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Abstract

Metal–organic frameworks (MOFs) are of immense interest in applications such
as gas storage and carbon capture due to their exceptional porosity and tunable
chemistry. Their modular nature has enabled the use of template-based methods to
generate hypothetical MOFs by combining molecular building blocks in accordance
with known network topologies. However, the ability of these methods to identify
top-performing MOFs is often hindered by the limited diversity of the resulting
chemical space. In this work, we propose MOFDiff: a coarse-grained (CG) diffu-
sion model that generates CG MOF structures through a denoising diffusion process
over the coordinates and identities of the building blocks. The all-atom MOF struc-
ture is then determined through a novel assembly algorithm. As the diffusion model
generates 3D MOF structures by predicting scores in E(3), we employ equivariant
graph neural networks that respect the permutational and roto-translational symme-
tries. We comprehensively evaluate our model’s capability to generate valid and
novel MOF structures and its effectiveness in designing outstanding MOF materials
for carbon capture applications with molecular simulations.

1 Introduction

Metal–organic frameworks (MOFs), characterized by their permanent porosity and highly tunable
structures, are emerging as a versatile class of materials with applications spanning gas storage [24,
42], gas separations [44, 60], catalysis [77, 2, 64], and drug delivery [9, 39]. These frameworks
are constructed from metal ions or clusters (“nodes”) coordinated to organic ligands (“linkers”),
forming a vast and diverse family of crystal structures [50]. Unlike traditional solid-state materials,
MOFs offer unparalleled tunability, as their structure and function can be engineered by varying the
choice of metal nodes and organic linkers. The surge in interest surrounding MOFs is evident in the
increasing number of research studies dedicated to their synthesis, characterization, and computational
design [36, 4, 80].

The modular nature of MOFs naturally lends itself to template-based representations and algorithmic
assembly. These algorithms create hypothetical MOFs by connecting metal nodes and organic linkers
(collectively, building blocks) along connectivity templates known as topologies [4, 76, 41]. Given a
combination of topology, metal nodes, and organic linkers, the MOF structure is obtained through
heuristic algorithms that arrange the building blocks, aligning them with the vertices and edges
designated by the chosen topology, followed by a structural relaxation process based on classical
force fields.

∗Correspondence to Xiang Fu (xiangfu@mit.edu) and Jake Smith (jakesmith@microsoft.com).
†Work partially done during an internship at Microsoft Research AI4Science.
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Figure 1: (a) MOFDiff encodes a coarse-grained (CG) representation of MOF structures and decodes
CG MOF structures with a denoising diffusion process. To generate a coarse-grained MOF structure,
the lattice parameters L and the number of building blocks K are predicted from the latent vector z
to initialize a random structure. A denoising diffusion process conditional on z generates the building
block identities and coordinates. Inverse design is enabled through gradient-based optimization
over z in the latent space. (b) The all-atom MOF structure is recovered from the coarse-grained
representation through three steps: (1) the building block identities are decoded from the learned
representation; (2) building block orientations are randomly initialized, then the assembly algorithm
(Figure 4) is run to re-orient the building blocks; (3) the assembled structure goes through an
energetic minimization process using the UFF force field. The relaxed structure is then used to
compute structural and gas adsorption properties. Atom color code: Zn (purple), O (red), C (gray), N
(blue), H (white).

The template-based approach to MOF design has led to the use of high-throughput computational
screening approaches [6], variational autoencoders [78], genetic algorithms [16], Bayesian opti-
mization [14], and reinforcement learning [81, 56] to discover new combinations of building blocks
and topologies to identify top-performing materials. However, template-based methods enforce a
set of pre-curated topology templates and building block identities. This inherently narrows the
range of designs these hypothetical MOF construction methods can produce [51], possibly excluding
materials suited for some applications. Therefore, we aim to derive a generative model based on
3D representations of MOFs without the need for pre-defined templates that often rely on chemical
intuition.

Diffusion models [66, 28, 67] have made significant progress in generating molecular and inorganic
crystal structures [65, 45, 73–75, 29, 33, 15, 30, 46, 79, 70, 40, 57, 32]. Recent work [55] also
explored using a diffusion model to design linker molecules in specific MOFs. In terms of data
characteristics, both inorganic crystals and MOFs are represented as atoms in a unit cell. However,
a typical MOF unit cell contains hundreds of atoms (Figure 1), while the most challenging dataset
studied in previous works [73, 47] only focused on inorganic crystals with less than 20 atoms in the
unit cell. Training a diffusion model for complex MOF systems with atomic-scale resolution is not
only technically challenging and computationally expensive but also suffers from extremely poor
data efficiency. To name one challenge, without accounting for the internal structures of the metal
clusters and the molecular linkers, directly applying diffusion models over the atomic representation
of MOFs can very easily lead to unphysical structures for the inorganic nodes and/or organic linkers.

To address the challenges above, we propose MOFDiff, a coarse-grained diffusion model for generat-
ing 3D MOF structures that leverages the modular and hierarchical structure of MOFs (Figure 1 (a)).
We derive a coarse-grained 3D representation of MOFs, a diffusion process over this CG MOF repre-
sentation, and an assembly algorithm for recovering the all-atom MOF structure. In our experiments,
we adapt the MOF dataset from Boyd et al. 6 (BW-DB) that contains hypothetical MOF structures
and computed property labels related to separation of carbon dioxide (CO2) from flue gas. We train
MOFDiff on BW-DB and use MOFDiff to generate and optimize MOF structures for carbon capture.
In summary, the contributions of this work are:
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Figure 2: MOF decomposition with connections visualized. Connection points are light blue. (a) A
MOF unit cell. (b) For visibility, we visualize the metal node and one other organic linker, one at a
time. (c) All four building blocks in this example MOF.

• We derive a coarse-grained representation for MOFs where we specify the identities and
coordinates of structural building blocks. We propose to learn a contrastive embedding to
represent the vast building block design space.

