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ABSTRACT

Typical multimodal classification systems exhibit deteriorated performance if one
or more modalities are missing at test time. In this work, we propose a robust
multimodal classification system, namely Gazelle, which is less susceptible to
missing modalities. It consists of a single-branch network sharing weights across
multiple modalities to learn intermodal representations and introduces a novel
training scheme featuring a modality switch mechanism over input embeddings
extracted using modality-specific networks to maximise performance as well as
robustness to missing modalities. Extensive experiments are performed on four
challenging datasets including textual-visual (UPMC Food-101, Hateful Memes,
Ferramenta) and audio-visual modalities (VoxCeleb1). Gazelle achieves su-
perior performance when all modalities are present as as well as in the case of
missing modalities compared to the existing state-of-the-art methods.

1 INTRODUCTION

Social media users often combine audio, video and text modalities to express their opinions (Moon
et al., 2018). These modalities generally complement each other enriching the understanding of a
particular task (Baltrušaitis et al., 2018). Different combinations of these modalities have been ex-
tensively studied to solve various tasks such as multimodal classification (Kiela et al., 2018; 2020),
cross-modal retrieval (Wang et al., 2016), cross-modal verification (Nagrani et al., 2018b), multi-
modal named entity recognition (Moon et al., 2018), visual question answering (Anderson et al.,
2018; Fukui et al., 2016), image captioning (Vinyals et al., 2015), semantic relatedness (Kiela &
Bottou, 2014), and multimodal machine translation (Specia et al., 2016; Elliott et al., 2016). Mul-
timodal modeling is challenging due to the difference in structure and representations of various
modalities. The existing multimodal systems have commonly used neural network-based mappings
to learn the joint representation of multiple modalities. For example, separate independent networks
are leveraged to extract embeddings of each modality to learn joint representations in multi-branch
networks (Wang et al., 2016; Faghri et al., 2018; Nagrani et al., 2018b;a; Saeed et al., 2022; Kim
et al., 2018). Likewise, some recent multimodal systems have leveraged Transformers to learn joint
representations using two-branch networks (Lu et al., 2019; Tan & Bansal, 2019; Kim et al., 2021).
In these methods, the modular nature of the multi-branch networks is instrumental in developing var-
ious multimodal applications and have demonstrated remarkable performance (Arevalo et al., 2017;
Gallo et al., 2017; Vielzeuf et al., 2018; Kiela et al., 2018; 2020; Kim et al., 2021). However, a lim-
itation of these methods is that they require complete modalities, as in training data, to demonstrate
good testing performance.

Multimodal data collected from the real-world are often imperfect due to missing modalities, re-
sulting in a significantly deteriorated performance of the existing models (Ma et al., 2022; 2021;
Lee et al., 2023; Wang et al., 2023). For example, as seen in Table 1, ViLT (Kim et al., 2021),
a Transformer-based model, demonstrates a drop in performance of 28.3% when 30% of the text
modality is present (i.e., 70% missing) at test time. Surprisingly, the performance is even lower
than the ViLT trained and tested using individual image modality (unimodal) by a margin of 5.6%.
This deteriorated performance renders multimodal classification training ineffective for real-world
scenarios where missing modality may be encountered. The drop in performance may be attributed
to the commonly used multi-branch design implementing attention layers for modality interaction.
Such a design may learn weights in a way that the final performance is highly dependent on the
correct combination of input modalities (Lu et al., 2019; Kim et al., 2018). One typical way of ad-
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Table 1: Comparison of Gazelle with ViLT (Kim et al., 2021)∗ on UPMC Food-101 (Wang et al.,
2015) dataset under different training and testing settings. ∆ ↓ indicates performance deterioration
due to missing modality at test time. ∗ViLT values are taken from Tab. 1 of (Ma et al., 2022). Best
results in each setting are shown in bold.

