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ABSTRACT

Data scarcity poses a significant challenge for deep learning models in medical imaging,
particularly for training and generalization. Previous studies have demonstrated the effi-
cacy of data pooling from various sources, facilitating the analysis of weak but significant
correlations between imaging data and disease incidence. This approach is often con-
strained by strict data-sharing protocols among institutions, resulting in models reliant on
external data sources. In this work, we address the issue of data scarcity by leveraging the
available data for segmentation tasks across various medical imaging modalities. Based
on our observation that samples with minimal foreground-background feature differences
often demonstrate inadequate segmentation performance, we propose a causal-inspired
foreground-background feature discrepancy penalty function, which improves feature sep-
aration and alleviates segmentation difficulties caused by homogeneous pixel distributions.
The proposed feature discrepancy loss is mathematically grounded, with a lower bound
defined by the negative logarithm of the Dice coefficient, suggesting that increased fea-
ture separation correlates with improved Dice scores. To further validate our approach,
we introduce a novel ultrasound dataset for triple-negative breast cancer (TNBC), and we
evaluate the method across three state-of-the-art segmentation architectures to demonstrate
competitive performance. In addition, the results highlight the robustness of our method
in mitigating performance decrease due to distribution shifts when new, differently dis-
tributed data batches are introduced.

1 INTRODUCTION

Medical imaging datasets frequently suffer from limited sample sizes, often due to budget constraints and
strict study criteria, including specific genetic risks. This scarcity of images and diagnostic labels com-
plicates the training of deep learning models. A significant issue arises from the risk of learning spurious
correlations within the dataset, which results from the weak statistical signal of the disease derived from a
limited number of samples Thompson et al. (2014). Moreover, disparities in data distributions hinder model
generalization to real-world clinical settings. Despite progress in predictive analytics, the lack of quality
data and data mismatch remain significant barriers Moyer et al. (2018). Semi-supervised learning and data
augmentation help address the issue, though with varying effectiveness Chapelle et al. (2006). Pooling data
from multiple sites, along with methods like covariate matching and meta-analysis, enhances model robust-
ness and generalizability. Lokhande et al. (2022)
Limitations of Data Augmentation in Medical Imaging. Data augmentation techniques, such as rotations,
flips, and crops, are often applied to imaging data to enhance model robustness by generating additional plau-
sible data points Carmon et al. (2019). However, in medical imaging, these techniques often fall short of
their objectives. For example, cropping or flipping brain images can disrupt the brain’s inherent asymmetry,
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yielding irrelevant results Akash et al. (2021). Deformations must be carefully applied to maintain clinical
relevance. Recent studies suggest data augmentation offers limited benefit in tasks like semantic segmen-
tation as it often fails to generate realistic variations in object boundaries and spatial relationships (Oliver
et al., 2018; Goceri, 2023). Data pooling from multiple sites helps address data scarcity, but distributional
differences complicate harmonization, limiting the effectiveness of augmentation techniques.

Integrating Causal Reasoning in Medical Imaging. Causal reasoning Pearl (2009) is crucial in tackling
challenges like data scarcity and dataset disparity in medical imaging, especially in machine learning Barein-
boim & Pearl (2016). By establishing causal links between medical images and annotations, researchers can
improve data collection, annotation, and learning strategies, while also addressing biases Schölkopf et al.
(2012). In cases where anti-causal relationships exist, traditional semi-supervised methods may fall short.
Causal insights enable more efficient use of limited labeled data and help mitigate selection biases. Utilizing
causal diagrams to formalize assumptions about data generation enhances model robustness and generaliza-
tion to real-world clinical data, improving diagnostic tools and the effectiveness of augmentation techniques
Castro et al. (2020).

Figure 1: Correlation between Dice and Lfd
(foreground-background feature distance loss) is
significant. This relationship is observed in the decoder
layers of NucleiSegNet and the encoder layers of
CMUNet. The correlation is evident in both ultra-
sound and histopathology images. In these cases,
the foreground and background pixel distributions
are homogenous. Consequently, distinguishing the
foreground from the background is challenging due to
their similarity. The paper introduces a new ultrasound
dataset called US-TNBC.

Challenges in Breast Cancer Imaging Due to
Data Scarcity. Breast cancer is the most com-
mon cancer among women and a leading cause
of cancer-related deaths. In Algeria, there are
over 14,000 new cases reported each year Lagree
et al. (2021); aps (2020). This paper focuses on
breast cancer as the primary disease type among
the medical imaging datasets analyzed. Early de-
tection is crucial for better treatment outcomes,
aided by advancements in medical imaging tech-
nologies like mammography, ultrasound, MRI,
and histopathology. Upon identifying suspicious
lesions such as nodules Evain et al. (2021) or mi-
crocalcifications Touami & Benamrane (2021),
biopsies are performed to confirm diagnosis and
cancer stage. Recent strides in machine learn-
ing and deep learning have surpassed traditional
methods like watershed and super-pixels, with
deep learning models such as FCN Long et al.
(2015), U-Net Ronneberger et al. (2015), and
DeepLab Chen et al. (2014) demonstrating high
efficacy in medical image segmentation. Mod-
els like AlexSegNet Singha & Bhowmik (2023),
CellTranspose Keaton et al. (2023), and MMPSO
Kanadath et al. (2023) further improve segmentation performance. MCFNet Feng et al. (2021) addresses
spatial information but struggles with complex staining patterns. Multimodal approaches Dwivedi et al.
(2022); Roy et al. (2024b); Chen et al. (2021), such as TGANet Tomar et al. (2022a), DTAN Zhao et al.
(2024), and GRUNet Roy et al. (2024a), combine textual and spatial data to enhance segmentation. However,
attention mechanisms and multimodal models fail to address homogeneous pixel distributions in ultrasound
and histopathology images, leading to segmentation challenges. While breast cancer ultrasound datasets are
available, a dedicated dataset for triple-negative breast cancer (TNBC), the most aggressive form, is lacking.

