
Under review as a conference paper at ICLR 2024

LEARNING UI-TO-CODE REVERSE GENERATOR US-
ING VISUAL CRITIC WITHOUT RENDERING

Anonymous authors
Paper under double-blind review

ABSTRACT

Automated reverse engineering of HTML/CSS code from UI screenshots is an
important yet challenging problem with broad applications in website devel-
opment and design. In this paper, we propose a novel vision-code transformer
(ViCT) composed of a vision encoder processing the screenshots and a language
decoder to generate the code. They are initialized by pre-trained models such
as ViT/DiT and GPT-2/LLaMA but aligning the two modalities requires end-
to-end finetuning, which aims to minimize the visual discrepancy between the
code-rendered webpage and the original screenshot. However, the rendering
is non-differentiable and causes costly overhead. We address this problem
by actor-critic fine-tuning where a visual critic without rendering (ViCR) is
developed to predict visual discrepancy given the original and generated code.
To train and evaluate our models, we created two synthetic datasets of varying
complexity, with over 75,000 unique (code, screenshot) pairs. We evaluate the
UI-to-Code performance using a combination of automated metrics such as MSE,
BLEU, IoU, and a novel htmlBLEU score. ViCT outperforms a strong baseline
model DiT-GPT2, improving IoU from 0.64 to 0.79 and lowering MSE from
12.25 to 9.02. With much lower computational cost, it can achieve comparable
performance as when using a larger decoder such as LLaMA.

1 INTRODUCTION

Recent Language Models (LMs) have demonstrated a remarkable capability in generating coher-
ent code. For example, Codex Chen et al. (2021), GPT-4, Code Llama Rozière et al. (2023), and
CodeRL Le et al. (2022) have shown promise in aiding software engineers in their daily work. On
the other hand, attention-based models have achieved success in various vision tasks, such as im-
age classification, segmentation, and annotation. Among them, some landmark works are Vision
Transformer (ViT) Dosovitskiy et al. (2020), Swin Liu et al. (2021), and other architectures, with a
few specifically targeting document-related tasks, e.g., Document Image Transformer (DiT) Li et al.
(2022a).

In this paper, we take the first step towards reverse-engineering a UI screenshot, i.e., generating an
HTML/CSS code that can reproduce the image. By combining the strengths of both LLMs in code
generation and Vision Transformer in image representation, and aligning them for the above task,
we investigate the possibility of generating the markup code from the visual representations of the
original image. Our contributions are threefold. First, we develop a synthetic dataset generation
module used for front-end UI screenshot images and corresponding code generation. The module
is designed to generate images with varying complexity and styles, as well as the corresponding
markup code. This dataset is used for training and evaluating our proposed approach and baselines.
We also propose htmlBLEU, a more accurate HTML and CSS code similarity metric.

Secondly, we propose a vision-code transformer (ViCT) architecture composed of a vision encoder
and a language model decoder. We then evaluate the performance of several choices for the encoder
and decoder for this task. Specifically, we experiment with GPT-2 Radford et al. (2019) and LLaMA
Touvron et al. (2023a) as the text decoder for code generation, and compare the performance of
ViT and DiT as image encoders. ViT is a widely utilized model trained on natural images for
image recognition tasks. In contrast, DiT is specifically designed for document-related tasks, whose

1

Under review as a conference paper at ICLR 2024

Vision Encoder Language
Decoder

Cross-Attention

 <!DOCTYPE html>
 <html>
 <head>
 <title>2 Circles, 0
Blocks</title>
 </head>
 <body>
 <div style="position:
absolute;
 left: 11%;
 ...
 ...
 ...
 transform: translate(-50%,
 -50%);">been
 </p>
 </div>
 </body>
 </html>

ViT/DiT GPT-2/LLaMA

Vision-Code Transformer (ViCT)

Critic with ViCR
GPT-2

Concatenation of
predicted code

and source code

Web browser rendering

IoU sim classes

Very low
Low
High

Very high

UI Screebshot (original)
Generated HTML

UI Screebshot (reverse-engineered)
Predicted IoU
sim classes UI-to-Code

Generation

Actor-Critic
Finetuning
with ViCR

Train ViCR
to predict
IoU sim

Ground-truth Label
Annotation

Figure 1: Schematic representation of the proposed vision-code Transformer (ViCT). ViCT applies
a vision encoder-language decoder model to a webpage screenshot and generates the code that aims
to reproduce the input screenshot. We finetune ViCT by minimizing the visual discrepancy between
the original and reverse-engineered UI screenshots. To this end, we train a visual critic without
rendering (ViCR) as a classifier to measure the visual discrepancy given the generated code as the
only input. The training labels for ViCR are generated by rendering the UI image via a browser
and computed as the Intersection over Union (IoU) bracket between the original screenshot and the
rendered image. Actor-critic fine-tuning is then applied to minimize loss LV iCR(θ), with ViCT as
the actor with parameter θ and ViCR as the critic.

domain tends to be closer to that of our task. We explore the efficacy of these architectures in
generating HTML/CSS code from webpage screenshots.

