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Abstract
Bridge models in image restoration construct a
diffusion process from degraded to clear images.
However, existing methods typically require train-
ing a bridge model from scratch for each specific
type of degradation, resulting in high computa-
tional costs and limited performance. This work
aims to efficiently leverage pretrained generative
priors within existing image restoration bridges to
eliminate this requirement. The main challenge
is that standard generative models are typically
designed for a diffusion process that starts from
pure noise, while restoration tasks begin with low-
quality images, resulting in a mismatch in the
state distributions between the two processes. To
address this challenge, we propose a transition
equation that bridges two diffusion processes with
the same endpoint distribution. Based on this, we
introduce the IRBridge framework, which enables
the direct utilization of generative models within
image restoration bridges, offering a more flexible
and adaptable approach to image restoration. Ex-
tensive experiments on six image restoration tasks
demonstrate that IRBridge efficiently integrates
generative priors, resulting in improved robust-
ness and generalization performance. Code will
be available at GitHub.

1. Introduction
Image restoration seeks to reconstruct high-quality images
from degraded inputs affected by factors such as rain, fog,
blur, or noise. As a longstanding fundamental problem, it
has been extensively studied over the past decades. Main-
stream learning-based methods typically adopt an end-to-
end supervised paradigm, training regression models for
pixel-level reconstruction. While these approaches achieve
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Figure 1: Our core contribution lies in bridging the transition
between two diffusion processes with the same endpoint
distribution, enabling the leverage of pretrained generative
priors in image restoration bridges.

notable performance, studies (Delbracio & Milanfar, 2023)
reveal that their learning objective often converges to the
mean of multiple plausible solutions, limiting their ability
to recover fine details such as intricate textures.

In contrast, advancements in generative modeling, particu-
larly within the family of diffusion models (Sohl-Dickstein
et al., 2015; Ho et al., 2020; Song et al., 2020a;b), have
demonstrated remarkable performance. These models are
capable of generating satisfying, visually detailed image
samples, attracting attempts (Zhu et al., 2023b; Chung et al.,
2022; Fei et al., 2023; Gou et al., 2024) to explore their
potential in image restoration tasks. However, most of these
methods follow the standard diffusion process, diffusing
images into pure noise and using degraded images as the
condition for generation, which often requires integrating
prior knowledge of the degradation process.

To model the transition from low-quality images to high-
quality images more intuitively, bridge models (Liu et al.,
2022a; De Bortoli et al., 2021; Zhou et al., 2023) have
garnered increasing attention, as they model the stochastic
process between two distributions or fixed points. Com-
pared to generation processes initiated from noise, these
methods (Delbracio & Milanfar, 2023; Luo et al., 2023; Yue
et al., 2023a) better align with the physical dynamics of
image restoration, offering distinct theoretical advantages
(Delbracio & Milanfar, 2023; Yue et al., 2023a).

However, these approaches invariably require training a
model from scratch for each type of degradation, limited by
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dataset scale and model capacity. Given the consistency in
target distributions between image generation models and
image restoration bridge models (i.e., both regard the distri-
bution of high-quality images as their target distribution), a
hopeful avenue is to leverage their powerful generative pri-
ors in the context of image restoration bridges. To achieve
this, a key challenge lies in the differences between the two
diffusion processes. The mismatch between the distribu-
tions of intermediate states in the process flows prevents
the pretrained generative model from directly handling the
states of the image restoration bridge.

To address this challenge, we propose a transition equation
(Section 3.1) that bridges two stochastic processes sharing
the same endpoint distribution, enabling transitions between
their states. We analyze the boundary conditions (Section
3.2) of the transition equation and define forward transition
and reverse transition accordingly. Building on the above
concepts, we propose the IRBridge framework (Section
3.3), which enables the application of pre-trained genera-
tive diffusion models to solve the image restoration bridge
problem. Additionally, we explore inference-time hyperpa-
rameter strategies (Section 5.1) for various tasks to optimize
performance. Our framework eliminates the need to train
restorative bridge models from scratch for specific types
of degradation and reduces training costs while enhancing
model capacity and generalization performance.

Our main contributions can be summarized as follows:

1. We propose a transition equation that bridges two dif-
fusion processes with identical endpoint distributions,
enabling state transitions between an image restoration
bridge and a generative diffusion model.

2. We explore the boundary conditions of the proposed
transition equation, leading to a novel image restora-
tion framework, IRBridge, which effectively integrates
pretrained generative priors into the image restoration
bridge.

3. The proposed framework eliminates the need to train a
separate image restoration bridge model from scratch
for each specific type of degradation. Additionally, it
provides greater flexibility by allowing the customiza-
tion of inference hyperparameters for different tasks to
optimize performance.

4. Extensive experiments on 6 mainstream image restora-
tion tasks demonstrate that the integrated generative
priors significantly enhance the robustness and gener-
alization performance of the image restoration bridge
model.

2. Preliminaries
2.1. Generative Diffusion Models

Generative diffusion models (Ho et al., 2020; Song & Er-
mon, 2019; Rombach et al., 2022) define a forward noising
process that gradually perturbs the data distribution into a
known tractable prior by progressively injecting noise. A
corresponding reverse process is then learned to generate
data by reversing this transformation. From the perspec-
tive of stochastic differential equations (SDEs), generative
diffusion models can be formulated (Song et al., 2020b) as
discretizations of different types of SDEs, typically catego-
rized into variance-preserving (VP) and variance-exploding
(VE) formulations. In the case of DDPM(Ho et al., 2020),
its forward diffusion process is defined by a Markov chain.
At any timestep t, the state xt has a closed-form conditional
distribution:

p(xt) = N (xt;
√
ᾱtx0, (1− ᾱt)I) (1)

where ᾱt are predefined coefficients. A denoising network
ϵθ(xt, t) is trained to predict the added noise ϵ ∼ N (0, I),
and the original sample x0 can then be estimated as:

x̂0 =
xt −

√
1− ᾱtϵθ(xt, t)√

ᾱt
(2)

2.2. Image Restoration Bridge Models

We primarily discuss two types of image restoration bridges:
IR-SDE(Luo et al., 2023) and GOUB(Yue et al., 2023a).
IR-SDE employs a mean-reverting SDE that transforms a
high-quality image xhq into its degraded counterpart xlq,
treating the latter as the mean of the terminal Gaussian
distribution. The employed SDE is formulated as:

dxt = θt(µ− xt)dt+ gtdwt (3)

where wt is standard Brownian motion and µ := xlq. Sup-
pose that the SDE coefficients satisfy g2t /θt := 2λ2 for all
times t, the solution(Luo et al., 2023) to the SDE determined
in Eq 3 is:

p(xt) = N (xt;mt, vtI)

mt = µ+ (x0 − µ)e−θ̄t

vt = λ2(1− e−2θ̄t)

(4)

where θ̄t =
∫ t

0
θzdz . Similar to diffusion models, IR-SDE

restores images by training a neural network to estimate the
score function of the reverse SDE corresponding to Eq 3.
GOUB(Yue et al., 2023a) further incorporates the Doob’s
h-transform (Särkkä & Solin, 2019) into the SDE described
by Eq 3, eliminating the noise at the diffusion endpoint:

dxt = (θt + g2t
e−2θ̄t:T

σ̄2
t:T

)(xT − xt)dt+ gtdwt (5)
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where σ̄2
s:t :=

g2
t

2θt
(1− e−2θ̄s:t) and xT := xlq . Correspond-

ingly, the forward transition is given by:

p(xt) = N (xt; m̄t, v̄tI),

m̄t = e−θ̄t σ̄
2
t:T

σ̄2
T

x0 +

[
(1− e−θ̄t)

σ̄2
t:T

σ̄2
T

+ e−2θ̄t:T σ̄2
t

σ̄2
T

]
xT ,

v̄t = σ̄2
t

σ̄2
t:T

σ̄2
T

,

(6)
GOUB can be viewed as imposing boundary conditions on
the generalized Ornstein-Uhlenbeck process described in Eq
3, by specifying fixed endpoints for the stochastic trajectory.