Dataset Methods Settings Training Testing Accuracy ∆ ↓Image Text Image Text

UPMC Food-101

ViLT
Complete Modalities 100% 100% 100% 100% 91.9 -

Missing Modality 100% 100% 100% 30% 65.9 28.3%
Unimodal 100% 0% 100% 0% 71.5 -

Gazelle
Complete Modalities 100% 100% 100% 100% 94.6 -

Missing Modality 100% 100% 100% 30% 84.8 12.3%
Unimodal 100% 0% 100% 0% 81.7 -

dressing the missing modality problem is to use a generation process such as Generative Adversarial
Networks (GANs) to complete the modalities (Zhao et al., 2021; Suo et al., 2019). However, such
methods require extensive training of the generative models to construct the missing modalities.
Several researchers utilize a dummy input to the model in case of a missing modality, which results
in a deteriorated performance of the model (Ma et al., 2022).

In this work, we target this problem of robustness to the missing modalities by hypothesizing that
learning a shared representation across different modalities enables a common continuous repre-
sentation space (Firat et al., 2016; Dabre et al., 2020). Such an intermodal representation benefits
in case of missing modality at test time. Motivated by this, we propose Gazelle that utilizes
weight sharing across multiple modalities in a single-branch network to enable learning of inter-
modal representations. Gazelle utilizes pre-trained embeddings of each modality and learns a
joint representation using a novel modality switching mechanism to carry out the training. It out-
performs state-of-the-art (SOTA) methods on several multimodal classification datasets as well as
demonstrates superior robustness against missing modality at test time. For instance, as seen in
Table 1, compared to the existing multimodal SOTA method, ViLT (Kim et al., 2021), resulting
in a classification accuracy of 91.9% when both image and text modalities are completely avail-
able on the UPMC Food-101 (Wang et al., 2015) dataset. Under the same setting, our approach
outperforms ViLT by achieving an accuracy of 94.6%. Additionally, when training and testing are
carried out using only image modality, i.e., unimodal training, ViLT results in a classification score
of 71.5% which is substantially lower than the 81.7% of our approach, highlighting the significance
of Gazelle for unimodal as well as multimodal applications. In case of severely missing modality
(i.e., only 30% of text modality available during testing), ViLT demonstrates an accuracy of 65.9%
which is even lower than the 71.5% of its unimodal image-only training. In contrast, Gazelle
demonstrates substantial robustness against missing modality by achieving 84.9% accuracy when
only 30% of text modality is available, which is superior to the unimodal performance. Similar
trends are observed across other multimodal classification datasets used to evaluate our approach.
The key contributions of our work are as follows:

1. Gazelle: A multimodal classification system robust to missing modalities at test time.
2. A novel modality switching mechanism is proposed that enables weight sharing across

multiple modalities in our single-branch network.
3. A wide range of experiments are performed on four datasets including image-text (UPMC

Food-101 (Wang et al., 2015), Hateful Memes (Kiela et al., 2020) and Ferramenta (Gallo
et al., 2017)) audio-visual (Voxceleb1 (Nagrani et al., 2017)) modalities. The proposed
system exhibits SOTA performance when complete modalities are present. Similarly, in
the case of missing modalities, our approach demonstrates superior robustness compared
to existing SOTA methods.

2 RELATED WORK

Multiple modalities including text, image, video, and audio often contain complementary informa-
tion about a common subject. The goal of multimodal learning is to leverage this complementary
information across multiple modalities to improve the performance of various machine learning
tasks such as classification, retrieval, or verification. Each multimodal task is different from the
other, while the underlying objective remains the same: to learn joint representations across multiple
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Figure 1: Architecture diagram of Gazelle. Modality-specific pre-trained networks (vision and
audio networks in the given example) are used to extract embeddings which are passed through a
modality switch and input to our single-branch network which learns modality independent repre-
sentations to encode intermodal knowledge with weight sharing across multiple modalities.

