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ABSTRACT

Policy robustness in Reinforcement Learning (RL) may not be desirable at any
price; the alterations caused by robustness requirements from otherwise optimal
policies should be explainable and quantifiable. Policy gradient algorithms that
have strong convergence guarantees are usually modified to obtain robust poli-
cies in ways that do not preserve algorithm guarantees, which defeats the purpose
of formal robustness requirements. In this work we study a notion of robustness
in partially observable MDPs where state observations are perturbed by a noise-
induced stochastic kernel. We characterise the set of policies that are maximally
robust by analysing how the policies are altered by this kernel. We then estab-
lish a connection between such robust policies and certain properties of the noise
kernel, as well as with structural properties of the underlying MDPs, construct-
ing sufficient conditions for policy robustness. We use these notions to propose a
robustness-inducing scheme, applicable to any policy gradient algorithm, to for-
mally trade off the reward achieved by a policy with its robustness level through
lexicographic optimisation, which preserves convergence properties of the orig-
inal algorithm. We test the the proposed approach on safety-critical RL envi-
ronments, and show how the proposed method helps achieve high robustness in
observational noise problems.

1 INTRODUCTION

Robustness in Reinforcement Learning (RL) (Morimoto & Doya, 2005) can be looked at from dif-
ferent perspectives: (1) distributional shifts in the training data with respect to the deployment stage
Satia & Lave Jr (1973); Heger (1994); Nilim & El Ghaoui (2005); Xu & Mannor (2006); (2) uncer-
tainty in the model or observations (Pinto et al., 2017; Everett et al., 2021); (3) adversarial attacks
against actions (Pattanaik et al., 2017; Fischer et al., 2019); and (4) sensitivity of neural networks
(used as policy or value function approximators) towards input disturbances (Kos & Song, 2017;
Huang et al., 2017). Robustness does not naturally emerge in most RL settings, since agents are
typically only trained in a single, unchanging environment: There is a trade-off between how ro-
bust a policy is and how close it is to the set of optimal policies in its training environment, and in
safety-critical applications we may need to provide formal guarantees for this trade-off.

Motivation Consider a complex dynamical system where we need to synthesise a controller (pol-
icy) through a model-free approach. When using a simulator for training we expect the deployment
of the controller in the real system to be affected by different sources of noise, possibly not pre-
dictable or modelled (e.g. for networked components we may have sensor faults, communication
delays, etc). In safety-critical systems, robustness (in terms of successfully controlling the system
under disturbances) should preserve formal guarantees, and plenty of effort has been put on devel-
oping formal convergence guarantees on policy gradient algorithms (Agarwal et al., 2021; Bhandari
& Russo, 2019) which vanish when “robustifying” policies through regularisation or adversarial
approaches. Therefore, for such applications one would need a scheme to regulate the robustness-
utility trade-off in RL policies that preserves the formal guarantees of original algorithms and retains
sub-optimality conditions for the original problem.
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Lexicographic Reinforcement Learning Recently, lexicographic optimisation (Isermann, 1982;
Rentmeesters et al., 1996) has been applied to the multi-objective RL setting (Skalse et al., 2022b).
In an LRL setting with different reward-maximising objective functions {Ki}1≤i≤n, some objec-
tives may be more important than others, and so we may want to obtain policies that solve the
multi-objective problem in a lexicographically prioritised way, i.e., “find the policies that optimise
objective i (reasonably well), and from those the ones that optimise objective i + 1 (reasonably
well), and so on”. There exist both value- and policy-based algorithms for LRL, and the approach is
broadly applicable to (most) state of the art RL algorithms (Skalse et al., 2022b).