3. Method
Our goal is to effectively integrate pre-trained generative
models into image restoration bridges. A significant chal-
lenge arises from the differing diffusion processes defined
by image generation models and image restoration bridges.
This discrepancy causes their states to follow distinct dis-
tributions, preventing pre-trained generative models from
directly handling the states of image restoration bridges.
We first introduce the proposed transition equation, which
bridges two diffusion processes with the same endpoint
distributions, addressing this challenge. Then, we discuss
the validity conditions for this equation, followed by the
introduction of the proposed IRBridge framework.

3.1. Transition Equation

Assume that high-quality image samples x0 follow the data
distribution Pdata. It can be concluded that the endpoints
of the diffusion processes defined by generative diffusion
models and image restoration bridge models share the same
distribution Pdata. For simplicity, we rewrite Eq (1, 4, 6)
into the reparameterized form xt = ftx0 + bt + σtϵ. This
form indicates that the state xt at any given time t can be
expressed as a linear combination of the image sample x0, a
known offset term bt, and standard noise ϵ. Specifically, in
the case of DDPM, the offset term bt is always zero, whereas
for IR-SDE and GOUB, it is a known coefficient related to
the degraded image xlq . We use superscripts to differentiate
them: generally, x◦

i represents the state at time i in the image
restorative bridge, and x∗

j represents the state at time j in
generative diffusion. Typically, both generative models and
existing bridge models for image restoration adopt similar
linear Gaussian paths. We present reparameterizations of
different categories of diffusion models in the Appendix B
(Table 2) to illustrate this insight.

Since the diffusion processes are completely independent,
the states of the two processes are conditionally independent
given a sample x0 ∼ Pdata. This conditional independence
leads to the following transition equation:

Proposition 3.1. Given two diffusion processes with the
same endpoint distribution Pdata and a sample x0 ∼ Pdata,
the transition between their states x◦

i , x
∗
j at any timestep

i, j can be expressed as:

x∗
j = α · x◦

i + β · x0 + γ + σϵ,

α =

√
(σ∗

j )
2 − σ2

(σ◦
i )

2
,

β = f∗
j −

√
(σ∗

j )
2 − σ2

(σ◦
i )

2
· f◦

i ,

γ = b∗j −

√
(σ∗

j )
2 − σ2

(σ◦
i )

2
· b◦i ,

(7)

where α and β represent the coefficients of x◦
i and

x0,respectively, while γ denotes a known drift. The noise
coefficient σ can be treated as a controllable variable. Ad-
ditionally, Eq 7 is actually a reparameterization. Therefore,
the condition for its validity is α, β, σ ≥ 0, which leads to
max{0, [(σ∗

j )
2 − (

f∗
j ·σ

◦
i

f◦
i

)2]} ≤ σ2 ≤ (σ∗
j )

2.

Through the Proposition 3.1, the transition between the
states of two diffusion processes can be achieved. Therefore,
by transforming the state of an image restoration bridge onto
the diffusion trajectory of a generative model, the pre-trained
denoising network can be applied to estimate the initial state
x0, thereby enabling the iterative process to proceed.

However, this transformation necessitates a pre-estimated
x0, which is inaccessible during actual inference. Fortu-
nately, through further discussion of the boundary condi-
tions in Eq 7, we find that appropriate choices of hyperpa-
rameters can help us circumvent the need for prior estimate.

3.2. Boundary Condition

We treat the noise term σ in Eq 7 as a manually determined
coefficient for the transition. When σ reaches its maximum
value, the coefficient α becomes 0, and Eq 7 degenerates
into the general form of the forward diffusion process. How-
ever, our primary focus is on the scenario where σ attains its
minimum value. In this case, the transition equation exhibits
minimal dependence on x0 and incorporates the smallest
noise term.

Critical Timestep. Given the timestep i of the source state
x◦
i , we refer to the timestep j that satisfies ( f

◦
i

f∗
j
)2 = (

σ∗
j

σ◦
i
)2

as the Critial Timestep t̃i. When j = t̃i and σ reaches its
minimum value of 0, the coefficient β of x0 in Eq 7 also
becomes 0. The critical timestep is essentially the smallest
timestep that allows the coefficient β to take the value of 0.

Note that the value of t̃i depends solely on the diffusion
coefficients defined by the two diffusion processes, which
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Figure 2: An example of critical timesteps: the generative
diffusion model is Stable Diffusion v1-5 (Rombach et al.,
2022), while the restorative diffusion model is IR-SDE (Luo
et al., 2023).

provides guidance for selecting the parameter λ (in Eq (3,
5)) of image restoration bridge models. Figure 2 illustrates
an example of Stable Diffusion v1-5 and IR-SDE. In general,
a smaller value of λ result in smaller critical timesteps. Typ-
ically, we choose λ in such a way that the critical timestep
t̃i falls within the range of the pre-trained DDPM timesteps.

Forward Transition. If we select j > t̃i (i.e., above the
line in Figure 2 left) such that (σ∗

j )
2 − (

f∗
j ·σ

◦
i

f◦
i

)2 > 0, then

by choosing the smallest σ =
√

(σ∗
j )

2 − (
f∗
j ·σ◦

i

f◦
i

)2, we can
ensure that the coefficient β of x0 in Eq 7 becomes 0. At
this point, Eq 7 simplifies to a process of adding noise to
the source state x◦

i independently of x0. This implies that
we can convert the state of the image restoration bridge into
the state of DDPM without requiring a prior estimate of x0.

Following the DDPM convention, we refer to this process as
the forward transition. It is worth noting that no additional
constraints are placed on the selection of j. We will further
illustrate that the strategy for selecting j primarily depends
on the characteristics of the specific task (Section 5.1).

Reverse Transition. Once we have an estimate of x0, we
can similarly apply the transition equation to convert the
state x∗

j of DDPM back into the state x◦
i−1 of the image

restoration bridge, thereby supporting the next iteration. We
invert the roles of the restorative diffusion and the generative
diffusion in Eq 7 and ensure that the next timestep (i− 1)
is less than the critical timestep t̃j (i.e., below the line in

Figure 2 right) such that (σ∗
j )

2−(
f∗
j ·σ

◦
i

f⊙
i

)2 < 0. At this point,
if we choose the minimum value of σ = 0, the coefficient
of x0 in Eq 7 remains β ≥ 0. Since the noise term is zero,
Eq 7 simplifies to a deterministic transformation dependent
on x0. We refer to this transition as the reverse transition.

3.3. IRBridge Framework

Building on the preceding concepts, we propose a novel
image restoration framework, IRBridge, which leverages
pre-trained generative models to solve image restoration
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Figure 3: Overview of the proposed IRBridge framework.
This framework enables the direct application of pre-trained
models in image restoration bridges, effectively leveraging
their powerful priors to achieve image restoration.

bridges. As illustrated in Figure 3, IRBridge first applies
a forward transition to convert the state x◦

i of the restora-
tion bridge to a state of DDPM trajectory, enabling the
pre-trained generative model to estimate the initial sample
x0. A subsequent reverse transition then transforms this
state into x◦

i−1,facilitating the next iterative step. By repeat-
edly performing these transitions, IRBridge achieves image
restoration via conditional generative models (discussed in
Section 5.2), effectively harnessing their generative priors.

