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Abstract

We study the problem of semi-supervised learning in the regime where data
labels are scarce or possibly corrupted. We propose a graph-based approach
called p-conductance learning that generalizes the p-Laplace and Poisson learn-
ing methods by using an affine relaxation of the label constraints. This leads
to a family of probability measure mincut programs that balance sparse edge
removal with accurate distribution separation and which are connected to well-
known variational and probabilistic problems on graphs. Computationally, we
develop a semismooth Newton-conjugate gradient algorithm and extend it to
incorporate class-size estimates when converting the continuous solutions into
label assignments. Empirical results on citation datasets demonstrate that our
approach achieves state-of-the-art accuracy in low label-rate, corrupted-label,
and partial-label regimes.

1 Introduction

Graph-based semi-supervised learning (SSL) leverages both labeled and unlabeled data to improve
prediction when labeled examples are scarce. In the “low label-rate regime,” affinity and adjacency
among unlabeled points can significantly boost accuracy. Given a weighted graph G = (V, E, w) on
n nodes and an initial set of m < n binary node labels y; € {—1,1}"™, a seminal method is Laplace
learning [1], which extends the known labels {y; }/”; via the minimizer
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where L is the graph Laplacian, with predictions y; = sign(¢;). Recent work has refined this
approach to address its known degeneracies and improve accuracy [2-6], e.g., Poisson Learning [3]
solves

$ERN

min ¢ Lo — > (yi — 7) - ¢i. ©)
i=1

These methods are often analyzed through boundary value problems (BVPs), random walks, and

stochastic processes [7], while alternative approaches stem from graph cuts [8].

We propose an affine relaxation of the variational p-Laplacian approach, unifying graph-cut and
BVP-based SSL methods within a framework of cuts between probability measures. For binary
classification, given label distributions yp, v € R™, we solve
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with the p = oo case given by
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Figure 1: (Left) One-vs-all measure mincut on the Sklearn Digits dataset [12]. The initially labeled
nodes are shown with images overlaid. p is given by the five images of the digit six, and v from all
of the other classes. Solving the program (C,) for p = 1, we obtain a sparse solution ¢ such that
each {i,j} € E satisfies |¢; — ¢;| ~ 0 (light gray) or |¢; — ¢;| ~ 0.11 (red). (Right) Removing red
edges isolates a connected component with near-perfect class separation.

Intuitively, ¢ takes values near 1/2 on supp(p) and —1/2 on supp(v) while minimizing p-Laplacian
energy; predictions follow from § = sgn(¢*). For multi-class problems, we adopt a one-vs-all
formulation. We call C,,(u, ) the measure p-conductance. The parameter p controls solution sparsity:
concentrated for p = 1, more diffuse as p — oo.

From a computational perspective, related works include computation of the p-Laplacian and p-
effective resistance [9], both of which involve minimizing a weighted p-norm. In [10], Newton
methods with homotopy on p were suggested for computing solutions to the p-Laplace equations. Re-
cently, iteratively reweighted least squares were studied in depth in [11]. Notably, the aforementioned
methods struggle when p € {1, c0}. In contrast, we describe a globally superlinearly convergent
method that works for any p € [1, 00].

2 Theoretical analysis of p-Conductances

Here, G = (V, E,w) is a weighted undirected graph on n nodes and N edges with symmetric edge
weights w;;. We denote by E’ the set of oriented edges ie., B ={(i,5),(4,7) : {i,j} € E}. We
define the degree of each node i € V by d; = Y. j—1 Wij», and the Lapla01an matrix L =D — W
where W is the weighted adjacency matrix of G. We denote by P(V) the probability simplex of V.
In practice u, v € P(V') correspond either to sum-normalized indicators of the labelled nodes in each
of two classes, or the measures obtained from the one-vs-all setup as described in Remark 3.1.

Theorem 2.1 (Generalized Max Flow - Min Cut Theorem). Assume G is connected and let i, v €
P(V). The program Cy(u,v) is realizable as either mincut(u,v) or maxflow(u, v) and strong
duality holds for these programs. Concretely, the former is a linear program in the variables
k= (kij) € R*N and ) € R™; and the latter is a linear program in the variables J = (J;;) € R¥’
and f € R:

maximize  f

minimize 3 ;e Wiikia subjectto  f >0

subjectto  ki; >0

. _ = ij =
mincut(u, v) kg > i— maxflow(u, V) jj 2 SU
ij S Wij
(w—1)Tp>1 BJ = f(u—v)

3)
Here, B € R" 2N s the oriented incidence matrix according to E'. Finally, strong duality holds.

