12), (16) and the Lipschitzness of f ′ that∣∣f ′((1− γ)ζ1 + γζ2
)
− f̂ ′

(
(1− γ)ζ1 + γζ2

)∣∣ = ∣∣f ′((1− γ)ζ1 + γζ2
)
− f̂ ′(ζ∗)

∣∣
=

∣∣f ′((1− γ)ζ1 + γζ2
)
− f ′(ζ∗)

∣∣
≤ G|(1− γ)ζ1 + γζ2 − ζ∗|
= G|γ − γ∗||ζ2 − ζ1|. (17)
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As a result, it holds for ∀γ ∈ [0, 1] that

g(γ) ≤ g(γ∗)
(a)
=

∣∣∣∣∣
∫ γ∗

0

[
(ζ2 − ζ1)f

′((1− γ)ζ1 + γζ2
)
− (ζ2 − ζ1)f̂

′((1− γ)ζ1 + γζ2
)]
dγ

∣∣∣∣∣
≤ |ζ2 − ζ1|

∫ γ∗

0

∣∣∣f ′((1− γ)ζ1 + γζ2
)
− f̂ ′

(
(1− γ)ζ1 + γζ2

)∣∣∣ dγ
(b)

≤ G|ζ2 − ζ1|2
∫ γ∗

0

(γ∗ − γ)dγ

= G(ζ2 − ζ1)
2 γ

∗2

2
(c)

≤ G

8
(ζ2 − ζ1)

2 (18)

where (a) uses the fact that f(ζ1) = f̂(ζ1), (b) is from (17), and (c) is due to γ∗ ≤ 1/2.

Case ii) γ∗ ∈ [1/2, 1)

Likewise, we can also have∣∣f ′(ηζ1 + (1− η)ζ2
)
− f̂ ′

(
ηζ1 + (1− η)ζ2

)∣∣ = ∣∣f ′(ηζ1 + (1− η)ζ2
)
− f̂ ′(ζ∗)

∣∣
=

∣∣f ′(ηζ1 + (1− η)ζ2
)
− f ′(ζ∗)

∣∣
≤ G|ηζ1 + (1− η)ζ2 − ζ∗|
= G|1− η − γ∗||ζ2 − ζ1|. (19)

It then holds for ∀γ ∈ [0, 1] that

g(γ) ≤ g(γ∗) =

∣∣∣∣∫ 1

γ∗

[
(ζ2 − ζ1)f

′((1− γ)ζ1 + γζ2
)
− (ζ2 − ζ1)f̂

′((1− γ)ζ1 + γζ2
)]
dγ

∣∣∣∣
≤ |ζ2 − ζ1|

∫ 1

γ∗

∣∣∣f ′((1− γ)ζ1 + γζ2
)
− f̂ ′

(
(1− γ)ζ1 + γζ2

)∣∣∣ dγ
(a)
= |ζ2 − ζ1|

∫ 1−γ∗

0

∣∣∣f ′(ηζ1 + (1− η)ζ2
)
− f̂ ′

(
ηζ1 + (1− η)ζ2

)∣∣∣ dη
(b)

≤ G|ζ2 − ζ1|2
∫ 1−γ∗

0

(1− η − γ∗)dη

= G(ζ2 − ζ1)
2 (1− γ∗)2

2

≤ G

8
(ζ2 − ζ1)

2 (20)

where (a) follows by the substitution of integral variable γ = 1− η, and (b) uses (19).

Combining these two cases with (14) yields the desired conclusion.

The next theorem bounds the per-step error | ˇ̄proxki − ¯proxR∗,α| utilizing Lemma A.6.

Theorem A.7 (Per-step error for smooth proximal operator). Consider ˇ̄proxk defined by (6) with
fixed ζki,c = ( 2cC − 1)A. Define ψki := [ψki,0, . . . , ψ

k
i,C ]

⊤ the vector parameterizing ˇ̄proxki . Then
under Assumptions 3.1 and A.1, it holds for i = 1, . . . , d and k = 1, . . . ,K that

min
ψk

i

max
z∈[−A,A]

∣∣ ¯proxR∗
i ,α

(z)− ˇ̄proxki (z;ψ
k
i )
∣∣ ≤ G1A

2

2C2
. (21)

This bound is tight with the additional constraints that ψki,0 = ¯proxR∗
i ,α

(−A) and ψki,C =

¯proxR∗
i ,α

(A), ∀k, i.

14
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Proof. Define ψ̃i := [ ¯proxR∗
i ,α

(−A), ¯proxR∗
i ,α

(−A + 2
CA), . . . , ¯proxR∗

i ,α
(A)]⊤ to be the vector

collecting the proximal function values at the partition points ζki,c = ( 2cC − 1)A. It then follows that

min
ψk

i

max
z∈[−A,A]

| ¯proxR∗
i ,α

(z)− ˇ̄proxki (z;ψ
k
i )| ≤ max

z∈[−A,A]
| ¯proxR∗

i ,α
(z)− ˇ̄proxki (z; ψ̃i)|. (22)

Next, applying Lemma A.6 to each piece of ˇ̄proxki , it holds for ∀γ ∈ [0, 1] and c = 1, . . . , C that∣∣proxRi,α

(
(1−γ)ζki,c−1+γζ

k
i,c

)
− ˇ̄proxki

(
(1−γ)ζki,c−1+γζ

k
i,c; ψ̃i

)∣∣ ≤ G1

8
(ζki,c−ζki,c−1)

2 =
G1A

2

2C2
.

(23)
By noticing that ∪Cc=1{(1−γ)ζki,c−1+γζ

k
i,c | γ ∈ [0, 1]} = [ζ0i , ζ

C
i ] = [−A,A], we obtain from (23)

that

| ¯proxR∗
i ,α

(z)− ˇ̄proxi(z; ψ̃i)| ≤
G1A

2

2C2
, ∀z ∈ [−A,A]. (24)

Relating (22) to (24) leads to the desired error bound (21).