• We formulate a diffusion process for generating coarse-grained MOF 3D structures. We
then design an assembling algorithm that, given the identities and coordinates of building
blocks, re-orients the building blocks to recover the atomic MOF structures. The generated
atomic structures are further refined with force field relaxation (Figure 1 (b)).

• We demonstrate that MOFDiff can generate valid and novel MOF structures. MOFDiff
surpasses the scope of previous template-based methods, producing MOFs that extend
beyond simple combinations of pre-specified building blocks.

• We use MOFDiff to optimize MOF structures for carbon capture and evaluate the per-
formance of the generated MOFs using molecular simulations. We show that MOFDiff
can discover MOF structures with exceptional CO2 adsorption properties with excellent
efficiency.

2 Representation of 3D MOF structures

Like any solid-state material, a MOF structure can be represented as the periodic arrangement of
atoms in 3D space, defined by the infinite extension of a 3-dimensional unit cell. A unit cell that
includes N atoms is described by three components: (1) atom types A = (a1, ..., aN ) ∈ AN , where
A denotes the set of all chemical elements; (2) atom coordinates X = (x1, ...,xN ) ∈ RN×3; and
(3) periodic lattice L = (l1, l2, l3) ∈ R3×3. The periodic lattice defines the periodic translation
symmetry of the material. Given M = (A,X,L), the infinite periodic structure is represented as,

{(a′i,x′
i)|a′i = ai,x

′
i = xi + k1l1 + k2l2 + k3l3, k1, k2, k3 ∈ Z}, (1)

where k1, k2, k3 are any integers that translate the unit cell using L to tile the entire 3D space. A
MOF generative model aims to generate 3-tuples M that correspond to valid3, novel, and functional
MOFs. As noted in the introduction, prior research [73] employed a diffusion model on atomic types
and coordinates to produce valid and novel inorganic crystal structures, specifically with fewer than
20 atoms in the unit cell. However, MOFs present a distinct challenge: their unit cells typically
comprise tens to hundreds of atoms, composed of a diverse range of metal nodes and organic linkers.
Directly applying the atomic diffusion model to MOFs poses formidable learning and computational
challenges due to their increased size and complexity. This necessitates a new approach that can
leverage the hierarchical nature of MOFs.

Hierarchical representation of MOFs. A coarse-grained 3D structural representation of a MOF
can be derived from the coordinates and identities of the building blocks constituting the MOF. Such
a representation is attractive, as the number of building blocks (denoted K) in a MOF is generally
orders of magnitude smaller than the number of atoms (denoted N , K ≪ N ). We denote a coarse-
grained MOF structure with K building blocks as MC = (AC ,XC ,L). The three components:
(1) AC = (aC1 , ..., a

C
K) ∈ BK are the identities of the building blocks, where B denotes the set of

all building blocks; (2) XC = (xC
1 , ...,x

C
K) ∈ RK×3 are the coordinates of the building blocks;

3Assessing the validity of MOF 3D structures is hard in practice. We defer our protocol for validity
determination to the experiment section.

3



⋯ ⋯

⋯

⋯

Contrastive Learning

Extract building blocks 3D GNN embedding(a) (b)

Figure 3: (a) Learning a compact representation of building blocks for CG diffusion. Building
blocks are extracted from MOF structures and embedded through a GemNet-OC encoder. The
representation is trained through a contrastive learning loss such that similar building blocks have
similar embeddings. (b) The distribution of the number of atoms and the distribution of the number
of connection points for the building blocks extracted from BW-DB. Atom color code: Cu (brown),
Zn (purple), O (red), N (blue), C (gray), H (white).

(3) L are the lattice parameters. To obtain this coarse-grained representation, we need a systematic
procedure to determine which atoms constitute which building blocks. In other words, we need
an algorithm to assign the N atoms to K connected components, which correspond to K building
blocks.

Luckily, multiple methods have been developed for decomposing MOFs into building blocks based
on network topology and MOF chemistry [7, 52, 3, 1, 43, 54]. We employ the metal-oxo algorithm
from the popular MOF identification method MOFid [7]. Figure 1 (a) demonstrates the coarse-graining
process: the atoms of each building block are identified with MOFid and assigned the same color in
the visualization. From these segmented atom groups, we can compute the building block coordinates
XC and identities AC for all K building blocks to construct the coarse-grained representation. Each
building block is extracted by removing single bonds that connect it to other building blocks. Every
atom that forms such bonds to another building block is then assigned a special pseudo atom, called a
connection point, at the midpoint of the original bonds that were removed. Figure 2 illustrates this
process. We can now compute building block coordinates XC by computing the centroid of the
connection points for each building block4.

The building block identities AC are, on the other hand, tricky to represent because there is a huge
space of possible building blocks for any non-trivial dataset. Furthermore, many building blocks
share an identical chemical composition, varying only by small geometric variations in 3D orientation.
Example building blocks are visualized in Figure 3 (a). To illustrate the vast space of building blocks,
we extracted 2 million building blocks from the training split of the BW-DB dataset (289k MOFs).
To quantify the extent of geometric variation among building blocks with the same molecule/metal
cluster, we computed the ECFP4 fingerprints [63] for each building block using their molecular
graphs and found 242k unique building block identities. This building block space is too large to be
represented as a categorical variable in a generative model.

Contrastive representation of building blocks. In order to construct a compact representation of
building blocks for diffusion-based modeling, we use a contrastive learning approach [26, 11] to
embed building blocks into a low dimensional latent space. A building block i is encoded as a vector
bi using a GemNet-OC encoder [22, 23], an E(3)-invariant graph neural network model. We then
train the GNN building block encoder using a contrastive loss to map small geometric variations
of the same building block to similar latent vectors in the embedding space. In other words, two
building blocks are a positive pair for contrastive learning if they have the same ECFP4 fingerprint.

4We compute the coarse-grained coordinates based on the connection points because the assembly algorithm
introduced later relies on matching the connection points to align the building blocks.
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Figure 4: The MOF assembly process. Connection points (light blue) are highlighted for visibility.