Table 1: RUID and RUID-Large datasets created in
this paper. RUID combines basic HTML elements,
while RUID-Large incorporates all HTML elements,
providing more complex and similar examples to real
user interfaces.

RUID RUID-Large
Samples 25000 50000
Colors Arbitrary Arbitrary
Objects 6 12
Words 1 5
Elements Rectangle,

Eclipse,
Button, div

a, img, div, span,
button, text, textarea,
input, submit, radio,
select, p, checkbox

Thirdly, we develop a novel visual critic
without rendering (ViCR) used to finetune
ViCT for step-by-step code generation. In
particular, we train a critic model that aims
to evaluate the discrepancy between the
original UI screenshot and the one to be
created by the generated code without ren-
dering from the code. ViCR avoids the
non-differential rendering loss and its in-
duced overheads. We then apply an Actor-
Critic algorithm (AC2) to train ViCT in an
end-to-end manner.

Our work, for the first time, establishes
a robust baseline for generating markup
code from images using vision-code trans-
formers. Moreover, we developed a novel evaluation metric htmlBLEU to assess the task. Our
proposed approach holds potential applications in front-end web development, as it could offer a
more efficient and automated method for generating markup code for web designers.

2 RELATED WORKS

Recent years have witnessed significant progress in both image-understanding and text-generation
tasks, empowered by deep learning and the availability of massive datasets Goodfellow et al.
(2014); Radford et al. (2016); Esser et al. (2021); Sutskever et al. (2014); Graves et al. (2013);

2

Under review as a conference paper at ICLR 2024

Brown et al. (2020). Transformer models trained on large-scale data in a self-supervised manner
have played a key role in these advancement Vaswani et al. (2017); Devlin et al. (2019).

Code prediction and generation have received growing attention in the realm of text generation.
While traditional NLP methods like N-grams and Probabilistic Context-Free Grammar (PCFG) have
encountered challenges in code generation tasks Maddison & Tarlow (2014), recent advancements in
Transformer models have led to remarkable improvements. For instance, Codex Chen et al. (2021)
and its derivative tool Copilot, fine-tuned on publicly available code from GitHub, have achieved
impressive performance on code generation tasks.

InCoder Fried et al. (2022) enables bidirectional context for code infilling by training on publicly
available repositories where code regions have been randomly masked and moved to the end of
each file. CodeGen Nijkamp et al. (2022) explores a multi-step paradigm for program synthesis,
dividing a single program into multiple subproblems specified by multiple prompts. CodeRL Le
et al. (2022) incorporates deep Visual Critic with an error-predictor critic network that generates
rewards by classifying the code.

Works like BLiP Li et al. (2022b), Git Wang et al. (2022), and CoCA Yu et al. (2022) have leveraged
large-scale pre-training on visual-textual data followed by fine-tuning on target tasks and outper-
formed traditional methods. Recent works such as BLiP 2 Li et al. (2023), and derivatives such
as Minigpt-4 Zhu et al. (2023) and InstructBLIP Dai et al. (2023) significantly improve the text
generation capacity by employing larger language models such as Vicuna Chiang et al. (2023) and
LLaMA-2 Touvron et al. (2023b).

Other models aiming to generate code from images include pix2code Beltramelli (2018), which gen-
erates code based on context and GUI images, and Sketch2code Robinson (2019), which attempts to
generate code from wireframes using traditional computer vision and deep learning algorithm. The
paper found the deep learning-based pipeline to perform better. While some works add components
such as image style transfer, they rely on predefined classification for code generation.

Another work Pix2Struct Lee et al. (2022) uses a novel screenshot parsing objective to generate a
simplified HTML parse from a masked screenshot of a webpage, effectively learning rich representa-
tions of the underlying structure of web pages. It encourages joint reasoning about the co-occurrence
of text, images, and layouts in webpages.

In contrast, our work builds upon these foundations and offers innovative approaches to generating
HTML/CSS code. We employ transformer architecture and introduce a visual similarity signal in
the training process, enhancing the accuracy and versatility of our model. Furthermore, we curate a
diverse dataset tailored for this specific task and establish a strong baseline for generating markup
code from images using vision-code transformers, contributing to the solving of this challenge. Ad-
ditionally, we introduce a novel evaluation metric designed to facilitate a more accurate assessment
of the task’s performance.

3 METHODOLOGY

In this section, we elucidate the components of our approach, including the dataset, evaluation met-
rics, baseline training procedure, task formulation using actor-critic, and details of our experiments.

3.1 NEW DATASETS FOR UI TO CODE GENERATION

While a variety of code generation datasets are available Rozière et al. (2023) the space of open
UI-code correspondence datasets is scarce. Due to this, we utilize a synthetic generation process to
create two datasets of varying complexity. We generate Random UI Dataset (RUID) by combining a
small number of HTML elements, such as two types of Divs, a square, a circle, and a button element,
with randomly chosen style attributes. This results in a diverse set of images that can be used for the
training process. We then create RUID-Large, which incorporates elements in RUID but expands
it to most tags available in HTML, randomly generating trees with forms, divs, inputs, dropdowns,
etc.