It is important to emphasize that Eq 7 describes the transi-
tion bridging two Gaussian conditional probability paths,
requiring the noise term σ◦

i in the forward process to be
non-zero. In certain cases, such as diffusion bridge models
like GOUB (Yue et al., 2023a), which model a stochastic
process between two fixed points, the noise coefficient at its
initial timestep is typically zero. This renders the transition
equation invalid. To address this issue, we directly skip the
initial timestep in this situation during inference. Experi-
ments (Section 4) show that this simple strategy does not
negatively impact performance.

IRBridge offers flexible parameter selection, enabling the
adjustment of the inference process by selecting appropriate
hyperparameters for specific task (Section 5.1). It is also
noteworthy that reverse transition is not exclusive, lever-
aging the reverse process of the original image restoration
bridge represents a viable alternative (Section 5.4).

The proposed framework obviates the need to train a distinct
image restoration bridge model for each type of degradation
from scratch and avoids explicitly modeling the degradation
process. Instead, it only requires a conditional generative
model to solve the image restoration bridge. Since IRBridge
leverages pretrained generative diffusion models, which are
typically trained on large-scale image datasets, it benefits
from improved robustness and generalization performance
compared to bridge models trained from scratch.
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1) Image Deraining 2) Image Dehazing

3) Image Desnowing 4) Raindrop Removal

5) Low light Enhancment 6) Image Inpainting

Figure 4: Timestep schedules selected for different image
restoration tasks (showing only the cases for IR-SDE). The
red lines represent the critical timesteps, while the blue lines
indicate the chosen DDPM timesteps.

4. Experiments
4.1. Settings

We utilize Stable Diffusion v1-5 (Rombach et al., 2022)
as the pretrained generative diffusion model for IRBridge.
For the image restoration bridge, we choose IR-SDE (Luo
et al., 2023) and GOUB (Yue et al., 2023a) for experiments,
as they use distribution and fixed points, respectively, as
the endpoints of their diffusion processes. Unless otherwise
specified, the hyperparameter λ in Eq (4, 6) of image restora-
tion bridge models is set to 2. To introduce conditions into
the generative model, we employ ControlNet (Zhang et al.,
2023), which is known for its efficiency in integrating guid-
ance conditions without compromising the model’s original
capabilities. For all tasks, degraded images are directly used
as conditions for ControlNet. We directly use empty text
as the textual conditions and classifier-free guidance is not
employed. For more details, please refer to Appendix E.

Our experiments cover 6 major image restoration tasks, in-
cluding image deraining, dehazing, desnowing, raindrop
removal, low-light enhancement, and image inpainting.
These degradations stem from diverse causes and vary in
their impact, influencing attributes such as layout, illumina-
tion, and texture. Figure 4 illustrates the timestep schedules
adopted for different image restoration tasks. It should be
noted that these timestep schedules are not theoretically
optimal. We will further discuss this in Section 5.1.

4.2. Results and Analysis

Table 1 present the quantitative comparison results of our
IRBridge with other methods on the aforementioned tasks.
We employ PSNR, SSIM, LPIPS, and FID as evaluation met-
rics. PSNR quantifies pixel-level discrepancies, SSIM as-
sesses structural similarities (Wang et al., 2004), and LPIPS
(Zhang et al., 2018) measures perceptual similarity based
on high-level semantic features. In contrast, FID (Heusel
et al., 2017) evaluates the distance between the distributions
of generated and real images, emphasizing overall image
realism rather than individual pixel accuracy. Consistent
with prior studies (Luo et al., 2023; Yue et al., 2023a), we
report PSNR and SSIM scores specifically on the Y channel
within the YCbCr color space. To eliminate potential in-
terference introduced by the VAE employed by pre-trained
stable diffusion model, these metrics are computed using
label images decoded by the same VAE.

Outperforming bridge models trained from scratch. As
shown in Table 1, although IRBridge is not directly train
models to estimate the conditional score of image restoration
bridges, it still outperforms image restoration bridge models
trained from scratch (ResShift(Yue et al., 2023b), IRSDE
(Luo et al., 2023), GOUB (Yue et al., 2023a), RDDM(Liu
et al., 2024), DiffUIR(Zheng et al., 2024)) on most image
restoration tasks. These results, particularly the comprehen-
sive improvement in FID scores, highlight the advantages
brought by integrating pretrained generative priors into IR-
Bridge. Compared to these bridge models trained from
scratch on limited-scale image restoration datasets, genera-
tive models learned through pretraining on large-scale image
datasets provide stronger feature representation capabilities,
leading to enhanced performance. Moreover, leveraging
pretrained models also significantly reduces training bur-
den. For example, training GOUB from scratch takes about
2.5 days on an Nvidia 3090 GPU (see Appendix E of (Yue
et al., 2023a)), while the ControlNet we employed achieves
similar results in just about 1 day.

Enhanced generalization performance. Figure 7 presents
a visual comparison between IRBridge and bridge model
trained from scratch (GOUB) on inpainting tasks for var-
ious other scenes, including both indoor and outdoor im-
ages. All models are trained exclusively on facial image
data. As observed in the highlighted regions of the fig-
ure, IRBridge consistently maintains superior visual quality,
whereas GOUB fails to fully inpaint the missing areas and
delivers unsatisfactory details (e.g., noticeable blurred re-
gions in the staircase area and book pages). These results
intuitively demonstrate that the pretrained generative priors
endow IRBridge with the ability to generalize to unseen
data distributions during training. Moreover, the results
also indicate that the employed ControlNet primarily learns
to utilize existing guidance information in the low-quality
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Table 1: Quantitative comparison across 6 mainstream image restoration tasks. We use ‘BM‘ to denote restorative bridges,
‘RM‘ to represent regression-based methods, and ‘DGP‘ to denote methods leveraging generative diffusion priors. All results
are evaluated at a resolution of 512. We choose IR-SDE and GOUB as the diffusion processes during inference.

Method Type Deraining Method Type Dehazing
PSNR↑ SSIM↑ LPIPS↓ FID↓ PSNR↑ SSIM↑ LPIPS↓ FID↓

ResShift† BM 27.54 0.8305 0.054 30.87 ResShift† BM 24.93 0.8107 0.097 17.89
IR-SDE BM 31.65 0.9041 0.047 18.64 TAO DGP 20.07 0.7980 0.105 21.84
GOUB BM 31.96 0.9028 0.046 18.14 WGWS-Net† RM 26.40 0.9015 0.051 14.15

RDDM† BM 28.97 0.9050 0.058 28.80 RDDM† BM 25.33 0.8773 0.088 20.87
DiffUIR† BM 29.87 0.9619 0.029 10.98 DiffUIR† BM 25.99 0.8669 0.057 24.87

IRBridge-IRSDE - 28.27 0.9583 0.032 9.21 IRBridge-IRSDE - 26.85 0.8755 0.065 15.73
IRBridge-GOUB - 30.39 0.9639 0.027 8.64 IRBridge-GOUB - 26.37 0.8752 0.067 15.82

Method Type Desnowing Method Type Raindrop Removal
PSNR↑ SSIM↑ LPIPS↓ FID↓ PSNR↑ SSIM↑ LPIPS↓ FID↓

ResShift† BM 24.14 0.7551 0.1697 29.87 ResShift† BM 25.78 0.7958 0.204 58.79
WGWS-Net† RM 20.34 0.7023 0.2424 35.87 WGWS-Net† RM 28.28 0.8686 0.102 54.09
WeathderDiff BM 21.79 0.6721 0.2286 33.96 WeathderDiff BM 27.06 0.8473 0.089 49.06

RDDM† BM 24.81 0.7810 0.1634 31.84 RDDM† BM 27.07 0.8048 0.102 51.86
DiffUIR† BM 25.07 0.7812 0.1593 22.89 DiffUIR† BM 26.88 0.8247 0.114 55.84