Figure 3 (a) illustrates the contrastive learning process, while Figure 3 (b) shows the distribution
of the number of atoms and the distribution of the number of connection points for building blocks
extracted from BW-DB. The contrastive loss is defined as:

LC = − log
∑
i∈B

∑
j∈B+

i
exp(si,j/τ)∑

j∈B exp(si,j/τ)
(2)

where B is a training batch, B+
i are the other data points in B that have the same ECFP4 fingerprint

as i, si,j is the similarity between building block i and building block j, and τ is the temperature factor.
We define si,j = pT

i pj/(||pi||||pj ||), which is the cosine similarity between projected embeddings
pi and pj . The projected embedding is obtained by projecting the building block embedding bi using
a multi-layer perceptron (MLP) projection head: pi = MLP(bi). The projection layer is a standard
practice in contrastive learning frameworks for improved performance.

With a trained building block encoder, we encode all building blocks extracted from a MOF to
construct the building block identities in the coarse-grained representation: AC = (b1, ..., bK) ∈
RK×d, where d is the embedding dimension of the contrastive building block encoder (d = 32 for
BW-DB). The contrastive embedding allows accurate retrieval through finding the nearest neighbor
in the embedding space.

3 MOF design with coarse-grained diffusion

MOFDiff. Equipped with the CG MOF representation, we encode MOFs as latent vectors and decode
MOF structures with conditional diffusion. The MOFDiff model is composed of four components
(Figure 1 (a)): (1) A periodic GemNet-OC encoder5 that outputs a latent vector z = PGNNE(M

C);
(2) an MLP predictor that predicts the lattice parameters and the number of building blocks from
the latent code z: L̂, K̂ = MLPL,K(z); (3) a periodic GemNet-OC denoiser that denoises random
structures to CG MOF structures conditional on the latent code: sAC , sXC = PGNND(M̃

C
t , z),

where sAC , sXC are the predicted scores for building block identities AC and coordinates XC , and
M̃C

t is a noisy CG structure at time t in the diffusion process; (4) an MLP predictor that predicts
properties c (such as CO2 working capacity) from z: ĉ = MLPP(z).

The first three components are used to generate MOF structures, while the property predictor MLPP

can be used for property-driven inverse design. To sample a CG MOF structure from MOFDiff,
we follow three steps: (1) randomly sample a latent code z ∼ N (0, I); (2) decode the lattice
parameters L and the number of building blocks K from z, use L and z to initialize a random
coarse-grained MOF structure M̃C = (ÃC , X̃C ,L); (3) generate the coarse-grained MOF structure
MC = (AC ,XC ,L) through the denoising diffusion process conditional on z. Given the final
building block embedding AC ∈ RK×d, we decode the building block identities by finding the
nearest neighbors in the building block embedding space of the training set. More details on the
training and diffusion processes are included in Appendix A.1.

Recover all-atom MOF structures. The orientations of building blocks are not specified by the
CG MOF representation, but they can be determined by forming connections between the building
blocks. We design an assembly algorithm that optimizes the building block orientations to match the
connection points of adjacent building blocks such that the MOF becomes connected (visualized in

5We refer interested readers to Xie & Grossman 72, Chen et al. 10, Xie et al. 73 for details about handling
periodicity in graph neural networks.
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Figure 4). This optimization algorithm places Gaussian densities at the position of each connection
point and maximizes the overlap of these densities between compatible connection points. Two
connection points are compatible if they come from two different building blocks: one is from a
metal atom, and the other is from a non-metal atom (Figure 2). The radius of the Gaussian densities is
gradually reduced in the optimization process: at the beginning, the radius is high, so the optimization
problem is smoother, and it is simpler to find an approximate solution. At the end of optimization,
the radius of the densities is small, so the algorithm can find accurate orientations for matching
the connection points closely. This overlap-based loss function is differentiable with regard to the
building block orientation, and we optimize for the building block orientations using the L-BFGS
optimizer [8]. Details regarding the assembly algorithm are included in Appendix A.2.

The assembly algorithm outputs an all-atom MOF structure that is fed to a structural relaxation
procedure using the UFF force field [62]. We modify a relaxation workflow from previous work [53]
implemented with LAMMPS [68] and LAMMPS Interface [5] to refine both atomic positions and the
lattice parameters using the conjugate gradient algorithm.

Full generation process. Six steps are needed to generate a MOF structure: (1) sample a latent
vector z; (2) decode the lattice parameters L and the number of building blocks K from z, use L
and K to initialize a random coarse-grained MOF structure; (3) generate the coarse-grained MOF
structure through the denoising diffusion process conditional on z; (4) decode the building block
identities by finding their nearest neighbors from the building block vocabulary; (5) use the assembly
algorithm to re-orient building blocks such that compatible connection points’ overlap is maximized;
(6) relax the all-atom structure using the UFF force field to refine the lattice parameter and atomic
coordinates. All steps are demonstrated in Figure 1.

4 Experiments

Our experiments aim to evaluate two capabilities of MOFDiff:

1. Can MOFDiff generate valid and novel MOF structures?

2. Can MOFDiff design functional MOF structures optimized for carbon capture?

We train and evaluate our method on the BW-DB dataset, which contains 304k MOFs with less than
20 building blocks (as defined by the metal-oxo decomposition algorithm) from the 324k MOFs in
Boyd et al. 6. We limit the size of MOFs within the dataset under the hypothesis that MOFs with
extremely large primitive cells may be difficult to synthesize. The median lattice constant in the
primitive cell of an experimentally realized MOF in the Computation-Ready, Experiment (CoRE)
MOF 2019 dataset is, for example, only 13.8 Å [12]. We use 289k MOFs (95%) for training and
the rest for validation. We do not keep a test split, as we evaluate our generative model on random
sampling and inverse design capabilities. On average, each MOF contains 185 atoms (6.9 building
blocks) in the unit cell; each building block contains 26.8 atoms on average.

4.1 Generate valid and novel MOF structures

Determine the validity and novelty of MOF structures. Assessing MOF validity is generally
challenging. We employ a series of validity checks:

1. The number of metal connection points and the number of non-metal connection points
should be equal. We call this criterion Matched Connection.