All the synthetic dataset code is enclosed in standard HTML opening and closing tags, specifically:

1 <!DOCTYPE html>

3

Under review as a conference paper at ICLR 2024

2 <html>
3 <head>
4 <title>{title}</title>
5 </head>
6 <body>
7 {elements}
8 </body>
9 </html>

For RUID We set the description of the elements present in the body as the title, for example, “2
Circles, 0 Blocks”. For each element, a paragraph containing a number of words has been added,
with the text sourced from Project Gutenberg Project Gutenberg (2023). The dataset generator can
be used to create samples of varying complexity. We focus on sampling small elements for the RUID
dataset. Most of our experiments are performed on the RUID dataset.

A summary of the settings used for the work can be found in Table 1. Overall, the maximal input
length of the adopted models acts as a ceiling to the length of the generated code.

An example of the generated element is below. Note that some of the parameters in Table 1 have
been adjusted to fit the webpage, but the aesthetics of the generated elements have not been taken
into account.

The datasets are used with a split of 80:10:10 for training, validation, and testing. For each code
sample, we take a screenshot of its generated webpage as it looks when opened in a Chromium
browser. Thereby, we collected a dataset of (image, code) pairs, facilitating the training and
evaluation of our models.

Table 2: Element types, widths, and parameters used
for the synthetic dataset generation. The number of el-
ements per sample was randomly drawn from 1 to 6.

Properties Rectangle Ellipse Button
Left (%) 0-80 0-80 0-80
Top (%) 0-80 0-80 0-80
Width (%) 10-30 10-30 10-30
Height (%) 10-30 10-30 10-30
Background Uniform Uniform –
Text Length 1 Word 1 Word 1 Word
Occurrence 12/25 12/25 1/25

It is worth noting that the traditional
pipelines cannot directly address the task
studied in this paper due to their different
problem formulations and dataset formats.
Specifically, they reduce the problem to
classification between predefined building
blocks while our approach focuses on free-
form code generation. Hence, compar-
isons to them on our proposed dataset and
task are infeasible. That being said, we
create baselines for Transformer models
on our dataset for HTML/CSS code gener-
ation that explores greater freedom in attributes and has no restrictions on color variety. In addition,
we have evaluated the performance of general Visual Language Models such as InstructBlip Dai
et al. (2023), minigpt-4 Zhu et al. (2023), and Bing chat in executing the specified task.

3.2 PROPOSED VISION-CODE TRANSFORMER (VICT)

Our model employs a Visual Transformer (ViT) Dosovitskiy et al. (2020) as the vision encoder. The
ViT processes the input image by dividing it into patches and encoding them as a sequence of tokens,
supplemented by a [CLS] token representing the image’s global features. This computationally
efficient approach, which has become widely adopted in recent methods such as Li et al. (2021),
eliminates the need for pre-trained object detectors for visual feature extraction. Since ViT was
usually pre-trained on natural images while the images in our dataset are mainly UI images, we
further explored the DiT model Li et al. (2022a), a transformer trained on document images (which
has a smaller domain gap to UI images), as an alternative image encoder. We use GPT-2 Radford
et al. (2019) and LLaMA Touvron et al. (2023a), autoregressive language models, as the image-
grounded text decoder. This model integrates the ViT encoder’s output tokens into its first-layer
inputs via a cross-attention (CA) layer, positioned between the causal self-attention (CSA) layer and
the feedforward network (FFN) of the text encoder. The input sequence length is set to 900 while
each sequence begins with a [BOS] token and is terminated by a [EOS] token. By optimizing a
cross-entropy loss function, we train the ViT encoder and GPT-2 decoder in an end-to-end manner,
which maximizes the likelihood of the ground-truth code in an autoregressive way. This objective

4

Under review as a conference paper at ICLR 2024

provides the model with the ability to generalize and effectively convert visual information into
coherent HTML/CSS code.

3.3 FINE-TUNING USING VISUAL CRITIC WITHOUT RENDERING (VICR)

UI Screenshot (Original) ViCT Minigpt-4

Figure 2: Comparison of ViCT (ours) and miniGPT-4
reverse-engineered images with the original UI screenshot.

Our goal in the finetuning process is
to improve the visual similarity be-
tween the original and the predicted
code samples when rendered. To
do this we formulate the image-to-
code generation as an RL problem,
where visual similarity score, like
IoU serves as the basis for the reward
signal, while the finetuned encoder-
decoder model serves as the stochastic policy, with token predictions as action steps.

LViCR(θ) = −EW s∼pθ
[IoU(Iorg, IW s)] (1)

where θ are the parameters of our model. EW s∼pθ
represents the expectation over synthetic sam-

ples W s drawn from the policy pθ, which is the distribution over actions defined by the model.
IoU(Iorg, IW s) is the Intersection over Union (IoU) score, a measure of the visual similarity be-
tween the input image Iorg and the image IW s rendered from the synthetic sample W s.