modalities (Baltrušaitis et al., 2018). Existing multimodal methods employ multi-branch networks
to learn joint representations by minimizing the distance between different modalities (Wang et al.,
2016; Nagrani et al., 2018a; Saeed et al., 2022; Kim et al., 2018; Arevalo et al., 2017; Vielzeuf
et al., 2018; Kiela et al., 2018; Muennighoff, 2020). Such methods using multi-branch networks
have achieved remarkable performance (He & Peng, 2017; Wang et al., 2015; Gallo et al., 2020;
Arevalo et al., 2017; Gallo et al., 2017; Nawaz et al., 2019; Vielzeuf et al., 2018; Kiela et al., 2018;
Yang et al., 2019; Kiela et al., 2020). However, most multimodal systems suffer from performance
deterioration if some modalities become absent at test time, a problem often referred to as handling
missing modalities (Zhang et al., 2022a; Wang et al., 2022; Zhang et al., 2022b).

Considering the importance of multimodal systems, recent years have witnessed an increasing inter-
est in handling the missing modality problem (Ma et al., 2021; 2022; Lee et al., 2023). Generally,
existing multimodal methods that address this problem can be grouped into three categories. The
first category is the input masking approach which randomly removes the inputs at training time to
mimic missing modality information. For example, (Parthasarathy & Sundaram, 2020) introduced a
strategy to randomly remove visual inputs during training to mimic missing modality scenarios for a
multimodal emotion recognition task. The second category exploits the available modality to gener-
ate the missing one (Ma et al., 2021; Cai et al., 2018). For example, (Zhang et al., 2022b) generated
the missing textual modality conditioned on the available visual modality. The third category learns
a joint representation having related information from multiple modalities (Wang et al., 2020). For
example, (Han et al., 2019) learned audio-visual joint representations to improve the performance of
the unimodal emotion recognition task, however, it is not capable of exploiting complete modality
information at the test time.

In contrast to the existing methods, we propose to learn intermodal representations with a single-
branch network employing weight sharing across multiple modalities for training. Our proposed
method not only demonstrates superior multimodal classification performance but also exhibits sig-
nificant robustness towards missing modalities compared to the existing SOTA methods.

3 METHODOLOGY

In this section, we propose Gazelle, a multimodal classification system that is robust to miss-
ing modalities. It considers modality-specific embeddings extracted using pre-trained networks as
input to a single-branch network. It employs a modality switch to jointly train the network with
cross-entropy loss. Gazelle is built on the intuition that multiple embeddings extracted using
modality-specific networks represent a similar concept but in a different representation space. The
weight sharing using a single-branch network enables learning of intermodal representations of these
concepts. The model then benefits from the intermodal representations when a modality is missing
at inference time. Figure 1 presents our approach. In the following, we explain modality embed-
ding extraction, modality switching, single-branch network, and loss formulation used to train our
system.
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Figure 2: Our proposed modality switching strategies (S-1, S-2, S-3). For each of the three
modality switching strategies, four batches are represented, each containing five embeddings for
training single-branch network. S-1) all batches are multimodal in all epochs, S-2) half of the
batches in each epoch are multimodal and the other half are unimodal, S-3) each batch has a differ-
ent randomly selected modality.

3.1 PROBLEM FORMULATION

Given D = {(xf
i , x

v
i )}Ni=1 is the training set where N is the number of instances of pairs of modality

f and modality v and xf
i and xv

i are individual modality embeddings of the ith instance, respectively.
Moreover, each multimodal pair (xf

i , x
v
i ) has a class label yi. The embeddings are extracted using

pre-trained modality-specific networks, such as Inception-ResNet-V1 (Szegedy et al., 2017), utter-
ance level aggregator (Xie et al., 2019), and CLIP (Radford et al., 2021).