2. The MOF atomic structure should successfully converge in the force field relaxation process.

3. For the relaxed structure, we adopt MOFChecker [31] to check validity. MOFChecker
includes a variety of criteria: the presence of metal and organic elements, porosity, no
overlapping atoms, no non-physical atomic valences or coordination environments, no atoms
or molecules disconnected from the primary MOF structure, and no excessively large atomic
charges. We refer interested readers to Jablonka 31 for details.

We say a MOF structure is valid if all three criteria above are satisfied. For novelty, we adopt the
MOF identifier extracted by MOFid and say a MOF is novel if its MOFid differs from any other MOFs
in the training dataset. We also count the number of unique generations by filtering out replicate
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Figure 5: MOFDiff samples match the reference distribution for various structural properties.

samples using their MOFid. We are ultimately interested in the valid, novel, and unique (VNU) MOFs
discovered.
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Figure 6: The validity of MOFDiff
samples for increasingly strict crite-
ria. “Match” stands for matched
connection. “VNU” stands for
valid, novel, and unique. Almost
all valid samples are also novel and
unique. The last column shows the
validity percentage of BW-DB un-
der our criteria.

MOFDiff generates valid and novel MOFs. A prerequisite
for functional MOF design is the capability to generate novel
and valid MOF structures. We randomly sample 10,000 latent
vectors fromN (0, I), decode through MOFDiff, assemble, and
apply force field relaxation to obtain the atomic structures. Fig-
ure 6 shows the number of MOFs satisfying the validity and
novelty criteria: out of the 10,000 generations, 5,865 samples
satisfy the matching connection criterion; 3012 samples sat-
isfy the validity criteria, and 2998 MOFs are valid, novel, and
unique. To evaluate the structural diversity of the MOFDiff
samples, we investigate the distribution of four important struc-
tural properties calculated with Zeo++ [71]: the diameter of the
smallest passage in the pore structure, or pore limiting diameter
(PLD); the surface area per unit mass, or gravimetric surface
area; the mass per unit volume, or density; and the ratio of total
pore volume to total cell volume, or void fraction [49]. These
structural properties, which characterize the geometry of the
pore network within the MOF, have been shown to correlate
directly with important properties of the bulk material [38]. The
distributions of MOFDiff samples and the reference distribution
of BW-DB are shown in Figure 5. We observe that the property
distribution of generated samples matches well with the reference distribution of BW-DB, covering a
wide range of property values.

4.2 Optimize MOFs for carbon capture
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Figure 7: The validity of MOFDiff
samples optimized for CO2 work-
ing capacity. Almost all valid sam-
ples are also novel and unique.

Climate change is one of the most significant and urgent chal-
lenges that humanity needs to address. Carbon capture is one of
the few technologies that can mitigate current CO2 emissions,
for which MOFs are promising candidate materials [69, 17].
In this experiment, we evaluate MOFDiff’s capability to op-
timize MOF structures for use as CO2-selective sorbents in
point-capture applications.

Molecular simulations for gas adsorption property calcu-
lations. For faithful evaluation, we carry out grand canonical
Monte Carlo (GCMC) simulations to calculate the gas adsorp-
tion properties of MOF structures. We implement the proto-
col for simulation of CO2 separation from simulated flue gas
with vacuum swing regeneration proposed in Boyd et al. 6
from scratch, using egulp to calculate per-atom charges on the
MOF [35, 61] and RASPA2 to carry out GCMC simulations [18]
since the original simulation code is not publicly available. Pa-
rameters for CO2 and N2 were taken from Garcia-Sanchez et al. 21 and TraPPE [59], respectively.
Under this protocol, the adsorption stage considers the flue exhaust a mixture of CO2 and N2 at a
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Figure 8: CO2 adsorption properties for MOFDiff optimized samples (top-5 annotated with green
boxes) compared to the reference distribution and selected MOF structures (grey boxes). The four
small panels breakdown working capacity to more fundamental gas adsorption properties.

ratio of 0.15:0.85 at 298 K and a total pressure of 1 bar. The regeneration stage uses a temperature of
363 K and a vacuum pressure of 0.1 bar for desorption.

The key property for practical carbon capture purposes is high CO2 working capacity, the net quantity
of CO2 capturable by a given quantity of MOF in an adsorption/desorption cycle. Several factors
contribute to a high working capacity, such as the CO2 selectivity over N2, CO2/N2 uptake for each
condition, and CO2 heat of adsorption, which reflects the average binding energy of the adsorbing
gas molecules. In the appendix, Figure 11 shows the benchmark results of our implementation
compared to the original labels of BW-DB, which demonstrate a strong positive correlation with our
implementation underestimating the original labels by an average of around 30%. MOFDiff is trained
over the original BW-DB labels and uses latent-space optimization to maximize the BW-DB property
values. In the final evaluation, we use our re-implemented simulation code.

MOFDiff discovers promising candidates for carbon capture. We randomly sample 10,000 MOFs
from the training dataset and encode these MOFs to get 10,000 latent vectors. We use the Adam
optimizer [37] to maximize the model-predicted CO2 working capacity for 5,000 steps with a learning
rate of 0.0003. The resulting optimized latent vectors are then decoded, assembled, and relaxed. After
conducting the validity checks described in Section 4.1, we find 2054 MOFs that are valid, novel, and
unique (Figure 8 (a)). These 2054 MOFs are then simulated with our GCMC workflow to compute
gas adsorption properties. Given the systematic differences between the original labels of BW-DB
and those calculated with our reimplemented GCMC workflow, we randomly sampled 5,000 MOFs
from the BW-DB dataset and recalculated the gas adsorption properties using our GCMC workflow
to provide a fair baseline for comparison. Figure 8 shows the CO2 working capacity distribution
of the BW-DB MOFs and the MOFDiff optimized MOFs: the MOFs generated by MOFDiff have
significantly higher CO2 working capacity. The four smaller panels break down the contributions to
CO2 working capacity from CO2/N2 selectivity, CO2 heat of adsorption, as well as CO2 uptake at the
adsorption (0.15 bar, 298 K) and the desorption stages (0.1 bar, 363 K). We observe that MOFDiff
generates a distribution of MOFs that are more selective towards CO2, have higher CO2 uptakes
under adsorption conditions, and bind more strongly to CO2.