IRBridge-IRSDE - 25.78 0.7832 0.1574 13.17 IRBridge-IRSDE - 27.08 0.8165 0.098 48.39
IRBridge-GOUB - 25.87 0.7813 0.1569 10.38 IRBridge-GOUB - 26.91 0.8132 0.098 49.15

Method Type Low light Enhancement Method Type Image Inpainting
PSNR↑ SSIM↑ LPIPS↓ FID↓ PSNR↑ SSIM↑ LPIPS↓ FID↓

ResShift† BM 22.98 0.7982 0.119 50.54 DDRM DGP 27.16 0.8893 0.089 37.02
GDP DGP 14.55 0.6432 0.217 48.67 IR-SDECNN RM 29.22 0.9218 0.065 38.35
TAO DGP 16.57 0.7823 0.186 45.74 IR-SDE BM 28.37 0.9166 0.046 25.13

RDDM† BM 21.89 0.8251 0.124 46.70 GOUB BM 28.98 0.9067 0.037 4.30
DiffUIR† BM 24.29 0.8853 0.100 49.88 PromptIR RM 30.22 0.9180 0.068 32.69

IRBridge-IRSDE - 25.52 0.9232 0.059 36.26 IRBridge-IRSDE - 30.41 0.9159 0.066 3.34
IRBridge-GOUB - 25.59 0.9236 0.059 36.11 IRBridge-GOUB - 30.42 0.9158 0.067 3.37

image rather than the process of removing degradation.

In addition, we provide a quantitative comparison between
IRBridge and other methods in real-world degradation sce-
narios in the Appendix G. The results of no-reference im-
age quality assessment (NR-IQA) indicate that the pro-
posed IRBridge achieves better performance. These results
demonstrate that incorporating pretrained generative pri-
ors enhances the generalization ability of image restoration
bridges across different image domains and under complex
real-world degradations.

Comparison with methods utilizing pretrained genera-
tive priors. We also compare IRBridge with other methods
(GDP (Fei et al., 2023), TAO (Gou et al., 2024)) that lever-
age pretrained generative priors but follow the standard
generative diffusion paradigm. As shown in Table 1, IR-
Bridge consistently outperforms these methods across all
metrics. Unlike these methods that start their diffusion pro-
cess from pure noise, IRBridge initiates its iterative process
directly from the degraded image. This allows IRBridge to
anchor itself to the degraded image throughout its inference
process, ensuring better data consistency. We will further

discuss the impact of the diffusion process in Section 5.3.

Comparison with regression-based image restoration
methods. As shown in Table 1, although IRBridge is not
explicitly trained for image restoration tasks, it achieves per-
formance comparable to the regression-based model WG-
WSNet (Zhu et al., 2023a), which follows an end-to-end
supervised learning paradigm. Remarkably, IRBridge even
outperforms WGWSNet in the image desnowing task. It is
also important to highlight that the current results do not
reflect the theoretical performance limits of IRBridge (see
Section 5.1). These findings underscore the effectiveness of
IRBridge in leveraging conditional generative models for
image restoration

5. Discussions
5.1. Timestep Selection Strategy

The timestep selection strategy for the forward transition
process in IRBridge is primarily task-specific and relies on
empirical choices. In this section, we provide a high-level
analysis of this strategy.
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𝑗 = 850 𝑗 = 729 𝑗 = 609 𝑗 = 489 𝑗 = 369 𝑗 = 249 𝑗 = 129 𝑗 = 1

𝑗 = 550 𝑗 = 472 𝑗 = 394 𝑗 = 317 𝑗 = 239 𝑗 = 161 𝑗 = 84 𝑗 = 1
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Figure 5: The impact of timestep scheduling on the model’s prediction x0. We simply select a linear timestep schedule, with
the top row showing the schedule for lower values (j ∈ [550, 1]) and the bottom row showing the schedule for higher values
(j ∈ [850, 1]). On the right, the changes in PSNR and SSIM with iterations are shown synchronously.

DDPM Timestep Setting.

Figure 5 illustrates the impact of different timestep sched-
ules on the low-light enhancement task, presenting both
PSNR/SSIM curves and corresponding visual results. We
evaluate two simple linear scheduling strategies. The top
and bottom rows of the figure correspond to timestep ranges
j ∈ [550, 1] and j ∈ [850, 1], respectively, showcasing in-
termediate model predictions x̂0 across iterations along with
their associated performance curves.

The results indicate that using fewer timesteps leads to initial
state estimations with richer visual details, but the images
remain underexposed until the final stages. In contrast,
schedules with larger timesteps (e.g.,j = 850) produce
less accurate initial predictions but progressively improve
brightness and detail, ultimately achieving better overall
enhancement performance.

We explain that low-light images typically have a lower
mean compared to regular images, and the low-level noise
added by a lower j during the forward transition is insuf-
ficient to disrupt the statistical properties of the degraded
distribution. As a result, the final output still suffers from
poor lighting conditions. Therefore, we recommend using
higher timesteps j for low-quality images with more severe
degradation.

Temporal Dynamic. Simply using linear scheduling does
not achieve satisfactory performance across all tasks. Figure
6 provides key insights by visualizing the coefficient curves
for both forward and reverse transitions. It can be observed
that the coefficient β of x0 in the reverse transition (blue
line in Figure 6 right) rises rapidly as the iterations progress.
Therefore, we argue that maintaining a higher timestep j
in the early stages is appropriate, as the estimated x̂0 has
a relatively small influence on x◦

i−1 but provides a solid
initialization. In the middle stage, the timestep j should
be adjusted based on task characteristics: for tasks with
severe degradation (e.g., low-light enhancement), a higher

(a) Forward Transition (b) Reverse Transition

Figure 6: The variation of the forward/reverse transition
coefficients (α, β, σ in Eq 7) with iterations under the linear
timestep scheduling.

In
p

u
t

L
a

b
el

IR
B

ri
d

g
e

G
O

U
B

Figure 7: We evaluate the generalization ability of other
bridge models on other scene images. All models are trained
on facial data for image inpainting.

j reduces the impact of degradation. In contrast, tasks
with minor degradation (e.g., dehazing) can use lower j
to achieve a more stable inference process. In the final stage,
lower j values are preferred, as x̂0 significantly influences
x◦
i−1, making the final output more sensitive to prediction

errors.

Appendix D provides detailed experimental results on
timestep configurations for various image restoration tasks.
We must acknowledge that the timestep scheduling shown
in the Figure 4 is not the optimal choice, but the results pre-
sented in Table 1 still demonstrate satisfactory performance.
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Input w/. Condw/o CondLabel

Figure 8: Ablation of Condition for IRBridge. We visualize
the output images before and after applying the condition.

a) Standard Generative Diffusion b) Image Restoration Bridge

Figure 9: Comparison of the standard generative process
starting from noise and the image restoration bridge in terms
of PSNR and SSIM.

5.2. Discussion about Conditional Guidance

A natural question is whether IRBridge can directly em-
ploy unconditional generative models. Figure 8 presents
visualization results generated with and without conditional
guidance. As shown in the figure, images generated without
conditional guidance preserve the overall layout but fail to
produce realistic details. The theoretical explanation lies
in the transition equation described in Eq 7, which requires
a given sample x0 ∼ Pdata to achieve transitions between
states. However, due to the lack of conditional constraints,
unconditional models cannot ensure that the estimates x̂0

across all timesteps correspond to the same sample. These
inconsistencies among these estimates lead to conflicts dur-
ing the iterative process, resulting in cumulative errors and
causing the final output to converge toward the average of
all samples. Visually, as shown in the figure, this produces
images that retain only the overall layout but lose nearly all
texture and detail. Therefore, introducing conditional guid-
ance in IRBridge is indispensable, as it guides the model
in predicting a consistent sample across different timesteps,
thereby avoiding the aforementioned issues.