3.2 MODALITY SWITCHING

Typical multimodal learning systems take multiple modalities embeddings as input by using a multi-
branch architecture (Nagrani et al., 2018a; Wang et al., 2016; Saeed et al., 2022). In contrast,
Gazelle selects input embeddings in a sequential fashion. It is achieved by introducing a modality
switching mechanism that determines the order in which embeddings are input to the single-branch
network. This enables the network to map multiple modalities into a common but discriminative
joint embedding space. Modality switching is critical to the training of our single-branch network.
We propose and explore three modality switching mechanisms for training the network as shown in
Figure 2:

S-1 Randomly selecting either of the available modalities resulting in a multimodal embedding
stream at the output of the switch. In this strategy, all batches are multimodal while batch
selection is also random.

S-2 In each epoch, 50% batches are multimodal as discussed in the first strategy, while the
remaining 50% batches are unimodal. For each unimodal batch, either of the modality is
randomly selected. During training, batch selection is random, resulting in a mixed stream
of unimodal and multimodal batches.

S-3 In this strategy, all batches are unimodal. For each batch, either of the modality is randomly
selected. During training, unimodal batches are then randomly selected, resulting in a
multi-modal stream of unimodal batches.

We empirically evaluate the effectiveness of the three strategies and found S-1 to be the most
effective. The results are presented in Section 5.2. Moreover, the experiments presented in the paper
are based on S-1 strategy, unless stated otherwise.

3.3 NETWORK

As depicted in Figure 1, the network comprises of a single-branch of three blocks. The first block
consists of a Fully Connected (FC) layer followed by Batch Normalization (BN), ReLU, and dropout
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layers. The second block consists of an FC layer followed by ℓ2 normalization layers. The third
block consists of an FC layer having the same size as the number of classes in a particular dataset
followed by softmax. The weights of these FC layers are shared by different modality-specific em-
beddings which are input in a sequential fashion obtained from our modality switching mechanism.
At test time, if complete modalities are present, late fusion is employed by taking the average of
the logits obtained from the softmax layer over all modalities. In the case of only one modality, the
fusion mechanism is not employed.

We employ cross entropy loss for training. Formally, we utilize a linear classifier with weights
denoted as W = [w1,w2, ...,wC ] ∈ Rd×C to compute the logits corresponding to li where C is
the number of classes and d is the dimensionality of embeddings. The classification loss is then
computed as:

LCE = −log
exp(lTi wyi

)∑C
j=1 exp(l

T
i wj)

(1)

4 EXPERIMENTS AND ANALYSIS

We evaluated Gazelle on the multimodal classification task using four datasets including textual-
visual modalities based UPMC Food-101 (Wang et al., 2015), Hateful Memes (Kiela et al., 2021),
Ferramenta (Gallo et al., 2017) and audio-visual modalities based Voxceleb1 (Nagrani et al., 2017).
We conduct experiments using various settings including complete modalities and different levels of
missing modalities. Moreover, an extensive ablation study is performed to evaluate different design
choices of our approach. For a fair comparison, we adopt the same evaluation metrics used by the
original authors of each dataset and the subsequent SOTA methods, i.e., classification accuracy and
area under the receiver operating characteristic (AUROC).

4.1 DATASETS

Recently, Ma et al. (2022) introduces a comprehensive protocol to study missing modality prob-
lem on textual-visual data. To provide a comparison, we select the UPMC Food-101 dataset and
the Hateful memes dataset from Ma et al. (2022). In addition, we select an audio-visual dataset
(VoxCeleb1) to evaluate the generic applicability of Gazelle on other modalities. Finally, we se-
lect a widely popular and challenging multimodal dataset, Ferramenta, which is curated to resolve
ambiguities among visual samples by using the textual modality.

