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Abstract

State Space Models (SSMs) have emerged as001
efficient alternatives to Transformers, mitigat-002
ing their quadratic computational cost. How-003
ever, the application of Parameter-Efficient004
Fine-Tuning (PEFT) methods to SSMs remains005
largely unexplored. In particular, prompt-based006
methods like Prompt Tuning and Prefix-Tuning,007
which are widely used in Transformers, do not008
perform well on SSMs. To address this, we009
propose state-based methods as a superior al-010
ternative to prompt-based methods. This new011
family of methods naturally stems from the012
architectural characteristics of SSMs. State-013
based methods adjust state-related features di-014
rectly instead of depending on external prompts.015
Furthermore, we introduce a novel state-based016
PEFT method: State-offset Tuning. At every017
timestep, our method directly affects the state at018
the current step, leading to more effective adap-019
tation. Through extensive experiments across020
diverse datasets, we demonstrate the effective-021
ness of our method.1022

1 Introduction023

Large Language Models (LLMs) have gained sig-024

nificant attention for their strong performance in025

NLP tasks (Achiam et al., 2023; Brown et al.,026

2020), but suffer from the quadratic complexity027

of Transformer architectures (Vaswani et al., 2017).028

To mitigate this, subquadratic alternatives have029

gained interest (Katharopoulos et al., 2020; Peng030

et al., 2023; Sun et al., 2023), with State Space031

Models (SSMs) emerging as a promising solu-032

tion (Gu and Dao, 2024; Dao and Gu, 2024).033

Meanwhile, as LLMs scale up, full fine-tuning034

for downstream tasks becomes prohibitively ex-035

pensive. Consequently, Parameter-Efficient Fine-036

Tuning (PEFT) (Houlsby et al., 2019; Hu et al.,037

2021; He et al., 2021; Zaken et al., 2022; Liu et al.,038

1Code available at https://anonymous.4open.
science/r/ssm-research-acl-22B6

2021, 2022; Zeng and Lee, 2024) has emerged, 039

which aims to reduce the number of trainable pa- 040

rameters while achieving adaptation performance 041

comparable to full fine-tuning. 042

However, research on PEFT methods for SSMs 043

remains limited despite their growing popularity. 044

For instance, prompt-based PEFT methods, such 045

as Prompt Tuning (Lester et al., 2021) and Prefix- 046

Tuning (Li and Liang, 2021), have been widely 047

applied to Transformers but fail to adapt effectively 048

to SSMs (Galim et al., 2024). Therefore, new PEFT 049

strategies tailored to SSMs are needed to fully lever- 050

age their architectural properties. 051

To bridge this gap, we introduce state-based 052

PEFT methods that leverage the intrinsic properties 053

of SSMs, offering a superior alternative to prompt- 054

based methods. Building on this concept, we pro- 055

pose State-offset Tuning. This method directly ad- 056

justs the state-related features rather than relying 057

on external prompts, enabling more effective adap- 058

tation. 059

In summary, our main contributions are: 060

• We introduce state-based methods, a new family 061

of PEFT techniques for SSMs, offering a superior 062

alternative to prompt-based approaches. 063

• We propose State-offset Tuning as a new state- 064

based PEFT method. 065

• We demonstrate the effectiveness of our method 066

through experiments on a variety of datasets, con- 067

sistently outperforming existing fine-tuning tech- 068

niques. 069

2 Related Works 070

2.1 State Space Models 071

Linear State-Space Layers (LSSL) are one of the 072

earliest applications of SSMs in sequence model- 073

ing (Gu et al., 2021), leveraging HiPPO (Gu et al., 074

2020) to initialize the state matrix. However, its 075

high computational overhead limits practicality. Gu 076
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Figure 1: Illustration of our proposed State-offset Tun-
ing on a Mamba block (Gu and Dao, 2024). State-offset
Tuning injects a trainable state-offset h′ at each timestep
in the SSM module while keeping other parameters
frozen, enabling parameter-efficient fine-tuning and im-
proved downstream performance.