Due to challenges in the training in text generation setups Zhong et al. (2017) Le et al. (2022) we
modify the actor-critic apporach used by CodeRL Le et al. (2022) where a language model is used
as the critic. We experiment with using GPT2 and BERT Devlin et al. (2019) models. Though
from initial results, we see that GPT2 Critic significantly outperforms BERT, with the BERT model
collapsing to single class prediction even after oversampling. So we proceed with using GPT2 Critic
for the experiments. The performance of the critic can be seen in Figure 4.

The critic model is trained using source code samples from the training set paired with the sam-
pled result from the baseline model as input, and the similarity score between respective ren-
dered visualizations as the label. The inputs are concatenated using the following template:
f“{predicted code}\nGround:{source code}”.

To simplify the training process, we do not use raw similarity values, rather approaching the critic
training as a classification problem between 4 classes. Specifically, the IoU thresholds used are:
very low (0-0.23), low (0.23-0.42), high (42-77), and very high (77+).

We then use the critic model to generate intermediate outputs for each prediction, and source code
samples in the training set. We also create a mask to only use the values related to predicted code
tokens in the tuning loss calculation. We then apply softmax to each token’s corresponding output
and select values of the IoU ground truth bucket. The resulting vector is then multiplied by the
corresponding assigned reward. We assign rewards of -1, -0.7, and -0.3 to classes 0, 1, and 2,
respectively, and a positive reward of 1 to class 3. The resulting vector is used to scale the original
loss during the fine-tuning phase using the update:

∇θLViCR(θ) ≈ −EW s∼pθ

[
r(W s)

∑
q̂ϕ(w

s
t)∇θ log pθ(w

s
t | ws

1:t−1, D)
]

(2)

Where ∇θLV iCR(θ) represents the gradient of the RL loss function with respect to the model pa-
rameters θ. The term q̂ϕ (w

s
t) represents the critic’s estimated value for the token ws

t at time step t.
∇θ log pθ

(
ws

t | ws
1:t−1, D

)
is the gradient of the log-probability of token ws

t at time step t, given
the history of previous tokens ws

1:t−1 and additional data D, with respect to the model parameters θ.

3.4 IMPROVING METRICS

Evaluating Vision-Code models can be challenging. Some of the common metrics for language
generation, such as BLEU scores can be misleading since there are multiple ways to achieve the
same visual look during rendering. Similar goes for using a large language model such as GPT-4 for
evaluating the output. Rendering itself is costly since it depends on an eternal browser. Inspired by

5

Under review as a conference paper at ICLR 2024

In
pu

t
Vi

T-
GP

T2
Vi

CT
 (w

/o
 V

IC
R)

Vi
CT

-L
 (w

/o
 V

IC
R)

Vi
CT

Figure 3: Example renderings from different models tested on the RUID dataset. The top row shows
input UI screenshots from the dataset. The subsequent rows show renderings of the code predicted
by each model for those specific inputs.

CodeBLEU Ren et al. (2020) to improve generated code evaluation without rendering we propose
htmlBLEU metric which emphasizes important pieces of code as well as aligning attributes and
elements in the DOM tree.

Still, the metrics are a proxy for target, which is a human assessment of quality. To measure this we
conducted a survey with 59 volunteers. The participants were presented with the original screenshot
and the rendered one side-by-side and then asked to rate them on a scale of 0 to 100 in terms of
structural and color similarity. For each model, we report the averaged min-max normalized score
across all annotators and samples.

For automated metrics, we employed two groups to assess the model performance: (1) code-based
metrics, which compare the generated code against the original code producing the input screenshot;
and (2) image-based metrics, which evaluate the screenshot of the generated images against the
input.

We measure image similarity (2) in the following ways. First, we calculate the mean squared error
(MSE) between the pixel values of the two images. Second, we create binary masks for each image,

6

Under review as a conference paper at ICLR 2024

setting pixels to 1 wherever the magnitude is greater than zero. We then compute the MSE and
intersection over union (IoU) between these masks. For (1), we employed BLEU score and a dataset-
specific metric called Element Counts, where the presence of all elements in the generated code
results in a score of 1, and misalignment yields a score of 0.

Very Low IoU Low IoU High IoU Very High IoU
Predicted Similarity

Ve
ry

 L
ow

 Io
U

Lo
w

Io
U

Hi
gh

 Io
U

Ve
ry

 H
ig

h
Io

U
Tr

ue
 S

im
ila

rit
y

Confusion Matrix

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 4: Confusion matrix for ViCR evalu-
ating visual similarity of two code snippets.

Since the BLEU score equally penalizes any differ-
ences between the two pieces of code, it is not an
ideal metric for code evaluation. To avoid penalizing
differences that do not lead to visual discrepancies,
we develop a new metric, htmlBLEU, from Code-
BLEU Ren et al. (2020), as HTML code lacks data
flow or syntactic abstract syntax tree (AST). html-
BLEU comprises four components: a basic BLEU
score, a weighted BLEU score focusing on the most
important keywords for HTML code, a Document
Object Model (DOM) Tree Matching between the
corresponding HTML elements, and an attribute
matching that aims to correspond elements and at-
tributes.