From an efficiency perspective, GCMC simulations take orders of magnitude more computational
time (tens of minutes to hours) than other components of the MOF design pipeline (seconds to tens
of seconds). These simulations can also be made more accurate at significantly higher computational
costs (days) by converging sampling to tighter confidence intervals or using more advanced techniques,
such as including blocking spheres, which prohibit Monte Carlo insertion of gas molecules into
kinetically prohibited pores of the MOF, and calculating atomic charges with density functional
theory (DFT). Therefore, the efficiency of a MOF design pipeline can be evaluated by the average
number of GCMC simulations required to find one qualifying MOF for carbon capture applications.
Naively sampling from the BW-DB dataset requires, on average, 58.1 GCMC simulations to find one
MOF with a working capacity of more than 2 mol/kg. For MOFDiff, only 14.6 GCMC simulations
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 selectivity: 197.7 CO2/N2

Working capacity: 4.86 mol/kg 
 selectivity: 65.2 CO2/N2
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 selectivity: 39.6 CO2/N2
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 selectivity: 26.2 CO2/N2

Working capacity: 3.87 mol/kg 
 selectivity: 1026.4 CO2/N2

Working capacity: 3.80 mol/kg 
 selectivity: 73.3 CO2/N2

Working capacity: 3.70 mol/kg 
 selectivity: 19.8 CO2/N2

Working capacity: 3.65 mol/kg 
 selectivity: 50.6 CO2/N2

Working capacity: 3.61 mol/kg 
 selectivity: 19.1 CO2/N2

Working capacity: 3.61 mol/kg 
 selectivity: 45.6 CO2/N2

MOFDiff-1 MOFDiff-2 MOFDiff-3 MOFDiff-4 MOFDiff-5 

MOFDiff-6 MOFDiff-7 MOFDiff-8 MOFDiff-9 MOFDiff-10 

Figure 9: The top ten samples from MOFDiff in terms of the highest CO2 working capacity. Atom
color code: Cu (brown), Zn (purple), S (yellow), O (red), N (blue), C (gray), H (white).

are needed to find one MOF with a working capacity of more than 2 mol/kg, a 75% decrease in
compute cost per candidate structure.

Compare to carbon capture MOFs from literature. Beyond efficiency, MOFDiff’s generation
flexibility also allows it to discover top MOF candidates that are outstanding for carbon capture.
We compute gas adsorption properties of 18 MOFs that have been investigated for CO2 adsorption
from previous literature [48, 13, 25, 6] using our GCMC simulation workflow. We compare the gas
adsorption properties of the top ten MOFs discovered from our 10,000 samples (visualized in Figure 9)
to these 18 MOFs in Table 1 of Appendix B and annotate selected MOFs in Figure 8. MOFDiff can
discover highly promising candidates, making up 9 out of the top 10 MOFs. In particular, Al-PMOF is
the top MOF selected by authors of Boyd et al. 6 from BW-DB. This comparison confirms MOFDiff’s
capability in advancing functional MOF design.

5 Conclusion
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Figure 10: The percent of valid
samples declines with more build-
ing blocks.

We proposed MOFDiff, a coarse-grained diffusion model for
metal–organic framework design. Our work presents a com-
plete pipeline of representation, generative model, structural
relaxation, and molecular simulation to address a specific car-
bon capture materials design problem. To design 3D MOF
structures without using pre-defined templates, we derive a
coarse-grained representation and the corresponding diffusion
process. We then design an assembly algorithm to realize the
all-atom MOF structures and characterize their properties with
molecular simulations. MOFDiff can generate valid and novel
MOF structures covering a wide range of structural properties
as well as optimize MOFs for carbon capture applications that
surpass state-of-the-art MOFs in molecular simulations.

One limitation of MOFDiff is its generated samples have a
lower validity rate when the size of the MOF becomes bigger.
Figure 10 shows a declining validity percentage for samples of
more building blocks. This result is unsurprising since a bigger MOF with more building blocks is
inherently more complex. For a generated structure to be valid, the coordinates of every atom need
to be correct, especially at every connection. The lattice parameters also need to be very accurate.
Reformulating the diffusion process to enable the iterative refinement of the lattice parameters through
the generation process and regularizing the diffusion process with known templates are two future
directions to overcome this challenge.
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Ulissi, C. Lawrence Zitnick, and Abhishek Das. Gemnet-OC: Developing graph neural networks
for large and diverse molecular simulation datasets. Transactions on Machine Learning Research,
2022. URL https://openreview.net/forum?id=u8tvSxm4Bs.

[24] Diego A Gomez-Gualdron, Oleksii V Gutov, Vaiva Krungleviciute, Bhaskarjyoti Borah,
Joseph E Mondloch, Joseph T Hupp, Taner Yildirim, Omar K Farha, and Randall Q Snurr.
Computational design of metal–organic frameworks based on stable zirconium building units
for storage and delivery of methane. Chemistry of Materials, 26(19):5632–5639, 2014.
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A Model details

A.1 MOFDiff

Building block representation. The building block encoder is a GemNet-OC model that inputs the
3D configuration of the building block, including the connection points, and outputs building block
embedding b. A radius-cutoff graph is built as the building block for message passing. In addition to
the contrastive loss LC , we also train the building block latent representation to encode the number
of atoms Nb, the number of connection points Cb, and the largest distance between any pair of atoms
l in the building block by predicting these quantities. Cross-entropy loss is used for Nb and Cb, while
mean squared error loss is used for l:

LB = CrossEntropy(Nb, N̂b) + CrossEntropy(Cb, Ĉb) + ||l − l̂||2 (3)

where N̂b, Ĉb, l̂ are model predictions. These quantities are important indicators of the size and
connection pattern of the building block. The overall loss for the building block encoder is:

LBB = LC + LB + βb||b||2 (4)

where the last term is an L2 regularization over the building block embedding with a loss weighting
of βb = 0.0001 to constrain the norm of building block embedding. The regularization makes the
embedding numerically stable to use in diffusion modeling later. We do not apply weighting over
LC and LB. Hyperparameters of the building block encoder are reported in Table 2. GemNet-OC
hyperparameters are the default values for the Base version from Gasteiger et al. 23 unless otherwise
noted. After being trained to convergence, the building block encoder is frozen and used for encoding
all building blocks to construct the CG representation of MOFs.