et al. (2022) introduced Structured State Space077

Models (S4), which mitigate this by structuring078

the state matrix. Recently, Mamba (Gu and Dao,079

2024; Dao and Gu, 2024) enhanced modeling ca-080

pabilities by introducing an input-dependent S6081

block.082

2.2 Paramter-Efficient Fine-Tuning083

In this section, we review existing PEFT methods.084

For more details, see Sec. D.085

Parameter-based Methods One approach to086

parameter-based PEFT methods is to selectively087

fine-tune specific layers within the model while088

keeping the remaining layers frozen. BitFit (Zaken089

et al., 2022) is a lightweight and effective strategy090

that focuses solely on fine-tuning a model’s bias091

terms. Furthermore, LoRA (Hu et al., 2021) repre-092

sents a notable parameter-based PEFT method by093

introducing low-rank matrices for weight updates,094

facilitating efficient adaptation.095

Prompt-based Methods Instead of fine-tuning096

model parameters, Prompt Tuning (Lester et al.,097

2021) enhances models by prepending trainable098

soft embeddings to the prompt. Prefix-Tuning (Li099

and Liang, 2021) builds on this approach by100

injecting trainable embeddings into each Trans-101

former layer, achieving strong adaptation results102

for Transformer-based LLMs.103

PEFT for SSMs Galim et al. (2024) showed104

that LoRA outperforms prompt-based methods on105

SSMs. Furthermore, they proposed Selective Di- 106

mension Tuning (SDT) for fine-tuning the SSM 107

module while applying LoRA on the linear pro- 108

jection matrices when fine-tuning Mamba models. 109

Yoshimura et al. (2024) suggested a new PEFT 110

method called Additional-scan, which increases 111

the hidden state dimension of SSMs, fine-tuning 112

only its additional parameters. 113

3 PEFT Methods on SSMs 114

SSM Preliminaries Assuming a single channel 115

dimension, SSMs such as S4 (Gu et al., 2022) trans- 116

form a signal xt ∈ R into yt ∈ R through an H- 117

dimensional latent state ht ∈ RH as below: 118

ht = Aht−1 +Bxt, yt = Cht, 119

where B ∈ RH×1 controls input influence, A ∈ 120

RH×H governs state dynamics, and C ∈ R1×H 121

maps the state to the output. A and B represent 122

discretized versions of A and B, using learning 123

step size ∆ ∈ R. 124

In S6 (the SSM module of Mamba), input depen- 125

dency is integrated by using input-dependent At, 126

Bt, and Ct at every timestep. Specifically, given 127

D channels with xt ∈ RD, learnable parameters 128

WB,WC ∈ RH×D, and W∆ ∈ RD×D compute 129

Bt = WBxt, Ct = WCxt, and ∆ = W∆xt. In 130

this section, we consider S4 for simplicity. 131

3.1 Prompt-based PEFT Methods on SSMs 132

Prefix-Tuning Can Update Only the Initial State 133

of an SSM Generally, SSMs assume that the ini- 134

tial hidden state is h0 = 0. We can express ht with 135

h0 as ht =
∑t

i=1A
t−i

Bixi +A
t
h0. 136

Assume we have virtual tokens x(−V+1), . . . , x0. 137

If we prepend virtual tokens as prefix to the input 138

sequence, we can write the updated ĥt as below: 139

ĥt = ht +A
t∑V−1

i=0
A

i
Bx−i = ht +A

t
hprefix. 140

By introducing a non-zero ĥ0, we can substitute 141

ĥ0 for hprefix making Prefix-Tuning, or optimiz- 142

ing virtual tokens, equivalent to updating the ini- 143

tial state. As optimized virtual tokens only affect 144

the initial state ĥ0, Prefix-Tuning’s expressivity 145

is upper-bounded by updating the initial state di- 146

rectly. Since Prefix-Tuning is an extended version 147

of Prompt Tuning, this upper bound is applicable 148

to Prompt Tuning as well. 149

Galim et al. (2024) showed Initial State Tuning, 150

an advanced version of Prefix-Tuning, which di- 151

rectly optimizes the channel-specific initial state 152
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h′ ∈ RH , resulting in DH trainable parameters in153

total across all D channels. The updated output ŷt154

for Initial State Tuning can be written as in Table 1.155

3.2 State-based Methods: A New Family of156

PEFT Methods for SSMs157

We define state-based methods as a new family158

of PEFT methods specifically designed for SSMs.159

These methods directly modify the intrinsic state-160

related features within the SSM module.161

In contrast, prompt-based methods, such as162

Prefix-Tuning, influence the hidden state of the163

SSM module indirectly by introducing external vir-164

tual tokens. While both approaches adjust the hid-165

den state of the SSM module, state-based methods166

operate within the SSM module itself, offering a167

more direct and expressive adaptation strategy.168

Based on our definition, we classify Initial169

State Tuning as state-based method. While Initial170

State Tuning surpasses Prefix-Tuning (Galim et al.,171

2024), it still falls short compared to other fine-172

tuning methods on SSMs. To bridge this gap, we173

propose a novel state-based method for enhanced174

performance.175

Initial State Tuning ŷt = yt +Ct

(∏t
i=1Ai

)
h′

State-offset Tuning (h) ŷt = yt +Cth
′

State-offset Tuning (y) ŷt = yt + y′

Table 1: State-based Methods for S6. Our methods elim-
inate the time-dependent coefficient

∏t
i=1 Ai, ensuring

a uniform effect across timesteps.

Prompt-based Timestep T Timestep T + 1

Prefix [prefix, x1, . . . , xT ] → [prefix, x1, . . . , xT ,xT+1]

Suffix [x1, . . . , xT , suffix]→ [x1, . . . , xT , suffix, xT+1]

Iterative Suffix [x1, . . . , xT , suffix]→ [x1, . . . , xT , xT+1, suffix]

Table 2: Comparison of Prefix Tuning, Suffix Tuning,
and Iterative Suffix Tuning.