5.3. Discussion about Diffusion Process

In Figure 9, we present the PSNR and SSIM curves for sam-
ples predicted during the diffusion process using standard
generative diffusion (starting from pure Gaussian noise)
and the image restoration bridge (starting from degraded
images). It can be observed that the curve for standard dif-
fusion first rises and then falls, while the diffusion process
with the bridge steadily increases. More importantly, the
PSNR/SSIM of the generative diffusion process consistently
remains lower than that of the diffusion bridge. Our expla-
nation is that the paradigm starting from pure noise lacks

continuous conditional constraints, making it hard to anchor
the degraded image, which causes it to gradually diverge
from the target image as the inference progresses. In con-
trast, the restoration bridge provides continuous conditional
constraints, resulting in images that are more consistent
with the desired outcome. This result further validates that,
compared to generative diffusion starting from pure noise,
the bridge trajectory starting from a low-quality image leads
to a more effective diffusion process.

5.4. Discussion about Reverse Transition

It should be noted that the proposed reverse transition is
not the only possible option. After obtaining an estimate
for the initial sample x0, the next sample can be obtained
through the original reverse process of the image restoration
bridge. In general, the sample x◦

i−1 obtained by the reverse
transition used in IRBridge is not the optimal reverse state
that minimizes the negative log-likelihood. Therefore, the
iterative path of IRBridge is not the optimal path. However,
the results reported in the experiments of this paper are all
based on the proposed reverse transition, aiming to pro-
vide a more comprehensive understanding of the proposed
transition equation.

6. Limitations and Future Work
Limitations. IRBridge allows for task-specific customiza-
tion of hyperparameters, but determining optimal values
is often a complex and empirically driven process. A re-
cent work(Qiu et al., 2025) propose optimizing diffusion
coefficients via local Schrödinger bridges to enhance the
performance of pretrained models, which similarly offers
a promising path for IRBridge to obtain optimal hyper-
parameters. However, we argue that empirically chosen
coefficients are often sufficient, and conducting complex
post-optimization may not be cost-effective.

Future work. The ControlNet used in this study is a rela-
tively coarse implementation. We do not optimize the condi-
tional guidance module or introduce task-specific objectives
for image restoration. Future work could enhance perfor-
mance by tailoring the guidance mechanism for IR tasks, as
adopted in recent studies (Ai et al., 2024; Rajagopalan et al.,
2024). Moreover, further optimization of the VAE can help
reduce encoding losses and mitigate the over-smoothing
effect caused by the loss of high-frequency details.

We believe that IRBridge is just an early application of the
transition equation proposed in Proposition 3.1. With this
equation, we can explore directly using the pre-trained gen-
erative model as an initialization model for further training
with image restoration bridge objectives. We hope this work
will contribute to the further application of bridge models
in the field of image restoration.

8



IRBridge: Solving Image Restoration Bridge with Pre-trained Generative Diffusion Models

7. Related Works
Diffusion Generative Prior in Image Restoration. Im-
age restoration methods that integrate diffusion priors typ-
ically condition the generation process on degraded im-
ages. Some approaches (Zhu et al., 2023b; Feng et al.,
2023; Chung et al., 2022; Kawar et al., 2022; Peng et al.,
2024) achieve image restoration by solving or approximat-
ing log∇xt

p(y | xt) , but they often require specific prior
knowledge of the degradation process, thereby losing uni-
versality. Other efforts (Fei et al., 2023; Gou et al., 2024)
aim for unified image restoration by training a degradation
model and guiding the process through its gradient, but the
introduction of adversarial training leads to instability.

Bridge Models. Bridge models construct a stochastic diffu-
sion process between two distributions (Bernton et al., 2019;
Liu et al., 2022a; De Bortoli et al., 2021; Liu et al., 2023; Shi
et al., 2024; Tang et al., 2024) or fixed endpoints (Li et al.,
2023a; Zhou et al., 2023), thereby eliminating the need for
prior knowledge about the distributions. Some methods
(Delbracio & Milanfar, 2023; Yue et al., 2023b; Luo et al.,
2023; Yue et al., 2023a; Liu et al., 2024; Zheng et al., 2024)
have proposed applying bridge models to image restoration
to learn the transport mapping from degraded images to
clear images. However, these approaches still require train-
ing a model from scratch for each type of degradation. Our
IRBridge primarily addresses this issue.

8. Conclusion
This paper proposes a transition equation that bridges two
diffusion processes with the same endpoint distribution. By
bridging the image restoration bridge with the generative
diffusion process, we introduce a novel image restoration
framework, IRBridge, which leverages existing pre-trained
generative models to solve image restoration bridges. Exten-
sive experiments on various image restoration tasks demon-
strate that IRBridge effectively leverages diffusion genera-
tive priors and provides more flexible options. We believe
that IRBridge will further advance the application of bridge
models in image restoration.

Impact Statement
Ethical Impacts. This study does not raise any ethical con-
cerns. The research does not involve subjective assessments
or the use of private data. Only publicly available datasets
are utilized for experimentation.

Expected Societal Implications. This work aims to address
the problem of image restoration, primarily by leveraging
pretrained image generative models to solve existing image
restoration bridges. Since the method relies on pretrained
generative models and the proposed transition equation can

also be applied to tasks such as image translation, the main
ethical concerns focus on the potential misuse of this tech-
nology for creating or manipulating deepfakes or inappro-
priate content. Such misuse may result in the spread of
misinformation, violations of privacy, and other harmful
outcomes. To reduce these risks, it is essential to establish
sound ethical guidelines and maintain continuous oversight.
These concerns are not specific to our method but are widely
present across many generative tasks.

We suggest that embedding invisible watermarks in the gen-
erated images or implementing safety-checking modules
can effectively deter misuse and help ensure that proper
attribution or confirmation is provided when the images are
used.
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A. Proof of Proposition 3.1
Proof. Given two diffusion processes with same endpoint distribution Pdata, and their forward diffusion processes can be
expressed in the reparameterized form:

x◦
i = f◦

i x0 + b◦i + σ◦
i ϵ1, (8a)

x∗
j = f∗

j x0 + b∗j + σ∗
j ϵ2, (8b)

where f◦
i , f

∗
j , b

◦
i , b

∗
j , σ

◦
i , σ

∗
j are known parameters, and ϵ ∼ N (0, I) is standard Gaussian noise. Considering that their

respective diffusion processes are independent of each other, we can write that x◦
i and x∗

j are are independent when given a
sample x0 ∼ Pdata. That means p(x∗

j | x0) = p(x∗
j | x◦

i , x0). We assume the following reparameterization:

x∗
j = α · x◦

i + β · x0 + γ + σ · ϵ, (9)

Eq 9 and Eq 8b are essentially equivalent. We substitute Eq 8a into Eq 9, and by using the method of undetermined
coefficients, we obtain the following equality: 

f∗
j = α · f◦

i + β,

b∗j = α · b◦i + γ,

(σ∗
j )

2 = (α · σ◦
i )

2 + σ2,

(10)

Therefore, we can obtain that: 

α =

√
(σ∗

j )
2 − σ2

(σ◦
i )

2
,

β = f∗
j −

√
(σ∗

j )
2 − σ2

(σ◦
i )

2
· f◦

i ,

γ = b∗j −

√
(σ∗

j )
2 − σ2

(σ◦
i )

2
· b◦i ,

(11)

Conditions for validity. We need to emphasize that Eq 7 is still a reparameterization. Therefore, its validity is subject to the
following conditions: 

0 ≤ σ ≤ σ∗
j ,

f∗
j −

√
(σ∗

j )
2 − σ2

(σ◦
i )

2
· f◦

i ≥ 0,
(12)

Through further simplification, we can get that max{0, [(σ∗
j )

2 − (
f∗
j ·σ

◦
i

f◦
i

)2]} ≤ σ2 ≤ (σ∗
j )

2.