UPMC Food-101. It is a classification dataset consisting of textual and visual modalities. The
dataset was crawled from the web and each entry consists of an image and the HTML web page on
which it was found. The dataset contains 90, 704 image-text pairs and 101 classes, and comes with
a 75/25 train/test splits.
Hateful Memes. It is a multimodal dataset containing textual-visual pairs with binary labels and is
developed with an aim to identify hate speech in memes. The dataset contains 10, 000 memes.
Ferramenta. It consists of 88, 010 textual-visual pairs belonging to 52 classes. The data is divided
into 66, 141 instances for train and 2, 186 instances for test.
Voxceleb1. It is an audio-visual dataset of human speech videos extracted ‘in the wild’ from
YouTube consisting of 1, 251 speakers. The data is divided into 145, 265 instances for train and
8, 251 instances for test.

4.2 IMPLEMENTATION DETAILS

Network Settings. Gazelle is trained using Adam optimizer with a learning rate of 0.01 and
dropout of 50%. The network has FC layers as: {input dim, layer dim, layer dim, number of
classes}, where the input dim is 512 for audio-visual and 768 for textual-visual modalities. More-
over, layer dim is 2048 for audio-visual and 768 for textual-visual modalities.

Modality-Specific Embeddings. We employ modality-specific networks to extract embeddings as
explained in this section. Additional analysis by using other modality-specific extractors is also
provided in Sec. 5.1 (Tab. 8). However, the following networks are our default experiment choices.
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Table 2: Comparison of Gazelle with
state-of-the-art multimodal methods on
UPMC-Food-101. Best results are shown in
bold; second best are underlined.

Method Accuracy
Wang et al. (2015) 85.1
Fused Representations (Nawaz et al.,
2018)

85.7

MMBT (Kiela et al., 2019) 92.1
BERT+LSTM (Gallo et al., 2020) 92.5
Two-Branch (Saeed et al., 2022) 94.2
ViLT (Kim et al., 2021) 91.9
Ma et al. (2022) 92.0
Gazelle 94.6

Table 3: Comparison of Gazelle with
SOTA multimodal methods on Hateful
Memes. ∗Results from Hateful Memes
Challenge (Kiela et al., 2021). †Ensemble
of 5 vision & language models. Best re-
sults are bold; second best are underlined.

Method AUROC
MMBT-Grid (Kiela et al., 2019)∗ 67.3
MMBT-Region (Kiela et al., 2019)∗ 72.2
ViLBERT (Lu et al., 2019)∗ 73.4
Visual BERT (Li et al., 2019)∗ 73.2
ViLT (Kim et al., 2021) 70.2
(Ma et al., 2022) 71.8
Vilio (Muennighoff, 2020)† 82.5
Gazelle 72.5

Table 4: Comparison of Gazelle with
state-of-the-art multimodal methods on Fer-
ramenta dataset.

Method Accuracy
Ferramenta (Gallo et al., 2017) 92.9
Fused Representations (Nawaz et al.,
2018)

94.8

IeTF (Gallo et al., 2018) 95.2
Two-Branch (Saeed et al., 2022) 96.2
MHFNet (Yue et al., 2023) 96.5
Gazelle 96.5

Table 5: Comparison of Gazelle with
state-of-the-art on VoxCeleb1 dataset.

Method AUROC
Two-branch (Saeed et al., 2022) 97.7
Gazelle 98.0

Image Embeddings We extract image embeddings using Contrastive Language–Image Pre-training
(CLIP) (Radford et al., 2021). The size of the output embeddings is 768, which matches with the
corresponding text modality.
Text Embeddings We extract text embeddings from CLIP (Radford et al., 2021). The size of the
output embedding is fixed to 768 to match the corresponding image modality.
Face Embeddings We extract face embeddings using Inception-ResNet-V1 (Szegedy et al., 2017)
pre-trained with triplet loss (Schroff et al., 2015). The size of output embeddings is 512 which
matches with the corresponding audio modality.
Audio Embeddings We extract audio embeddings using an utterance level aggregator (Xie et al.,
2019) trained for a speaker recognition task with VoxCeleb1 (Nagrani et al., 2017) dataset. The
size of output embeddings is kept 512 to match the corresponding face embeddings. The network
is trained with a fixed-size spectrogram corresponding to a 2.5 second temporal segment, extracted
randomly from each utterance (Xie et al., 2019).