To examine the efficacy of htmlBLEU, we measure
the Spearman’s rank correlation coefficient Spearman (1904) between htmlBLEU scores and the
MSE between input and generated images. The correlation between htmlBLEU and MSE is 0.764,
compared to 0.329 for the correlation between BLEU and MSE. The significantly higher correlation
of htmlBLEU demonstrates that it more accurately reflects visual similarity than BLEU.

4 EXPERIMENTS

4.1 ESTABLISHING BASELINES

To establish baselines, we tested two recent visual language models - InstructBLIP and Minigpt-4
- on two tasks. The first was identifying the number of distinct shapes in an image. The second
was recreating the source code for the image. In our experiments, neither model achieved strong
performance on these tasks. They generated unchanging or nonsensical output for the source code
and hallucinated the number of shapes. For example, Minigpt-4 produced the same incorrect output
regardless of the input image (Figure 2). These results indicate that general visual language models
of this type may not be well-suited for source code generation from image inputs without additional
training or modifications.

4.2 RUID AND RUID-LARGE DATASETS

We report the image similarity and code generation metrics for different models in Table 3, in which
the DiT-based model significantly outperforms the ViT-based model across all metrics. Although
ViT can accurately handle simpler images with a single element, it struggles to correctly capture
> 1 types of elements present in the input image, as well as their positions and colors.

This is consistent with the qualitative results of our study: The ViT-based model was found to
frequently miss or misinterpret elements and had difficulty accurately predicting the hexadecimal
values of the colors. Figure 3 show some examples: DiT model accurately identifies the types and
locations of the elements, while ViT model struggles with these tasks.

The ViCT-L (w/o ViCR) model which uses DiT-Large encoder and GPT2-Large decoder models fur-
ther improves the performance, demonstrating the benefits of leveraging larger models in the image-
to-code generation task. The DiT-Large-GPT2-Large model exhibits enhanced results in terms of
IoU, MSE, and element counts compared to the ViCT (w/o ViCR) model.

Moreover, we explore the application of Visual Critic to further enhance the code generation process.
Specifically, the ViCR model outperforms its normal finetuning variants in all metrics, showcasing
the effectiveness of RL-based approaches in improving the visual similarity between the generated
code and the input image. Additionally, when compared to the DiT-Large-GPT2-Large model, the

7

Under review as a conference paper at ICLR 2024

Table 3: Comparison of various model performances on the RUID dataset, comprising basic shapes
and elements. Our model, ViCT exhibits superior performance over ViCT without ViCR finetuning
and is competitive with, or exceeds, larger models. The “Metrics” section presents automatically
calculated metrics, while “Human Evaluation” provides normalized survey results, both displayed
with mean and variance values.

Model ViT-GPT2 ViCT (w/o ViCR) DiT-GPT2 (L.) ViCT (Our)
Metrics

BLEU ↑ 0.65 ± 0.08 0.74 ± 0.09 0.68 ± 0.11 0.76 ± 0.08
htmlBLEU ↑ 0.62 ± 0.13 0.69 ± 0.14 0.67 ± 0.12 0.70 ± 0.13
IoU ↑ 0.31 ± 0.25 0.64 ± 0.27 0.81 ± 0.19 0.79 ± 0.23
MSE ↓ 19.63 ± 11.59 12.25 ± 8.83 11.34 ± 8.17 9.02 ± 6.96
MSE (Mask) ↓ 0.15 ± 0.09 0.07 ± 0.06 0.03 ± 0.05 0.03 ± 0.04
Element N ↑ 0.97 ± 0.16 0.97 ± 0.18 0.86 ± 0.36 0.96 ± 0.20

Human Evaluation (Normalized)
Color Fidelity ↑ 0.41 ± 0.29 0.66 ± 0.28 0.51 ± 0.27 0.83 ± 0.21
Structural Sim. ↑ 0.49 ± 0.33 0.67 ± 0.27 0.85 ± 0.18 0.83 ± 0.25

Table 4: Comparison of various model performances on the RUID-Large dataset, overall scores are
lower than RUID due to the dataset being more challenging, incorporating most HTML elements in
complex combinations. Still, our model, ViCT performs similar or better than larger models.