At this point, we have completed the proof of Proposition 3.1.

B. Reparameterization of the Diffusion Coefficients
In this section, we present the reparameterization of both image generative diffusion and image restoration diffusion
coefficients, rewriting them in a unified linear combination form as xt = ftx0 + bt + σtϵ. As shown in Table 2, although
the objectives of generative and restorative diffusion differ, their defined diffusion paths can both be uniformly expressed as
linear Gaussian paths. This creates favorable conditions for applying the transition equation proposed in Eq 7.

It is important to note that, beyond differences in the definitions of diffusion paths, image restoration bridges also differ
in their training objectives. For instance, both IRSDE and GOUB adopt the score of their respective reverse SDEs as
training targets, which are consistent with those used in generative diffusion models. However, RDDM decouples the
residual and noise components, estimating them with separate networks. At this stage, IRBridge does not leverage these
differentiated objectives, but instead directly adopts the training objective of generative diffusion to train a conditional
generation model. Future work could explore incorporating training objectives specific to restoration bridges to further
improve model performance.
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Method ft bt σt

DDPM (Ho et al., 2020)
√
ᾱt 0

√
1− ᾱt

Rectified Flow (Liu et al., 2022b) 1− t 0 t

IR-SDE (Luo et al., 2023) e−θ̄t (1− e−θ̄t) · xlq λ2(1− e−2θ̄t)

GOUB (Yue et al., 2023a) e−θ̄t σ̄2
t:T

σ̄2
T

[(1− e−θ̄t)
σ̄2
t:T

σ̄2
T

+ e−2θ̄t:T σ̄2
t

σ̄2
T
] · xlq

σ̄2
t σ̄

2
t:T

σ̄2
T

RDDM (Liu et al., 2024) 1− ᾱt ᾱt · xlq β̄t

DiffUIR (Zheng et al., 2024) 1− ᾱt (ᾱt − δ̄t) · xlq β̄t

Table 2: Reparameterization of different diffusion processes, where xlq denotes the input low-quality image. For detailed
definitions of the symbols shown, please refer to the corresponding original paper.

C. Critical Timsteps across Different Generative Paradigms
In Figure 10, we present the critical timesteps corresponding to representative generative diffusion models, including
DDPM(Ho et al., 2020), Stable Diffusion v1-5(Rombach et al., 2022), and Recited Flow(Liu et al., 2022b). Due to cost
considerations, we conduct experiments only on Stable Diffusion v1-5. However, the figure shows that the critical timesteps
for other models also lie within the typical range covered by pre-trained generative diffusion models. This theoretical
consistency supports the general applicability of IRBridge to a broader class of generative diffusion models.

D. Exploratory Study on Timestep Scheduling Strategies
We first predefined 8 timestep schedules and evaluated the effectiveness of IRBridge on a small batch (batch size of 4) of
image samples to determine the optimal timestep selection strategy for different restoration tasks. In Figure 11, we visualize
these predefined timestep schedules. The schedules are categorized into three types: a) One Stage (Setting 1-2): This
strategy employs a single-stage linear decay for the timestep schedule, with two maximum timestep values tested: 850 and
550. b) Two Stage (Setting 3-5): This strategy utilizes a two-stage linear timestep schedule, with the primary breakpoints
set at 850 and 550. c) Additive (Setting 6-8): This strategy adds offsets to the critical timesteps. We tested constant offsets
(100 and 300) as well as linearly decreasing timesteps (from 300 to 100).
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Figure 10: Critical timesteps across different paradigms. We cover commonly used generative models (Stable Diffusion
v1-5, DDPM, and Rectified Flow) as well as image restoration bridge models (IR-SDE and GOUB).
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Figure 11: Predefined timestep schedules for exploratory study on timestep scheduling strategies.

We present the results of using 8 predefined timestep schedules across various tasks in Figure (12,13,14,15,16,16,17),
including the best and final PSNR and SSIM during inference, as well as their complete evolution curves (for brevity, we
only show the curves for IR-SDE). Based on the above observations, we progressively fine-tune the timestep schedules
according to the macro-analysis introduced in Section 5.1 to achieve relatively better configurations.

It is important to note that we use small batches (batch size of 4) in these exploratory experiments to save costs, which
leads to slight discrepancies between the listed results and the final results shown in Table 1. There are two reasons for
this: 1) small-batch samples cannot fully represent the distribution of the entire dataset, and 2) the results listed in Table
1 are obtained with fine-tuned timestep schedules, which are inherently better than the predefined schedules used in the
exploratory experiments.

We argue that using small-batch samples in exploratory studies is feasible because our primary focus is on observing the
evolution curves of PSNR and SSIM rather than their final values. Therefore, the errors caused by small-batch samples do
not significantly affect our conclusions. The timestep schedules we select are typically those that result in steadily increasing
metric curves, ensuring a more stable inference process.

(a) The curves of PSNR and SSIM.

Type Setting Method last-PSNR last-SSIM best-PSNR best-SSIM

One Stage
Setting1 IRSDE 26.2638 0.8166 27.7116 0.8147

GOUB 25.5185 0.8156 26.9044 0.8149

Setting2 IRSDE 25.9933 0.8155 27.3833 0.8081
GOUB 26.0375 0.8160 27.2455 0.8086

Two Stage

Setting3 IRSDE 26.7463 0.8175 27.9550 0.8154
GOUB 26.8282 0.8175 27.4642 0.8119

Setting4 IRSDE 26.6423 0.8166 27.9748 0.8121
GOUB 26.8906 0.8165 27.9497 0.8136

Setting5 IRSDE 26.0475 0.8168 26.8019 0.7965
GOUB 25.6752 0.8154 26.8029 0.7965

Additive

Setting6 IRSDE 25.3299 0.8105 25.3299 0.8105
GOUB 26.8587 0.8177 27.1057 0.8180

Setting7 IRSDE 25.3820 0.8139 27.8038 0.8166
GOUB 24.9189 0.8124 27.6537 0.8180

Setting8 IRSDE 27.0663 0.8167 27.1319 0.8175
GOUB 26.7459 0.8181 27.9865 0.8188

(b) Experimental results of mini-batch samples using predefined timestep schedul-
ing in the image deraining task.

Figure 12: Exploratory study on timestep scheduling strategy for the image deraining task.
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(a) The curves of PSNR and SSIM.

Type Setting Method last-PSNR last-SSIM best-PSNR best-SSIM

One Stage
Setting1 IRSDE 23.9948 0.8317 25.1858 0.8482

GOUB 23.9132 0.8300 23.9460 0.8305

Setting2 IRSDE 23.6813 0.8274 25.0897 0.8328
GOUB 23.7265 0.8277 24.8072 0.8322

Two Stage

Setting3 IRSDE 23.8970 0.8243 25.1280 0.8458
GOUB 23.9113 0.8252 24.1815 0.8266

Setting4 IRSDE 24.0643 0.8321 25.5087 0.8407
GOUB 24.0983 0.8340 24.4485 0.8320

Setting5 IRSDE 24.0563 0.8286 25.8331 0.8419
GOUB 24.0445 0.8304 24.2596 0.8166

Additive

Setting6 IRSDE 24.8325 0.8431 24.8327 0.8427
GOUB 22.5133 0.8273 22.5676 0.8244

Setting7 IRSDE 23.6825 0.8265 25.1649 0.8410
GOUB 23.5327 0.8255 24.2897 0.8267

Setting8 IRSDE 23.9262 0.8285 25.5893 0.8432
GOUB 23.8193 0.8252 24.3383 0.8339

(b) Experimental results of mini-batch samples using predefined timestep schedul-
ing in the image dehazing task.