When only one node is labeled in each class, mincut(u, v) recovers the usual node mincut problem.
We illustrate the measure mincut problem on a toy dataset in Figure 1.

The p-conductance problem is also related to a family of optimal transportation metrics on P(V).
Define the p-Beckmann metric (see [13]), denoted B, , (i, v/), as the optimal value of the following
program, where 1 < p < oo:

Bup(p,v) = min (> wyl (@, 5)P)7, (Bu.p)
JeR =
BJ=p—v {i,j}€E
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with the usual modifications when p = oo. Here, B is the node-edge oriented incidence matrix of G.
This class of problems was considered in, for example, [14] as a family of distances that are related
to the effective resistance metric of the underlying graph. From this setup we have the following
theorem relating B,, , (1, V) to C,,.

Theorem 2.2. Let ji,v € P(V') (with u # v). Then the optimal values of C, and B,, ;, are related as:
1/Boc,w*1(:uvy) ifp=1,
Colp,v) = § 1/Bgwr—a(p,v)  ifp € (1,00) and1/p+1/q=1,
1/By -1 (p,v)  ifp = oo.
This leads to two corollaries relating our program to other well-known optimal transportation and
resistance metrics between probability measures on graphs.

Corollary 2.3. Let ji,v € P(V') with pu # v. Then it holds that Coo (1, V) = 1/Wy -1 (1, v). That,

is Coo (4, V) is the reciprocal of the optimal transportation distance between u, v when the ground

metric on 'V is taken to be shortest-path distance weighted by w™?.

Corollary 2.4. Assume G is connected and let v € P(V') (with u # v). Then it holds
Co(p,v)? = 1/(p— )" LT (= v). )
A minimizer ¢* for Ca(u, v) achieving Equation (4) is given by ¢* = L (u—v)/(n — v) " LT (u — v).

We note that we are also able to establish connections between C,, and other well-known problems
including randomized cuts and normalized cuts.

3 Algorithms for general p € [1, o]

In this section we develop a semismooth Newton augmented Lagrangian method (SSNAL) for
minimizing (C,) for p € [1, 00]. (For p = 2, C2(u, v) is computable from LT; see Corollary 2.4.)

Remark 3.1 (One-vs-all). Given measures ji1, ..., ug corresponding to labeled data in each of &
classes, we set R; = 11, — - > j4i My and collect R = [Ry, ..., Ry]. For1 < p < oo,
Co(ps - ; R)P = min > wi|| @ — @52, )

deR" Xk “
diag(® | R)=1, VWIEE

and for p = oo replace the sum by max; j1c g wij|| i — P ||oo.

Introduce u € RY indexed by oriented edges and the incidence matrix B € R"*V_ Let s(u) =
Z{m}eE w;jlug;|P for 1 < p < oo (with the usual modification for p = o00). We define the
augmented Lagrangian (penalties o1, 09 > 0):
Lo(¢usy,2) = s(u) + (y, 6" (n—v) = 1)+ (2,B" ¢ —u) ©)

+ B é —ull” + o (n—v) - 1%
Next for fixed (7, ), minimize

F(¢,u) = Lo(d,u; 7, 2). (M
Eliminating u via the proximal map gives

Algorithm 2 Semismooth Newton-CG
1: while ||[Vf(¢)|| < edo

Algorithm 1 Semismooth augmented

Lagrang:.,!lan 2:  Compute HA¢p =~ —V f(¢).
1: while not converged do 3:  (Armijo rule: r > 0, o, € (0,1)) Set
20 (Pht1, Ukt1) ar%m1n£0(¢a u; 2, Yk ¢ = n™r, m is the first integer > 0 s.t.
30 Zpy1 ¢zt (Ul)k(BT¢k+1 — Upt1) [(@t) = f(oe +n"rA¢y) >
4 yrrr Yk + (020 (n—v) = 1) ones(V f(dr), Ady)
5. Update oj4+1 < 00
6: end while 4 Setdry1 = ¢ + (AP

5: end while
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= PYOXs/gl(BTgZ) + 0%2)7 o= argm{%n f(p) :=inf F(¢,u),

with gradient Vf(¢) = BZ + 01B(BT¢ —a) + §(p — v) + 02(¢" (n — v) — 1)(pp — v). The
equations V f(¢) = 0 are solved using Newton-CG with a generalized Hessian

H(¢) € *f(¢) =01 BB —1BOu(¢) B +oo(p—v)(u—v)",
where 0u(¢) is any element of the generalized Jacobian of the prox mapping.