Previous Work In robustness against model uncertainty, the MDP may have noisy or uncertain
reward signals or transition probabilities, as well as possible resulting distributional shifts in the
training data (Heger, 1994; Xu & Mannor, 2006; Fu et al., 2018; Pattanaik et al., 2018; Pirotta
et al., 2013; Abdullah et al., 2019), which connects to ideas on distributionally robust optimisation
(Wiesemann et al., 2014; Van Parys et al., 2015). One of the first examples is Heger (1994), where
the author proposes using minimax approaches to learn Q functions that minimise the worst case
total discounted cost in a general MDP setting. Derman et al. (2020) propose a Bayesian approach
to deal with uncertainty in the transitions. Another robustness sub-problem is studied in the form of
adversarial attacks or disturbances by considering adversarial attacks on policies or action selection
in RL agents (Gleave et al., 2020; Lin et al., 2017; Tessler et al., 2019; Pan et al., 2019; Tan et al.,
2020; Klima et al., 2019). Recently, Gleave et al. (2020) propose the idea that instead of modifying
observations, one could attack RL agents by swapping the policy for an adversarial one at given
times. For a detailed review on Robust RL see Moos et al. (2022). Our work focuses in the study of
robustness versus observational disturbances, where agents observe a disturbed state measurement
and use it as input for the policy (Kos & Song, 2017; Huang et al., 2017; Behzadan & Munir, 2017;
Mandlekar et al., 2017; Zhang et al., 2020; 2021). In particular Mandlekar et al. (2017) consider
both random and adversarial state perturbations, and introduce physically plausible generation of
disturbances in the training of RL agents that make the resulting policy robust towards realistic dis-
turbances. Zhang et al. (2020) propose a state-adversarial MDP framework, and utilise adversarial
regularising terms that can be added to different deep RL algorithms to make the resulting policies
more robust to observational disturbances, minimising the distance bound between disturbed and
undisturbed policies through convex relaxations of neural networks to obtain robustness guarantees.
Zhang et al. (2021) study how LSTM increases robustness with optimal state-perturbing adversaries.

1.1 MAIN CONTRIBUTIONS

Most existing work on RL with observational disturbances proposes modifying RL algorithms
(learning to deal with perturbations through linear combinations of regularising loss terms or ad-
versarial terms) that come at the cost of explainability (in terms of sub-optimality bounds) and ver-
ifiability, since the induced changes in the new policies result in a loss of convergence guarantees.
Our main contributions are summarised in the following points.

Structure of Robust Policy Sets 1We consider general unknown stochastic disturbances and for-
mulate a quantitative definition of observational robustness that allows us to characterise the sets of
robust policies for any MDP in the form of operator-invariant sets. We analyse how the structure
of these sets depends on the MDP and noise kernel, and obtain an inclusion relation (i.e. Inclusion
Theorem, Section 3) providing intuition into how we can search for robust policies more effectively.

Verifiable Robustness through LRL While LRL is developed for reward maximising objectives,
through the proposed observational robustness definition we can cast robustness as a lexicographic
objective, allowing us to retain policy optimality up to a specified tolerance while maximising ro-
bustness and yielding a mechanism to formally control the performance-robustness trade-off. This
preserves convergence guarantees of the original algorithm and yields formal bounds on policy sub-
optimality. We provide numerical examples on how this logic is applied to existing policy gradient

1We claim novelty on the application of such concepts to the understanding and improvement of robustness
in disturbed observation RL. Although we have not found our results in previous work, there are strong connec-
tions between Sections 2-3 in this paper and the literature on planning for POMDPs (Spaan & Vlassis, 2004;
Spaan, 2012) and MDP invariances (Ng et al., 1999; van der Pol et al., 2020; Skalse et al., 2022a).
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{π ∈ Π : J∗ − J(π) ≤ ϵ}

(b) In LRPG, the policy is guaranteed (up to the
original algorithm used) to converge to an ϵ ball
of Π∗, and from those, the most robust ones.

Figure 1: Qualitative representation of the proposed LRPG algorithm, compared to usual robustness-
inducing algorithms. The sets in blue are the maximally robust policies to be defined in the coming
sections. Through LRPG we guarantee that the policies will only deviate a bounded distance from
the original objective, and induce a search for robustness in the resulting valid policy set.

algorithms, compare with existing algorithms in previous work, and verify how the previously men-
tioned Inclusion Theorem helps to induce more robust policies while retaining algorithm optimality.
Figure 1 represents a qualitative interpretation of the results in this work (the structure of the robust
sets will become clear in following sections).

