State-offset Tuning: State-based Parameter-Efficient Fine-Tuning for State Space Models

Anonymous ACL submission

Abstract

State Space Models (SSMs) have emerged as efficient alternatives to Transformers, mitigating their quadratic computational cost. However, the application of Parameter-Efficient Fine-Tuning (PEFT) methods to SSMs remains largely unexplored. In particular, prompt-based methods like Prompt Tuning and Prefix-Tuning, 007 which are widely used in Transformers, do not perform well on SSMs. To address this, we propose state-based methods as a superior alternative to prompt-based methods. This new 011 family of methods naturally stems from the architectural characteristics of SSMs. Statebased methods adjust state-related features directly instead of depending on external prompts. Furthermore, we introduce a novel state-based PEFT method: State-offset Tuning. At every 017 timestep, our method directly affects the state at the current step, leading to more effective adap-019 tation. Through extensive experiments across diverse datasets, we demonstrate the effectiveness of our method.¹

1 Introduction

037

Large Language Models (LLMs) have gained significant attention for their strong performance in NLP tasks (Achiam et al., 2023; Brown et al., 2020), but suffer from the quadratic complexity of Transformer architectures (Vaswani et al., 2017). To mitigate this, subquadratic alternatives have gained interest (Katharopoulos et al., 2020; Peng et al., 2023; Sun et al., 2023), with State Space Models (SSMs) emerging as a promising solution (Gu and Dao, 2024; Dao and Gu, 2024).

Meanwhile, as LLMs scale up, full fine-tuning for downstream tasks becomes prohibitively expensive. Consequently, Parameter-Efficient Fine-Tuning (PEFT) (Houlsby et al., 2019; Hu et al., 2021; He et al., 2021; Zaken et al., 2022; Liu et al., 2021, 2022; Zeng and Lee, 2024) has emerged, which aims to reduce the number of trainable parameters while achieving adaptation performance comparable to full fine-tuning. 039

041

044

045

047

051

054

056

059

060

061

062

063

064

065

066

067

069

070

071

072

073

074

075

076

However, research on PEFT methods for SSMs remains limited despite their growing popularity. For instance, prompt-based PEFT methods, such as Prompt Tuning (Lester et al., 2021) and Prefix-Tuning (Li and Liang, 2021), have been widely applied to Transformers but fail to adapt effectively to SSMs (Galim et al., 2024). Therefore, new PEFT strategies tailored to SSMs are needed to fully leverage their architectural properties.

To bridge this gap, we introduce *state-based PEFT methods* that leverage the intrinsic properties of SSMs, offering a superior alternative to prompt-based methods. Building on this concept, we propose *State-offset Tuning*. This method directly adjusts the state-related features rather than relying on external prompts, enabling more effective adaptation.

In summary, our main contributions are:

- We introduce *state-based methods*, a new family of PEFT techniques for SSMs, offering a superior alternative to prompt-based approaches.
- We propose *State-offset Tuning* as a new state-based PEFT method.
- We demonstrate the effectiveness of our method through experiments on a variety of datasets, consistently outperforming existing fine-tuning techniques.

2 Related Works

2.1 State Space Models

Linear State-Space Layers (LSSL) are one of the earliest applications of SSMs in sequence modeling (Gu et al., 2021), leveraging HiPPO (Gu et al., 2020) to initialize the state matrix. However, its high computational overhead limits practicality. Gu

¹Code available at https://anonymous.4open. science/r/ssm-research-acl-22B6

Figure 1: Illustration of our proposed State-offset Tuning on a Mamba block (Gu and Dao, 2024). State-offset Tuning injects a trainable state-offset h' at each timestep in the SSM module while keeping other parameters frozen, enabling parameter-efficient fine-tuning and improved downstream performance.

et al. (2022) introduced Structured State Space Models (S4), which mitigate this by structuring the state matrix. Recently, Mamba (Gu and Dao, 2024; Dao and Gu, 2024) enhanced modeling capabilities by introducing an input-dependent S6 block.

2.2 Paramter-Efficient Fine-Tuning

077

078

081

083

084

086

090

091

095

100

101

102

In this section, we review existing PEFT methods. For more details, see Sec. D.

Parameter-based Methods One approach to parameter-based PEFT methods is to selectively fine-tune specific layers within the model while keeping the remaining layers frozen. BitFit (Zaken et al., 2022) is a lightweight and effective strategy that focuses solely on fine-tuning a model's bias terms. Furthermore, LoRA (Hu et al., 2021) represents a notable parameter-based PEFT method by introducing low-rank matrices for weight updates, facilitating efficient adaptation.

Prompt-based Methods Instead of fine-tuning model parameters, Prompt Tuning (Lester et al., 2021) enhances models by prepending trainable soft embeddings to the prompt. Prefix-Tuning (Li and Liang, 2021) builds on this approach by injecting trainable embeddings into each Transformer layer, achieving strong adaptation results for Transformer-based LLMs.

104**PEFT for SSMs**Galim et al. (2024) showed105that LoRA outperforms prompt-based methods on

SSMs. Furthermore, they proposed Selective Dimension Tuning (SDT) for fine-tuning the SSM module while applying LoRA on the linear projection matrices when fine-tuning Mamba models. Yoshimura et al. (2024) suggested a new PEFT method called Additional-scan, which increases the hidden state dimension of SSMs, fine-tuning only its additional parameters.

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

140

141

142

143

144

145

146

147

148

149

150

152

3 PEFT Methods on SSMs

SSM Preliminaries Assuming a single channel dimension, SSMs such as S4 (Gu et al., 2022) transform a signal $x_t \in \mathbb{R}$ into $y_t \in \mathbb{R}$ through an *H*-dimensional latent state $h_t \in \mathbb{R}^H$ as below:

$$h_t = \overline{A}h_{t-1} + \overline{B}x_t, \qquad y_t = Ch_t,$$

where $\overline{B} \in \mathbb{R}^{H \times 1}$ controls input influence, $\overline{A} \in \mathbb{R}^{H \times H}$ governs state dynamics, and $C \in \mathbb{R}^{1 \times H}$ maps the state to the output. \overline{A} and \overline{B} represent discretized versions of A and B, using learning step size $\Delta \in \mathbb{R}$.

In S6 (the SSM module of Mamba), input dependency is integrated by using input-dependent \overline{A}_t , \overline{B}_t , and C_t at every timestep. Specifically, given D channels with $x_t \in \mathbb{R}^D$, learnable parameters $W_B, W_C \in \mathbb{R}^{H \times D}$, and $W_\Delta \in \mathbb{R}^{D \times D}$ compute $B_t = W_B x_t, C_t = W_C x_t$, and $\Delta = W_\Delta x_t$. In this section, we consider S4 for simplicity.