For later use, we define distance
dist([a, b];ψi) := max

z∈[a,b]

∣∣ ¯proxR∗
i ,α

(z)− ˇ̄proxki (z;ψi)
∣∣ (25)

To illustrate this bound is tight with the additional constraints stated in Theorem A.7, a specific ex-
ample will be constructed to show that the upper bound can be actually attained. To be more specific,
it will be shown that for any given C ≥ 1, there exists a ¯proxR∗

i ,α
that satisfies Assumption A.1 and

reaches the right side of (21), with the minimizer exactly being

ψ̃i = ψ
∗
i := argmin

ψi: ψi,0= ¯proxR∗
i
,α(−A)

ψi,C= ¯proxR∗
i
,α(A)

dist([−A,A];ψi). (26)

For simplicity, we drop the superscript k to write ζi,c = ( 2cC − 1)A in the sequel. Consider the
following proximal function

¯proxR∗
i ,α

(z) =


0, z < −A
G1

2 (z − ζi,c)
2 + 2G1A

2

C2 c, ζi,c ≤ z < ζi,c+1, c = 0, 2, . . . , 2⌊C2 ⌋
−G1

2 (z − ζi,c+1)
2 + 2G1A

2

C2 (c+ 1), ζi,c ≤ z < ζi,c+1, c = 1, 3, . . . , 2⌊C+1
2 ⌋ − 1

2G1A(1− 2
C ⌊

C
2 ⌋)(z −A) + 2G1A

2

C2 , z ≥ A

.

(27)
It can be verified that this function satisfies Assumption A.1 by showing that

¯prox′R∗
i ,α

(z) =


0, z < −A
G1(z − ζi,c), ζi,c ≤ z < ζi,c+1, c = 0, 2, . . . , 2⌊C2 ⌋
G1(ζi,c+1 − z), ζi,c ≤ z < ζi,c+1, c = 1, 3, . . . , 2⌊C+1

2 ⌋ − 1

2G1A(1− 2
C ⌊

C
2 ⌋), z ≥ A

(28)

is continuous, and the second-order derivate

| ¯prox′′R∗
i ,α

(z)| =
{
G1, −A ≤ z < A

0, otherwise
(29)

is bounded by G1.

In such case, the c-th element of ψ̃i is ψ̃i,c = ¯proxR∗
i ,α

(ζi,c) =
2G1A

2

C2 c. It then follows from (6)
that

ˇ̄proxki (z; ψ̃i) =
G1A

C
(z +A). (30)

As a result, one can have

dist([−A,A]; ψ̃i) = dist([ζi,c−1, ζi,c]; ψ̃i) =
G1A

2

2C2
, (31)

where the maximum (hidden inside dist; cf. (25)) is attained at z =
ζi,c−1+ζi,c

2 for each c =
1, . . . , C.
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What remains now is to prove (26), which relies on the mathematical induction of C. The proof
starts with the base case that C = 1. With the two extra constraints in effect, we already have

ψ∗
i = argmin

ψi: ψi,0= ¯proxR∗
i
,α(−A)

ψi,C= ¯proxR∗
i
,α(A)

dist([−A,A];ψi) = [ ¯proxR∗
i ,α

(−A), ¯proxR∗
i ,α

(A)]⊤ = ψ̃i (32)

and the minimum value dist([−A,A];ψ∗
i ) =

G1A
2

2C2 .

Now, with the inductive hypothesis that (26) holds for C = 1, . . . , C ′ (C ′ ≥ 1), we now prove
that (26) is also true for C = C ′ +1. Without loss of generality, assume C ′ is even so that C ′ +1 is
odd. A similar analysis can be readily carried out when C ′ is odd.

Next, we discuss the following three possible cases to determine the optimal ψ∗
i that minimizes

dist([−A,A];ψi). In particular, it will be proved that the minimum distance of G1A
2

2C2 can be reached
only in the first case, where the induction hypothesis for C = C ′ + 1 holds.

Case i) [ψ∗
i ]C′ = [ψ̃i]C′ = ¯proxR∗

i ,α
(ζi,C′). With this additional condition, it holds that

ψ∗
i = argmin

ψi: ψi,0= ¯proxR∗
i
,α(−A)

ψi,C= ¯proxR∗
i
,α(A)

ψi,C′= ¯proxR∗
i
,α(ζi,C′ )

dist([−A,A];ψi)

= argmin
ψi: ψi,0= ¯proxR∗

i
,α(−A)

ψi,C= ¯proxR∗
i
,α(A)

ψi,C′= ¯proxR∗
i
,α(ζi,C′ )

max
{
dist([−A, ζi,C′ ];ψi), dist([ζi,C′ , A];ψi)

}
(33)

where the last equality follows from the definition (25).

By applying the base inductive case (i.e., C = 1) on the interval [ζi,C′ , A] that contains one piece of
ˇ̄proxki (note that ζi,C′+1 = ζi,C = A by definition), it follows that

min
ψi: ψi,C′= ¯proxR∗

i
,α(ζi,C′ )

ψi,C= ¯proxR∗
i
,α(ζi,C)

dist([ζi,C′ , A];ψi) =
G1(A− ζi,C′)2

8
=
G1A

2

2C2
, (34)

where the second equality utilizes that {ζi,c}Cc=0 uniformly partition [−A,A] so that A − ζi,C′ =

ζi,C′+1 − ζi,C′ = 2A
C .

Moreover, using the inductive hypothesis for C = C ′ on the interval [−A, ζi,C′ ] containing C ′

pieces of ˇ̄proxki , we obtain

min
ψi: ψi,0= ¯proxR∗

i
,α(−A)

ψi,C′= ¯proxR∗
i
,α(ζi,C′ )

dist([−A, ζi,C′ ];ψi) =
G1(ζi,C′ +A)2

8C ′2 =
G1A

2

2C2
(35)

and that the first C ′ elements of the minimizer of (35) are equal to [ψ̃i]1:C′ .

Therefore, combining (33)-(35) we arrive at

ψ∗
i = [[ψ̃i]

⊤
1:C′ , ¯proxR∗

i ,α
(A)]⊤ = ψ̃i, (36)

which indicates that the inductive hypothesis (26) also holds for C = C ′ + 1.

Next, we show that the minimum distance of (26) in the following two cases is larger than G1A
2

2C2 .