4 Proposed State-based PEFT Method176

In this section, we propose State-offset Tuning as a177

new state-based PEFT method. A visual compari-178

son with Initial State Tuning and Prefix-Tuning is179

provided in Sec. A.180

4.1 State-offset Tuning181

Initial State Tuning introduces an additional term182

h′ with a coefficient At for S4 and
∏t

i=1Ai for183

S6. However, this coefficient, which varies for each184

timestep, tends to decrease over time, leading to185

inconsistent effects. This is related to the issue 186

that SSMs struggle to recall early tokens (Fu et al., 187

2022). To address this and ensure a consistent 188

effect for each timestep, we introduce State-offset 189

Tuning, which eliminates this coefficient. 190

State-offset Tuning adds a constant, learnable 191

state-offset h′ to the hidden state h before obtain- 192

ing the updated output ŷt (Fig. 1). Therefore, unlike 193

Initial State Tuning, State-offset Tuning does not 194

alter the hidden state dynamics directly. Instead, 195

State-offset Tuning adds a constant h′ repetitively 196

for each timestep, ensuring a uniform impact. 197

We formulate State-offset Tuning (h) for S6 in 198

Table 1, where we optimize h′ ∈ RH . In S4, Ct 199

does not depend on the input, simplifying to a con- 200

stant C. This allows us to optimize a bias y′ instead 201

of h′ (with y′ := Ch′ for each dimension). We 202

name this method State-offset Tuning (y). For S4, 203

State-offset Tuning (y) and State-offset Tuning (h) 204

are equivalent. In S6, opting for the simpler State- 205

offset Tuning (y) enhances parameter efficiency by 206

decreasing the tunable parameters from DH to D. 207

4.2 Connection to Prompt-based Methods 208

To further validate the methodology of State-offset 209

Tuning, we examine its connection to prompt-based 210

methods and demonstrate its correspondence to 211

Iterative Suffix-Tuning. 212

Iterative Suffix-Tuning Li and Liang (2021) 213

showed that in Transformers, inserting virtual to- 214

kens at the beginning (Prefix-Tuning) or the end 215

(Suffix-Tuning, referred to as Infix-Tuning in their 216

work) yields similar performance. 217

However, for SSMs, the position of the inserted 218

virtual tokens is crucial, as these models tend to 219

forget early tokens. The effect of Prefix-Tuning and 220

Suffix-Tuning diminishes as the model processes 221

subsequent timesteps. This leads to the question: 222

how can we maintain consistent influence of virtual 223

tokens across all timesteps in SSMs? 224

To achieve this, we propose Iterative Suffix- 225

Tuning. As shown in Table 2, both Prefix-Tuning 226

and Suffix-Tuning hold virtual tokens in fixed po- 227

sitions throughout all timesteps. Conversely, It- 228

erative Suffix-Tuning shifts virtual tokens to the 229

sequence’s last position at each timestep, ensur- 230

ing uniform influence in SSMs. This method is 231

akin to how State-offset Tuning eliminates the time- 232

varying coefficient in Initial State Tuning, enforc- 233

ing a consistent effect at every timestep. We show 234

that Iterative Suffix-Tuning in SSMs is equivalent 235
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Model Size Mamba 1.4B Mamba 130M

Dataset Params
(%)

Spider SAMSum Params
(%)

DART GLUE

Type Method All Easy Medium Hard Extra R1 R2 RL MET. BLEU Avg.

-
Full Fine-tuning (All) 100.00 66.2 84.3 69.5 53.4 43.4 51.2 27.3 42.9 100.00 71.0 51.8 80.5
Full Fine-tuning (S6) 4.46 56.7 76.6 57.8 46.0 34.9 51.1 26.9 42.2 4.31 70.3 48.7 79.3

Parameter
based

LoRA 0.46 56.3 75.0 56.5 50.6 33.7 50.5 26.4 42.2 0.92 69.9 50.8 78.3
BitFit 0.03 51.3 74.2 50.9 43.1 26.5 50.3 25.7 41.9 0.06 67.0 43.7 77.9
Additional-scan 0.34 26.9 44.4 25.6 21.3 10.2 37.6 17.5 30.9 0.68 60.6 15.8 62.4
Selective Dimension Tuning 0.26 19.8 38.3 16.6 16.1 4.8 46.3 21.5 37.7 0.51 67.5 48.2 63.7

Prompt
based

Prompt Tuning 0.01 43.6 65.3 42.4 33.3 25.3 50.1 25.6 41.6 0.04 66.2 39.8 63.8
Prefix-Tuning 12.81 39.7 65.7 38.6 31.0 15.1 50.6 26.5 42.1 22.69 66.6 42.5 68.6

State
based

Initial State Tuning 0.23 51.8 77.8 51.1 35.1 32.5 50.0 26.0 41.3 0.45 69.1 46.2 77.4
State-offset Tuning (h) 0.23 57.4 77.4 59.9 44.8 33.7 50.9 26.5 42.4 0.45 70.0 47.0 78.5
State-offset Tuning (y) 0.01 53.0 77.4 55.4 40.8 22.9 50.6 26.1 42.0 0.03 66.8 45.2 77.7

Table 3: Experimental results of fine-tuning the SSM module (S6) using Mamba (Gu and Dao, 2024) models.
We assess Spider and its subsets using execution accuracy, SAMSum with ROUGE-1/2/L scores, DART using
METEOR and BLEU scores, and GLUE by calculating the average score. To demonstrate the effectiveness of
our methods, we configured the hyperparameters of each method to ensure their parameter budget is comparable
to or exceeds that of our methods. Bold and underline indicate the best and the second-best results, respectively,
among all methods (excluding full fine-tuning). Our State-offset Tuning (h) outperforms all other methods on most
datasets, and our State-offset Tuning (y) shows comparable or better performance than other methods despite its
significantly fewer trainable parameters.