Contributions. This paper focuses on the segmentation task in medical imaging, a field that poses significant
challenges in accurately delineating complex anatomical structures and pathologies. Effective segmentation
is crucial for improving diagnosis, treatment planning, and patient outcomes in healthcare Malhotra et al.
(2022). Our contributions are based on the observation that the Dice Score, a widely used metric for vali-
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dating image segmentation quality, is correlated with the foreground-background feature distance produced
by neural networks generating segmentation masks (see Figure 1). To leverage this insight, we propose
the following: (a) a feature distance loss to enhance feature distinction, thereby reducing over- and under-
segmentation in cases of homogeneous pixel distributions; (b) a demonstration that the negative logarithm
of the Dice coefficient acts as a lower bound for the feature distance loss, ensuring improved Dice scores
when optimizing for the feature distance score; (c) the introduction of a new ultrasound breast cancer dataset
specifically for triple-negative breast cancer (TNBC); and (d) an approach to address dataset distribution
shift issues when integrating datasets from multiple sources. We achieve state-of-the-art segmentation accu-
racies across five datasets and three architectures.

2 METHOD

2.1 CAUSAL STRUCTURE AND MODULARITY

A key challenge in medical image analysis is the scarcity of labeled data, largely due to the high cost of
obtaining expert annotations or expensive laboratory tests. Understanding the variables that influence the
data-generation process is essential for systematically addressing data scarcity. Causal reasoning provides a
powerful framework for analyzing how these variables interact in the data-generation process. This approach
examines cause-effect relationships between variables, which are represented as links or edges, forming a
directed acyclic graph (DAG), also known as a causal diagram or structure. For further details, we refer the
reader to Neuberg (2003).

X Y

(a)

X Z Y

(b)

Figure 2: Causal diagram for the medical im-
age segmentation problem. (left) 2a, the stan-
dard causal prediction model used for segmenta-
tion tasks. (right) 2b, a new mediator variable Z,
aimed at addressing data scarcity challenges.

In our study of medical images, X , and their correspond-
ing segmentation ground truth targets, Y , it is essential to
determine the causal relationship between them. The re-
lationship between X and Y may be causal, represented
as X → Y , indicating a predicted effect from the cause.
This suggests that Y is mechanistically dependent on X ,
along with other factors and independent noise. Alterna-
tively, the relationship may be anticausal, Y → X , pre-
dicting the cause from the effect. Consistent with statis-
tical machine learning principles, the task is to estimate
P (Y | X), irrespective of the direction.
Segmentation tasks in histopathology datasets, such as
TNBC Naylor et al. (2018), or ultrasound datasets like UDIAT Yap et al. (2017), necessitate manual seg-
mentation of images X , with precise contouring of tumor or cell regions Y . This annotation relies on visual
inspection and is affected by image content, resolution, and contrast. The annotator’s understanding of tu-
mor grade may influence the delineation of specific boundaries. Manually editing the segmentation masks
does not change the original images. These factors indicate that segmentation adheres to a causal prediction
model, that is, X → Y .

Axiom 1. (Modularity for X→ Y): In the causal graph where X causes Y, intervening on X changes only
the mechanism determining X, while the mechanism determining Y given X remains invariant.

Axiom 1 indicates that P (X) offers minimal information compared to P (Y | X), implying that data
augmentation and semi-supervised learning techniques are theoretically inadequate for resolving the data
scarcity issue. A model trained on image-derived annotations will mainly reproduce the manual annotation
process instead of predicting a pre-imaging ground truth, like the ‘true’ anatomy. While efforts to enhance
data augmentation techniques for segmentation tasks continue Yellapragada et al. (2024), our approach em-
phasizes utilizing existing data to improve segmentation outcomes, as illustrated by the observations in Fig. 8
and Fig. 7.
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2.2 HANDLING DATA SCARCITY THROUGH CAUSAL MEDIATION

In the absence of data augmentation, we must utilize the existing samples in the dataset effectively. One strat-
egy involves identifying underperforming samples and improving their performance. This method adheres
to the Rawlsian principle of prioritizing the worst-off group of samples. Techniques like up weighting have
demonstrated potential; however, they would be ineffective in this context, as identifying suitable weights
necessitates access to a probability distribution that cannot be reliably estimated in data-scarce medical imag-
ing situations. This paper addresses the issue through causal mediation, introducing intervening variables,
Z, to mediate the relationship (see Figure 2). The mediator Z, obtained from the image X , functions as a
differentiable proxy for Y .
Proposition 2. (Mediation in Causal Prediction Model): Given a causal diagram of the form X → Y ,
introducing a mediator Z to create the structure X → Z → Y , and assuming a strong correlation between
Y and Z, this results in

• (Conditional Independence): (X ⊥ Y ) | Z
• (Preserved Modularity): P (X) ⊥ P (Y | X)

• (Functional Relationship): P (Y | X) =
∫
P (Y | Z)P (Z | X).