Figure 13: Exploratory study on timestep scheduling strategy for the image dehazing task.

(a) The curves of PSNR and SSIM.

Type Setting Method last-PSNR last-SSIM best-PSNR best-SSIM

One Stage
Setting1 IRSDE 24.7619 0.8200 25.1127 0.8163

GOUB 24.8466 0.8205 25.1788 0.8167

Setting2 IRSDE 24.5954 0.8189 24.9139 0.8113
GOUB 24.5977 0.8192 24.9417 0.8026

Two Stage

Setting3 IRSDE 24.8803 0.8198 25.0266 0.8143
GOUB 24.8851 0.8196 25.0398 0.8158

Setting4 IRSDE 24.7594 0.8189 24.9132 0.8179
GOUB 24.6576 0.8177 24.7896 0.8194

Setting5 IRSDE 24.9924 0.8193 25.0615 0.8193
GOUB 24.9203 0.8183 25.0298 0.8188

Additive

Setting6 IRSDE 23.3574 0.7916 23.6550 0.7918
GOUB 24.0109 0.7985 24.9109 0.8078

Setting7 IRSDE 23.7726 0.8089 24.6086 0.8124
GOUB 24.1235 0.8097 25.1149 0.8117

Setting8 IRSDE 24.1872 0.8162 24.5922 0.8137
GOUB 24.3540 0.8152 24.8247 0.8149

(b) Experimental results of mini-batch samples using predefined timestep schedul-
ing in the image desnowing task.

Figure 14: Exploratory study on timestep scheduling strategy for the image desnowing task.
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(a) The curves of PSNR and SSIM.

Type Setting Method last-PSNR last-SSIM best-PSNR best-SSIM

One Stage
Setting1 IRSDE 26.0548 0.7923 26.8779 0.7784

GOUB 25.9791 0.7917 26.6805 0.7789

Setting2 IRSDE 26.2883 0.7878 26.6549 0.7821
GOUB 26.3697 0.7892 26.6449 0.7826

Two Stage

Setting3 IRSDE 26.5094 0.7884 26.7336 0.7837
GOUB 26.5697 0.7887 26.7599 0.7849

Setting4 IRSDE 25.7990 0.7876 26.0884 0.7713
GOUB 26.1403 0.7876 26.2381 0.7854

Setting5 IRSDE 25.1104 0.7800 25.1705 0.7802
GOUB 24.8601 0.7762 24.8668 0.7572

Additive

Setting6 IRSDE 26.7129 0.7935 26.7129 0.7935
GOUB 25.4206 0.7916 25.6417 0.7913

Setting7 IRSDE 25.9174 0.7783 27.2205 0.7852
GOUB 25.6085 0.7790 26.8346 0.7792

Setting8 IRSDE 27.0162 0.7966 27.1633 0.7928
GOUB 26.5046 0.7965 26.6997 0.7958

(b) Experimental results of mini-batch samples using predefined timestep schedul-
ing in the image raindrop removal task.

Figure 15: Exploratory study on timestep scheduling strategy for the image raindrop removal task.

(a) The curves of PSNR and SSIM.

Type Setting Method last-PSNR last-SSIM best-PSNR best-SSIM

One Stage
Setting1 IRSDE 23.1250 0.8931 23.1894 0.8915

GOUB 25.5623 0.9031 25.8327 0.9027

Setting2 IRSDE 24.6687 0.8999 25.9736 0.8989
GOUB 24.6308 0.9003 26.0017 0.8964

Two Stage

Setting3 IRSDE 23.6494 0.8971 24.4669 0.8978
GOUB 23.9677 0.8975 25.2930 0.9003

Setting4 IRSDE 24.1875 0.8990 26.2098 0.8948
GOUB 24.6070 0.8995 26.1871 0.8970

Setting5 IRSDE 24.2217 0.9015 25.7966 0.8990
GOUB 24.4615 0.9021 25.6628 0.8864

Additive

Setting6 IRSDE 13.8463 0.7655 13.8463 0.7655
GOUB 24.5219 0.9018 24.6309 0.9010

Setting7 IRSDE 24.7898 0.9007 24.7898 0.9007
GOUB 25.1895 0.8986 25.2851 0.8977

Setting8 IRSDE 21.7411 0.8845 21.7752 0.8825
GOUB 24.4582 0.9001 25.7583 0.8974

(b) Experimental results of mini-batch samples using predefined timestep schedul-
ing in the low light enhancement task.

Figure 16: Exploratory study on timestep scheduling strategy for the low light enhancement task.
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(a) The curves of PSNR and SSIM.

Type Setting Method last-PSNR last-SSIM best-PSNR best-SSIM

One Stage
Setting1 IRSDE 28.4661 0.8906 28.8653 0.8920

GOUB 28.5011 0.8904 28.9114 0.8903

Setting2 IRSDE 27.2414 0.8894 27.9769 0.8905
GOUB 27.3087 0.8899 27.9763 0.8907

Two Stage

Setting3 IRSDE 28.5806 0.8902 28.6749 0.8914
GOUB 28.6183 0.8910 28.6480 0.8915

Setting4 IRSDE 27.5063 0.8765 27.6593 0.8773
GOUB 27.4750 0.8775 27.4750 0.8775

Setting5 IRSDE 28.9435 0.8908 29.3078 0.8922
GOUB 28.9642 0.8924 29.2503 0.8923

Additive

Setting6 IRSDE 27.8617 0.8897 28.1424 0.8855
GOUB 28.1664 0.8911 28.6311 0.8931

Setting7 IRSDE 27.5545 0.8837 27.8692 0.8846
GOUB 27.7256 0.8840 27.8662 0.8846

Setting8 IRSDE 27.9057 0.8822 28.1693 0.8865
GOUB 28.6027 0.8840 29.3940 0.8905

(b) Experimental results of mini-batch samples using predefined timestep schedul-
ing in the image inpainting task.

Figure 17: Exploratory study on timestep scheduling strategy for the image inpainting task.

E. Experimental details
E.1. Training Details.

As introduced in Section 4, we train ControlNet to integrate conditional guidance into the pre-trained Stable Diffusion
model. We follow the standard training paradigm of ControlNet, fitting the noise added during the forward process. The
same settings are applied across all tasks. We use the AdamW optimizer with a learning rate of 5.0× 10−5 and train for a
total of 10k steps. The Adam optimizer is used with β1 = 0.9 and β2 = 0.999 to maintain a balance between the momentum
term and the variance estimate. A weight decay of 1.0× 10−2 is applied for regularization, while a small epsilon value of
1.0× 10−8 ensures numerical stability.

The model is trained on an Nvidia RTX 3090 GPU with a batch size of 12. To reduce GPU memory usage during training,
mixed-precision training is employed. To manage the learning rate, a constant schedule is employed with 500 warmup steps
to gradually ramp up the learning rate at the start of training. The scheduler includes a single cycle with a polynomial decay
power of 1 to allow steady updates.

E.2. Datasets.

We provide details of the datasets used in this section. During both training and testing, all image samples are resized and
cropped to a resolution of 512 to match the input requirements of Stable Diffusion. Although we adopt a unified resolution
setting, our method can also support higher-resolution inputs, thanks to a patchify strategy similar to that used in WeatherDiff
(Özdenizci & Legenstein, 2023).