to State-offset Tuning (as detailed in Sec. B).236

5 Experiments237

5.1 Experiment Setup238

We conduct experiments for fine-tuning the SSM239

module (S6) using pretrained Mamba (Gu and Dao,240

2024) and Mamba-2 (Dao and Gu, 2024) models241

on four datasets: Spider (Yu et al., 2018), SAM-242

Sum (Gliwa et al., 2019), DART (Nan et al., 2021),243

and GLUE (Wang et al., 2019). For further informa-244

tion on datasets, evaluation metrics, and experimen-245

tal details, refer to Secs. E and F. We use LoRA (Hu246

et al., 2021), BitFit (Zaken et al., 2022), Additional-247

scan (Yoshimura et al., 2024), and Selective Dimen-248

sion Tuning (Galim et al., 2024) as parameter-based249

methods. For prompt-based methods, we employ250

Prompt Tuning (Lester et al., 2021) and Prefix-251

Tuning (Li and Liang, 2021). For state-based meth-252

ods, we utilize Initial State Tuning (Galim et al.,253

2024), along with our proposed methods, State-254

offset Tuning (h) and State-offset Tuning (y).255

5.2 Experimental Results256

Table 3 shows the results on Mamba models. More257

results, including Mamba-2 results, are provided258

in Sec. G. Furthermore, in Sec. G, we compare the259

training speed and memory usage of LoRA and260

State-offset Tuning (h), demonstrating that ours is261

faster and more memory-efficient than LoRA.262

State-based Methods Outperform Prompt-263

based Methods Table 3 shows that all state-264

based methods outperform prompt-based methods, 265

supporting the claim that state-based methods are 266

superior to prompt-based methods on SSMs. 267

In particular, our State-offset Tuning (h) 268

achieves the best results among all tested PEFT 269

methods on most datasets. Our State-offset Tun- 270

ing (y) outperforms Initial State Tuning on most 271

datasets, using just 0.01% of the parameters com- 272

pared to 0.23% by Initial State Tuning. 273

State-offset Tuning Outperforms Parameter- 274

Based Methods State-offset Tuning (h) outper- 275

forms BitFit across all datasets and surpasses LoRA 276

on most datasets. Notably, it also outperforms 277

Additional-scan and Selective Dimension Tuning, 278

which are methods specifically designed for fine- 279

tuning SSM modules, across all datasets. 280

Furthermore, State-offset Tuning (h) achieves 281

performance comparable to full fine-tuning (S6), 282

highlighting the effectiveness of state-based PEFT 283

for SSM modules, despite using significantly fewer 284

parameters. The results from Mamba-2 (Table 10) 285

further validate the effectiveness of our method. 286

6 Conclusion 287

In this paper, we introduce state-based methods 288

as a new family of PEFT methods for State Space 289

Models, serving as a superior alternative to prompt- 290

based methods. We propose State-offset Tuning as 291

a new state-based PEFT method and demonstrate 292

its effectiveness through extensive experiments. 293
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7 Limitations294

While we demonstrate that State-offset Tuning is295

effective for fine-tuning SSMs in the text domain,296

its applicability to other domains, such as vision or297

speech, remains unexplored. Existing PEFT meth-298

ods, such as LoRA and Prompt Tuning, have been299

successfully applied across various domains (Jia300

et al., 2022; Gal et al., 2022; Ran et al., 2024).301

Extending State-offset Tuning to models in other302

domains, such as Vision Mamba (Zhu et al., 2024),303

is an interesting direction for future work.304

Potential Risks Our approach enables parameter-305

efficient fine-tuning (PEFT) of pretrained SSMs,306

significantly reducing the computational cost of307

adaptation. While this is beneficial for resource-308

constrained scenarios, it also presents potential309

risks. Specifically, adversaries could leverage our310

method to efficiently fine-tune pretrained SSMs on311

harmful or biased data, enabling the rapid adapta-312

tion of models for malicious purposes with minimal313

computational resources. This could lead to the pro-314

liferation of harmful or deceptive models that rein-315

force misinformation, bias, or toxicity. To mitigate316

these risks, future work should explore more robust317

safety measures, such as integrating ethical fine-318

tuning constraints and monitoring mechanisms.319
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A Visual Comparison of Prompt-based576

Methods and State-based Methods577

Fig. 2 compares prompt-based methods and state-578

based methods, including our proposed techniques,579

within the S6 block.580
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Figure 2: Visual comparison of prompt-based methods
and state-based methods in the S6 block.

State-based Methods Operate within the SSM581

Module Fig. 2 shows that prompt-based meth-582

ods, such as Prefix-Tuning, rely on virtual tokens583

external to the S6 block. In contrast, state-based584

methods, such as Initial State Tuning, State-offset585

Tuning (h), and State-offset Tuning (y), directly586

adjust state-related features within the S6 block.587

State-offset Tuning affects the Current Timestep588

Figure 2 illustrates how Prefix-Tuning and Initial589

State Tuning modify features at early timesteps,590

indirectly affecting the current state. However, this591

impact diminishes over time. In contrast, State-592

offset Tuning (h) and State-offset Tuning (y) di-593

rectly influence the state at each timestep, resulting594

in more effective adaptation.595

B Iterative Suffix-Tuning and State-offset596

Tuning597

In this section, we show that Iterative Suffix-Tuning598

for SSMs is equivalent to State-offset Tuning.599

State-offset Tuning is Iterative Suffix-Tuning600

Fig. 3 provides two different implementations of601

Hidden State: ht−1 Btxt Bt+1xt+1

Input: xt+1

Output: yt+1

At+1At× At+1× I×

Ct+1×

(a) Iterative Suffix-Tuning (with t+ 1 as current timestep)

Hidden State: ht−1 Btxt Bt+1xt+1

Input: xt

Output: yt

At× I×

Ct×

A
−1
t+1×

(b) Iterative Suffix-Tuning (with t as current timestep)

Figure 3: Two different implementations of Iterative
Suffix Tuning on SSM. We show that Fig. 3b is equiva-
lent to State-offset Tuning.