Model ViT-GPT2 ViCT (w/o ViCR) Dit-GPT2 (L.) DiT-LLaMA ViCT (Our)

Metrics (800 token dataset)

BLEU ↑ 0.60± 0.07 0.72± 0.08 0.65± 0.10 0.72± 0.09 0.74 ±0.07
htmlBLEU ↑ 0.59± 0.12 0.68± 0.11 0.64± 0.13 0.66± 0.12 0.69 ±0.12
IoU ↑ 0.24± 0.20 0.38± 0.18 0.42 ±0.16 0.41± 0.17 0.40± 0.19
MSE ↓ 19.95± 10.50 15.86± 9.20 14.90± 8.50 14.20± 8.20 13.50 ±7.80
MSE (Mask) ↓ 0.15± 0.08 0.11± 0.07 0.09± 0.06 0.08 ±0.06 0.08 ±0.05
Element N ↑ 0.92± 0.15 0.94± 0.16 0.89± 0.18 0.91± 0.17 0.93 ±0.17

Human Evaluation (Normalized)

Color Fidelity ↑ 0.73± 0.10 0.77± 0.08 0.74± 0.09 0.76± 0.09 0.81 ±0.07
Structural Sim. ↑ 0.76± 0.12 0.81± 0.06 0.83± 0.10 0.84 ±0.09 0.84 ±0.08

ViCR model achieves superior results in certain metrics, indicating the added benefits of RL integra-
tion. These findings highlight the potential of RL-based approaches in enhancing code generation
and improving the visual fidelity of the generated code.

1 2 3 4 5 6
Number of <div> elements

0.0

0.2

0.4

0.6

0.8

1.0

Io
U

sc
or

e

ViT-GPT2
ViCT (w/o VICR)
ViCT-L (w/o VICR)
DiT-LLAMA
ViCT

Figure 5: IoU vs. complexity (the number of <div> ele-
ments in the ground-truth code). Approximates complexity
of reverse generation. Scores for different models tested.
IoU drops as more elements are added.

As shown in Figure 5, both models’
performance drops as the code sam-
ples get more complex. But DiT suf-
fers a much slower drop on the IoU
curve than ViT when predicting more
than one element. Another interest-
ing observation is that the generated
code does not necessarily have a high
text similarity as the ground-truth
code for the input screenshot. It can
still produce visually similar web-
page even if the textual similarity is
low, which indicates a promising gen-
eralization capability of the models.

8

Under review as a conference paper at ICLR 2024

4.3 ABLATION

We conducted an ablation study by using cross-entropy (CE) instead of IOU as the metric to create
classification labels for the critic model. There is no notable improvements from ViCT (w/o ViCR)
scores of IoU of 0.64 or MSE of 12.25 for RUID dataset. In tables 2 and 4 we can see gains of ViCT
versus when trained without ViCR. In figure 5 we also see that there is a significant improvement in
the drop of performance over increasing sample complexity when ViCR is used.

5 CONCLUSION

This paper investigates how to build and train a vision-code transformer for reverse engineering a
webpage screenshot and generating the HTML/CSS code that can reproduce the screenshot. We
apply ViT or DiT as an image encoder and GPT-2 as a textual decoder that generates code from the
ViT/DiT features of the input image. Unlike traditional pipelines, our models can be trained in an
end-to-end manner for free-form code generation. Moreover, we collect a synthetic dataset to train
and evaluate the proposed models and develop a novel htmlBLEU metric to evaluate the match-
ing between the ground-truth code and the generated one. Our experimental results show that the
ViCT (w/o ViCR) model outperforms ViT-GPT2 in terms of multiple metrics and human evaluation.
Furthermore, we explore the effect of model size, as well as of Actor-Critic finetuning on the model
performance. We train the critic model to consider visual similarity information and modify the actor
encoder-decoder network’s loss function to incorporate the critic model’s output. The results show
that the RL finetuning is effective at significantly boosting the underlying model’s performance, with
the resulting model scoring similarly or better larger sized models on most metrics.

This study serves as a proof-of-concept in the field, demonstrating that Transformer architectures
could be a viable end-to-end solution for this task. However, further research is necessary to extend
the generated code’s length, improve text snippet identification in the image, and explore more
complex examples where the corresponding code may not be as straightforward.

6 LIMITATIONS

Despite the promising results, it is essential to highlight the limitations of this study. The synthetic
dataset used, albeit including variations in the size and location of elements, may not fully encap-
sulate the complexity of real-world web pages. Moreover, the dataset does not strictly adhere to all
front-end development best practices, necessitating further research for practical implementation in
real products. Additionally, our current pipeline is solely capable of generating static text pages and
is limited to small samples.

Moreover, the Visual Critic pipeline necessitates tuning of certain hyperparameters, specifically
learning rate, and rewards, to ensure stable training. Consequently, while our method is efficient, it
introduces a degree of overhead when adapting to new datasets and tasks.

7 REPRODUCIBILITY STATEMENT

We provide comprehensive details of our experimental setup, with additional information in the
Appendix. Our computations were performed on standard CPUs and GPUs using open-source
software. An anonymized copy of the research source code is included in a downloadable zip
archive. The code is designed to be user-friendly and extensible for future research. Upon
publication, we will provide a public link to the source code, model weights, and datasets.

REFERENCES

Tony Beltramelli. pix2code: Generating code from a graphical user interface screenshot. In Pro-
ceedings of the ACM SIGCHI Symposium on Engineering Interactive Computing Systems, pp.
1–6, 2018.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,

9

Under review as a conference paper at ICLR 2024

Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An
open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL https:
//lmsys.org/blog/2023-03-30-vicuna/.

Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang,
Boyang Li, Pascale Fung, and Steven Hoi. Instructblip: Towards general-purpose vision-language
models with instruction tuning, 2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding, 2019.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale, 2020. URL https://arxiv.org/abs/2010.11929.

Patrick Esser, Robin Rombach, and Björn Ommer. Taming transformers for high-resolution image
synthesis, 2021.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi, Ruiqi Zhong,
Wen-tau Yih, Luke Zettlemoyer, and Mike Lewis. Incoder: A generative model for code infilling
and synthesis. arXiv preprint arXiv:2204.05999, 2022.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks, 2014.

Alex Graves, Abdel rahman Mohamed, and Geoffrey Hinton. Speech recognition with deep recur-
rent neural networks, 2013.

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, and Steven CH Hoi. Coderl:
Mastering code generation through pretrained models and deep reinforcement learning. arXiv
preprint arXiv:2207.01780, 2022.

Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khan-
delwal, Peter Shaw, Ming-Wei Chang, and Kristina Toutanova. Pix2struct: Screenshot parsing as
pretraining for visual language understanding, 2022.

Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, and Furu Wei. Dit: Self-supervised pre-
training for document image transformer, 2022a. URL https://arxiv.org/abs/2203.
02378.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image
pre-training for unified vision-language understanding and generation, 2022b. URL https:
//arxiv.org/abs/2201.12086.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
pre-training with frozen image encoders and large language models, 2023.

Yawei Li, Kai Zhang, Jiezhang Cao, Radu Timofte, and Luc Van Gool. Localvit: Bringing locality
to vision transformers, 2021. URL https://arxiv.org/abs/2104.05707.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012–10022, 2021.

10

https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2203.02378
https://arxiv.org/abs/2203.02378
https://arxiv.org/abs/2201.12086
https://arxiv.org/abs/2201.12086
https://arxiv.org/abs/2104.05707

Under review as a conference paper at ICLR 2024

Chris Maddison and Daniel Tarlow. Structured generative models of natural source code. In Inter-
national Conference on Machine Learning, pp. 649–657. PMLR, 2014.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,
and Caiming Xiong. Codegen: An open large language model for code with multi-turn program
synthesis. arXiv preprint arXiv:2203.13474, 2022.

Project Gutenberg. Project gutenberg. https://www.gutenberg.org/, 2023. URL https:
//www.gutenberg.org/. Accessed: 2023-02-13.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks, 2016.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, Duyu Tang, Neel Sundaresan, Ming Zhou,
Ambrosio Blanco, and Shuai Ma. Codebleu: a method for automatic evaluation of code synthesis.
arXiv preprint arXiv:2009.10297, 2020.

Alex Robinson. Sketch2code: Generating a website from a paper mockup, 2019. URL https:
//arxiv.org/abs/1905.13750.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code llama: Open foundation models for code.
arXiv preprint arXiv:2308.12950, 2023.

C. Spearman. The proof and measurement of association between two things. The American Jour-
nal of Psychology, 15(1):72–101, 1904. ISSN 00029556. URL http://www.jstor.org/
stable/1412159.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with neural networks,
2014.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023b.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2017.

Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu,
and Lijuan Wang. Git: A generative image-to-text transformer for vision and language, 2022.
URL https://arxiv.org/abs/2205.14100.

Jiahui Yu, Zirui Wang, Vijay Vasudevan, Legg Yeung, Mojtaba Seyedhosseini, and Yonghui Wu.
Coca, 2022.

11

https://www.gutenberg.org/
https://www.gutenberg.org/
https://www.gutenberg.org/
https://arxiv.org/abs/1905.13750
https://arxiv.org/abs/1905.13750
http://www.jstor.org/stable/1412159
http://www.jstor.org/stable/1412159
https://arxiv.org/abs/2205.14100

Under review as a conference paper at ICLR 2024

Victor Zhong, Caiming Xiong, and Richard Socher. Seq2sql: Generating structured queries from
natural language using reinforcement learning, 2017.

Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: Enhancing
vision-language understanding with advanced large language models, 2023.

12

Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 BASELINES

In this appendix, we present the output of our experiment using MiniGPT-4 with the Llama 2 7B
chat model to generate HTML and CSS code for recreating a visual design based on a given prompt.

Minigpt-4 LLaMAUI Screenshot (original) ViCT (Our)

Figure 6: Comparison of our proposed model and Llama 2 chat model backbone on Minigpt-4 for
mimicking original website design.

The following prompt was given to the model for code generation:

Analyze the image provided and extract the visual design elements. Please gen-
erate the corresponding HTML and CSS code that recreates the visual design
seen in the screenshot. Ensure that the structure and positioning of elements, as
well as the color and size of shapes, are accurately represented in the code.

The resulting HTML-CSS code generated by the model has some minor errors. We use GPT-4 to fix
the mistakes and beautify the code.