Case ii) ψ∗
i,C′ > ψ̃i,C′ = ¯proxR∗

i ,α
(ζi,C′). According to (27), (30) and that C ′ is even, one can

easily verify that

¯proxR∗
i ,α

(z)− ˇ̄proxki (z; ψ̃i) ≥ 0, z ∈ [ζi,C′−1, ζi,C′ ] (37a)

¯proxR∗
i ,α

(z)− ˇ̄proxki (z; ψ̃i) ≤ 0, z ∈ [ζi,C′ , A]. (37b)

16
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Since ψ∗
i,C′ > ψ̃i,C′ and ψ∗

i,C = ψ̃i,C , it follows from the definition (6) that

ˇ̄proxki (z;ψ
∗
i ) > ˇ̄proxki (z; ψ̃i), z ∈ [ζi,C′ , A). (38)

Then, it holds that
G1A

2

2C2
= dist([ζi,C′ , A]; ψ̃i) = max

z∈[ζi,C′ ,A]

∣∣ ¯proxR∗
i ,α

(z)− ˇ̄proxki (z; ψ̃i)
∣∣

(a)
=

∣∣∣ ¯proxR∗
i ,α

(ζi,C′ +A

2

)
− ˇ̄proxki

(ζi,C′ +A

2
; ψ̃i

)∣∣∣
(b)
= ˇ̄proxki

(ζi,C′ +A

2
; ψ̃i

)
− ¯proxR∗

i ,α

(ζi,C′ +A

2

)
(c)
< ˇ̄proxki

(ζi,C′ +A

2
;ψ∗

i

)
− ¯proxR∗

i ,α

(ζi,C′ +A

2

)
≤ max
z∈[ζi,C′ ,A]

∣∣ ¯proxR∗
i ,α

(z)− ˇ̄proxki (z;ψ
∗
i )
∣∣ = dist([ζi,C′ , A];ψ∗

i ), (39)

where (a) uses that (31) is achieved at z = ζi,c−1+ζi,c
2 , (b) follows from (37b), and (c) is due to (38).

In other words, if ψ∗
i,C′ > ψ̃i,C′ , it must hold that

dist([ζ0i , ζ
C
i ];ψ

∗
i ) >

G1(ζ
C
i − ζ0i )

2

8C2

, which is larger than that of case i). Therefore, the optimal ψ∗
i must satisfy ψ∗

i,C′ ≤ ψ̃i,C′ .

Case iii) ψ∗
i,C′ < ψ̃i,C′ = ¯proxR∗

i ,α
(ζi,C′). Again with (31), one can easily get

G1A
2

2C2
= dist([ζi,C′−1, ζi,C′ ]; ψ̃i)

= ¯proxR∗
i ,α

(ζi,C′−1 + ζi,C′

2

)
− ˇ̄proxki

(ζi,C′−1 + ζi,C′

2
; ψ̃i

)
. (40)

Recall from the definition (6) that ˇ̄proxki (z;ψi), z ∈ [ζi,C′−1, ζi,C′ ] is defined as the line seg-
ment connecting points (ζi,C′−1, ψi,C′−1) and (ζi,C′ , ψi,C′). To ensure dist([ζi,C′−1, ζi,C′ ];ψ∗

i ) ≤
G1A

2

2C2 , a necessary condition is ˇ̄proxki

(
ζi,C′−1+ζi,C′

2 ;ψ∗
i

)
≥ ˇ̄proxki

(
ζi,C′−1+ζi,C′

2 ; ψ̃i

)
; cf. (37a).

Since we have ψ∗
i,C′ < ψ̃i,C′ in this case, it must hold that ψ∗

i,C′−1 > ψ̃i,C′−1. By ap-
plying this analysis recursively, one can proceed to obtain a series of necessary conditions of
dist([−A,A];ψ∗

i ) ≤ G1A
2

2C2 , which are (recall that C ′ is presumed even)

ψ∗
i,C′−1 > ψ̃i,C′−1, ψ

∗
i,C′−2 < ψ̃i,C′−2, (41)

. . . , (42)

ψ∗
i,1 > ψ̃i,1, ψ∗

i,0 < ψ̃i,0. (43)

This contradicts with the constraint that ψ∗
i,0 = ¯proxR∗

i ,α
(−A) = ψ̃i,0; cf. (26). That is to say,

requiring ψ∗
i,C′ < ψ̃i,C′ will lead to dist([−A,A];ψ∗

i ) >
G1A

2

2C2 , which is not optimal.

To the end, through the three cases we conclude that the minimizer ψ∗
i must satisfy ψ∗

i,C′ = ψ̃i,C′ ,
which implies (26) holds for C = C ′ + 1; see (36). The proof is thus completed.

Building upon the per-step error bound established in Theorem A.7, the K-step cumulative error
bound will next be proved. In particular, the following theorem offers an upper bound for the
normalized error on (shifted) θ̂t.

Theorem A.8 (Formal statement: finite-step PGD error for smooth proximal operators). Consider
ˇ̄proxk defined by (6) with fixed ζki,c = ( 2cC − 1)A. Define Ψ := [ψ1, . . . ,ψK ] the matrix param-

eterizing { ˇ̄proxk}Kk=1. Let θ̄Kt and ˇ̄θKt be the K-step PGD outputs using ¯proxR∗,α and ˇ̄proxk,
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respectively. With Assumptions 3.1 and A.1-A.4 in effect, it holds for t = 1, . . . , T that

min
Ψ

1√
d

∥∥θ̄Kt − ˇ̄θKt (Ψ)
∥∥
2
= O(

1

C2
). (44)

This bound is tight with the additional constraints that ψki,0 = ¯proxR∗
i ,α

(−A) and ψki,C =

¯proxR∗
i ,α

(A), ∀k, i.