Iterative Suffix-Tuning on SSMs (S6) with vir- 602

tual token (suffix) xt+1. Fig. 3a views t+ 1 as 603

current timestep. In this case, input-dependent 604

Ct+1 = WCxt+1 is determined solely by the suf- 605

fix xt+1 ∈ RD, which is constant at inference time, 606

thus the input dependency of C is lost, reducing 607

the expressive power of S6. 608

To address this, we view t as current timestep 609

instead and interpret xt+1 as future token (Fig. 3b). 610

Consequently, we time-shift xt+1 by multiplying it 611

with the inverse of At+1. 612

Fig. 3a: yt+1 = Ct+1(At+1ht +Bt+1xt+1), 613

Fig. 3b: yt = Ct(ht +A
−1
t+1Bt+1xt+1). 614

Therefore, according to the equation corresponding 615

to Fig. 3b, Iterative Suffix-Tuning can be imple- 616

mented by updating only A
−1
t+1Bt+1xt+1. Since 617

this term depends solely on the constant suffix xt+1, 618

we can directly replace it with a learnable parame- 619

ter h′ (h′ := A
−1
t+1Bt+1xt+1), which is equivelant 620

to State-offset Tuning (h) (Table 1). 621

C Low-Rank State-offset Tuning 622

State-offset Tuning (h) shows superior parameter 623

efficiency on Mamba versus other PEFT methods. 624

To further reduce trainable parameters, we can rep- 625

resent the learnable state-offset as a product of two 626

low-rank matrices, inspired by LoRA (Hu et al., 627

2021). This is particularly useful for Mamba-2, 628

8



where the state dimension is larger than in Mamba,629

leading to an increased number of trainable pa-630

rameters. In such cases, low-rank techniques can631

effectively mitigate the parameter overhead. Ex-632

perimental results of State-offset Tuning (h) with633

lower rank on Mamba-2 are provided in Sec. G.2.634

D PEFT Baselines635

In this section, we provide a more detailed descrip-636

tion of the baseline methods.637

LoRA (Hu et al., 2021). LoRA aims to fine-tune638

large models by maintaining the bulk of pretrained639

parameters untouched while introducing trainable640

low-rank matrices within each Transformer’s layer.641

This method leverages linear algebra principles642

where a large matrix can be effectively approxi-643

mated by two low-rank matrices, thus reducing644

the number of parameters. LoRA includes a scal-645

ing parameter to adjust the influence of original646

and LoRA weights during training. We use the647

Hugging Face version (Apache License 2.0, Man-648

grulkar et al. (2022)) of LoRA for our experiments.649

Prompt Tuning (Lester et al., 2021). This650

method involves freezing the entire model and651

adding a trainable soft prompt to the input. The652

prompt consists of continuous virtual tokens that653

provide additional context.654

Prefix-Tuning (Li and Liang, 2021). Similar to655

Prompt Tuning, Prefix-Tuning adds trainable to-656

kens but extends them across every Transformer657

layer by appending trainable embeddings to the at-658

tention matrices. To combat the instability in train-659

ing these prefixes, an over-parameterized MLP is660

utilized, which can be discarded after training.661

BitFit (Zaken et al., 2022). This PEFT method662

simplifies fine-tuning by freeing only the bias terms663

while freezing the other model weights, drastically664

reducing trainable parameters.665

SDLoRA (Galim et al., 2024). SDLoRA (LoRA666

with Selective Dimension Tuning) employs a667

sparse updating approach for the matrices A, B,668

and C (WB and WC for S6), while additionally669

applying LoRA to the linear projection layers. All670

remaining layers are kept frozen. The process for671

determining which parameters to update involves a672

warmup stage, during which parameters are flagged673

as updatable if they exhibit a significant gradient674

magnitude. In our SDLoRA experiments, we ex-675

cluded LoRA from the linear projection layers and676

focused solely on its S6 component (Selective Di- 677

mension Tuning) to ensure a fair comparison. 678

Additional-scan (Yoshimura et al., 2024). This 679

approach enhances the model’s expressivity by ex- 680

panding the state dimensions for A, WB , and WC . 681

During training, only the added dimensions are 682

marked as trainable. 683

E Datasets 684

Dataset #Train #Valid #Epochs Model size Metrics

RTE 2490 277 10 130m Acc.
MRPC 3668 408 10 130m Acc.
CoLA 8551 1043 10 130m Acc.
SST-2 67349 872 10 130m Acc.
QNLI 104743 5463 10 130m Acc.
QQP 363846 40430 3 130m Acc.
MNLI 392702 19647 3 130m Acc.
Spider 6918 1034 10 1.4B, 2.8B Acc.
SAMSum 14732 819 10 1.4B ROUGE
DART 62659 2768 10 130m METEOR, BLEU

Table 4: Dataset details. We report the number of train-
ing and validation samples, number of training epochs,
employed model size and evaluation metrics.