3.1 Prompt-based PEFT Methods on SSMs

Prefix-Tuning Can Update Only the Initial State of an SSM Generally, SSMs assume that the initial hidden state is $h_0 = 0$. We can express h_t with h_0 as $h_t = \sum_{i=1}^t \overline{A}^{t-i} \overline{B}_i x_i + \overline{A}^t h_0$.

Assume we have virtual tokens $x_{(-V+1)}, \ldots, x_0$. If we prepend virtual tokens as prefix to the input sequence, we can write the updated \hat{h}_t as below:

$$\widehat{m{h}}_t = m{h}_t + \overline{m{A}}^t \sum_{i=0}^{V-1} \overline{m{A}}^i \overline{m{B}} x_{-i} = m{h}_t + \overline{m{A}}^t m{h}_{ ext{prefix}}.$$

By introducing a non-zero \hat{h}_0 , we can substitute \hat{h}_0 for h_{prefix} making Prefix-Tuning, or optimizing virtual tokens, equivalent to updating the initial state. As optimized virtual tokens only affect the initial state \hat{h}_0 , Prefix-Tuning's expressivity is upper-bounded by updating the initial state directly. Since Prefix-Tuning is an extended version of Prompt Tuning, this upper bound is applicable to Prompt Tuning as well.

Galim et al. (2024) showed Initial State Tuning, an advanced version of Prefix-Tuning, which directly optimizes the channel-specific initial state

 $h' \in \mathbb{R}^{H}$, resulting in DH trainable parameters in total across all D channels. The updated output \hat{y}_t for Initial State Tuning can be written as in Table 1.

153

154

155

156

158

159

161

162

163

164

166

167

168

170

171

172

173

174

175

176

177

178

179

180

181

182

185

3.2 State-based Methods: A New Family of PEFT Methods for SSMs

We define state-based methods as a new family of PEFT methods specifically designed for SSMs. These methods directly modify the intrinsic staterelated features within the SSM module.

In contrast, prompt-based methods, such as Prefix-Tuning, influence the hidden state of the SSM module indirectly by introducing external virtual tokens. While both approaches adjust the hidden state of the SSM module, state-based methods operate within the SSM module itself, offering a more direct and expressive adaptation strategy.

Based on our definition, we classify Initial State Tuning as state-based method. While Initial State Tuning surpasses Prefix-Tuning (Galim et al., 2024), it still falls short compared to other finetuning methods on SSMs. To bridge this gap, we propose a novel state-based method for enhanced performance.

Initial State Tuning	$ \widehat{y}_t = y_t + C_t (\prod_{i=1}^t \overline{A}_i) h'$
State-offset Tuning (h)	$\widehat{y}_t = y_t + oldsymbol{C}_t oldsymbol{h}'$
State-offset Tuning (y)	$\widehat{y}_t = y_t + y'$

Table 1: State-based Methods for S6. Our methods eliminate the time-dependent coefficient $\prod_{i=1}^{t} \overline{A}_i$, ensuring a uniform effect across timesteps.

Prompt-based	Timestep T	Timestep $T + 1$
Prefix	$ $ [prefix , x_1, \ldots, x_T] \rightarrow	$[\mathbf{prefix}, x_1, \dots, x_T, \boldsymbol{x}_{T+1}]$
Suffix	$ [x_1,\ldots,x_T, \text{suffix}] -$	$\rightarrow [x_1, \ldots, x_T, \text{suffix}, x_{T+1}]$
Iterative Suffix	$ [x_1,\ldots,x_T, \text{suffix}] -$	$\rightarrow [x_1, \ldots, x_T, x_{T+1}, \text{suffix}]$

Table 2: Comparison of Prefix Tuning, Suffix Tuning, and Iterative Suffix Tuning.

4 Proposed State-based PEFT Method

In this section, we propose *State-offset Tuning* as a new state-based PEFT method. A visual comparison with Initial State Tuning and Prefix-Tuning is provided in Sec. A.

4.1 State-offset Tuning

Initial State Tuning introduces an additional term h' with a coefficient \overline{A}^t for S4 and $\prod_{i=1}^t \overline{A}_i$ for S6. However, this coefficient, which varies for each timestep, tends to decrease over time, leading to

inconsistent effects. This is related to the issue that SSMs struggle to recall early tokens (Fu et al., 2022). To address this and ensure a consistent effect for each timestep, we introduce *State-offset Tuning*, which eliminates this coefficient.

State-offset Tuning adds a constant, learnable state-offset h' to the hidden state h before obtaining the updated output \hat{y}_t (Fig. 1). Therefore, unlike Initial State Tuning, State-offset Tuning does not alter the hidden state dynamics directly. Instead, State-offset Tuning adds a constant h' repetitively for each timestep, ensuring a uniform impact.

We formulate State-offset Tuning (h) for S6 in Table 1, where we optimize $h' \in \mathbb{R}^H$. In S4, C_t does not depend on the input, simplifying to a constant C. This allows us to optimize a bias y' instead of h' (with y' := Ch' for each dimension). We name this method State-offset Tuning (y). For S4, State-offset Tuning (y) and State-offset Tuning (h)are equivalent. In S6, opting for the simpler Stateoffset Tuning (y) enhances parameter efficiency by decreasing the tunable parameters from DH to D.

4.2 Connection to Prompt-based Methods

To further validate the methodology of State-offset Tuning, we examine its connection to prompt-based methods and demonstrate its correspondence to *Iterative Suffix-Tuning*.

Iterative Suffix-Tuning Li and Liang (2021) showed that in Transformers, inserting virtual tokens at the beginning (Prefix-Tuning) or the end (Suffix-Tuning, referred to as Infix-Tuning in their work) yields similar performance.

However, for SSMs, the position of the inserted virtual tokens is crucial, as these models tend to forget early tokens. The effect of Prefix-Tuning and Suffix-Tuning diminishes as the model processes subsequent timesteps. This leads to the question: how can we maintain consistent influence of virtual tokens across all timesteps in SSMs?