The resulting code is:

1 <html>
2 <div class="container">
3 <div class="oval">
4 <div class="line-1">
5 <div class="line-2">
6 <div class="line-3">
7 <div class="rectangle">
8 <div class="oval-inner">
9 <div class="oval-top-corner"></div>

10 <div class="oval-bottom-corner"></div>
11 </div>
12 </div>
13 </div>
14 </div>
15 </div>
16 </div>
17 </div>
18 </html>

Listing 1: MiniGPT4 Generated HTML Code

1 .container {
2 position: relative;
3 width: 200px;
4 height: 200px;

13

Under review as a conference paper at ICLR 2024

5 border-radius: 50%;
6 }
7

8 .oval {
9 position: absolute;

10 top: 50%;
11 left: 50%;
12 transform: translate(-50%, -50%);
13 border-radius: 50%;
14 box-shadow: 0 0 10px rgba(0, 0, 0, 0.1);
15 background-color: #fff;
16 border: 1px solid #ddd;
17 padding: 20px;
18 width: 150px;
19 height: 150px;
20 }
21

22 .line-1 {
23 position: absolute;
24 top: 50%;
25 left: 0;
26 transform: translateY(-50%);
27 width: 20px;
28 height: 20px;
29 }

Listing 2: MiniGPT4 Generated CSS Code

Overall, the minigpt-4 output code seems to capture the general shape (circular) of the input image,
however, it struggles with generating any more specific features. We also observe that the model
hallucinates a lot with none of the tested randomly selected 10 images correctly approximating the
number of distinct shapes in the screenshot.

We also compare the performance of GPT-4 to Bing Chat. Bing Chat, powered by GPT-4 has
recently added a feature to understand images. Not much is currently published about the workings
of this system. We give it similar samples as before, with Bing chat we get a closer approximation
of a number of shapes, over testing 10 samples the model demonstrated 90% accuracy in predicting
the correct amount of distinct shapes, a significant improvement over minigpt-4 and Instruct-Blip.
However, when reverse-engineering HTML code it struggles to approximate the number, shape, or
colors of the original image to a meaningful extent 7.

A.2 DATASETS

As mentioned in 1 RUID consists primarily of HTML div elements given various shapes and sizes
using CSS and buttons, while RUID-Large expands by adding most of the common HTML elements
including forms, radio buttons, images, links, etc. In the figure 9, we see some examples from the
dataset.

To generate a greater diversity in the samples we allow almost unconstricted generation in terms of
number and child object types for any HTML element. Afterwards we use a controller module to
detect and remove and illegal generations, such as elements nested within text fields, or or in form
input elements.

A Single element from a random sample in RUID dataset:

1 <div
2 style="position: absolute; left: 11%; top: 79%; width: 20%;

height: 20%;
3 background-color: #C6FC54; border-radius: 50%; text-align:

center;">
4 <p

14

Under review as a conference paper at ICLR 2024

Bing AI Minigpt-4
(Vicuna 7B)

<!DOCTYPE html>
…
</html>

<!DOCTYPE html>
…
</html>

Figure 7: Comparison of minigpt-4 and gpt-4 Bing for mimicking original website design.

Figure 8: IndstructBlip samples.

5 style="margin: 0; position: absolute; top: 50%; left: 50%;
6 transform: translate(-50%, -50%);">been</p>
7 </div>

15

Under review as a conference paper at ICLR 2024

RUID

RUID-Large

RUID and RUID-Large Datasets

Figure 9: Some samples from RUID (first row) and RUID-Large (second row) datasets. As we see
by this example, RUID is primarily consists of shapes, thus the challenge to the model is accurately
predicting the shape and positioning, as well as relations between shapes. In the second row we have
RUID-Large which contains a greater diversity of elements to choose form, including images and
forms.

A.3 HUMAN EVALUATION

The survey to evaluate model outputs was filled by 59 volunteers in total, mainly of the
student-aged demographic. Each participant was presented with two images at a time,
one original image, and one generated image. The participants were not aware which
model had generated the image and were asked to rate structural and color similarity us-
ing a slider with values in the 0-100 range. Each participant rated 15 images for
each dataset, sampled from 100 randomly selected pairs for each model and each dataset.

Figure 10: Human evaluation similarity interface.

As a filter, we asked to rate blank im-
ages with the highest scores and re-
moved any submissions that did not
follow these instructions. This re-
sulted in 3 people’s answers being ex-
cluded from the analysis. The filter
image scores are also removed from
the calculations. For other scores, we
normalized them for each person us-
ing minimum and maximum values
and then averaged over the models re-
sulting in the values reported in tables
2 and 4.

16

	Introduction
	Related Works
	Methodology
	New Datasets for UI to Code generation
	Proposed Vision-Code Transformer (ViCT)
	Fine-tuning using Visual Critic without Rendering (ViCR)
	Improving Metrics

	Experiments
	Establishing baselines
	RUID and RUID-Large Datasets
	Ablation

	Conclusion
	Limitations
	Reproducibility Statement
	Appendix
	Baselines
	Datasets
	Human Evaluation