This paper examines four datasets across two do- 685

mains: Natural Language Understanding (NLU) 686

and Natural Language Generation (NLG). Table 4 687

presents detailed information for each dataset. 688

GLUE (Wang et al., 2019). A benchmark com- 689

prising nine tasks in English for assessing language 690

understanding models, including sentiment analy- 691

sis, linguistic acceptability, and question answering. 692

We use the the following datasets: RTE (Dagan 693

et al., 2005; Bar-Haim et al., 2006; Giampiccolo 694

et al., 2007; Bentivogli et al., 2009), MRPC (Dolan 695

and Brockett, 2005), CoLA (Warstadt, 2019), SST- 696

2 (Socher et al., 2013), QNLI (Rajpurkar et al., 697

2018), QQP2, and MNLI (Williams et al., 2018). 698

Evaluation is mainly through accuracy, except 699

for CoLA where Matthews correlation is used. 700

The final metric is calculated as the average ac- 701

curacy (Matthews correlation for CoLA) across 702

all datasets. The individual datasets are avail- 703

able under different permissive licenses. We use 704

the version hosted at https://huggingface.co/ 705

datasets/nyu-mll/glue. 706

SAMSum (Gliwa et al., 2019). A dataset for di- 707

alogue summarization featuring about 16,000 syn- 708

thetic conversations in English with summaries, 709

created to simulate digital communications with 710

2https://quoradata.quora.com/
First-Quora-Dataset-Release-Question-Pairs
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varied tones and styles. Its structure helps in de-711

veloping systems that process conversational text.712

The dataset is evaluated via ROUGE score. This713

dataset is available under the CC BY-NC-ND 4.0714

license. We use the version hosted at https://715

huggingface.co/datasets/Samsung/samsum.716

Spider (Yu et al., 2018). A text-to-SQL dataset717

with 10,000 annotated SQL queries across 200+718

databases, classifying queries from easy to extra719

hard based on SQL operation complexity. It in-720

volves translating English questions to SQL, eval-721

uated via execution accuracy. Execution accuracy722

considers the output correct if the model’s predicted723

SQL query and the ground truth SQL query yield724

the same results when executed on the database.725

This dataset is available under the CC BY-SA 4.0726

license. We use the version hosted at https://727

huggingface.co/datasets/xlangai/spider.728

DART (Nan et al., 2021). Comprising over729

80,000 instances, DART focuses on English RDF-730

to-text generation, organized by structured data731

triples and corresponding text summaries. It’s as-732

sessed using METEOR and BLEU metrics. This733

dataset is available under the MIT license. We use734

the version hosted at https://huggingface.co/735

datasets/Yale-LILY/dart.736

F Experimental Details737

For every dataset, we select the model size based738

on how difficult the dataset is and conduct a739

brief grid search for one epoch using a subset740

of the data (1k-2k instances) with learning rates741

of {4 × 10−1, 2 × 10−1, 1 × 10−1, ..., 1 × 10−5}.742

The best learning rate is then selected as the rate743

that has the lowest training loss. In our experi-744

mental results, we report the metric from the best745

epoch observed on the validation set during train-746

ing, employing early stopping. Each experiment747

is conducted once. We apply fine-tuning methods748

to the SSM module (S6) of Mamba (130M, 1.4B,749

2.8B)3 and the SSM module (SSD) of Mamba-2750

(130M, 1.3B)4 pretrained from Pile (MIT License,751

Gao et al. (2020)) using AdamW (Loshchilov and752

Hutter, 2019) with a linear decay schedule for the753

learning rate. In general, we choose hyperparam-754

eters for each individual method to ensure that all755

3Apache License 2.0, https://huggingface.co/state-
spaces/mamba-{130m,1.4b,2.8b}

4Apache License 2.0, https://huggingface.co/state-
spaces/mamba2-{130m,1.3b}

methods operate within a similar parameter bud- 756

get. Tables 5 and 6 show selected learning rates 757

and chosen hyperparameters for each method. For 758

assessing NLG tasks, we utilize beam search with 759

five beams and a maximum beam length of 1024. 760

BLEU (Papineni et al., 2002), ROUGE (Lin, 2004), 761

and METEOR (Banerjee and Lavie, 2005) met- 762

rics are computed using Hugging Face’s evaluate 763

library5. 764

We use an NVIDIA RTX 3090 24GB for train- 765

ing models with less than 1 billion parameters, and 766

an NVIDIA H100 80GB for larger models. We im- 767

plemented our project in PyTorch (Modified BSD 768

license, Paszke et al. (2019)), utilizing the Hug- 769

ging Face trainer (Apache License 2.0, Wolf et al. 770

(2020)). We train with batch size 4 for 10 epochs 771

on all datasets except QQP and MNLI for which 772

we use 3 epochs, allowing each training run to fin- 773

ish in under 16 hours. This project spanned three 774

months, utilizing four NVIDIA RTX 3090 24GB 775

GPUs and four NVIDIA H100 80GB GPUs, total- 776

ing approximately 17,000 GPU hours. 777

G Additional Experimental Results 778

G.1 Mamba Results 779

Training Speed and Memory Usage We con- 780

duct a small experiment to compare the memory 781

usage and training speed of State-offset Tuning (h) 782

and LoRA, as they performed most similarly in 783

terms of dataset metrics in our experiments. Us- 784

ing a single H100 GPU, we train for 100 batch 785

iterations with a batch size of 4 and a 1K context, 786

continuously measuring memory usage and batch 787

latency. 788

Table 7 shows the training speed and maximum 789

memory usage for different Mamba sizes for State- 790

offset Tuning (h) and LoRA. State-offset Tuning 791

(h) uses less memory and is faster, even with more 792

trainable parameters. In this experiment, we se- 793

lected hyperparameters to ensure LoRA has less 794

trainable parameters than State-offset Tuning (h). 795

We believe State-offset Tuning (h)’s efficiency 796

stems from our optimized einsum implementa- 797

tion, enhanced with the opt_einsum (MIT License, 798

Smith and Gray (2018)) Python package to reduce 799

memory usage and improve latency. 800

5Apache License 2.0, https://huggingface.co/spaces/evaluate-
metric/{bleu,rouge,meteor}
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Model Mamba Mamba-2