MOFDiff encoding. Before feeding the MOF structures to the periodic GNN encoder, we normalize
all MOFs by dividing all lattice lengths by the mean lattice length and dividing all building block
embedding by the mean of all building block embedding’s L2–norms. This normalization makes it
easier to select the noisy distributions for diffusion modeling. The coarse-grained diffusion model
only operates on the coarse-grained representation. To encode a CG MOF structure, we build
the coarse-grained graph with the CG connections inferred from the all-atom inter-building-block
connections: two building blocks i and j have an edge with the periodic image I if an atom in
building block i has a bond connection to an atom in building block j (considering periodic image
I). We refer interested readers to Xie et al. 73 for more details on the multi-graph representation of
crystals. The periodic GNN encoder is an E(3)-invariant GemNet-OC model. After invariant message
passing, we apply pooling to the node embedding to obtain the CG MOF latent code z.

Diffusion process. The forward diffusion process injects noise into the coarse-grained MOF MC =

AC ,XC ,L) to obtain the noisy structure M̃C
t = (ÃC

t , X̃
C
t ,L) for t = 0 to T , where at t = T

the data is diffused to the prior distribution. At time step t, the denoiser PGNND inputs the noisy
structure MC

t , latent code z, and the time step t then predicts scores sAC
t ,z, sXC

t ,z for building block
embedding and coordinates. The lattice parameter remains fixed throughout the diffusion process.
With contrastive building block embedding in RK×d (d = 32 for BW-DB), we employ a DDPM [28]
(variance-preserving) forward process for type embedding:

q(ÃC
t |ÃC

t−1) = N (
√
1− βt · ÃC

t−1, βtI) (5)

q(ÃC
t |ÃC

0 ) = N (
√
ᾱt · ÃC

0 , (1− ᾱt)I) (6)

where β1, . . . , βT is the variance schedule, αt := 1 − βt and ᾱt =
∏t

s=1 αs. The corresponding
reverse diffusion sampling process is:

q(ÃC
t−1|M̃C

t , z) = N
(

1
√
αt

(
AC

t −
1− αt√
1− ᾱt

sAC
t ,z

)
,
1− ᾱt−1

1− ᾱt
βtI

)
(7)

We refer interested readers to Ho et al. 28 for a more detailed derivation of the DDPM diffusion
process. We use the same noise schedule as Hoogeboom et al. 29, a, for the building block type
diffusion.
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With building block coordinates in RK×3, we employ a variance-exploding forward diffusion process
for the coordinates:

q(X̃C
t |X̃C

0 ) = N (X̃C
0 , σ2

t I) (8)

where σ1, . . . , σT are noise levels. The corresponding reverse diffusion sampling process is:

q(X̃C
t−1|M̃C

t , z) = N
(
X̃C

t −
√
σ2
t − σ2

t−1 · sXC
t ,z,

σ2
t−1(σ

2
t − σ2

t−1)

σ2
t

I

)
(9)

We refer interested readers to Song et al. 67 for a more detailed derivation of the variance-exploding

diffusion process. We use the same noise schedule as Song et al. 67: σt = σmin

(
σmax

σmin

) t−1
T−1

. We
handle the denoising target under periodicity similarly as Xie et al. 73 and direct readers interested in
further details to this reference.

To train the denoising score network PGNND, we use the following loss functions:

LA = Et,MC ,ϵA

[
||ϵA − sAC

t ,z||2
]

and LX = Et,MC ,ϵX

[
σ2
t ||ϵX − sXC

t ,z||2
]

(10)

where ϵA, ϵX ∼ N (0, I) are sampled Gaussian noises, injected through the forward diffusion
processes defined in Equation (6) and Equation (8). The reverse diffusion process defined in
Equation (7) and Equation (9) are used for sampling MOF structures at inference time.

In addition to the diffusion losses LA and LX , MOFDiff is also trained to predict the lattice
parameters L̂, the number of building blocks K̂ and property labels ĉ from the latent code z. We use
a mean squared error loss for the lattice parameters and the property labels, and a cross-entropy loss
for the number of building blocks:

LL,K,c = ||L− L̂||2 +CrossEntropy(K, K̂) + ||c− ĉ||2 (11)

The entire MOFDiff is then trained end-to-end with the loss function:

LMOFDiff = LA + LX + LL,K,c + βKLLKL (12)

Where the LKL is the KL regularization for variational autoencoders. We did not use weighting over
the different loss terms except for the KL regularization, which is weighted with βKL = 0.01 [27].
All hyperparameters are reported in Table 3.

A.2 Recover atomic MOF structures

The coarse-grained MOF structures generated by the diffusion model specify the lattice parameters,
building block identities, and building block coordinates (the centroid of connection points). However,
they do not specify the orientations of building blocks. The assembly algorithm finds the orientations
of the building blocks to connect them to each other. Throughout the assembly process, we fix the
centroids of the building blocks, the internal structures (atom relative coordinates) of the building
blocks, and the lattice parameters. The building block orientations are the only variables that are
allowed to change (Figure 4). As we change the orientation of a building block, all atoms and
connection points within rotate around its centroid.