To achieve this, we propose Iterative Suffix-Tuning. As shown in Table 2, both Prefix-Tuning and Suffix-Tuning hold virtual tokens in fixed positions throughout all timesteps. Conversely, Iterative Suffix-Tuning shifts virtual tokens to the sequence's last position at each timestep, ensuring uniform influence in SSMs. This method is akin to how State-offset Tuning eliminates the timevarying coefficient in Initial State Tuning, enforcing a consistent effect at every timestep. We show that Iterative Suffix-Tuning in SSMs is equivalent

	Model Size				Mamba 130M									
Dataset		Params		Spider					SAMSum			DART		GLUE
Туре	Method	(%)	All	Easy	Medium	Hard	Extra	R1	R2	RL	(%)	MET.	BLEU	Avg.
	Full Fine-tuning (All)	100.00	66.2	84.3	69.5	53.4	43.4	51.2	27.3	42.9	100.00	71.0	51.8	80.5
-	Full Fine-tuning (S6)	4.46	56.7	76.6	57.8	46.0	34.9	51.1	26.9	42.2	4.31	70.3	48.7	79.3
	LoRA	0.46	<u>56.3</u>	75.0	<u>56.5</u>	50.6	33.7	50.5	26.4	<u>42.2</u>	0.92	<u>69.9</u>	50.8	78.3
Parameter	BitFit	0.03	51.3	74.2	50.9	43.1	26.5	50.3	25.7	41.9	0.06	67.0	43.7	77.9
based	Additional-scan	0.34	26.9	44.4	25.6	21.3	10.2	37.6	17.5	30.9	0.68	60.6	15.8	62.4
	Selective Dimension Tuning	0.26	19.8	38.3	16.6	16.1	4.8	46.3	21.5	37.7	0.51	67.5	<u>48.2</u>	63.7
Prompt	Prompt Tuning	0.01	43.6	65.3	42.4	33.3	25.3	50.1	25.6	41.6	0.04	66.2	39.8	63.8
based	Prefix-Tuning	12.81	39.7	65.7	38.6	31.0	15.1	<u>50.6</u>	26.5	42.1	22.69	66.6	42.5	68.6
Stata	Initial State Tuning	0.23	51.8	77.8	51.1	35.1	32.5	50.0	26.0	41.3	0.45	69.1	46.2	77.4
State	State-offset Tuning (h)	0.23	57.4	<u>77.4</u>	59.9	<u>44.8</u>	33.7	50.9	26.5	42.4	0.45	70.0	47.0	78.5
based	State-offset Tuning (y)	0.01	53.0	77.4	55.4	40.8	22.9	<u>50.6</u>	26.1	42.0	0.03	66.8	45.2	77.7

Table 3: Experimental results of fine-tuning the SSM module (S6) using Mamba (Gu and Dao, 2024) models. We assess Spider and its subsets using execution accuracy, SAMSum with ROUGE-1/2/L scores, DART using METEOR and BLEU scores, and GLUE by calculating the average score. To demonstrate the effectiveness of our methods, we configured the hyperparameters of each method to ensure their parameter budget is comparable to or exceeds that of our methods. **Bold** and <u>underline</u> indicate the best and the second-best results, respectively, among all methods (excluding full fine-tuning). Our State-offset Tuning (h) outperforms all other methods on most datasets, and our State-offset Tuning (y) shows comparable or better performance than other methods despite its significantly fewer trainable parameters.

to State-offset Tuning (as detailed in Sec. B).

5 Experiments

239

241

242

243

245

246

247

248

249

251

256

259

261

5.1 Experiment Setup

We conduct experiments for fine-tuning the SSM module (S6) using pretrained Mamba (Gu and Dao, 2024) and Mamba-2 (Dao and Gu, 2024) models on four datasets: Spider (Yu et al., 2018), SAM-Sum (Gliwa et al., 2019), DART (Nan et al., 2021), and GLUE (Wang et al., 2019). For further information on datasets, evaluation metrics, and experimental details, refer to Secs. E and F. We use LoRA (Hu et al., 2021), BitFit (Zaken et al., 2022), Additionalscan (Yoshimura et al., 2024), and Selective Dimension Tuning (Galim et al., 2024) as parameter-based methods. For prompt-based methods, we employ Prompt Tuning (Lester et al., 2021) and Prefix-Tuning (Li and Liang, 2021). For state-based methods, we utilize Initial State Tuning (Galim et al., 2024), along with our proposed methods, Stateoffset Tuning (h) and State-offset Tuning (y).

5.2 Experimental Results

Table 3 shows the results on Mamba models. More results, including Mamba-2 results, are provided in Sec. G. Furthermore, in Sec. G, we compare the training speed and memory usage of LoRA and State-offset Tuning (*h*), demonstrating that ours is faster and more memory-efficient than LoRA.

263 State-based Methods Outperform Prompt264 based Methods Table 3 shows that all state-

based methods outperform prompt-based methods, supporting the claim that state-based methods are superior to prompt-based methods on SSMs. 265

266

267

268

269

270

271

272

273

274

275

276

278

279

280

281

282

284

288

291

292

293

In particular, our State-offset Tuning (h) achieves the best results among all tested PEFT methods on most datasets. Our State-offset Tuning (y) outperforms Initial State Tuning on most datasets, using just 0.01% of the parameters compared to 0.23% by Initial State Tuning.

State-offset Tuning Outperforms Parameter-Based Methods State-offset Tuning (h) outperforms BitFit across all datasets and surpasses LoRA on most datasets. Notably, it also outperforms Additional-scan and Selective Dimension Tuning, which are methods specifically designed for finetuning SSM modules, across all datasets.

Furthermore, State-offset Tuning (h) achieves performance comparable to full fine-tuning (S6), highlighting the effectiveness of state-based PEFT for SSM modules, despite using significantly fewer parameters. The results from Mamba-2 (Table 10) further validate the effectiveness of our method.

6 Conclusion

In this paper, we introduce *state-based methods* as a new family of PEFT methods for State Space Models, serving as a superior alternative to prompt-based methods. We propose *State-offset Tuning* as a new state-based PEFT method and demonstrate its effectiveness through extensive experiments.

7 Limitations

294

While we demonstrate that State-offset Tuning is effective for fine-tuning SSMs in the text domain, 296 its applicability to other domains, such as vision or 297 speech, remains unexplored. Existing PEFT methods, such as LoRA and Prompt Tuning, have been 299 successfully applied across various domains (Jia et al., 2022; Gal et al., 2022; Ran et al., 2024). 301 Extending State-offset Tuning to models in other 302 domains, such as Vision Mamba (Zhu et al., 2024), 303 is an interesting direction for future work.