Proof. For notational compactness, define ψ̃
k

:= argminψk max−A1d⪯z⪯A1d
∥ ¯proxR∗,α(z) −

ˇ̄proxk(z;ψk)∥2 and Ψ̃ := [ψ̃
1
, . . . , ψ̃

K
]. Since both ¯proxR∗,α and ˇ̄proxk are factorable across

the dimensions of their inputs, we know that ψ̃
k

is the concatenation of the minimizers

ψ̃
k

i = argmin
ψk

i

max
z∈[−A,A]

∥ ¯proxR∗
i ,α

(z)− ˇ̄proxki (z;ψ
k
i )∥2, i = 1, . . . , d

for each dimension. It then holds for k = 1, . . . ,K that

min
Ψ

∥∥θ̄kt − ˇ̄θkt (Ψ)
∥∥
2

≤
∥∥θ̄kt − ˇ̄θkt (Ψ̃)

∥∥
2
=

∥∥ ¯proxR∗,α(z̄
k
t )− ˇ̄proxki (ˇ̄z

k
t ; ψ̃

k
)
∥∥
2

≤
∥∥ ¯proxR∗,α(z̄

k
t )− ¯proxR∗,α(ˇ̄z

k
t )
∥∥
2
+
∥∥ ¯proxR∗,α(ˇ̄z

k
t )− ˇ̄proxki (ˇ̄z

k
t ; ψ̃

k
)
∥∥
2

(a)

≤
∥∥ ¯proxR∗,α(z̄

k
t )− ¯proxR∗,α(ˇ̄z

k
t )
∥∥
2
+

√
dA2G1

2C2

(b)

≤ L
∥∥z̄kt − ˇ̄zkt (Ψ̃)

∥∥
2
+

√
dA2G1

2C2

(c)

≤ L
∥∥θ̄k−1

t − ˇ̄θk−1
t (Ψ̃)

∥∥
2
+ αL

∥∥∇θ̄k−1
t

L̄(θ̄k−1
t ;Dtrn

t )−∇ˇ̄θk−1
t

L̄(ˇ̄θk−1
t ;Dtrn

t )
∥∥
2
+

√
dA2G1

2C2

(d)

≤ L(1 + αG2)
∥∥θ̄k−1

t − ˇ̄θk−1
t (Ψ̃)

∥∥
2
+

√
dA2G1

2C2
(45)

where (a) follows from Theorem A.7 and Assumptions A.1-A.3, (b) uses Assumption A.4, (c) is
from (4) and (7), and (d) is due to Assumption A.2.

Using this recursive relationship between ∥θ̄kt − ˇ̄θkt (Ψ̃)∥2 (line 2) and ∥θ̄k−1
t − ˇ̄θk−1

t (Ψ̃)∥2 (the last
line), together with the boundary condition ∥θ̄0t − ˇ̄θ0t∥2 = ∥0d−0d∥2 = 0, we arrive at the solution∥∥θ̄kt − ˇ̄θkt (Ψ̃)

∥∥
2
≤

{
1−Lk(1+αG2)

k

1−L(1+αG2)

√
dA2G1

2C2 , if L(1 + αG2) ̸= 1

k
√
dA2G1

2C2 , otherwise
= O(

√
d

C2
). (46)

Dividing by
√
d and minimizing over Ψ on both side of

∥∥θ̄kt − ˇ̄θkt (Ψ)
∥∥
2
≤

∥∥θ̄kt − ˇ̄θkt (Ψ̃)
∥∥
2

lead to

min
Ψ

1√
d

∥∥θ̄kt − ˇ̄θkt (Ψ)
∥∥
2
≤ 1√

d

∥∥θ̄kt − ˇ̄θkt (Ψ̃)
∥∥
2
= O(

1

C2
). (47)

Plugging in (46) with k = K gives (9).

In addition, the tightness of (9) follows from the tightness of Theorem A.7.

B PROOF OF THEOREM 3.3

The proof of Theorem 3.3 relies on a more generic lemma which can be applied to non-smooth (but
still Lipschitz) ¯proxR∗,α.

Lemma B.1. Let f ∈ C0(R) : R 7→ R be an L-Lipschitz function. For ∀ζ1, ζ2 ∈ R and ζ1 ̸= ζ2,
define

f̂(z) :=
(ζ2 − z)f(ζ1) + (z − ζ1)f(ζ2)

ζ2 − ζ1
. (48)
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It then holds for ∀γ ∈ [0, 1] that∣∣f((1− γ)ζ1 + γζ2
)
− f̂

(
(1− γ)ζ1 + γζ2

)∣∣ ≤ L

2
|ζ2 − ζ1|. (49)

Proof. Define g(γ) :=
∣∣f((1− γ)ζ1 + γζ2

)
− f̂

(
(1− γ)ζ1 + γζ2

)∣∣. Following the same step (14)
of Lemma A.6, it can be shown that there also exists at least one maximizer γ∗ ∈ (0, 1) of g(γ).

Thus we obtain
g(γ) ≤ g(γ∗) =

∣∣f((1− γ∗)ζ1 + γ∗ζ2
)
− f̂

(
(1− γ∗)ζ1 + γ∗ζ2

)∣∣
(a)
=

∣∣f((1− γ∗)ζ1 + γ∗ζ2
)
− (1− γ∗)f(ζ1)− γ∗f(ζ2)

∣∣
≤ (1− γ∗)

∣∣f((1− γ∗)ζ1 + γ∗ζ2
)
− f(ζ1)

∣∣+ γ∗
∣∣f((1− γ∗)ζ1 + γ∗ζ2

)
− f(ζ2)

∣∣
(b)

≤ 2γ∗(1− γ∗)L|ζ2 − ζ1|
(c)

≤ L

2
|ζ2 − ζ1|, (50)

where (a) follows from the definition (48) of f̂ , (b) exploits the Lipschitzness of f , and (c) is due to
that γ∗(1− γ∗) ≤ 1/4 for γ∗ ∈ (0, 1).

With Lemma B.1 at hand, Theorem 3.3 can be proved using similar techniques as Theorem 3.2.

Theorem B.2 (Formal statement: finite-step PGD error for continuous proximal operators). Con-
sider the notations defined in Theorem 3.2. With Assumptions 3.1 and A.2-A.4 in effect, it holds for
t = 1, . . . , T that

min
Ψ

1√
d

∥∥θ̄Kt − ˇ̄θKt (Ψ)
∥∥
2
= O(

1

C
). (51)

This bound is tight with the additional constraints that ψki,0 = ¯proxR∗
i ,α

(−A) and ψki,C =

¯proxR∗
i ,α

(A), ∀k, i.

Proof. Following the same steps of Theorem A.7, it can be shown that the per-step error bound for
continuous ¯proxR∗,α is

min
ψk

i

max
z∈[−A,A]

∣∣ ¯proxR∗
i ,α

(z)− ˇ̄proxki (z;ψ
k
i )
∣∣ ≤ AL

C
, ∀i. (52)

Also, this bound is tight provided with the additional constraints that ψki,0 = ¯proxR∗
i ,α

(−A) and
ψi,C = ¯proxR∗

i ,α
(A).