1.2 PRELIMINARIES

Notation We use calligraphic lettersA for collections of sets and ∆(A) as the space of probability
measures over A. For two elements of a vector space we use ⟨·, ·⟩ as the inner product. We use 1n

as a column-vector of size n that has all entries equal to 1. We say that an MDP is ergodic if for
any policy the resulting Markov Chain (MC) is ergodic. We say that S is a n × n row-stochastic
matrix if Sij ≥ 0 and each row of S sums to 1. We use α, β, η for learning rates, µ for probability
distributions and θ ∈ Θ for parameters.

Lexicographic Reinforcement Learning We propose using policy-based LRL (PB-LRL) to en-
code the idea that, when learning how to solve an RL task, robustness is important but not at any
price, i.e., we would like to solve the original objective reasonably well, and from those policies effi-
ciently find the most robust one2. Consider a parameterised policy πθ with θ ∈ Θ, and two objective
functions K1 and K2. PB-LRL uses a multi-timescale optimisation scheme to optimise θ faster for
higher-priority objectives, iteratively updating the constraints induced by these priorities and encod-
ing them via Lagrangian relaxation techniques (Bertsekas, 1997). Let θ′ ∈ argmaxθ K1(θ). Then,
PB-LRL can be used to find parameters:

θ′′ = argmax
θ

K2(θ) such that K1(θ) ≥ K1(θ
′)− ϵ.

This is done by computing the (estimated) gradient ascent update:

θ ← projΘ
[
θ +∇θK̂(θ)

]
, λ← projR≥0

[
λ+ ηt(k̂1 − ϵt −K1(θ))

]
, (1)

where K̂(θ) := (β1
t +λβ2

t ) ·K1(θ)+β2
t ·K2(θ), λ is a Langrange multiplier, β1

t , β
2
t , ηt are learning

rates, and k̂1 is an estimate of K1(θ
′). Typically, we set ϵt → 0, though we can use other tolerances

too, e.g., ϵt = 0.9 · k̂1. For more detail on the convergence proofs and particularities of PB-LRL we
refer the reader to Skalse et al. (2022b).

2The advantage of LRL is that we need not know in advance how to define “reasonably well” for each
new task. Additionally, robustness through LRL provides us with a hyper-parameter that directly controls the
trade-off between robustness and optimality: the optimality tolerance ϵ. By selecting values of ϵ we determine
how far we allow our resulting policy to be from an optimal policy in favour of it being more robust.
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2 OBSERVATIONALLY ROBUST REINFORCEMENT LEARNING

We restrict the robustness problem considered in this work to the following version of a noise-
induced partially observable Markov Decision Process (Spaan, 2012).

Definition 1. An observationally-disturbed MDP (DOMDP) is (a POMDP) defined by the tuple
(X,U, P,R, T, γ) where X is a finite set of states, U is a set of actions, P : U × X 7→ ∆(X)
is a probability measure of the transitions between states and R : X × U × X 7→ R is a reward
function. The map T : X 7→ ∆(X) is a stochastic kernel induced by some unknown noise signal,
such that T (y | x) is the probability of measuring y while the true state is x, and acts only on the
state observations. At last γ ∈ [0, 1] is a reward discount factor.

In a DOMDP3 agents can measure the full state, but the measurement will be disturbed by some
unknown random signal in the policy roll-out phase. Unlike the POMDP setting the agent has access
to the true state x during learning of the policies (the simulator is noise-free), and no information
about the noise kernel T or a way to estimate it. The difficulty of acting in such DOMDP is that
the transitions are actually undisturbed and a function of the true state x, but agents will have to act
based on disturbed states x̃ ∼ T (· | x). We then need to construct policies that will be as robust as
possible against noise without being able to construct noise estimates. This is a setting that reflects
many control problems; we can design a controller for ideal noise-less conditions, and we know that
at deployment there will likely be noise, data corruption, adversarial perturbations, etc., but we do
not have certainty on the disturbance structure.