4.3 EVALUATIONS UNDER COMPLETE MODALITIES SETTING

We first evaluate Gazelle when complete modalities are present during training and testing and
compare the results with existing SOTA methods. Tables 2, 3, 4 and 5 present the results. Gazelle
achieves SOTA performance on three out of four datasets. More specifically, on the UPMC-Food-
101 dataset (Table 2), our model achieved a classification performance of 94.6%, outperforming
all existing methods. On Ferramenta and VoxCeleb1 (Table 4 and 5) datasets, our model achieved
96.5% and 98.0% accuracy, respectively, outperforming all SOTA methods. Only on the Hateful
Memes dataset (Table 3), Gazelle did not achieve SOTA results but demonstrated a comparable
performance with several methods except Vilio (Muennighoff, 2020). It may be noted that Vilio is an
ensemble method employing five vision and language models to achieve the reported AUROC, thus
not directly comparable to any of the methods that are based on using a single system for inference.
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Table 6: Evaluation of Gazelle with different levels of available modality in test set using UPMC-
Food-101 and Hateful memes datasets. AUROC and accuracy are reported for Hateful Memes
and UPMC-Food-101 respectively. Comparison is provided with Two-branch (Saeed et al., 2022),
ViLT (Kim et al., 2021)∗, and (Ma et al., 2022). ∗ViLT values are taken from (Ma et al., 2022).
Boldface and underline denote, respectively, the best and second best results.

Dataset Training Testing
Gazelle Two-branch ViLT (Ma et al., 2022)Image Text Image Text

U
PM

C
Fo

od
-1

01

100% 100% 100% 100% 94.6 94.2 91.9 92.0
100% 100% 100% 90% 93.2 93.1 88.2 90.5
100% 100% 100% 70% 90.9 90.9 80.7 87.1
100% 100% 100% 50% 88.2 87.8 73.3 82.6
100% 100% 100% 30% 84.8 84.5 65.9 77.5
100% 100% 100% 10% 83.3 81.6 58.4 73.3
100% 100% 100% 0% 82.0 80.0 - -
100% 0% 100% 0% 81.7 81.7 71.5 71.5

H
at

ef
ul

M
em

es

100% 100% 100% 100% 72.5 61.1 70.2 71.8
100% 100% 100% 90% 72.2 60.9 68.8 69.7
100% 100% 100% 70% 72.0 60.2 65.9 66.6
100% 100% 100% 50% 72.1 60.0 63.6 63.9
100% 100% 100% 30% 71.3 59.4 60.2 61.2
100% 100% 100% 10% 71.2 59.7 58.0 59.6
100% 100% 100% 0% 71.2 59.5 54.9 -
100% 0% 100% 0% 68.2 68.2 56.3 56.3

Table 7: Classification accuracy of Gazelle on the configuration of 100% missing modality in
test set using Ferramenta and VoxCeleb1 datasets. Comparison of our approach is provided with the
Two-branch Network (Saeed et al., 2022) to understand the importance of our single branch design.
Best results are printed in boldface.

Dataset Training Testing Gazelle Two-branch

Ferramenta

Image Text Image Text
100% 100% 100% 100% 96.5 96.2
100% 100% 100% 0% 92.3 71.0
100% 100% 0% 100% 93.4 61.6
100% 0% 100% 0% 92.5 92.5

VoxCeleb1

Image Audio Image Audio
100% 100% 100% 100% 98.0 97.7
100% 100% 100% 0% 84.7 38.9
100% 100% 0% 100% 82.4 31.5
100% 0% 100% 0% 84.2 84.2