The relationship shown in equation 2 indicates that P (Y | X) depends on P (Z | X), as Z mediates the
complete effect of X on Y . This indicates that an accurate determination of P (Z | X) allows for precise
estimation of P (Y | X).
Example 3. Consider X ∼ N (0, 1), where N denotes the normal distribution. Define Z = aX + ϵ1 and
Y = bZ + ϵ2, where ϵ1 ∼ N (0, 1) and ϵ2 ∼ N (0, 1), and a and b are constants. Under these definitions,
we have the following conditional distributions: Z | X ∼ N (aX, 1), Y | Z ∼ N (bZ, 1), and consequently
Y | X ∼ N (abX, 1 + b2).

Figure 3: The proposed method shown with respect to UNet ar-
chitecture. The green blocks are the Encoder layers, the grey
blocks are the Decoder layers, and the orange block is the Bot-
tleneck layer. Every layer is treated with the feature discrepancy
loss (Lfd) with a learnable α. α is trainable for all the layers and
is unique for each layer.

The example demonstrates that P (Y |
X) is a function of P (Z | X), as the
mean of Y | X (represented as abX)
depends on the mean of Z | X (which
is aX). Moreover, conditional indepen-
dence is preserved, as knowing X pro-
vides no further information about Y
given Z.

2.3 MEDIATOR
AS A FEATURE DISTANCE MEASURE

The mediator variable Z must capture
causally relevant information for seg-
mentation while discarding irrelevant or
spurious correlations, encouraging gen-
eralization across diverse datasets while
maintaining discriminative power for
foreground-background segmentation. In the UNET architecture Ronneberger et al. (2015), as in many
other models, the feature map F is represented by three dimensions: height, width, and channel. Access
to ground truth masks or clustering methods during training helps identify indicators ỹ that differentiate be-
tween foreground and background features Sims et al. (2023). We demonstrate that increasing the distance
between foreground and background features improves the estimation of Z. The corresponding distance
penalty loss is formally defined as follows:
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Definition 4. (Feature Distance Loss): Let F denote the features extracted from any network architecture
and ỹ represent the indicator variables identifying foreground features. We define the channel-averaged
foreground features as Fg =

∑
k

(∑
i,j F [i, j, k]⊗ ỹ[i, j, k]

)
and the channel-averaged background fea-

tures as Bg =
∑

i,j F [i, j, k] ⊗ (1 − ỹ[i, j, k]), where ⊗ denotes element-wise multiplication. The feature
distance loss is then given by

Lfd = − log
(
∥Fg −Bg∥2

)
(1)

In the previous discussion, Fg − Bg reflects the difference in foreground and background features. This
penalization of feature differences helps the model identify foreground and background features, minimizing
the chance of over and under-segmentation. We prove that the negative logarithm of the Dice score lower
bounds the feature-distance loss in Lemma 5. This suggests that penalizing feature-distance loss can boost
segmentation Dice scores. (See the Appendix for the comprehensive proof)

(a) TNBC (b) UDIAT

Figure 4: Illustration of a right shift and a left shift in the dis-
tribution of the test samples with respect to Dice scores and Lfd
after the use of Lfd (orange curve).

Lemma 5. Relationship between fea-
ture distance lossLfd, segmentation Dice
score, and constant k for feature vector
F derived from image X:

−log(Dice× (k + 1)) ≤ Lfd

An increase in the Dice score results in a
decrease of the lower bound, which al-
lows for a decrease in Lfd. As shown
in Figure 1, this relationship justifies the
observed correlation between Lfd and
the Dice score for all models1.

2.3.1 PRACTICAL IMPLEMENTATION
OF FEATURE DISTANCE LOSS

Segmentation Loss Lseg. To penalize spatial prediction, Lseg integrates Dice loss Soomro et al. (2018) and
Binary Cross Entropy (BCE) loss Jadon (2020), both essential for image segmentation. These losses eval-
uate model performance by comparing expected and actual masks. Our technique defines Lseg as a linear
combination of Dice and BCE loss, as given in Roy et al. (2024c). For more details, please see the Appendix.
Layer-wise Feature Distance Loss Lfd and hyper-parameter α regulation. The U-Net architecture con-
sists of an encoder-decoder structure with skip connections, facilitating the extraction of low-level and high-
level features at different spatial resolutions, resulting in multi-scale representations. Implementing a mech-
anism to penalize feature distance between foreground and background representations at each feature layer
is essential for enhancing the model’s discriminative power and improving segmentation accuracy. This
method promotes the network’s ability to learn distinct features at each level, as shown in Fig. 3. A trainable
hyper-parameter α is introduced to regulate the importance of each layer in the feature distance loss, with
unique α values for each layer. This hyperparameter balances segmentation accuracy Lseg and feature dis-
tance loss Lfd at each layer. The experimental section (Section 3.4) will reveal the final α values, indicating
each layer’s importance in enhancing segmentation scores.
Warm-Starting α. In the initial model updates, α values are set to zero, optimizing exclusively for Lseg

1Although Lemma 5’s bound may not be tight, experiments (Figure 4 and Table 2) show a strict upper-lower bound
relationship, indicating that minimizing Lfd directly improves the Dice score.
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without factoring in the penalty function Lfd. This method enables α to progressively rise from zero to infin-
ity, consistent with the literature Bertsekas (1997). This approach enables a seamless shift from a constrained
to an unconstrained problem, allowing for a thorough exploration of the solution space. Furthermore, start-
ing with a small penalty helps to mitigate potential ill-conditioning associated with large penalties at the
outset. We start with α set to zero, permitting the algorithm to iterate multiple times before activating α for
training.