Image Deraining. The image deraining task aims to restore images degraded by rain streaks and similar effects. Due to the
difficulty of obtaining real-world paired datasets, most image deraining datasets are synthetically generated. For this task,
we used the Rain100H dataset (Yang et al., 2019), which provides 1,800 paired images for training and 100 for testing. The
degradations in Rain100H are artificially synthesized as light, thin lines that simulate natural rain streaks.

Image Dehazing. To evaluate IRBridge on image dehazing, we used the RESIDE dataset (Li et al., 2019). The model was
trained on the Outdoor Training Set (OTS) subset, containing 72,135 images, and tested on the Synthetic Objective Testing
Set (SOTS) subset, which includes 500 images. These subsets feature synthetically generated hazy images designed to
mimic real-world atmospheric conditions.

Image Desnowing. For the image desnowing task, we used the Snow100K dataset (Liu et al., 2018), which includes 100k
synthesized snowy images paired with corresponding snow-free ground truth images. Specifically, 50K images are used for
training and 50K for testing. The degradations in this dataset simulate snow particles and atmospheric scattering effects,
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providing diverse and challenging scenarios for evaluation.

Image Raindrop Removal. We evaluated image raindrop removal using the RainDrop dataset (Qian et al., 2018), which
comprises 861 training images and 58 testing samples from its Testing Set A subset. The degradations in this dataset
simulate the refraction and distortion effects caused by raindrops of varying sizes on camera lenses, presenting unique
challenges compared to other weather-related tasks.

Low light enhancement. The low-light enhancement task was evaluated using the LOL dataset (Wei et al., 2018). This
dataset includes 485 paired images for training and 15 for testing, with each pair consisting of low-light and normal-light
versions of the same scene. The images contain noise from low-light capture conditions, with significantly lower mean pixel
values than normal images. These characteristics pose challenges for generation models, which must accurately enhance
brightness while preserving details.

Image Inpainting. Image inpainting experiments were conducted on the CelebA-HQ (Liu et al., 2015) 256×256 dataset.
We trained the model using 20,000 images with randomly generated brush masks. This task is particularly challenging due
to the random nature of the masks, which disrupt the original image layout and cause significant shifts in mean and variance.
The task evaluates the model’s ability to generate plausible content while maintaining consistency with the surrounding
image context.

F. Inference Efficiency
Since IRBridge leverages pretrained diffusion models and adopts an iterative diffusion-style inference process, we acknowl-
edge that its inference efficiency is not a primary advantage. Nevertheless, IRBridge provides considerable flexibility by
decoupling model training from inference, allowing independent configuration of diffusion coefficients and the number of
inference steps. In Table 3, we present the inference time and quantitative results of IRBridge under different step settings.
It is worth noting that even with a 75% reduction in inference steps, IRBridge still maintains comparable performance,
demonstrating its potential for more efficient inference.

Inference Steps 100 50 25

PSNR↑ 29.63 29.59 29.24
SSIM↑ 0.876 0.877 0.858
LPIPS↓ 0.173 0.179 0.178
Inference Time 14.2s 7.3s 3.4s

Table 3: Quantitative results under different inference step settings.

G. Comparison on Real-world Degraded Images
We compare IRBridge with other related methods on real-world degraded images, and the results are presented in Table 4.
Specifically, we used real-world datasets, including RealRain-1K (Li et al., 2022) for deraining, realistic snowy images from
Snow100K (Liu et al., 2018) for desnowing, and RTTS (Li et al., 2019) for dehazing. Since these datasets lack ground-truth
references, we adopt widely-used no-reference image quality metrics, including MUSIQ(Ke et al., 2021), BRISQUE (Mittal
et al., 2011), and NIQE(Mittal et al., 2012), to evaluate the performance of different methods.

As shown in Table 4, IRBridge consistently outperforms other training-from-scratch approaches in real-world scenarios.
Even when compared with the recent state-of-the-art method DCPT, IRBridge achieves superior performance, demonstrating
its effectiveness under realistic conditions. We attribute this improvement to the integration of pretrained generative priors,
which endow the model with enhanced generalization capabilities.

In Figure (18, 19, 20), we present the visual results of IRBridge on real-world deraining, dehazing, and desnowing tasks,
providing an intuitive demonstration of its generalization ability in real-world scenarios.
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Table 4: Comparison with other methods on real-world datasets.

Method RealRain-1k RealSnow subset of Snow100K RTTS
MUSIQ↑ BRISQUE↓ NIQE↓ MUSIQ↑ BRISQUE↓ NIQE↓ MUSIQ↑ BRISQUE↓ NIQE↓

IRSDE(Luo et al., 2023) 33.187 46.882 12.551 39.854 40.872 10.874 45.256 52.825 9.852
GOUB(Yue et al., 2023a) 39.758 42.261 10.641 48.289 34.824 4.987 47.952 53.578 11.587
RDDM(Liu et al., 2024) 41.975 41.870 9.587 47.586 33.879 6.881 49.888 51.574 10.054
DiffUIR(Zheng et al., 2024) 41.758 43.821 9.001 49.812 32.987 5.027 50.517 50.954 8.805
DCPT(Hu et al., 2025) 44.915 39.843 8.147 45.812 35.871 6.871 48.109 54.641 9.847
IRBridge 43.439 39.915 8.393 51.969 32.347 4.002 52.076 41.315 5.003

Figure 18: Visualization results of IRBridge in real-world rainy images.

Figure 19: Visualization results of IRBridge in real-world hazy images.

Figure 20: Visualization results of IRBridge in real-world snowy images.

H. Visualization results for different tasks.
In this section, we present the visualization results of IRBridge on image deraining, dehazing, desnowing, raindrop removal,
low-light enhancement, and image inpainting tasks. It is important to note that these results are unselected to rigorously
evaluate the performance of IRBridge.
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Figure 21: Visualization results of IRBridge in the image deraining task.
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Figure 22: Visualization results of IRBridge in the image dehazing task.
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Figure 23: Visualization results of IRBridge in the image desnowing task.
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Figure 24: Visualization results of IRBridge in the image raindrop removal task.
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Figure 25: Visualization results of IRBridge in the low light enhancement task.
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Figure 26: Visualization results of IRBridge in the image inpainting task.
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I. Feasible Improvements and Potential Applications
Future Work. As previously mentioned, the current implementation of IRBridge represents only a preliminary attempt
at applying the proposed transition equation. Future work can focus on improving the guidance module, adapting VAEs
to image restoration tasks, and incorporating additional training objectives tailored for the bridge diffusion process used
during inference. These improvements can further enhance the performance of IRBridge on image restoration tasks, and
several existing works (Ai et al., 2024; Rajagopalan et al., 2024; Qiu et al., 2025; Lin et al., 2024b; Wang et al., 2025b;
Liu et al., 2024; Wang et al., 2025a) may offer valuable insights in these directions. Moreover, the current version of
IRBridge does not incorporate textual conditions, leaving the powerful text-guidance capabilities of pretrained diffusion
models underutilized. Some existing studies have already demonstrated the feasibility of leveraging additional modalities to
improve the performance of image restoration tasks. Building upon prior research (Lin et al., 2023a;b; Huang et al., 2024a;
Fu et al., 2024), incorporating multimodal information can further enhance the performance of IRBridge. Additionally,
leveraging a broader variety of datasets (Rajagopalan et al., 2024; Huang et al., 2024b; Feng et al., 2024) could also
contribute significantly to its improvement.

Potential Applications. We highlight that the proposed transition equation is not limited to bridging restoration diffusion and
generative diffusion; it is applicable to a wider range of stochastic diffusion processes, as long as the endpoint distributions
are consistent. Therefore, we believe this work can also benefit a broader range of applications, such as image editing(Li
et al., 2023b; Ju et al., 2024), image translation(Zhou et al., 2023), visual generation(Lin et al., 2024a) and multimodal
generation (Ji et al., 2024).
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