Potential Risks Our approach enables parameter-306 efficient fine-tuning (PEFT) of pretrained SSMs, significantly reducing the computational cost of adaptation. While this is beneficial for resourceconstrained scenarios, it also presents potential risks. Specifically, adversaries could leverage our method to efficiently fine-tune pretrained SSMs on 311 harmful or biased data, enabling the rapid adapta-312 tion of models for malicious purposes with minimal computational resources. This could lead to the proliferation of harmful or deceptive models that rein-315 force misinformation, bias, or toxicity. To mitigate these risks, future work should explore more robust safety measures, such as integrating ethical finetuning constraints and monitoring mechanisms. 319

References

320 321

322

326

328

329

334

335

336 337

339

340

341

343

- Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. 2023. GPT-4 technical report. arXiv preprint arXiv:2303.08774.
- Satanjeev Banerjee and Alon Lavie. 2005. ME-TEOR: An automatic metric for MT evaluation with improved correlation with human judgments. In Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization, pages 65–72, Ann Arbor, Michigan. Association for Computational Linguistics.
- Roy Bar-Haim, Ido Dagan, Bill Dolan, Lisa Ferro, Danilo Giampiccolo, Bernardo Magnini, and Idan Szpektor. 2006. The second pascal recognising textual entailment challenge. In <u>Proceedings</u> of the second PASCAL challenges workshop on recognising textual entailment, volume 1. Citeseer.
- Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo Giampiccolo. 2009. The fifth pascal recognizing textual entailment challenge. <u>TAC</u>, 7(8):1.
- Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind

Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. 2020. Language models are fewshot learners. In <u>Advances in Neural Information</u> <u>Processing Systems</u>, volume 33, pages 1877–1901. 345

346

347

348

350

351

352

353

354

357

358

360

361

362

363

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

- Ido Dagan, Oren Glickman, and Bernardo Magnini. 2005. The pascal recognising textual entailment challenge. In <u>Machine learning challenges workshop</u>, pages 177–190. Springer.
- Tri Dao and Albert Gu. 2024. Transformers are SSMs: Generalized models and efficient algorithms through structured state space duality. In <u>International</u> Conference on Machine Learning.
- Bill Dolan and Chris Brockett. 2005. Automatically constructing a corpus of sentential paraphrases. In <u>Third international workshop on paraphrasing</u> (IWP2005).
- Daniel Y Fu, Tri Dao, Khaled Kamal Saab, Armin W Thomas, Atri Rudra, and Christopher Re. 2022. Hungry hungry hippos: Towards language modeling with state space models. In <u>International Conference on</u> Learning Representations.
- Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit H Bermano, Gal Chechik, and Daniel Cohen-Or. 2022. An image is worth one word: Personalizing text-to-image generation using textual inversion. arXiv preprint arXiv:2208.01618.
- Kevin Galim, Wonjun Kang, Yuchen Zeng, Hyung Il Koo, and Kangwook Lee. 2024. Parameter-efficient fine-tuning of state space models. <u>arXiv preprint</u> arXiv:2410.09016.
- Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. 2020. The Pile: An 800GB dataset of diverse text for language modeling. arXiv preprint arXiv:2101.00027.
- Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and William B Dolan. 2007. The third pascal recognizing textual entailment challenge. In <u>Proceedings of the</u> <u>ACL-PASCAL workshop on textual entailment and</u> paraphrasing, pages 1–9.
- Bogdan Gliwa, Iwona Mochol, Maciej Biesek, and Aleksander Wawer. 2019. SAMSum corpus: A humanannotated dialogue dataset for abstractive summarization. EMNLP-IJCNLP 2019, page 70.
- Albert Gu and Tri Dao. 2024. Mamba: Linear-time sequence modeling with selective state spaces. In First Conference on Language Modeling.
- Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. 2020. Hippo: Recurrent memory with optimal polynomial projections. In <u>Advances in</u> <u>Neural Information Processing Systems</u>, volume 33, pages 1474–1487.

505

506

507

508

454

- 398 399
- 400 401
- 402 403
- 404 405
- 406 407
- 408 409 410
- 411 412 413
- 414 415
- 416 417
- 418 419
- 420 421 422
- 423
- 424 425 426
- 427 428 429
- 430 431
- 432 433

434 435

- 436 437 438
- 439 440
- 441 442
- 443 444
- 445
- 446 447

447

449 450

451 452

452 453 Albert Gu, Karan Goel, and Christopher Re. 2022. Efficiently modeling long sequences with structured state spaces. In <u>International Conference on Learning</u> Representations.

- Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher Ré. 2021. Combining recurrent, convolutional, and continuous-time models with linear state space layers. In <u>Advances in</u> <u>Neural Information Processing Systems</u>, volume 34, pages 572–585.
- Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. 2021. Towards a unified view of parameter-efficient transfer learning. In <u>International Conference on Learning</u> Representations.
- Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019. Parameter-efficient transfer learning for NLP. In <u>International Conference on Machine Learning</u>, pages 2790–2799.
- Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen, et al. 2021. LoRA: Low-rank adaptation of large language models. In <u>International Conference on</u> Learning Representations.
- Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan, and Ser-Nam Lim. 2022. Visual prompt tuning. In European <u>Conference on Computer Vision</u>, pages 709–727. Springer.
- Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. 2020. Transformers are RNNs: Fast autoregressive transformers with linear attention. In <u>International Conference on Machine</u> Learning, pages 5156–5165.
- Brian Lester, Rami Al-Rfou, and Noah Constant. 2021. The power of scale for parameter-efficient prompt tuning. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 3045–3059.
- Xiang Lisa Li and Percy Liang. 2021. Prefix-Tuning: Optimizing Continuous Prompts for Generation. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 4582–4597.
- Chin-Yew Lin. 2004. ROUGE: A package for automatic evaluation of summaries. In <u>Text Summarization</u> <u>Branches Out</u>, pages 74–81, Barcelona, Spain. Association for Computational Linguistics.
- Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang. 2022. P-Tuning: Prompt Tuning Can Be Comparable to Finetuning Across Scales and Tasks. In <u>Proceedings</u>

of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 61–68.

- Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, and Jie Tang. 2021. GPT Understands, Too. <u>arXiv:2103.10385</u>.
- Ilya Loshchilov and Frank Hutter. 2019. Decoupled weight decay regularization. <u>Preprint</u>, arXiv:1711.05101.
- Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut, Younes Belkada, Sayak Paul, and Benjamin Bossan. 2022. Peft: State-of-the-art parameterefficient fine-tuning methods. https://github. com/huggingface/peft.
- Linyong Nan, Dragomir Radev, Rui Zhang, Amrit Rau, Abhinand Sivaprasad, Chiachun Hsieh, Xiangru Tang, Aadit Vyas, Neha Verma, Pranav Krishna, et al. 2021. DART: Open-Domain Structured Data Record to Text Generation. In <u>Proceedings of the 2021</u> <u>Conference of the North American Chapter of the</u> <u>Association for Computational Linguistics: Human</u> Language Technologies, pages 432–447.
- Kishore Papineni, Salim Roukos, Todd Ward, and Wei jing Zhu. 2002. Bleu: a method for automatic evaluation of machine translation. pages 311–318.
- Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. Pytorch: An imperative style, high-performance deep learning library. Preprint, arXiv:1912.01703.
- Bo Peng, Eric Alcaide, Quentin Gregory Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman, Huanqi Cao, Xin Cheng, Michael Nguyen Chung, Leon Derczynski, et al. 2023. RWKV: Reinventing RNNs for the transformer era. In <u>The</u> <u>2023 Conference on Empirical Methods in Natural</u> Language Processing.
- Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018. Know what you don't know: Unanswerable questions for squad. arXiv preprint arXiv:1806.03822.
- Lingmin Ran, Xiaodong Cun, Jia-Wei Liu, Rui Zhao, Song Zijie, Xintao Wang, Jussi Keppo, and Mike Zheng Shou. 2024. X-adapter: Adding universal compatibility of plugins for upgraded diffusion model. In <u>Proceedings of the IEEE/CVF Conference</u> on Computer Vision and Pattern Recognition, pages 8775–8784.
- Daniel G. A. Smith and Johnnie Gray. 2018. opt_einsum - a python package for optimizing contraction order for einsum-like expressions. Journal of Open Source Software, 3(26):753.

- 566 567 568 569 570 571
- 572 573
- 574 575
 - C

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng, and Christopher Potts. 2013. Recursive deep models for semantic compositionality over a sentiment treebank. In <u>Proceedings of the 2013 conference on empirical</u> methods in natural language processing, pages 1631– 1642.

509

510

511

513

514

516

517

518

519

520

521

522

525

527

528

529

530

531

532

533

534

538

541

542

543 544

545

546

548

551 552

553 554

555

556

557

559

560

565

- Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang, and Furu Wei. 2023. Retentive network: A successor to transformer for large language models. <u>arXiv preprint</u> arXiv:2307.08621.
- Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In <u>Advances in Neural Information</u> Processing Systems, volume 30.
- Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman. 2019. GLUE: A multi-task benchmark and analysis platform for natural language understanding. In <u>International Conference on Learning Representations</u>.
- A Warstadt. 2019. Neural network acceptability judgments. arXiv preprint arXiv:1805.12471.
- Adina Williams, Nikita Nangia, and Samuel R. Bowman. 2018. A broad-coverage challenge corpus for sentence understanding through inference. <u>Preprint</u>, arXiv:1704.05426.
- Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. 2020. Transformers: State-of-the-art natural language processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 38–45, Online. Association for Computational Linguistics.
- Masakazu Yoshimura, Teruaki Hayashi, and Yota Maeda. 2024. Mambapeft: Exploring parameterefficient fine-tuning for mamba. <u>arXiv preprint</u> arXiv:2411.03855.
- Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingning Yao, Shanelle Roman, et al. 2018. Spider: A large-scale human-labeled dataset for complex and cross-domain semantic parsing and text-to-sql task. In <u>Proceedings of the 2018 Conference on</u> <u>Empirical Methods in Natural Language Processing</u>, pages 3911–3921.
- Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel. 2022. BitFit: Simple parameter-efficient fine-tuning for transformer-based masked language-models. In Proceedings of the 60th Annual Meeting of the

Association for Computational Linguistics (Volume 2: Short Papers), pages 1–9.

- Yuchen Zeng and Kangwook Lee. 2024. The expressive power of low-rank adaptation. In <u>International</u> Conference on Learning Representations.
- Lianghui Zhu, Bencheng Liao, Qian Zhang, Xinlong Wang, Wenyu Liu, and Xinggang Wang. 2024. Vision mamba: Efficient visual representation learning with bidirectional state space model. <u>arXiv preprint</u> arXiv:2401.09417.

581

586

592

593

598

A Visual Comparison of Prompt-based Methods and State-based Methods

Fig. 2 compares prompt-based methods and statebased methods, including our proposed techniques, within the S6 block.

Figure 2: Visual comparison of prompt-based methods and state-based methods in the S6 block.

State-based Methods Operate within the SSM Module Fig. 2 shows that prompt-based methods, such as Prefix-Tuning, rely on virtual tokens external to the S6 block. In contrast, state-based methods, such as Initial State Tuning, State-offset Tuning (h), and State-offset Tuning (y), directly adjust state-related features within the S6 block.

State-offset Tuning affects the Current Timestep Figure 2 illustrates how Prefix-Tuning and Initial State Tuning modify features at early timesteps, indirectly affecting the current state. However, this impact diminishes over time. In contrast, Stateoffset Tuning (h) and State-offset Tuning (y) directly influence the state at each timestep, resulting in more effective adaptation.

B Iterative Suffix-Tuning and State-offset Tuning

In this section, we show that Iterative Suffix-Tuning for SSMs is equivalent to State-offset Tuning.

00State-offset Tuning is Iterative Suffix-Tuning01Fig. 3 provides two different implementations of

(a) Iterative Suffix-Tuning (with t + 1 as current timestep)

(b) Iterative Suffix-Tuning (with t as current timestep)

Figure 3: Two different implementations of Iterative Suffix Tuning on SSM. We show that Fig. 3b is equivalent to State-offset Tuning.

Iterative Suffix-Tuning on SSMs (S6) with virtual token (suffix) x_{t+1} . Fig. 3a views t + 1 as current timestep. In this case, input-dependent $C_{t+1} = W_C x_{t+1}$ is determined solely by the suffix $x_{t+1} \in \mathbb{R}^D$, which is constant at inference time, thus the input dependency of C is lost, reducing the expressive power of S6.

602

603

604

605

606

607

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

To address this, we view t as current timestep instead and interpret x_{t+1} as future token (Fig. 3b). Consequently, we time-shift x_{t+1} by multiplying it with the inverse of \overline{A}_{t+1} .

Fig. 3a:
$$y_{t+1} = C_{t+1}(\overline{A}_{t+1}h_t + \overline{B}_{t+1}x_{t+1}),$$

Fig. 3b:
$$y_t = C_t(h_t + A_{t+1}B_{t+1}x_{t+1}).$$

Therefore, according to the equation corresponding to Fig. 3b, Iterative Suffix-Tuning can be implemented by updating only $\overline{A}_{t+1}^{-1}\overline{B}_{t+1}x_{t+1}$. Since this term depends solely on the constant suffix x_{t+1} , we can directly replace it with a learnable parameter $h'(h' := \overline{A}_{t+1}^{-1}\overline{B}_{t+1}x_{t+1})$, which is equivelant to State-offset Tuning (h) (Table 1).