Method / Dataset RTE MRPC CoLA SST-2 QNLI QQP MNLI DART SAMSum Spider DART SAMSum Spider

LoRA 2e-03 2e-03 4e-05 2e-03 1e-03 1e-03 2e-03 4e-03 2e-03 4e-03 4e-03 2e-03 4e-03
Additional-scan 4e-03 2e-03 2e-03 1e-01 2e-03 4e-02 4e-03 4e-03 4e-03 4e-03 2e-02 4e-03 1e-02
Selective Dimension Tuning 1e-03 4e-02 1e-01 4e-02 2e-02 2e-02 1e-01 4e-02 2e-02 4e-02 2e-03 1e-03 1e-03
Initial State Tuning 4e-04 1e-03 2e-03 2e-03 2e-03 2e-03 2e-03 2e-03 2e-04 1e-03 4e-03 2e-04 4e-04
State-offset Tuning (h) 1e-03 2e-04 2e-04 1e-04 1e-04 4e-05 4e-04 4e-04 1e-04 2e-04 1e-03 2e-05 2e-05
State-offset Tuning (h) (low rank) - - - - - - - - - - 4e-03 2e-04 2e-04
State-offset Tuning (y) 1e-03 2e-03 1e-03 1e-03 2e-03 1e-03 1e-03 4e-03 1e-03 2e-03 1e-02 2e-04 1e-03

Table 5: Learning rates for each method and dataset. For Mamba and Mamba-2, learning rates for each method and
dataset are determined via a small grid search on a dataset subset. The learning rate yielding the best training loss is
chosen as the final rate.

Method /Model Mamba 130M Mamba 1.4B Mamba-2 130M Mamba-2 1.3B

LoRA

Rank = 8
α = 8
Dropout = 0.1
Modules = all weight matrices in S6

Rank = 8
α = 8
Dropout = 0.1
Modules = all weight matrices in S6

Rank = 16
α = 16
Dropout = 0.1
Modules = all weight matrices in SSD

Rank = 16
α = 16
Dropout = 0.1
Modules = all weight matrices in SSD

Additional-scan #States = 8 #States = 8 #States = 32 #States = 32

Selective Dimension Tuning
Freeze #Channels = 50.0%
Freeze #States = 75.0%

Freeze #Channels = 50.0%
Freeze #States = 75.0%

Freeze #Channels = 75.0%
Freeze #States = 0.0%

Freeze #Channels = 75.0%
Freeze #States = 0.0%

Initial State Tuning - - - -

State-offset Tuning (h) - - - -

State-offset Tuning (h) (low rank) - - Rank = 32 Rank = 64

State-offset Tuning (y) - - - -

Table 6: Hyperparameter settings for each model and PEFT method. In general, we adjust hyperparameters to
maintain a similar number of trainable parameters.

Model Method Params (%) Mem. (GB) Latency (s)

130M
State-offset Tuning (h) 0.45 4.2 0.13
LoRA 0.35 5.44 0.18

370M
State-offset Tuning (h) 0.42 9.36 0.33
LoRA 0.32 11.56 0.45

790M
State-offset Tuning (h) 0.3 13.91 0.49
LoRA 0.23 17.17 0.61

1.4B
State-offset Tuning (h) 0.23 18.77 0.67
LoRA 0.17 22.99 0.8

2.8B
State-offset Tuning (h) 0.19 31.49 1.13
LoRA 0.14 37.84 1.33

Table 7: Training speed and memory usage. For each
Mamba size, we compare the maximum memory usage
and mean latency for processing a single batch dur-
ing training. Our State-offset Tuning (h) is compared
against LoRA, as it demonstrated the most similar per-
formance in the experiment section. We configure LoRA
to use fewer trainable parameters than State-offset Tun-
ing (h). Despite this, State-offset Tuning (h) still con-
sumes less memory and is faster in training.

Mamba 2.8B Results Table 8 shows the experi-801

mental results using Mamba 2.8B. Our State-offset802

Tuning (h) outperforms all methods except full803

fine-tuning.804

Mamba Results on GLUE Dataset Table 9805

shows the full results on the GLUE dataset us-806

ing Mamba 130M. Our State-offset Tuning (h)807

achieves the highest average score among all PEFT808

methods.809

G.2 Mamba-2 Results 810

Table 10 shows experimental results using Mamba- 811

2 (Dao and Gu, 2024) models. State-offset Tuning 812

(h) with low-rank adaptation (Sec. C) significantly 813

reduces the number of trainable parameters. It 814

outperforms existing methods on the Spider bench- 815

mark by a large margin and achieves performance 816

comparable to other approaches on the SAMSum 817

and DART datasets. 818
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Model Size Mamba 2.8B

Dataset Params
(%)