For any ground truth structure, the connection points (as defined in Section 2) of adjacent building
blocks will perfectly overlap since they are midpoints of the bonds connecting inter-building-block
atoms. Therefore, a viable objective for the assembly algorithm is to maximize the overlap of
compatible inter-building-block connection points. Two connection points are compatible if (1) one
connection point is from a metal atom, and the other is from a non-metal atom; (2) they are not from
the same building block. We denote the set of all connection points as C, the number of connection
points as C, the coordinate of connection point i as xi, the Euclidean distance between connection
points i and j as dij := ||xi − xj ||, and the connection points compatible with i as Ci. We define
the objective function:

LO,k,σ = − 1

C

∑
i∈C

∑
j∈Ci

exp(
−dij
σ2

) · I(||{q : q ∈ Ci, diq ≤ dij}|| ≤ k) (13)
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Algorithm 1 Optimize building block orientations for MOF assembly

1: Input: MOF structure M = (AC ,XC ,L), the number of optimization rounds U , Gaussian
kernel width σ1 > · · · > σU , number of nearest neighbors for overlap evaluation k1 > · · · > kU

2: Output: Building block orientations: Ω =
{
ωaC

i
for all aCi ∈ AC

}
3: Randomly initialize building block orientations Ω
4: for round u = 1, . . . , U do
5: Let σ ← σu, k ← ku
6: minimize LO,k,σ(Ω) with respect to Ω using L-BFGS
7: end for

Where I is the indicator function. This loss can be thought of as measuring the inverse of the overlap
under a Gaussian kernel of width σ, and the overlap is only evaluated for the k nearest neighbors
among the compatible connection points. Minimizing this loss maximizes the overlap. This loss is
related to the building block orientations because the coordinate of a connection point xi is related to
the orientation ωa (under the axis-angle representation) and CG coordinate xC

a of the corresponding
building block a through:

xi = xC
a + va,iRa (14)

where va,i is the vector from the building block centroid to the connection point under a canonical
orientation (which is invariant throughout the assembly process), and Ra is the rotation matrix
corresponding to ωa. The distance between a pair of connection points dij can then be related
to the orientations of the two corresponding building blocks through Equation (14). LO,k,σ is
twice-differentiable with respect to building block rotations ω for all building blocks as LO,k,σ is
twice-differentiable with respect to dij for all connection points i, j, and dij is twice-differentiable
with respect to ωa and ωb. This allows us to use L-BFGS, a second-order optimization algorithm.

We can now define an annealed optimization process by gradually reducing σ and k: at the beginning,
the width σ and the number of other connection points we evaluate overlap with k are high, so it is
easier to find overlap between connection points, and the optimization problem becomes smoother.
This makes it simpler to find an approximate solution. At the end of optimization, the kernel width σ
is small, and we are only computing the overlap for the closest compatible connection points. At
this stage, the algorithm should have already found an approximate solution, and a stricter evaluation
over overlapping can let the algorithm find more accurate orientations for matching the connection
points closely.

The assembly algorithm starts by randomly initializing the orientations of the building blocks. Using
the L-BFGS method, the algorithm iteratively minimizes LO,k,σ by adjusting the building block
orientations Ω: ωaC

i
(using the axis-angle representation) for all building blocks aCi . We use the

axis-angle representations because rotation matrices need to follow specific constraints. As explained
above, we start with a relatively high σ and k and gradually reduce them in the optimization process
to gradually refine the optimized orientations. The full algorithm is shown in Algorithm 1. In our
experiments, we use 3 rounds: U = 3, with σ = [3, 1.65, 0.3] and k = [30, 16, 1]. An example
assembly process is visualized in Figure 4.

Force field relaxation. The relaxation process is modified from a workflow proposed in Nandy et al.
52 and has four rounds of energy minimization using the UFF force field and the conjugate gradient
algorithm in LAMMPS. At each round, we use LAMMPS’s minimize function with etol=1 × 10−8,
ftol=1 × 10−8, maxiter=1 × 106, and maxeval=1 × 106. In the first and third rounds, we only
relax the atom coordinates while keeping the lattice parameters frozen. In the second and fourth
rounds, we relax both atom coordinates and the lattice parameters. The relaxation process can refine
the all-atom structures based on the complete MOF configuration and correct minor errors in the
previous steps (such as slightly smaller/bigger unit cells). Structural optimization using classical
force field is commonly done in materials and MOF design [41, 52].

B Experiment Details

Molecular simulation. As stated in Section 4.2, we implement a GCMC simulation workflow
from scratch, which may produce different results compared to the closed-source workflow used in
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Figure 11: Benchmark GCMC results. PCC stands for “Pearson correlation coefficient”.
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Figure 12: Principle component analysis of the MOFDiff latent space of the validation set, color-
coded with various structural and gas adsorption properties.

BW-DB [6]. Per-atom charges on the MOF were calculated with egulp using the MEPO parameter
set and the default configuration. GCMC simulations were performed with RASPA2 using the default
configuration unless otherwise noted. Charge-charge interactions were modeled with Ewald sums at
a precision of 1× 10−6 J. Other interactions were modeled with the Lennard-Jones 12-6 potential
using UFF parameters for the MOF atoms with the epsilon parameters scaled by 0.635, parameters
from Garcia-Sanchez et al. 21 for CO2, and TraPPE parameters for N2. A 12.0 Åcutoff was applied to
all interactions, with potentials shifted to zero at the cutoff radius. The minimum sized supercell was
constructed for each MOF such that all lattice vectors were greater than 24.0 Åin length. The allowed
Monte Carlo moves for gas atoms were identity change, swap, translation, rotation, and reinsertion at
a likelihood ratio of 2:2:1:1:1, and the MOF atoms were held constant throughout the simulation.

Simulations were run for 2000 equilibrium cycles followed by 2000 production cycles, with the
uptake of each gas calculated as the average loading over the 2000 production cycles as implemented
in RASPA2. Similarly, each enthalpy of adsorption was calculated as the average internal energy of
guest molecules within the MOF averaged over the 2000 production cycles as implemented in RASPA2
and converted to heat of adsorption by changing the sign. Adsorption conditions were modeled using
a mixture of CO2 and N2 at a partial pressure ratio of 0.15:0.85, an external temperature of 298
K, and an external pressure of 1 bar. Regeneration conditions were modeled using only CO2, an
external temperature of 363 K, and an external pressure of 0.1 bar. Working capacity was calculated
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Table 1: Carbon capture properties of top ten MOFDiff optimized samples and MOFs from previous
literature, sorted by CO2 working capacity.