3 EXPERIMENTS

Figure 5: α vs Lfd for the layers of NucleiSegNet (TNBC and
MoNuSeg) and CMUNet (US-TNBC and UDIAT).

Section 3.1 outlines the experimental
setup, detailing datasets and architec-
tures, and presents a novel dataset for
triple-negative breast cancer segmenta-
tion. Section 3.2 presents quantitative
results, demonstrating improvements in
Dice score and IoU due to the inclusion
of Lfd. Section 3.3 presents qualitative
results comparing generated segmenta-
tion masks with ground truth, highlight-
ing enhanced boundary delineation. Sec-
tion 3.4 presents ablation studies, exam-
ining layer-wise performance, the influ-
ence of Lfd on Dice and IoU, and com-
parisons with state-of-the-art methods.

3.1 SETUP

Datasets. We conduct experiments using four datasets. The first is the TNBC dataset (Naylor et al., 2018),
which includes histopathology images with high-density glandular tissues and indistinct boundaries, pos-
ing challenges for accurate segmentation. Precise TNBC segmentation is vital for detecting and classifying
lesions in cancer treatment. The MonuSeg dataset Kumar et al. (2019) consists of Hematoxylin and Eosin-
stained histopathology images at 40x magnification. It contains 30 training images with 22,000 annotations
and 14 test images with 7,000 annotations, offering a range of tissue types and cell densities for evaluating
nuclei segmentation algorithms. We introduce a novel US-TNBC dataset, comprising 15 ultrasound images
of TNBC tissues, collected between 2022 and 2023, cropped to a resolution of 721 × 570 to retain key
anatomical features. Ground truth masks were generated using Fiji, with data anonymized for privacy. The
UDIAT dataset Yap et al. (2017) consists of breast ultrasound images, with challenges such as irregular tumor
morphology and indistinct boundaries. Additionally, we use an Alzheimer’s histopathology dataset for tau
protein segmentation Jiménez et al. (2022). The dataset contains two versions, AD 256× 256 (histopathol-
ogy images with 256× 256 pixels) and AD 128× 128 (histopathology images with 128× 128 pixels). The
larger patches (256× 256 pixels) capture a broader context containing object neighborhood and background
pixels, whereas the smaller (128×128 pixels) mainly focus on the plaque region. This makes AD 256×256
more challenging due to more complex background information. The results of AD 128× 128 can be found
in the Appendix. Table 1 summarizes these datasets.
Model Architectures. Causal mediation and control of Lfd are independent of neural network architec-
ture. This paper evaluates three prominent UNets and compares the performance of Lfd-penalized models
with the latest models. AttentionUNet Jiménez et al. (2022): An enhanced U-Net utilizing gated attention
mechanisms that improve segmentation accuracy for small, complex structures by minimizing irrelevant
background features. NucleiSegNet Lal et al. (2021) is an architecture developed to address varying nuclei
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sizes and overlapping boundaries, employing a robust residual block and attention decoder to enhance object
localization and minimize over-segmentation. CMUNet Tang et al. (2023) integrates convolutional layers
with a multi-scale attention gate to effectively capture global and local features, addressing the limitations of
U-Net in managing the global context. The ConvMixer module integrates features across spatial locations
to improve performance.

Dataset All Samples Data Type Worst Off

TNBCNaylor et al. (2018) 50 Histopathology 10
MoNuSegKumar et al. (2019) 44 Histopathology 25

UDIATYap et al. (2017) 163 Ultrasound 35
ADJiménez et al. (2022) 10k Histopathology 500

US-TNBC (New dataset proposed) 15 Ultrasound 10

Table 1: Summary of datasets. The “All Samples” are the
test samples of the dataset while the worst-off samples are
the test samples with the lower dice scores.

Training Details and Evaluation Metrics.
We employ a 100 epoch training setup for both
baselines and Lfd-penalized models. Data
augmentation, including flipping and 90° rota-
tions, was utilized for the training set, whereas
evaluation occurred on the unaugmented test
set (All Samples setup). We used the same
augmentation techniques to increase the num-
ber of data points for the plots and to select
the worst-off and best-off samples. The Adam
optimizer was employed with learning rates
of 0.0001 for TNBC, MoNuSeg, and UDIAT,
and 0.001 for AD and US-TNBC. Models are evaluated using Dice Scores and Intersection over Union (IoU)
metrics (see Appendix for more details).