Likewise, we define ψ̃
k
:= argminψk max−A1d⪯z⪯A1d

∥ ¯proxR∗,α(z)− ˇ̄proxk(z;ψk)∥2 and Ψ̃ :=

[ψ̃
1
, . . . , ψ̃

K
]. Then, it follows from the first two lines of (45) that

min
Ψ

∥∥θ̄kt − ˇ̄θkt (Ψ)
∥∥
2
≤

∥∥ ¯proxR∗,α(z̄
k
t )− ¯proxR∗,α(ˇ̄z

k
t )
∥∥
2
+
∥∥ ¯proxR∗,α(ˇ̄z

k
t )− ˇ̄proxk(ˇ̄zkt ; ψ̃

k
)
∥∥
2

(a)

≤ L
∥∥z̄kt − ˇ̄zkt (Ψ̃)

∥∥
2
+

√
dAL

C
(b)

≤ L(1 + αG2)
∥∥θ̄k−1

t − ˇ̄θk−1
t (Ψ̃)

∥∥
2
+

√
dAL

C
, (53)

where (a) is from Assumption A.4 and (52), and (b) utilizes (4), (7) and Assumption A.2.

To the end, this recursive relationship, combined with the condition ∥θ̄0t − ˇ̄θ0t∥2 = 0, results in

min
Ψ

∥∥θ̄Kt − ˇ̄θKt (Ψ)
∥∥
2
≤

{
1−LK(1+αG2)

K

1−L(1+αG2)

√
dAL
C , if L(1 + αG2) ̸= 1

K
√
dAL
C , otherwise

= O(

√
d

C
). (54)

Dividing both sides by
√
d completes the proof.
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C UPPER BOUND OF (10)

As discussed in Sec. 3.3, the optimal Ψ∗ that minimizes (9) and (11) is typically unavailable. An
feasible approximation is the sub-optimal Ψ̂ obtained from the ERM (1), which brings about an
extra error term 1√

d

∥∥ˇ̄θKt (Ψ̂)− ˇ̄θKt (Ψ∗)
∥∥
2
; cf. (10). This section derives its upper bound, based on

the following extra assumption.
Assumption C.1. ˇ̄proxk(z;ψk) ∈ C0([−A,A]d) is L1- and L2-Lipschitz w.r.t. z and ψk for
−A1d ⪯ z ⪯ A1d, respectively.

Denoting by ψ̂
k

and ψ∗k the k-th columns of Ψ̂ and Ψ∗ that parametrize ˇ̄proxk, it holds for
k = 1, . . . ,K that∥∥ˇ̄θkt (Ψ̂)− ˇ̄θkt (Ψ

∗)
∥∥
2

(a)
= ∥ ˇ̄proxk(ˇ̄zkt (Ψ̂); ψ̂

k
)− ˇ̄proxk(ˇ̄zkt (Ψ

∗);ψ∗k)∥2

≤ ∥ ˇ̄proxk(ˇ̄zkt (Ψ̂); ψ̂
k
)− ˇ̄proxk(ˇ̄zkt (Ψ̂);ψ∗k)∥2 + ∥ ˇ̄proxk(ˇ̄zkt (Ψ̂);ψ∗k)− ˇ̄proxk(ˇ̄zkt (Ψ

∗);ψ∗k)∥2
(b)

≤ L2∥ψ̂
k
−ψ∗k∥2 + L1∥ˇ̄zkt (Ψ̂)− ˇ̄zkt (Ψ

∗)∥2
(c)

≤ L2∥ψ̂
k
−ψ∗k∥2 + L1

(
∥ˇ̄θk−1

t (Ψ̂)− ˇ̄θk−1
t (Ψ∗)∥2+

α∥∇ˇ̄θk−1
t

L(ˇ̄θk−1
t (Ψ̂);Dtrn

t )−∇ˇ̄θk−1
t

L(ˇ̄θk−1
t (Ψ∗);Dtrn

t )∥2
)

≤ L2∥ψ̂
k
−ψ∗k∥2 + L1(1 + αG2)∥ˇ̄θk−1

t (Ψ̂)− ˇ̄θk−1
t (Ψ∗)∥2

(d)

≤ L1(1 + αG2)∥ˇ̄θk−1
t (Ψ̂)− ˇ̄θk−1

t (Ψ∗)∥2 + L2∥Ψ̂−Ψ∗∥1 (55)
where (a) follows from (7b), (b) uses Assumption C.1, (c) is from (7a) and Assumption A.2, and

(d) is due to that ∥ψ̂
k
−ψ∗k∥2 ≤ maxKk=1 ∥ψ̂

k
−ψ∗k∥2 = ∥Ψ̂−Ψ∗∥1.

Solving the recursive relationship (55) using ∥ˇ̄θkt (Ψ̂)− ˇ̄θkt (Ψ
∗)∥2 = 0 gives∥∥ˇ̄θKt (Ψ̂)− ˇ̄θKt (Ψ∗)

∥∥
2
≤

{
1−LK

1 (1+αG2)
K

1−L1(1+αG2)
L2∥Ψ̂−Ψ∗∥1, if L1(1 + αG2) ̸= 1

KL2∥Ψ̂−Ψ∗∥1, otherwise
, (56)

which concludes that
1√
d

∥∥ˇ̄θKt (Ψ̂)− ˇ̄θKt (Ψ∗)
∥∥
2
= O

( 1√
d
∥Ψ̂−Ψ∗∥1

)
. (57)

D ADDITIONAL REMARKS REGARDING THE THEORETICAL RESULTS

Next, three important remarks regarding the derived error bounds will be provided.
Remark D.1 (Difference with convergence rate analysis). It is worth stressing these approximation
error bounds are different from the convergence rate analysis. Essentially, it quantifies the impact
of using a parametric ˇ̄prox to approximate the optimal yet unknown ¯proxR∗,α. Moreover, although
the bounds increase with K, it is important to note that K is a sufficiently small constant (typically
1 ≤ K ≤ 5) in the context of meta-learning (Finn et al., 2017), as the overall complexity for
solving (2) scales linearly with K. Furthermore, the learning rate must satisfy α ∈ (0, 2/G2)
to guarantee a gradient-related descent direction, with α = 1/G2 being the optimal choice. A
consequence of this choice is that (1 + αG2)