4.4 EVALUATIONS UNDER MISSING MODALITIES SETTING

Ma et al. (2022) have shown that multimodal methods are brittle to missing modalities at test time.
Gazelle aims to show better robustness towards missing modalities by learning intermodal repre-
sentations. Table 6 compares our approach with existing SOTA methods; ViLT (Kim et al., 2021),
Ma et al. (2022), and Two-Branch Network (Saeed et al., 2022) for varying amounts of missing
modality on UPMC Food-101 and Hateful Memes datasets. As seen, our approach outperformed
all existing SOTA methods with considerable margins. In the case of severely missing text modality
(when only 10% is available), on the UPMC Food-101 dataset, our approach demonstrates an accu-
racy of 83.3% compared to 94.6% with 100% availability of all modalities. Compared to this, Two-
branch Network, ViLT and Ma et al. (2022) demonstrate performances of 81.6, 58.4, and 73.3, re-
spectively. Similarly, on the Hateful Memes dataset, Gazelle demonstrates an AUROC of 71.2%
when only 10% of text modality is available at test time. In comparison, Two-branch Network,
ViLT, and Ma et al. (2022) demonstrate performances of 59.7, 58.0, and 59.6, respectively. Similar
trends are observed on Ferramenta and VoxCeleb1 datasets, as seen in Table 7, where comparisons
are provided with the Two-branch Network (Saeed et al., 2022). This demonstrates the significance
of our proposed single-branch network for multimodal training robust to missing modalities. Our
work serves as a proof of concept that encourages researchers to consider weight sharing in building
robust state-of-the-art multimodal networks.

7



Under review as a conference paper at ICLR 2024

Table 8: Performance comparison of Gazelle with the extracted embeddings using various pre-
trained models. Best results are obtained when using CLIP as an image and text feature extractor.

Dataset Image Emb. Text Emb. Emb Size Training Testing AccuracyImage Text Image Text

UPMC Food-101

ResNet-101 Doc2Vec 2048 100% 100% 100% 100% 87.5
ViT Doc2Vec 768 100% 100% 100% 100% 88.6

CLIP Doc2Vec 768 100% 100% 100% 100% 92.2
ViT CLIP 768 100% 100% 100% 100% 92.8

CLIP CLIP 768 100% 100% 100% 100% 94.6

Table 9: Performance analysis of the modality switching strategies (Figure 2). Results are reported
using 100% modalities in the training set. ∆ ↓ indicates performance deterioration due to missing
modalities at test time. Best results are shown in boldface.

Dataset Strategy Testing Accuracy ∆ ↓Image Text

UPMC Food-101

S-1 100% 100% 94.6 -
100% 0% 82.0 13.3%

S-2 100% 100% 94.5 -
100% 0% 81.1 14.3%

S-3 100% 100% 93.2 -
100% 0% 81.7 13.6%

5 ANALYSIS AND DISCUSSION

In this section, we provide further analysis on the impact of various embedding extractors and dif-
ferent modality switching strategies on the training and robustness of Gazelle.

5.1 EMBEDDING EXTRACTORS

In order to explore the optimal embedding extractor that enables the learning of common semantics,
we carry out experiments using different pre-trained feature extractors including ResNet-101 (He
et al., 2016), ViT (Dosovitskiy et al., 2020), and CLIP (Radford et al., 2021) for image embeddings
and Doc2Vec (Le & Mikolov, 2014) and CLIP (Radford et al., 2021) for text embeddings. For a fair
comparison, the experiments were conducted with complete modalities available during training and
testing. As seen in Table 8, on the UPMC Food-101 dataset, the best performance is achieved when
CLIP features are used for both image and text modalities. Therefore, unless stated otherwise, all of
our experiments on image and text modalities are conducted using features extracted through CLIP.