3.2 QUANTITATIVE RESULTS

Model Dataset Lfd Worst Off Samples Best Off Samples All Samples
Dice ∆ Dice IoU ∆ IoU Dice ∆ Dice IoU ∆ IoU Dice ∆ Dice IoU ∆ IoU

AttnUNet

UDIAT ✗ 22.42 +0.9 29.47 +0.8 75.86 +1.4 68.46 +1.0 67.21 +1.7 35.61 +2.8✓ 23.28 30.31 77.29 69.50 68.96 38.43

TNBC
✗ 77.88

0.0
68.64

+0.0
85.82

+0.4
74.38

+3.2
80.61

+0.5
67.79

+1.4✓ 77.86 68.66 86.25 77.57 81.16 69.19

MoNuSeg ✗ 66.03 +2.5 52.38 +0.7 82.57 +1.0 73.48 +1.0 75.92 +2.0 61.28 +1.6✓ 68.61 53.06 83.62 74.50 77.97 62.87

AD 256 × 256 ✗ 56.35 +1.3 31.92 +1.2 81.34 +4.3 70.88 +2.0 61.14 +3.5 43.87 +2.8✓ 57.67 33.10 85.64 72.93 64.69 46.67

CMUNet
UDIAT ✗ 31.56 +1.6 26.58 +1.6 90.88 +4.4 88.25 +1.8 81.85 +2.4 69.87 +3.1✓ 33.19 28.17 95.32 90.01 84.22 73.02

US-TNBC ✗ 25.08 +1.9 21.44 +0.9 86.27 -0.2 68.09 +1.3 49.59 +0.6 34.53 +2.0✓ 26.94 22.35 86.04 69.35 50.22 36.52

NuSegNet
TNBC

✗ 77.29
+2.1

68.00
+0.4

86.49
+0.3

71.29
+1.3

81.69
+1.0

69.22
+1.4✓ 79.40 68.42 88.82 72.58 82.65 70.58

MoNuSeg ✗ 63.95 +0.7 50.05 +2.1 84.61 +0.3 70.40 +1.2 80.95 +0.7 67.91 +0.7✓ 64.61 52.11 84.96 71.65 81.69 68.65

AD 256 × 256 ✗ 32.55 +3.2 23.19 +2.3 64.75 +6.4 46.28 +5.1 51.15 +5.4 36.17 +4.4✓ 35.78 25.46 71.15 51.35 56.57 40.61

Table 2: Ablation study on the application of Lfd. The improvement for low dice samples (Worst Off
Samples), high dice samples (Best Off Samples), and all test samples (All Samples) can be seen after the
application of Lfd. NucleiSegNet Jiménez et al. (2022) is a histopathology segmentation model, so it is not
applicable to UDIAT and US-TNBC. Similarly, CMUNet Tang et al. (2023) being an ultrasound segmen-
tation dataset does not apply to training and testing on TNBC. Also, Attention UNet Jiménez et al. (2022)
performs poorly (Dice score of 12.96) on the US-TNBC dataset. The changes in Dice and IoU are shown
for all three test settings.
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Figure 6: α vs Lfd for the layers of NucleiSegNet (TNBC and MoNuSeg) and
CMUNet (US-TNBC and UDIAT).

The effects of Lfd are
detailed in Table 2,
which presents results
for all samples, as well
as for the Worst-off and
Best-off samples based
on Dice scores. Table 1
presents the numbers of
the best-off and worst-
off samples utilized in
our experiments. In the
case of CMUNet on
the US-TNBC dataset,
a slight decrease in
the Dice score (-0.23)
for Best-off samples is
offset by improvements
in Worst-off samples.
On the new US-TNBC dataset, Lfd results in higher overall Dice scores. The improvements corroborate the
theoretical findings in Lemma A.2. (Takeaway: Penalizing Lfd enhances segmentation performance across
models and datasets.)

3.3 QUALITATIVE RESULTS

Qualitative results for the TNBC, MoNuSeg, AD 256× 256, US-TNBC, and UDIAT datasets are presented
in Figures 7 and 8. The red-highlighted areas in the predicted masks without Lfd indicate segmentation
errors, while the green-highlighted regions reflect corrections made by applying Lfd. These experiments
illustrate how Lfd enhances segmentation through boundary refinement and reducing segmentation errors.
The resulting masks display sharper, more accurate contours of key structures, preserving fine details and
ensuring better anatomical representation. (Takeaway: Penalizing for Lfd results in sharper boundaries,
improved detail preservation, and increased consistency in generated segmentation masks.)

3.4 ABLATION STUDIES

Impact of the α Parameter on Feature Distance Loss. As discussed in Section 2.3.1, α is a trainable
parameter that initially starts at zero and regulates the penalty of feature distance loss, Lfd, for each layer of
the neural network; the final values of α indicate that the layer with the highest value had the most significant
influence on improving the overall dice scores, as shown in Figure 5.
Comparison with State-of-the-Art Models. For the TNBC Naylor et al. (2018), UDIAT Yap et al. (2017),
and MoNuSeg Kumar et al. (2019) datasets, our method outperforms existing models, achieving Dice score
improvements of +0.96 (TNBC), +0.74 (MoNuSeg), and +0.75 (UDIAT) compared to CMUNet Tang et al.
(2023) and NucleiSegNet Lal et al. (2021), highlighting the effectiveness of penalizing feature discrepancy
in high foreground-background similarity modalities.
Changes in Lfd and Dice scores at the sample level. In Figure 1, a trend between Lfd and Dice is noted,
with some samples exhibiting poor scores in both metrics. Figure 4 presents a frequency plot forLfd (orange)
and Dice (blue). A shift in Lfd to lower values and Dice scores to higher values is observed, indicating a
significant improvement in Dice scores at the sample level.
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Model Dice IoU
AttnUNet Jiménez et al. (2022) 80.61 67.79
AWGUNet Roy et al. (2024b) 81.65 69.18