K ∈ [2, 32], which ensures that the constant in the
upper bounds will not diverge.
Remark D.2 (Factorability and scalability). Assumption 3.1 ensures that the prior dimension D
scales with the task-specific parameter dimension d. As d in practice can be extremely large (e.g.,
Ω(105)), a complete prior such as a full Gaussian pdf would incur prohibitively high complexity;
that is, D = Θ(d2) = Ω(1010). A feasible simplification is to approximate the prior in Rd using
the multiplication of d pdfs in R. This assumption essentially considers each dimension of θt to
be mutually independent, leading to D = Θ(d). Such an independence assumption is prevalent not
only in meta-learning, but also in high-dimensional statistics when dealing with deep NNs.
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Remark D.3 (Validity of learned proximal operator). The learnable ˇprox in this paper re-
mains a proximal operator, even when the corresponding regularizer is non-convex. Indeed, let
ˇprox−1(x;θ) := argminz{∥z∥ | ˇprox(z;θ) = x} for x ∈ { ˇprox(z;θ)|A1d ⪯ z ⪯ A1d} := X ,

and x0 := ˇprox(z0;θ) ∈ X . The stationary point condition of the proximal operator indi-
cates ˇprox−1(x0;θ) − x0 ∈ ∂R(x0;θ); thus, one of the regularizers satisfying this condition is
R(θt;θ) =

∫
x∈X :x≺θt

( ˇprox−1(x;θ) − x)dx. Compared to non-expansive operators, proximal
operators induced by non-convex regularizers have gained popularity in recent years thanks to their
enhanced expressiveness, and their convergence guarantees (Hurault et al., 2022). Our method fails
precisely within this category. Additionally, the PLFs should be monotone to qualify as a valid
proximal operator; see e.g., (Gribonval & Nikolova, 2020, Theorem 1). In practice, the sought
monotonicity can be established by enforcing ψki,c ≤ ψki,c′ , ∀c ≤ c′. This can be readily achieved
upon defining ψki,c+1 := ψki,c+exp(∆ψki,c), ∀i, c, k, and then learn the log-increment {∆ψki,c}i,c,k.
Interestingly, we have observed that the learned PLFs are exactly monotone functions (see e.g.,
Fig. 4), even without an explicit constraint. This observation suggests an inherent preference for
monotonic PLFs by the data.

E DETAILED SETUPS OF NUMERICAL TESTS

In this section, we introduce the dataset and elaborate the detailed setups of the numerical tests.

The miniImageNet dataset (Vinyals et al., 2016) consists of 60, 000 natural images sampled from the
full ImageNet (ILSVRC-12) dataset. These images are categorized into 100 classes, each with 600
labeled samples. As suggested by (Ravi & Larochelle, 2017), all images are cropped and resized
to size 84 × 84. The dataset is split into 3 disjoint groups containing 64, 16 and 20 classes, which
can be respectively accessed during the training, validation, and testing phases of meta-learning.
The experimental setups follow from the standard M -class N -shot few-shot learning protocol (Ravi
& Larochelle, 2017; Finn et al., 2017). Specifically, Dtrn

t per task t includes M classes randomly
drawn from the dataset, each containing N labeled data. As a result, it is clear that |Dtrn

t | = MN
for each t.

The TieredImageNet (Ren et al., 2018) dataset is a larger subset of the ImageNet dataset, composed
of 779, 165 images from 608 classes. Likewise, all the images are preprocessed to have size 84×84.
Instead of using a random split, classes are partitioned into 34 categories according to the hierarchy
of ImageNet dataset. Each category contains 10 to 30 classes. These categories are further grouped
into 3 different sets: 20 for training, 6 for validation, and 4 for testing.

We utilized the group of hyperparameters described in MAML (Finn et al., 2017) consistently
throughout all the tests. To be specific, the maximum number K of PGD steps (7) is 5, and the
total number R of mini-batch SGD iterations (8) is 60, 000. The number of convolutional channels
is 64 for MetaProxNet+MAML, and 128 for MetaProxNet+MC. The learning rates for PGD and
SGD are α = 0.01 and β = 0.001, with batch size B = 4. Adam optimizer is employed for
tieredImageNet, while SGD with Nesterov momentum of 0.9 and weight decay of 10−4 is used for
miniImageNet.

The interval [−A,A] and number C of pieces are determined through a grid search leveraging the
validation tasks. For both miniImageNet and TieredImgeNet datasets, A = 0.02 and C = 5. We
found that C = 5 suffices to reach a satisfactory performance, while larger C only contributes
marginally to MetaProxNet’s empirical performance. This suggests the constants hidden inside the
error bounds O(1/C) and O(1/C2) can be sufficiently small in practice.

F COMPLEXITY ANALYSIS OF METAPROXNET

It can be observed from (6) and (7b) that the per-step piecewise linear function (PLF) ˇ̄proxk applies
a dimension-wise affine transformation to its input. Although the per-dimension ˇ̄proxki consists of
C + 1 parameters, the affine transformation merely relies on a single piece [ζki,c−1, ζ

k
i,c] of the PLF.

Thus, each computation involves only two control points ψki,c−1, ψ
k
i,c for every k = 1, . . . ,K and

i = 1, . . . , d. As a result, the forward calculation and backward differentiation of PLFs both incur
complexity O(Kd). While the K-step GD of (7a) also exhibits forward and backward complexities
of O(Kd), its constant hidden within O can be much larger, as the convolutional operations in the
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Table 3: Comparison of (normalized) running time on the 5-class 5-shot miniImageNet dataset.

Method Forward Backward Total

MAML ×0.182 ×0.818 ×1 (reference)
MetaProxNet+MAML ×0.202 ×0.836 ×1.038
MetaCurvature ×0.188 ×0.834 ×1.022
MetaProxNet+MetaCurvature ×0.208 ×0.863 ×1.071

Table 4: Ablation test regarding weight untying using a 4-layer 32-channel CNN.