In practice, H () is sparse and (under connectivity) positive definite, so CG matrix-vector products
cost O(|E|), making SSNCG efficient on large graphs; outer SSNAL updates enforce feasibility of
BT¢p=uand ¢’ (u—v)=1.
The superlinear convergence of inexact ALM is ensured whenever the following criterion holds, for
a summable sequence of nonnegative stopping criteria corresponding to the error of the Newton
equations {eg }.

dist(0, OF (r+1, uk+1)) < €/ max{1,/o%} (8)
Theorem 3.2 (Convergence of SSNAL). Let (¢, Uk, 2k, Yi) be the sequence generated by SSNAL
with stopping criterion (8). Then, the sequence {¢y.} is bounded and converges to the unique optimal
solution of (5), and ||BT ¢ — u|| and ||¢ T (1 — v) — 1|| converge to zero.

4 Experimental results

Our method achieves state-of-the-art accuracy Effect of noise and diffusion time on accuracy
on several benchmark data classification tasks, 7 1 1 I T
including citation networks, image datasets
MNIST [15], Fashion-MNIST [16] and CIFAR- ooy
10 [17], as well as in settings where the labels 581
have been partially corrupted. We highlight
two experiments: classification accuracy on the
PubMed dataset (Tab. Table 1), as well as ac- Tl
curacy on the CIFAR-10 dataset (Fig. Figure 2)
when the labels have been perturbed to vary-
ing degrees and the input measures have been
smoothed on the graph via the diffusion ker-
nel e—tL (using Poisson learning as a bench- " Diffusion time ¢
mark). This provides experimental evidence for
the robustness of our method when label noise
is present in practice. We also investigate the
setting of partially labelled learning, which is a
weakly supervised learning problem where each
training instance is equipped with a set of can-
didate labels, including the ground-truth label.

Accuracy

Figure 2: Accuracy on CIFAR-10 for various dif-
fusion times. Shades denote noise level. Label rate
is 10 labels per class.

Table 1: Average accuracy over 100 trials with standard deviation in brackets. Best is bolded.

PUBMED # LABELS PER CLASS 1 3 5 10 100

LAPLACE/LP [1] 34.6 (8.8) 35.7(8.2) 36.9(8.1) 39.6(9.1) 74.9 (3.6)
SPARSE LP [18] 32.4(4.7) 33.0(4.8) 33.6(4.8) 33.9(4.8) 43.2(4.1)
P-LAPLACE [10] 44,8 (11.2) 58.3(9.1) 61.6(7.7) 66.2(4.7) 74.3(1.1)
P-EIKONAL [2] 44.3(11.8) 55.6(10.0) 58.4(9.1) 65.1(5.8) 74.9 (1.5)
POISSON [3] 55.1(11.3) 66.6(7.4) 68.8(5.6) 71.3(2.2) 75.7(0.8)

p-CONDUCTANCE (p=1,e=n) 39.6(0.3) 39.6(0.3) 39.6(0.3) 40.3(0.3) 41.2 (0.3)
p-CONDUCTANCE (p = 2,e =n) 58.0(12.1) 67.5(7.5) 70.8(4.9) 72.4(2.5) 77.6 (0.6)
p-CONDUCTANCE (p =00, ¢ =n) 48.0(8.1) 56.5(5.2) 57.0(8.2) 62.6(3.0) 72.9 (1.3)

Po1ssoNMBO [3] 54.9 (11.4) 65.3(7.8) 68.2(5.3) 69.9(3.0) 74.8 (1.0)
p-CONDUCTANCE (p = 2,e =0) 58.7 (11.5) 67.5(7.5) 70.8 (4.8) 72.4 (2.6) 77.8 (0.6)
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