C Low-Rank State-offset Tuning

State-offset Tuning (*h*) shows superior parameter efficiency on Mamba versus other PEFT methods. To further reduce trainable parameters, we can represent the learnable state-offset as a product of two low-rank matrices, inspired by LoRA (Hu et al., 2021). This is particularly useful for Mamba-2,

677

681 682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

703

704

705

707

708

709

710

where the state dimension is larger than in Mamba, leading to an increased number of trainable parameters. In such cases, low-rank techniques can effectively mitigate the parameter overhead. Experimental results of State-offset Tuning (h) with lower rank on Mamba-2 are provided in Sec. G.2.

D PEFT Baselines

629

655

661

In this section, we provide a more detailed description of the baseline methods.

LoRA (Hu et al., 2021). LoRA aims to fine-tune large models by maintaining the bulk of pretrained parameters untouched while introducing trainable low-rank matrices within each Transformer's layer. This method leverages linear algebra principles where a large matrix can be effectively approximated by two low-rank matrices, thus reducing the number of parameters. LoRA includes a scaling parameter to adjust the influence of original and LoRA weights during training. We use the Hugging Face version (Apache License 2.0, Mangrulkar et al. (2022)) of LoRA for our experiments.

Prompt Tuning (Lester et al., 2021). This method involves freezing the entire model and adding a trainable soft prompt to the input. The prompt consists of continuous virtual tokens that provide additional context.

Prefix-Tuning (Li and Liang, 2021). Similar to Prompt Tuning, Prefix-Tuning adds trainable tokens but extends them across every Transformer layer by appending trainable embeddings to the attention matrices. To combat the instability in training these prefixes, an over-parameterized MLP is utilized, which can be discarded after training.

BitFit (Zaken et al., 2022). This PEFT method
simplifies fine-tuning by freeing only the bias terms
while freezing the other model weights, drastically
reducing trainable parameters.

SDLoRA (Galim et al., 2024). SDLoRA (LoRA with Selective Dimension Tuning) employs a sparse updating approach for the matrices A, B, 668 and C (W_B and W_C for S6), while additionally applying LoRA to the linear projection layers. All remaining layers are kept frozen. The process for 672 determining which parameters to update involves a warmup stage, during which parameters are flagged 673 as updatable if they exhibit a significant gradient 674 magnitude. In our SDLoRA experiments, we excluded LoRA from the linear projection layers and 676

focused solely on its S6 component (Selective Dimension Tuning) to ensure a fair comparison.

Additional-scan (Yoshimura et al., 2024). This approach enhances the model's expressivity by expanding the state dimensions for A, W_B , and W_C . During training, only the added dimensions are marked as trainable.

E Datasets

Dataset	#Train	#Valid	#Epochs	Model size	Metrics
RTE	2490	277	10	130m	Acc.
MRPC	3668	408	10	130m	Acc.
CoLA	8551	1043	10	130m	Acc.
SST-2	67349	872	10	130m	Acc.
QNLI	104743	5463	10	130m	Acc.
QQP	363846	40430	3	130m	Acc.
MNLI	392702	19647	3	130m	Acc.
Spider	6918	1034	10	1.4B, 2.8B	Acc.
SAMSum	14732	819	10	1.4B	ROUGE
DART	62659	2768	10	130m	METEOR, BLEU

Table 4: Dataset details. We report the number of training and validation samples, number of training epochs, employed model size and evaluation metrics.

This paper examines four datasets across two domains: Natural Language Understanding (NLU) and Natural Language Generation (NLG). Table 4 presents detailed information for each dataset.

GLUE (Wang et al., 2019). A benchmark comprising nine tasks in English for assessing language understanding models, including sentiment analysis, linguistic acceptability, and question answering. We use the following datasets: RTE (Dagan et al., 2005; Bar-Haim et al., 2006; Giampiccolo et al., 2007; Bentivogli et al., 2009), MRPC (Dolan and Brockett, 2005), CoLA (Warstadt, 2019), SST-2 (Socher et al., 2013), QNLI (Rajpurkar et al., 2018), QQP^2 , and MNLI (Williams et al., 2018). Evaluation is mainly through accuracy, except for CoLA where Matthews correlation is used. The final metric is calculated as the average accuracy (Matthews correlation for CoLA) across all datasets. The individual datasets are available under different permissive licenses. We use the version hosted at https://huggingface.co/ datasets/nyu-mll/glue.

SAMSum (Gliwa et al., 2019). A dataset for dialogue summarization featuring about 16,000 synthetic conversations in English with summaries, created to simulate digital communications with

²https://quoradata.quora.com/

First-Quora-Dataset-Release-Question-Pairs

varied tones and styles. Its structure helps in developing systems that process conversational text.
The dataset is evaluated via ROUGE score. This dataset is available under the CC BY-NC-ND 4.0 license. We use the version hosted at https:// huggingface.co/datasets/Samsung/samsum.

Spider (Yu et al., 2018). A text-to-SQL dataset 717 with 10,000 annotated SQL queries across 200+ 718 databases, classifying queries from easy to extra 719 hard based on SQL operation complexity. It involves translating English questions to SQL, eval-721 uated via execution accuracy. Execution accuracy 722 considers the output correct if the model's predicted SQL query and the ground truth SQL query yield 724 the same results when executed on the database. 725 This dataset is available under the CC BY-SA 4.0 726 license. We use the version hosted at https:// 727 huggingface.co/datasets/xlangai/spider.

DART (Nan et al., 2021). Comprising over 80,000 instances, DART focuses on English RDFto-text generation, organized by structured data triples and corresponding text summaries. It's assessed using METEOR and BLEU metrics. This dataset is available under the MIT license. We use the version hosted at https://huggingface.co/ datasets/Yale-LILY/dart.