GRUNet Roy et al. (2024a) 80.24 66.25
MCFNet Feng et al. (2021) 73.37 57.94
Deep-Fuzz Das et al. (2023) 77.80 64.20
NuSegNet Lal et al. (2021) 81.69 69.22
CellTrp Keaton et al. (2023) 77.68 59.06

ASNet Singha & Bhowmik (2023) 66.88 -
MMPSO-S Kanadath et al. (2023) 65.00 49.0

Ours 82.65 70.58

(a) TNBC Naylor et al. (2018).

Model Dice IoU
UNet Ronneberger et al. (2015) 75.00 65.00
AttnUNet Jiménez et al. (2022) 68.96 55.00

CMUNet Tang et al. (2023) 81.85 69.87
SCAN Zhang et al. (2020) 74.00 65.00
STAN Shareef et al. (2020) 78.20 69.50
RRC-Net Chen et al. (2023) 80.40 71.81
EU2Net Roy et al. (2024c) 83.47 72.11

CE-Net Gu et al. (2019) 72.00 61.00
DAUNet Pramanik et al. (2024) 78.58 64.71

Ours 84.22 73.02

(b) UDIAT Yap et al. (2017).

Model Dice IoU
NuSegNet Lal et al. (2021) 80.95 67.91

MedT Valanarasu et al. (2021) 79.55 66.17
HistoSeg Wazir & Fraz (2022) 75.08 71.06

SPPNet Xu et al. (2023) 79.77 66.43
D-Net Islam Sumon et al. (2023) 73.20 58.00

MMPSO-S Kanadath et al. (2023) 72.00 56.00
TSCA-Net Fu et al. (2024) 80.23 67.13
GRUNet Roy et al. (2024a) 80.35 67.21

AWGUNet Roy et al. (2024b) 79.46 66.57
Ours 81.69 68.65

(c) MoNuSeg Kumar et al. (2019).

Table 3: Quantitative comparison of segmentation results on different datasets.

4 MITIGATING DATASET SHIFTS UNDER ASSUMED EXCHANGEABILITY

Recent studies emphasize the importance of expanding datasets, with particular focus on enlarging medical
imaging datasets from multiple sources (Chytas et al., 2024). While initial approaches have leveraged strate-
gies from invariant representation learning to mitigate covariate shifts, current methods are limited, typically
addressing only a few covariates at once. The Data Addition Dilemma, introduced by Shen et al. (2024),
highlights a critical challenge: in multi-source contexts, increasing the size of training datasets may induce
distributional shifts, which paradoxically degrade downstream model performance. Traditional methodolo-
gies, based on the assumption of independent and identically distributed (i.i.d.) samples, require adaptation
to account for cross-dataset comparisons. In this regard, the introduction of a novel dataset, Dnovel, along-
side a base dataset, Dbase, poses a significant challenge. Each dataset follows i.i.d. assumptions, but their
combination violates this; we address this using exchangeability, a concept extending beyond (i.i.d). Ex-
changeability asserts that the joint distribution of a sequence of random variables remains invariant under
permutations of indices, a crucial consideration when comparing distinct datasets. By treating Dbase and
Dnovel as part of a sequence of exchangeable random variables, we justify a modified penalty loss function
spanning both datasets. The rationale stems from the notion that if the samples from both datasets are in-
deed exchangeable, then the discrepancy between the foreground feature of a sample from Dbase and the
background of a sample fromDnovel should, in expectation, be comparable to the within-dataset discrepancy
observed in the original formulation and vice-versa.

Definition 6. (Feature Distance Loss under assumed exchangeability): Fg(D)/Bg(D) represents fore-
ground/background features from a randomly sampled datasetD, which can be eitherDnovel orDbase dataset.

Lexch
fd (Dbase ∪ Dnovel) = − log

(
∥Fg(Dbase)−Bg(Dnovel)∥2 + ∥Fg(Dnovel)−Bg(Dbase)∥2

)
(2)

Experiments. We selected TNBC as our base dataset, denoted as Dbase, using the MoNuSeg dataset as
our novel dataset, labeled Dnovel. We added samples from MoNuSeg sequentially, in batches of 10 images,
to Dbase. All evaluations were performed on Dbase. Similarly, for the ultrasound datasets, we designated
US-TNBC as Dbase and UDIAT as Dnovel, with samples from UDIAT added in batches of 15 images. We
compared three methods: a naive method without penalties, a method penalizing for Lfd, and a method
penalizing for Lfd + Lexch

fd . Notably, the naive method exhibited a decrease in test set accuracy on Dbase
as more samples from Dnovel were incorporated, consistent with the findings of (Shen et al., 2024). The
combination of Lfd + Lexch

fd resulted in an overall performance improvement, as illustrated in Figure 6.
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Figure 7: Qualitative analysis of NucleiSegNet for TNBC, MoNuSeg, and AD256× 256 with Lfd.