Method 5-class 10-class
1-shot (%) 5-shot (%) 1-shot (%) 5-shot (%)

MAML 48.70±1.84 63.11±0.92 31.27±1.15 46.92±1.25

MetaProxNet (shared ˇ̄prox) + MAML 51.16±1.45 67.08±0.71 34.62±0.93 50.26±0.48

MetaProxNet (per-step ˇ̄proxk) + MAML 53.58±1.43 67.88±0.72 34.80±0.91 51.03±0.51

CNN are more time-consuming than the affine ones. Consequently, PLFs contribute only marginally
(< 5%) to the overall complexity compared to their backbone. This is also evidenced numerically
in Tab. 3. Moreover, Assumption (3.1) indeed ensures that the prior dimension D scales with d,
thereby mitigating any substantial complexity increase. Specifically, in practical scenarios where d
is extremely large (e.g., d = 121, 093 or 463, 365 in our experiments), employing a complete prior,
such as a full Gaussian pdf, would yield D = Θ(d2). A feasible simplification is to approximate the
prior in Rd using the multiplication of d pdfs in R, which leads to D = Θ(d).

G EXTRA ABLATION TESTS REGARDING WEIGHT UNTYING

The next test examines the effectiveness of the weight-untying technique; i.e., the per-step ˇ̄prox.
The experiment is conducted on the miniImageNet dataset with a 4-layer 32-channel CNN, and
the corresponding results are summarized in Tab. 4. It is seen that the per-step proximal operator
consistently outperforms the shared one in all four tests. In fact, the per-step ˇ̄proxk inherently cor-
responds to an adaptive prior, which evolves with the optimization process. The same technique was
originally provided by the renowned LISTA algorithm (Gregor & LeCun, 2010), which pioneered
algorithm unrolling, and has since been widely adopted by the community on inverse problems.

H NUMERICAL VERIFICATION OF ERROR BOUNDS

Next, a toy numerical test is carried out to verify the derived PGD error bounds. For simplicity, we
will exclusively focus on Theorem 3.2, while similar analysis can be readily applied to Theorem 3.3.
Consider tasks defined by the linear relationship ynt = w∗⊤

t xnt + ent , and a linear prediction model
ŷnt = f(xnt ;θt) := θ

⊤
t x

n
t with squared ℓ2 loss L(θt;Dtrn

t ) := 1
2

∑Ntrn
t

n=1 ||ynt − θ⊤t xnt ||22, where the

Figure 5: Comparison of theoretical error bound (9) and numerical error in linear regression.
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unknown oracle w∗
t ∼ Uniform([−3, 3]d) and xnt ∼ N (0d, Id). In the test, we set K = 5, α =

0.01, d = 64, |Dtrn
t | = 8,θinit = 0d, A = 3 andC varying from 2 to 20. The target optimal proximal

operator to be approximated is defined in (27) with G1 = 1. Additionally, the Lipschitz constant G2

of ∇L(θt;Dtrn
t ) is numerically computed from the randomly generated training data matrix Xtrn

t .

The plot comparing the numerical PGD error and its upper bound can be found in Fig. 5. It is
observed that the numerical error aligns with the theoretical bound up to a small constant in the log-
scale. This discrepancy arises because the upper bound considers the worst-case scenario, where the
largest error between proxR∗,α and proxk is reached at each PGD step. Furthermore, this constant
gap suggests that the numerical error is in the same order with the bound (notice that both axes are
in log-scale); that is, O( 1

C2 ). This empirically corroborates our theoretical proofs.

I CASE STUDY: FEW-SHOT REGRESSION

Next, a straightforward yet illuminating numerical case study is provided to show the claimed su-
perior prior expressiveness. Consider few-shot regression tasks defined by the linear data model
ynt = w∗⊤

t xnt +e
n
t , where the unknown per-task weights {w∗

t }Tt=1 are i.i.d. samples from the oracle
pdf p(w∗) := 1

2Uniform([−11,−10]d)+ 1
2Uniform([10, 11]d), and ent ∼ N (0, σ2

e), ∀t, n is the ad-
ditive white Gaussian noise. Further, consider a linear prediction model ŷnt = f(xnt ;θt) := θ⊤t x

n
t .

Since p(w∗) is symmetric and isotropic, the optimal Gaussian prior of θt for this case must have
a mean of 0d an isotropic covariance. In other words, if the prior pdf is chosen to be Gaussian
p(θt;θ) = N (µ,Σ), θ := [µ⊤, vec(Σ)⊤]⊤, its optimal parameter θ∗ must consist of µ∗ = 0d
and Σ∗ = λ∗−1Id for some λ∗ ∈ R. As a result, the corresponding regularizer for this prior is
R(θt;θ

∗) = λ∗

2 ∥θt∥22, which prevents θt deviating far from 0d. However, the ground-truth task
model implies that the optimal θ∗t should belong to the set S := [−11,−10]d∪[10, 11]d, and the reg-
ularizer is thus a barrier for optimizing θt. In contrast, if the prior pdf is allowed to be non-Gaussian,
the optimal prior will be the ground-truth one, i.e., p(θt;θ∗) = Uniform(S). The corresponding
proximal operator in this case is the projection proxR∗,α(z) = PS(z), which is exactly a piecewise
linear function driving θt to the oracle set. In summary, the Gaussian pdf fails to match the underly-
ing prior due to its inherent unimodality, while the more expressive PLF-induced prior can perfectly
align with the groundtruth prior to enhance the task-level learning.

For visualization purpose, a numerical test is carried out with d = 1. The remaining parameters are
|Dtrn
t | = 2, |Dval

t | = 5, σe = 1, K = 5, R = 10, 000, α = 0.1, β = 0.01, A = 15, C =
30, B = 4 and xnt ∼ N (0, 1). In Fig. 6, the linear function learned by MAML is inclined to have
a slope close to 0, while the PLFs in MetaProxNet quickly refine θt into the set S = [−11,−10] ∪
[10, 11]. This empirical observation substantiates the advocated superior prior expressiveness.

In practical tasks such as drug discovery and robotic manipulations, the oracle model parameters can
have similar multi-modal pdf defined on a bounded set. In drug discovery for instance, the efficacy
of a drug might only manifest when one component accounts for a specific portion.

(a) (b)
Figure 6: Visualization of 1-d few-shot regression case study; (a) comparison of MAML and
MAML+MetaProxNet; (b) the learned PLF-based proximal operator averaged across PGD steps.