CO2 working
capacity [mol/kg]

CO2/N2
selectivity

CO2 uptake [mol/kg]
(0.15 bar, 298 K)

CO2 uptake [mol/kg]
(0.1 bar, 363 K)

CO2 heat of
adsorption [kcal/mol]

(0.15 bar, 298 K)

CO2 heat of
adsorption [kcal/mol]

(0.1 bar, 363 K)

MOFDiff-1 4.89 197.66 7.05 2.16 10.13 10.05
MOFDiff-2 4.86 65.17 6.57 1.71 9.39 9.00
MOFDiff-3 4.03 39.55 5.08 1.05 7.85 8.44
MOFDiff-4 4.03 26.21 4.85 0.82 9.05 8.41
MOFDiff-5 3.87 1026.38 13.27 9.40 12.61 11.27
Al-PMOF 3.82 8.74 4.95 1.13 6.97 8.26
MOFDiff-6 3.80 73.34 4.73 0.93 9.13 9.02
MOFDiff-7 3.70 19.80 4.28 0.57 7.36 7.90
MOFDiff-8 3.65 50.62 4.68 1.02 8.94 8.98
MOFDiff-9 3.61 19.13 4.18 0.57 8.07 7.77
MOFDiff-10 3.61 45.60 4.57 0.96 9.41 9.51
InOF-1 3.11 9.26 3.43 0.32 7.61 6.69
Ni-4PyC 2.53 11.18 3.46 0.92 8.29 7.71
MIL-53(Al) 2.26 5.16 2.57 0.31 6.90 6.09
MOOFOUR-1-Ni 2.15 21.13 2.64 0.49 8.41 8.01
UiO-66 2.11 19.15 2.70 0.59 7.82 8.72
AlFu 2.08 5.30 2.46 0.38 6.95 6.45
SIFSIX-3-Cu 1.22 inf 2.69 1.47 11.80 11.79
NOTT-400 0.95 3.57 1.09 0.13 6.03 5.54
MOF-14(Cu) 0.88 3.11 1.02 0.14 5.93 5.66
DICRO-3-Ni-i 0.61 10.36 0.69 0.07 7.54 7.47
MIL-100(Fe) 0.53 3.61 0.63 0.10 5.82 6.88
MIL-101 0.38 2.87 0.46 0.08 5.29 5.06
CuBTC 0.36 2.21 0.45 0.09 5.52 5.82
DMOF-1 0.35 2.10 0.41 0.07 5.07 4.82
ZIF-8 0.33 2.42 0.38 0.05 5.37 5.16
MIL-125(Ti)-NH2 0.27 1.71 0.32 0.05 4.86 4.70
MOF-5 0.09 1.02 0.12 0.03 3.34 3.11

as the difference in CO2 uptake under adsorption and regeneration conditions. CO2/N2 selectivity
was calculated as the ratio of each gas’s respective uptake under adsorption conditions.

Figure 11 shows a benchmark that compares the gas adsorption labels obtained from BW-DB (original
labels) and the labels obtained from our workflow (our implementation) for 5,000 randomly sampled
MOFs from BW-DB. The Pearson correlation coefficient (PCC) is also reported for each property.
We observe a strong positive correlation, while the working capacity is generally underestimated.
Our model is trained with the original labels, and for property optimizing inverse design, we use a
property predictor trained over the original labels. Our model still demonstrates significant property
improvement (Figure 8), which demonstrates the robustness of our method under a shifted property
evaluator.

MOF latent space. In Figure 12, we conduct a principle component analysis [34] to produce two-
dimensional visualization of the MOFDiff latent space. The latent space exhibits smooth transitions
for property values, indicating a smooth property landscape.

Compare to literature MOFs. In Table 1, we compare the top-ten MOFs generated by MOFDiff
and 18 MOFs from previous literature [48, 13, 25, 6]. Notably, Al-PMOF was proposed in Boyd et al.
6, synthesized, and validated through real-world experiments.

Software versions. MOFid-v1.1.0, MOFChecker-v0.9.5, egulp-v1.0.0, RASPA2-v2.0.47, LAMMPS-
2021-9-29, and Zeo++-v0.3 are used in our experiments. Neural network modules are implemented
with PyTorch-v1.11.0 [20], Pyg-v2.0.4 [58], and Lightning-v1.3.8 [19] with CUDA 11.3.

Code availability. Source code will be released upon publication.
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Table 2: Hyperparameters for building block representation learning.
Hyperparameter Value

building block embedding dimension 32

GNN hidden layer dimension 256

projection dimension 128

# encoder GNN layers 3

radius cutoff 20

maximum number of neighbors 50

temperature (τ ) 0.1

βb 0.0001

batch size 512

optimizer Adam
initial learning rate 0.0003

learning rate scheduler ReduceLROnPlateau
learning rate patience 10 epochs

learning rate factor 0.6

Table 3: Hyperparameters for MOFDiff.
Hyperparameter Value

latent dimension 256

GNN hidden layer dimension 256

# encoder GNN layers 3

# decoder GNN layers 3

radius cutoff 4

maximum number of neighbors 24

total number of diffusion steps (T ) 2000

σmin for coordinate diffusion 0.001

σmax for coordinate diffusion 10

noise schedule for coordinate diffusion σt = σmin

(
σmax

σmin

) t−1
T−1

noise schedule for embedding diffusion Hoogeboom et al. 29
time step embedding Fourier

time step embedding dimension 64

βKL 0.01

batch size 128

optimizer Adam
initial learning rate 0.0003

learning rate scheduler ReduceLROnPlateau
learning rate patience 50 epochs

learning rate factor 0.6
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