Figure 8: Qualitative analysis of CMUNet for UDIAT and US-TNBC with and without Lfd.

5 CONCLUSION

Data scarcity remains a critical challenge in medical imaging deep learning.. Our work addresses this is-
sue by proposing a novel feature discrepancy penalty function that enhances segmentation performance
across various modalities. We demonstrate that improved feature separation correlates with higher Dice
scores. Through the introduction of a new ultrasound dataset for triple-negative breast cancer, we validate
our method across state-of-the-art architectures, achieving competitive results. Our findings also highlight
the robustness of our approach against distribution shifts. Future work will explore distribution shift dynam-
ics and the implications of our feature distance penalty on medical image generation tasks.
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A APPENDIX

A.1 THE SEGMENTATION LOSS

The Dice loss Soomro et al. (2018) and Binary Cross Entropy (BCE) loss Jadon (2020) are crucial for image
segmentation tasks, evaluating model performance by comparing predicted and actual masks. The dice loss
(Ldice) and the BCE loss (Lbce) are defined in Eq. 3 and 4 respectively where yijk represents the ground
truth label for pixel (i, j, k), ŷijk represents the predicted probability for pixel (i, j, k), ϵ is a small constant
added for numerical stability to avoid division by zero or taking the log of zero, and N is the total number
of elements pixels.

Ldice = 1−
2
∑

i,j,k yijk · ŷijk + ϵ∑
i,j,k yijk +

∑
i,j,k ŷijk + ϵ

(3)

Lbce = −
1

N

∑
i,j,k

(
yijk · log(ŷijk)

+ (1− yijk) · log(1− ŷijk) + ϵ)

(4)

We use a linear combination of Ldice and Lbce as Lseg Roy et al. (2024c). This can be seen in Eq. 5

Lseg = Ldice + Lbce (5)

A.2 PROOF

Lemma 7. Relationship between feature distance loss Lfd, segmentation Dice score, and constant k for
feature vector F derived from image X:

−log(Dice× (k + 1)) ≤ Lfd

Proof. Let ⊗ denote element-wise multiplication. From Equation equation 3, we have:∑
i,j,k

ỹijk =
Dice

2
×

∑
i,j,k yijk +

∑
i,j,k ŷijk∑

i,j,k yijk

Additionally,

FD =
∥
∑

k

(∑
i,j Fi,j,k ⊗ ỹi,j,k −

∑
i,j Fi,j,k ⊗ (1− ỹi,j,k)

)
∥2

∥
∑

i,j,k Fijk∥2
(FD indicates feature distance between the foreground and background features)

We can rewrite
∑

k

∑
i,j as

∑
i,j,k:

FD =
∥2

∑
i,j,k Fi,j,k ⊗ ỹi,j,k −

∑
i,j,k Fi,j,k∥2

∥
∑

i,j,k Fijk∥2

15



705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

Under review as a conference paper at ICLR 2025

Considering the triangle inequality, we get:

FD ≤
∥2

∑
i,j,k Fi,j,k ⊗ ỹi,j,k∥2
∥
∑

i,j,k Fijk∥2
+
∥
∑

i,j,k Fi,j,k∥2
∥
∑

i,j,k Fijk∥2

Substituting
∑

i,j,k ỹijk and rearranging, we get:

FD − 1 ≤
∥
∑

i,j,k Fi,j,k ⊗Dice×
∑

i,j,k yijk+
∑

i,j,k ŷijk∑
i,j,k yijk

∥2
∥
∑

i,j,k Fijk∥2

Since
∑

i,j,k ỹijk and
∑

i,j,k yijk are constants during testing, we can consider
∑

i,j,k ỹijk∑
i,j,k yijk

as k′:

FD − 1 ≤
∥
∑

i,j,k Fi,j,k ⊗Dice× (1 + k′)∥2
∥
∑

i,j,k Fijk∥2

FD − 1 ≤ Dice× (1 + k′)
∥
∑

i,j,k Fi,j,k∥2
∥
∑

i,j,k Fi,j,k∥2

Letting 1− k′ be a constant k, we get:

FD ≤ Dice× (k + 1)

Taking -log on both sides, we get:

−log(FD) ≥ −log(Dice× (k + 1))

Lfd ≥ −log(Dice× (k + 1))

This completes the proof.

A.3 ALGORITHM FOR LEXCH
FD

Algorithm 1 Loss modification for handing dataset shift in Section 4

1: Input: Foreground features Fg and background features Bg for each image i in a batch of size n
2: for each training iteration do
3: for i← 1 to n do
4: Lfd = − log(∥Fg,i −Bg,i∥2) ▷ penalizing feature distance of foreground and background

features for the same image in a batch
5: Lexch

fd = − log(∥Fg,i −Bg,i+k∥2) ▷ where k is arbitrary and is introduced after shuffling Fg and
Bg of the batch to ensure Fgi and Fgj are closer to each other y repelling Bgj

6: Li = Lfd + Lexch
fd

7: end for
8: loss← 1

n

∑n
i=1 α× Li

9: end for
10: Return: loss
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Algorithm 1 outlines the training process for handling dataset shifts from Section 4. To address this chal-
lenge, we employ shuffled Lfd, which mitigates distribution shifts between the pooled and source datasets
by adjusting the feature separation between foreground and background in the shuffled batch. Specifically,
the foreground feature of image i (Fgi) pushes the background feature of image j (Bgj) for Lexch

fd , while Fgj

simultaneously pushes Bgj in Lfd. This interaction draws Fgi and Fgj closer, minimizing the distributional
shift caused by differences in batch data sources.