5.2 MODALITY SWITCHING STRATEGIES

We evaluate the impact of various switching strategies on the proposed multimodal approach. Ta-
ble 9 compares the results on the UPMC Food-101 dataset. S-1, where all batches in an epoch
are multimodal, resulted in the best performance over the three strategies studied in this section by
demonstrating 94.6% accuracy and a drop of 13.3% when the text modality is 100% missing during
testing. On the other hand, S-2, where half of the batches in an epoch are multimodal and the other
half are unimodal, resulted in a slightly lower accuracy of 94.5% and a drop of 14.3% when the text
modality is completely missing. S-3, where all batches in an epoch are unimodal, demonstrates the
lowest performance with only 93.2% accuracy on complete modalities and drops by 13.6% when
the text modality is entirely missing. Therefore, the results reported in our manuscript use the S-1
training strategy unless otherwise mentioned.

5.3 QUALITATIVE RESULTS

In addition to the empirical results and analysis, we use t-SNE to visualize the embedding space of
Gazelle with complete modalities as well as missing textual modality on UPMC Food-101. The
visualizations are helpful in observing the overall effect of our proposed training. Figure 3a shows
t-SNE visualization of the embedding space extracted from modality-specific network (CLIP). Al-
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1

(a) Visual modality 

representations of CLIP

(b) Gazelle multimodal 

representations

(c) Gazelle visual 

representations with 

missing textual modality

Figure 3: t-SNE visualizations of (a) CLIP visual modality representations and (b,c) the embedding
space of Gazelle (embeddings from the second block) on test set of UPMC Food-101. It can
be seen that Gazelle not only enhances the classification boundaries when complete modalities
are available at test time but also retains these boundaries when the textual modality is completely
missing during test time. More on this and t-SNE visualization comparisons with the existing SOTA
methods are provided in the supplementary.
though several classes are separable (highlighting the reasonable quality of the extracted embed-
dings), some overlap among the classes is observable. Figure 3b shows the multimodal embeddings
extracted from the second block of trained Gazelle. It can be seen that Gazelle improves
the overall classification boundaries highlighting the success of the proposed multimodal training.
Finally, Figure 3c shows the embeddings extracted from Gazelle when textual modality is com-
pletely missing at test time. Although some distortions are noticeable, the overall separability of
the classes is retained. This demonstrates the robustness of Gazelle, our proposed multimodal
learning approach, towards missing modalities. An extensive version of Figure 3 is provided in the
supplementary where we also compare additional SOTA method visualizations for comparison.

6 ADVANTAGES AND LIMITATIONS

Advantages: Notable advantages of our approach are high performance and robustness to missing
modality. Moreover, Gazelle includes a significantly smaller network that results in fewer param-
eters for training. For example, compared to 2.44 million parameters of Two-branch Network (Saeed
et al., 2022), our architecture requires merely 1.26 million parameters when both are trained on im-
age and text modalities. This makes Gazelle easily trainable compared to Transformers or other
complex attention-based mechanisms (Ma et al., 2022; Kim et al., 2021).

Limitations: Gazelle utilizes a modality switching mechanism leveraging weight sharing across
multiple modalities with a single-branch network. Such a design requires extracted representations
from modality-specific networks to have the same embedding size. We can perform a transformation
of the embedding to the required size. However, this requires further experimentation and is out of
the scope of our work.

7 CONCLUSION

We proposed a multimodal learning system that is substantially more robust against missing modal-
ities compared to existing methods. To ensure robustness, a modality switching mechanism is pro-
posed to serialize the embedding streams of single-branch networks. It facilitates complete weight
sharing of the network across multiple modalities and encodes the shared semantics across modali-
ties. Extensive experiments are performed on four datasets including audio-visual (VoxCeleb1) and
textual-visual modalities (UPMC Food-101, Hateful Memes, and Ferramenta). The proposed sys-
tem is thoroughly evaluated for missing modalities. The performance drop of the proposed system
is noticeably smaller than the existing methods showing significant robustness. Excellent results
demonstrate the proposed system as a new paradigm for multimodal learning systems robust to the
loss of modalities.
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