F Experimental Details

731

734

735

737

738

740

741

742

743

744

745

746

748

749

750

751

754

755

For every dataset, we select the model size based on how difficult the dataset is and conduct a brief grid search for one epoch using a subset of the data (1k-2k instances) with learning rates of $\{4 \times 10^{-1}, 2 \times 10^{-1}, 1 \times 10^{-1}, ..., 1 \times 10^{-5}\}$. The best learning rate is then selected as the rate that has the lowest training loss. In our experimental results, we report the metric from the best epoch observed on the validation set during training, employing early stopping. Each experiment is conducted once. We apply fine-tuning methods to the SSM module (S6) of Mamba (130M, 1.4B, $(2.8B)^3$ and the SSM module (SSD) of Mamba-2 $(130M, 1.3B)^4$ pretrained from Pile (MIT License, Gao et al. (2020)) using AdamW (Loshchilov and Hutter, 2019) with a linear decay schedule for the learning rate. In general, we choose hyperparameters for each individual method to ensure that all

methods operate within a similar parameter budget. Tables 5 and 6 show selected learning rates and chosen hyperparameters for each method. For assessing NLG tasks, we utilize beam search with five beams and a maximum beam length of 1024. BLEU (Papineni et al., 2002), ROUGE (Lin, 2004), and METEOR (Banerjee and Lavie, 2005) metrics are computed using Hugging Face's evaluate library⁵. 756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

788

789

790

791

792

793

794

795

796

797

798

799

800

We use an NVIDIA RTX 3090 24GB for training models with less than 1 billion parameters, and an NVIDIA H100 80GB for larger models. We implemented our project in PyTorch (Modified BSD license, Paszke et al. (2019)), utilizing the Hugging Face trainer (Apache License 2.0, Wolf et al. (2020)). We train with batch size 4 for 10 epochs on all datasets except QQP and MNLI for which we use 3 epochs, allowing each training run to finish in under 16 hours. This project spanned three months, utilizing four NVIDIA RTX 3090 24GB GPUs and four NVIDIA H100 80GB GPUs, totaling approximately 17,000 GPU hours.

G Additional Experimental Results

G.1 Mamba Results

Training Speed and Memory Usage We conduct a small experiment to compare the memory usage and training speed of State-offset Tuning (h) and LoRA, as they performed most similarly in terms of dataset metrics in our experiments. Using a single H100 GPU, we train for 100 batch iterations with a batch size of 4 and a 1K context, continuously measuring memory usage and batch latency.

Table 7 shows the training speed and maximum memory usage for different Mamba sizes for Stateoffset Tuning (h) and LoRA. State-offset Tuning (h) uses less memory and is faster, even with more trainable parameters. In this experiment, we selected hyperparameters to ensure LoRA has less trainable parameters than State-offset Tuning (h). We believe State-offset Tuning (h)'s efficiency stems from our optimized einsum implementation, enhanced with the opt_einsum (MIT License, Smith and Gray (2018)) Python package to reduce memory usage and improve latency.

³Apache License 2.0, https://huggingface.co/statespaces/mamba-{130m,1.4b,2.8b}

⁴Apache License 2.0, https://huggingface.co/statespaces/mamba2-{130m,1.3b}

⁵Apache License 2.0, https://huggingface.co/spaces/evaluatemetric/{bleu,rouge,meteor}

Model		Mamba									Mamba-2			
Method / Dataset	RTE	MRPC	CoLA	SST-2	QNLI	QQP	MNLI	DART	SAMSum	Spider	DART	SAMSum	Spider	
LoRA	2e-03	2e-03	4e-05	2e-03	1e-03	1e-03	2e-03	4e-03	2e-03	4e-03	4e-03	2e-03	4e-03	
Additional-scan	4e-03	2e-03	2e-03	1e-01	2e-03	4e-02	4e-03	4e-03	4e-03	4e-03	2e-02	4e-03	1e-02	
Selective Dimension Tuning	1e-03	4e-02	1e-01	4e-02	2e-02	2e-02	1e-01	4e-02	2e-02	4e-02	2e-03	1e-03	1e-03	
Initial State Tuning	4e-04	1e-03	2e-03	2e-03	2e-03	2e-03	2e-03	2e-03	2e-04	1e-03	4e-03	2e-04	4e-04	
State-offset Tuning (h)	1e-03	2e-04	2e-04	1e-04	1e-04	4e-05	4e-04	4e-04	1e-04	2e-04	1e-03	2e-05	2e-05	
State-offset Tuning (h) (low rank)	-	-	-	-	-	-	-	-	-	-	4e-03	2e-04	2e-04	
State-offset Tuning (y)	1e-03	2e-03	1e-03	1e-03	2e-03	1e-03	1e-03	4e-03	1e-03	2e-03	1e-02	2e-04	1e-03	

Table 5: Learning rates for each method and dataset. For Mamba and Mamba-2, learning rates for each method and dataset are determined via a small grid search on a dataset subset. The learning rate yielding the best training loss is chosen as the final rate.

Method /Model	Mamba 130M	Mamba 1.4B	Mamba-2 130M	Mamba-2 1.3B
	Rank = 8	Rank = 8	Rank = 16	Rank = 16
L-DA	$\alpha = 8$	$\alpha = 8$	$\alpha = 16$	$\alpha = 16$
	Dropout = 0.1	Dropout = 0.1	Dropout = 0.1	Dropout = 0.1
	Modules = all weight matrices in S6	Modules = all weight matrices in S6	Modules = all weight matrices in SSD	Modules = all weight matrices in SSD
Additional-scan	#States = 8	#States = 8	#States = 32	#States = 32
Selective Dimension Tuning	Freeze #Channels = 50.0% Freeze #States = 75.0%	Freeze #Channels = 50.0% Freeze #States = 75.0%	Freeze #Channels = 75.0% Freeze #States = 0.0%	Freeze #Channels = 75.0% Freeze #States = 0.0%
Initial State Tuning	-	-	-	-
State-offset Tuning (h)	-	-	-	-
State-offset Tuning (h) (low rank)	-	-	Rank = 32	Rank = 64
State-offset Tuning (y)	-	-	-	-

Table 6: Hyperparameter settings for each model and PEFT method. In general, we adjust hyperparameters to maintain a similar number of trainable parameters.

Model	Method	Params (%)	Mem. (GB)	Latency (s)
130M	State-offset Tuning (h)	0.45	4.2	0.13
	LoRA	0.35	5.44	0.18
370M	State-offset Tuning (h)	0.42	9.36	0.33
370101	LoRA	0.32	11.56	0.45
700M	State-offset Tuning (h)	0.3	13.91	0.49
790101	LoRA	0.23	17.17	0.61
1.4B	State-offset Tuning (h)	0.23	18.77	0.67
1.4D	LoRA	0.17	22.99	0.8
2.60	State-offset Tuning (h)	0.19	31.49	1.13
2.8D	LoRA	0.14	37.84	1.33

Table 7: Training speed and memory usage. For each Mamba size, we compare the maximum memory usage and mean latency for processing a single batch during training. Our State-offset Tuning (h) is compared against LoRA, as it demonstrated the most similar performance in the experiment section. We configure LoRA to use fewer trainable parameters than State-offset Tuning (h). Despite this, State-offset Tuning (h) still consumes less memory and is faster in training.

Mamba 2.8B Results Table 8 shows the experimental results using Mamba 2.8B. Our State-offset Tuning (h) outperforms all methods except full fine-tuning.