Spider

Type Method All Easy Medium Hard Extra

-
Full Fine-tuning (All) 100.00 71.8 87.5 73.5 63.8 51.8
Full Fine-tuning (S6) 4.44 65.7 81.9 68.8 58.0 41.0

Parameter
based

LoRA 0.38 63.9 86.3 68.2 49.4 34.3
BitFit 0.02 59.9 82.3 60.8 52.9 31.3
Additional-scan 0.28 35.0 62.0 31.9 27.4 12.1
Selective Dimension Tuning 0.21 14.0 33.9 8.7 9.5 4.2

Prompt
based

Prompt Tuning 0.01 50.7 75.4 53.8 37.4 19.3
Prefix-Tuning 10.82 45.1 75.0 45.1 32.2 13.9

State
based

Initial State Tuning 0.19 59.7 82.3 62.3 43.7 35.5
State-offset Tuning (h) 0.19 65.0 89.1 65.9 51.7 40.4
State-offset Tuning (y) 0.01 63.1 85.9 64.1 52.3 37.3

Table 8: Experimental results of fine-tuning the SSM module using pretrained Mamba 2.8B. State-offset Tuning (h)
stands out as the most effective method among all PEFT approaches.

Model Size Mamba 130M

Dataset Params
(%)

GLUE

Type Method RTE MRPC CoLA SST-2 QNLI QQP MNLI Avg.

-
Full Fine-tuning (All) 100.00 71.1 80.6 63.2 92.2 87.4 87.9 80.8 80.5
Full Fine-tuning (S6) 4.31 69.7 78.9 59.1 91.5 88.1 87.5 80.5 79.3

Parameter
based

LoRA 0.92 66.1 78.7 57.8 90.8 87.8 86.9 79.8 78.3
BitFit 0.06 69.5 80.4 54.7 92.0 86.2 85.3 77.2 77.9
Additional-scan 0.68 57.9 74.0 38.6 79.0 79.9 70.5 36.9 62.4
Selective Dimension Tuning 0.51 67.5 69.4 14.6 81.8 64.0 82.4 66.1 63.7

Prompt
based

Prompt Tuning 0.01 56.0 71.6 12.0 89.4 76.8 79.6 61.5 63.8
Prefix-Tuning 0.03 67.5 75.7 43.4 91.5 83.4 83.1 35.6 68.6

State
based

Initial State Tuning 0.45 66.8 78.4 53.0 92.4 86.4 86.1 78.5 77.4
State-offset Tuning (h) 0.45 67.4 80.8 56.2 91.9 87.7 85.6 79.7 78.5
State-offset Tuning (y) 0.03 70.0 79.6 52.5 91.7 86.3 85.6 78.2 77.7

Table 9: Full results of fine-tuning the SSM module on the GLUE dataset using pretrained Mamba 130M. Our
State-offset Tuning (h) achieves the highest average score among all PEFT methods.

Model Size Mamba-2 1.3B Mamba-2 130M

Dataset Params
(%)

Spider SAMSum Params
(%)

DART

Type Method All Easy Medium Hard Extra R1 R2 RL MET. BLEU

-
Full Fine-tuning (All) 100.00 64.8 85.9 65.7 54.0 42.2 51.0 26.9 42.5 100.00 66.6 34.9
Full Fine-tuning (SSD) 2.42 55.1 76.2 56.1 42.5 34.3 50.5 26.3 42.4 4.17 65.7 39.7

Parameter
based

LoRA 0.37 45.4 69.0 44.4 37.4 21.1 49.7 25.9 41.7 0.76 70.3 49.6
BitFit 0.02 50.9 71.4 51.6 45.4 24.1 50.9 26.5 42.6 0.03 66.2 39.0
Additional-scan 0.47 31.9 57.3 30.5 23.0 7.2 43.0 20.1 34.8 0.91 58.5 16.0
Selective Dimension Tuning 0.46 47.5 68.6 47.8 35.7 27.7 47.9 24.8 40.2 0.88 68.2 39.2

Prompt
based

Prompt Tuning 0.01 45.2 62.5 46.9 34.5 25.9 49.6 26.1 41.6 0.04 65.5 36.9
Prefix-Tuning 6.99 47.4 71.0 48.2 32.2 25.9 50.8 26.5 42.6 12.81 69.2 46.5

State
based

Initial State Tuning 1.84 54.3 73.4 57.2 45.4 27.1 50.4 26.4 42.3 3.53 65.3 37.2
State-offset Tuning (h) 1.84 58.5 79.3 61.6 44.6 33.7 48.8 24.7 40.5 3.53 70.0 46.3
State-offset Tuning (h) (low rank) 0.35 60.5 79.0 65.7 52.3 27.7 50.4 26.8 42.5 0.72 69.8 47.9
State-offset Tuning (y) 0.01 43.6 66.5 42.1 36.9 21.1 50.3 26.2 42.2 0.03 65.9 38.7

Table 10: Experimental results of fine-tuning the SSM module using pretrained Mamba-2 (Dao and Gu, 2024)
models. We evaluate Spider and its subsets with execution accuracy, SAMSum using ROUGE-1/2/L scores, and
DART through METEOR and BLEU scores. State-offset Tuning (h) with low-rank adaptation (Sec. C) significantly
reduces trainable parameters. It outperforms existing methods on Spider by a wide margin and matches the
performance of other approaches on SAMSum and DART.
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