A.4 EXPERIMENTAL SETUP

We developed our segmentation model using Python and implemented it with the TensorFlow and Keras li-
braries. For data processing, we utilized numpy, OpenCV, and scikit-learn, enabling efficient data handling.
We have used the high-performance NVIDIA TESLA P100 GPU to accelerate training and leverage hard-
ware acceleration. The model has been trained for 100 epochs in the initial phase (α = 0) and 75 epochs
in the second phase with Lde (α ̸= 0). A 5-fold cross-validation was employed for both the baseline and
proposed models. A train-test-validation split of 70-20-10% has been applied. Callbacks were used to save
the best-performing model during both training phases. To address non-uniform image sizes, all images have
been resized to uniform 512 × 512 pixels for TNBC Naylor et al. (2018), the newly collected US-TNBC,
and 256× 256 for UDIAT Yap et al. (2017) and AD Jiménez et al. (2022) (both 256× 256 and 128× 128).
We have applied data augmentation (horizontal and vertical flipping, rotations to the left and right by 90◦)
on the training set to train the models and on the test set for increasing the number of data points for the
plots. Evaluation of the models has been done on the test set without augmentation.

A.5 US-TNBC DATASET

Table 4: Performance comparison of the SOTA models for
128×128 and 256×256 patch images. The best scores are
highlighted.

Model 128 × 128 256 × 256

Dice IoU Dice IoU

UNet Jiménez et al. (2022) 68.52±0.03 - 64.60±0.03 -
AttnUNet Jiménez et al. (2022) 70.02±0.59 56.83±0.99 61.14±0.51 43.87±0.47
NuSegNet Tomar et al. (2022b) 72.53±0.41 54.47±0.85 51.15±0.79 36.17±0.17

AttnUNet (Ours) 71.18±0.65 58.11±0.21 64.69±0.65 46.67±0.21
NuSegNet (Ours) 74.27±0.45 56.51±0.91 56.57±0.41 40.61±0.41

The TNBC dataset focuses on Triple-Negative
Breast Cancer tissues. The images are typ-
ically 721 x 570 pixels in size on average.
It consists of 30 images, including 15 ultra-
sound images and 15 ground truth images.
The data collected at baseline includes breast
ultrasound images of women aged between 42
and 76 years old. This data was collected be-
tween 2022 and 2023, and the images are in
PNG format. To make the acquired data use-
ful, some refinement tasks were performed.
Firstly, the DICOM images were loaded into
a DICOM reader, and the tumor images with-
out marking or annotation were selected. Next, the DICOM files were converted into PNG format. The
patient information was also eliminated using image cropping software. The images were cropped to retain
maximum anatomical information while removing unnecessary boundaries and markers. The ground truth
images were generated using Fiji, an open-source image processing program based on ImageJ2. The ground
truth masks were produced and then inverted to match the UDIAT dataset mask convention, where the tumor
masks are white and the background is black. This dataset is designed to evaluate algorithms for cancer de-
tection, grading, and classification. The steps involved in the collection of the US-TNBC dataset are shown
in Fig. 10.
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Figure 9: Qualitative analysis of NucleiSegNet for AD128× 128 with and without Lfd.

Figure 10: The steps involved in the creation of the US-TNBC dataset.

A.6 ALZHEIMER’S RESULTS

A.6.1 COMPARISON WITH THE STATE OF THE ART

The Alzheimer’s dataset by Jimenez et al. Jiménez et al. (2022) consists of fifteen whole slide images con-
taining histological sections from the frontal cortices of patients with AD, provided by the French National
Brain Biobank Neuro-CEB. Consent for autopsy and histologic analysis was obtained from the patients or
their family members. The AD cases in this cohort exhibit heterogeneity, including variations in tau pathol-
ogy, staining quality, and tissue preservation. The frontal lobe sections were stained with the AT8 antibody
to reveal phosphorylated tau pathology. From the WSIs, at 20x magnification, patches with two levels of
context information were generated using an ROI-guided sampling method. Larger patches (256× 256 pix-
els) capture a broader context, including the neighborhood and background pixels, whereas smaller patches
(128 × 128 pixels) focus mainly on the plaque region without much context information. We keep the ex-
perimental setting the same as Jiménez et al. (2022) and evaluate the models on the updated version of the
AD dataset. We see an improvement in the performance of the Attention UNet and NucleiSegNet with the
use of Lfd in Table 4.

A.6.2 QUALITATIVE ANALYSIS FOR AD128× 128

Fig. 9 illustrates the improvement in the predicted segmentation mask with the application ofLfd. This show-
cases the ability of Lfd to distinguish the highly homogenous distribution of the Alzheimer’s histopathology
images by penalizing the feature distance between the foreground and background features.
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