Mamba Results on GLUE Dataset Table 9 shows the full results on the GLUE dataset using Mamba 130M. Our State-offset Tuning (*h*) achieves the highest average score among all PEFT methods.

G.2 Mamba-2 Results

Table 10 shows experimental results using Mamba-811 2 (Dao and Gu, 2024) models. State-offset Tuning 812 (h) with low-rank adaptation (Sec. C) significantly 813 reduces the number of trainable parameters. It 814 outperforms existing methods on the Spider bench-815 mark by a large margin and achieves performance 816 comparable to other approaches on the SAMSum 817 and DART datasets. 818

810

802

	Model Size	Mamba 2.8B										
	Dataset	Params	Spider									
Туре	Method	(%)	All	Easy	Medium	Hard	Extra					
	Full Fine-tuning (All)	100.00	71.8	87.5	73.5	63.8	51.8					
-	Full Fine-tuning (S6)	4.44	65.7	81.9	68.8	58.0	41.0					
	LoRA	0.38	<u>63.9</u>	<u>86.3</u>	68.2	49.4	34.3					
Parameter	BitFit	0.02	59.9	82.3	60.8	52.9	31.3					
based	Additional-scan	0.28	35.0	62.0	31.9	27.4	12.1					
	Selective Dimension Tuning	0.21	14.0	33.9	8.7	9.5	4.2					
Prompt	Prompt Tuning	0.01	50.7	75.4	53.8	37.4	19.3					
based	Prefix-Tuning	10.82	45.1	75.0	45.1	32.2	13.9					
Stata	Initial State Tuning	0.19	59.7	82.3	62.3	43.7	35.5					
State	State-offset Tuning (h)	0.19	65.0	89.1	<u>65.9</u>	51.7	40.4					
based	State-offset Tuning (y)	0.01	63.1	85.9	64.1	<u>52.3</u>	<u>37.3</u>					

Table 8: Experimental results of fine-tuning the SSM module using pretrained Mamba 2.8B. State-offset Tuning (h) stands out as the most effective method among all PEFT approaches.

	Model Size		Mamba 130M											
	Dataset	Params	GLUE											
Туре	Method	(%)	RTE	MRPC	CoLA	SST-2	QNLI	QQP	MNLI	Avg.				
	Full Fine-tuning (All)	100.00	71.1	80.6	63.2	92.2	87.4	87.9	80.8	80.5				
-	Full Fine-tuning (S6)	4.31	69.7	78.9	59.1	91.5	88.1	87.5	80.5	79.3				
	LoRA	0.92	66.1	78.7	57.8	90.8	87.8	86.9	79.8	78.3				
Parameter	BitFit	0.06	<u>69.5</u>	80.4	54.7	<u>92.0</u>	86.2	85.3	77.2	77.9				
based	Additional-scan	0.68	57.9	74.0	38.6	79.0	79.9	70.5	36.9	62.4				
	Selective Dimension Tuning	0.51	67.5	69.4	14.6	81.8	64.0	82.4	66.1	63.7				
Prompt	Prompt Tuning	0.01	56.0	71.6	12.0	89.4	76.8	79.6	61.5	63.8				
based	Prefix-Tuning	0.03	67.5	75.7	43.4	91.5	83.4	83.1	35.6	68.6				
	Initial State Tuning	0.45	66.8	78.4	53.0	92.4	86.4	86.1	78.5	77.4				
State	State-offset Tuning (h)	0.45	67.4	80.8	56.2	91.9	87.7	85.6	79.7	78.5				
based	State-offset Tuning (y)	0.03	70.0	79.6	52.5	91.7	86.3	85.6	78.2	77.7				

Table 9: Full results of fine-tuning the SSM module on the GLUE dataset using pretrained Mamba 130M. Our State-offset Tuning (h) achieves the highest average score among all PEFT methods.

	Model Size	Mamba-2 1.3B										Mamba-2 130M		
Dataset		Params	Spider SAMSum							m	Params	DART		
Туре	Method	(%)	All	Easy	Medium	Hard	Extra	R1	R2	RL	(%)	MET.	BLEU	
	Full Fine-tuning (All)	100.00	64.8	85.9	65.7	54.0	42.2	51.0	26.9	42.5	100.00	66.6	34.9	
-	Full Fine-tuning (SSD)	2.42	55.1	76.2	56.1	42.5	34.3	50.5	26.3	42.4	4.17	65.7	39.7	
	LoRA	0.37	45.4	69.0	44.4	37.4	21.1	49.7	25.9	41.7	0.76	70.3	49.6	
Parameter	BitFit	0.02	50.9	71.4	51.6	<u>45.4</u>	24.1	50.9	26.5	42.6	0.03	66.2	39.0	
based	Additional-scan	0.47	31.9	57.3	30.5	23.0	7.2	43.0	20.1	34.8	0.91	58.5	16.0	
	Selective Dimension Tuning	0.46	47.5	68.6	47.8	35.7	<u>27.7</u>	47.9	24.8	40.2	0.88	68.2	39.2	
Prompt	Prompt Tuning	0.01	45.2	62.5	46.9	34.5	25.9	49.6	26.1	41.6	0.04	65.5	36.9	
based	Prefix-Tuning	6.99	47.4	71.0	48.2	32.2	25.9	<u>50.8</u>	<u>26.5</u>	42.6	12.81	69.2	46.5	
	Initial State Tuning	1.84	54.3	73.4	57.2	<u>45.4</u>	27.1	50.4	26.4	42.3	3.53	65.3	37.2	
State	State-offset Tuning (h)	1.84	<u>58.5</u>	79.3	<u>61.6</u>	44.6	33.7	48.8	24.7	40.5	3.53	<u>70.0</u>	46.3	
based	State-offset Tuning (h) (low rank)	0.35	60.5	<u>79.0</u>	65.7	52.3	<u>27.7</u>	50.4	26.8	42.5	0.72	69.8	<u>47.9</u>	
	State-offset Tuning (y)	0.01	43.6	66.5	42.1	36.9	21.1	50.3	26.2	42.2	0.03	65.9	38.7	

Table 10: Experimental results of fine-tuning the SSM module using pretrained Mamba-2 (Dao and Gu, 2024) models. We evaluate Spider and its subsets with execution accuracy, SAMSum using ROUGE-1/2/L scores, and DART through METEOR and BLEU scores. State-offset Tuning (h) with low-rank adaptation (Sec. C) significantly reduces trainable parameters. It outperforms existing methods on Spider by a wide margin and matches the performance of other approaches on SAMSum and DART.