23



Published as a conference paper at ICLR 2024

J A BRIEF INTRODUCTION TO ALGORITHM UNROLLING

Algorithm unrolling was first introduced in (Gregor & LeCun, 2010) to solve the inverse problem.
In particular, it aims to recover a (transformed) signal x ∈ Rn from its compressed measurements

y = Ax+ e (58)
where A ∈ Rm×n is a given matrix with m≪ n, and e is additive white Gaussian noise. Since the
system (58) is under-determined, it has infinitely many solutions. To ensure the uniqueness of the
solution, a prudent remedy is to rely on the prior p(x), which yields

x̂ = argmin
x

∥y −Ax∥22 +R(x). (59)

In the above, ∥y − Ax∥22 and R(x) correspond to the nll − log p(y;x) and nlp − log p(x), re-
spectively. As nature signals are inherently sparse in certain transform domains such as Fourier
and wavelet ones, a popular choice is the sparse prior with R(x) = λ∥x∥1. With such a prior,
the resultant optimization problem (59) can be efficiently solved by the well-documented iterative
soft-thresholding algorithm (ISTA), which involves a two-step update rule

zk = xk−1 − αA⊤(Axk−1 − y) = (In − αA⊤A)xk−1 + αA⊤y (60a)

xk = argmin
x

1

2α
∥zk − x∥22 + ∥x∥1 = Sαλ(zk), k = 1, . . . ,K (60b)

Here, Sαλ is the soft-thresholding operator shown in Fig. 2b.

When given a dataset {(xn,yn)}Nn=1, it is possible to enhance the accuracy of x̂ by learning a
more efficient optimization rule. In (Gregor & LeCun, 2010), the two steps (60) of ISTA for each
k = 1, . . . ,K are replaces by two learnable NN blocks

zk = Wk
xx

k−1 +Wk
yy (61a)

xk = Sβk(zk) (61b)

with θ := {(Wk
x,W

k
y, β

k)}Kk=1 being the learnable weights of the NN. Denoting by f(y;θ) this
multi-block NN mapping, the NN-based update rule can be learned via

min
θ

N∑
n=1

∥xn − f(yn;θ)∥22. (62)

This method of unfolding and substituting the iterations of an optimization algorithm to form a
multi-block NN is known as algorithm unrolling, and the resultant NN is termed an unrolled NN.

K RELATED WORK

NN-based meta-learning: Recurrent neural network (RNN) has been introduced in (Hochreiter
et al., 2001) to learn the update rule of the task-specific model parameters θt, with prior encoded
in the RNN’s weights. Following this work, different RNN architechtures have been explored to
enhance the learning of the update rules. On the one hand, gradient information has been leveraged
in (Andrychowicz et al., 2016; Li & Malik, 2017; Ravi & Larochelle, 2017) to mimic the gradient-
based optimization. On the other hand, temporal convolutions and soft attention have been utilized
to aggregate and pinpoint information from past experiences (Mishra et al., 2018). More recently,
this paradigm of NN-based optimization has been extended to Beyesian meta-learning, aiming to
infer the posterior pdf p(θt|ytrn

t ;Xtrn
t ) (Gordon et al., 2019). Due to the blackbox nature of the

RNNs however, it is hard to interpret the impact of learned prior from the NN-based update rules.

Optimization-based meta-learning: To empower fast adaptation to a new task, MAML capital-
ized on learning a task-invariant initialization (Finn et al., 2017), with task-level learning defined
by a cascade of a few GD steps on the task-specific parameter θt. Intuitively, by descending a
small number of steps, θt should not deviate too far away from its initial value θ. In fact, it
has been pointed out in (Grant et al., 2018) that MAML’s GD solver satisfies θ∗t (θ) ≈ θ̂t(θ) =
argminθt

L(θt;Dtrn
t ) + 1

2∥θt − θ∥2Λt
, where Λt is determined by hyperparamters of GD. This

observation indicates that MAML’s optimization strategy approximates an implicit Gaussian prior
p(θt;θ) = N (θ,Λ−1

t ), with initialization θinit = θ serving as the mean vector. Following MAML,
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a spectrum of algorithms have been developed to encode different priors. For instance, Meta-
SGD (Li et al., 2017) augments MAML by meta-learning a dimension-wise step size, which es-
sentially corresponds to a per-step diagonal Gaussian prior. Other examples of the induced priors
include isotropic Gaussian (Rajeswaran et al., 2019; Abbas et al., 2022), diagonal Gaussian (Ravi &
Beatson, 2019; Nguyen et al., 2020), per-step block-diagonal Gaussian (Park & Oliva, 2019; Flen-
nerhag et al., 2020), and implicit Gaussian (Baik et al., 2020; 2021).
Another line of research termed metric-based meta-learning (which can be either NN-based or
optimization-based) splits the model into an embedding “body” and a classifier/regressor “head,” and
learn their priors independently (Vinyals et al., 2016; Snell et al., 2017; Sung et al., 2018; Li et al.,
2020a). In particular, with θbodyt and θheadt denoting the corresponding partitions of θt, the prior is
presumed factorable as p(θt;θ) = p(θbodyt ;θbody)p(θheadt ;θhead), θ = [θbody⊤,θhead⊤]⊤. On
the one hand, the head typically has a nontrivial prior such as the Gaussian one (Bertinetto et al.,
2019; Lee et al., 2019). On the other hand, the body’s prior is intentionally restricted to a degenerate
pdf p(θbodyt ;θbody) := δ(θbodyt − θbody), where δ(·) is the Dirac delta function. Although freez-
ing the body in task-level optimization remarkably reduces its complexity, it often leads to degraded
performance compared to the full GD update (Raghu et al., 2020). In additional to degenerate priors,
sparse priors have also been recently investigated to selectively update a subset of parameters (Lee
& Choi, 2018; Tian et al., 2020a).
Compared to these preset prior pdfs of fixed shapes, the focus of this work is to learn a data-driven
prior pdf that can dynamically adjust itself to fit the given tasks.

Algorithm unrolling: The advocated MetaProxNet pertains to the algorithm unrolling cate-
gory (Gregor & LeCun, 2010; Monga et al., 2021; Li et al., 2020b). Closely related to our work is the
deep regularization approach introduced in (Li et al., 2020a). This method shares similar high-level
idea of incorporating priors into PGD optimization iterations through algorithm unrolling. In (Li
et al., 2020a), the hidden representations are transformed into a domain conducive to easy regular-
ization by a predefined prior pdf (e.g., isotropic Gaussian). In contrast, our MetaProxNet approach
involves the direct learning of the proximal operator within the parametric space.
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