Remark 1. In Sections 2 and 3 we reason about the influence of T in the characterisation of ro-
bustness and robust policies. However, when trying to learn robust policies we will to introduce
uncertainty in the training phase. How to add this uncertainty will become clear in further sections.

A (memoryless) policy for the agent is a stochastic kernel π : X 7→ ∆(U). For simplicity, we
overload notation on π, denoting by π(x, u) as the probability of taking action u at state x under
the stochastic policy π in the MDP, i.e., π(x, u) = Pr{u | x}. The value function of a policy π,
V π : X 7→ R, is given by V π(x0) = E[

∑∞
t=0 γ

tR(xt, π(xt), xt+1)]. The action-value function of
π (Q-function) is given by Qπ(x, u) =

∑
y∈X P (x, u, y)(R(x, u, y) + γV π(y)). It is well known

that, under mild conditions (Sutton & Barto, 2018), the optimal value function can be obtained by
means of the Bellman equation V ∗(x) := maxu

∑
y∈X P (x, u, y)(R(x, u, y) + γV ∗(y)), and an

optimal policy is guaranteed to exist such that π∗(x) := argmaxπ V
π(x)∀x ∈ X . We then define

the objective function as J(π) := Ex0∼µ0
[V π(x0)] with µ0 being a distribution of initial states, and

we use J∗ := maxπ J(π). If a policy is parameterised by θ ∈ Θ we write πθ and J(θ).

Assumption 1. For any DOMDP and policy π, the resulting MC is irreducible and aperiodic.

Assumption 1 ensures that for any DOMDP and policy π, there exists a stationary probability distri-
bution of states µπ ∈ ∆(X), and for every policy and state this probability is larger than zero. We
now formalise a notion of observational robustness. Firstly, due to the presence of the stochastic
kernel T , the policy we are applying is altered as we are applying a collection of actions in a possibly
wrong state. This behaviour can be formally captured by:

Pr{u | x, π, T} = ⟨π, T ⟩(x, u) :=
∑
y∈X

T (y | x)π(y, u), (2)

where ⟨π, T ⟩ : X 7→ ∆(U) is the disturbed policy, which averages the current policy given the error
induced by the presence of the stochastic kernel. Notice that ⟨·, T ⟩(x) : Π 7→ ∆(U) is an averaging
operator yielding the alteration of the policy due to noise. We can then define the robustness regret:

ρ(π, T ) := J(π)− J(⟨π, T ⟩). (3)

Definition 2 (Policy Robustness). We say that a policy π is κ-robust against a stochastic kernel T
if ρ(π, T ) ≤ κ. If π is 0-robust we say it is maximally robust. We define the sets of κ-robust policies,
Πκ := {π ∈ Π : ρ(π, T ) ≤ κ}, with Π0 being the set of maximally robust policies.

3Definition 1 is a generalised form of the State-Adversarial MDP used by Zhang et al. (2020): the adversarial
case is a particular form of DOMDP where T is a probability measure that assigns probability 1 to one state.
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One can motivate the characterisation and models above from a control perspective, where poli-
cies use as input discretised state measurements with possible sensor measurement errors. Formally
ensuring robustness properties when learning RL policies will, in general, force the resulting poli-
cies to deviate from optimality in the undisturbed MDP. With this motivation, we propose solving
the problem of increasing robustness of RL policies through a hierarchical lexicographic approach,
which naturally incorporates trade-offs during the policy design. The first objective is to minimise
the distance J∗ − J(π) up to some tolerance. Then, from the policies that satisfy this constraint,
we want to steer the learning algorithm towards a maximally robust policy according to the metric
defined in Definition 2. This can be formulated as the following problem, to be solved by means of
LRL casting robustness as a valid lexicographic objective.

Problem 1. For a DOMDP and a given tolerance level ϵ, derive a policy πϵ that satisfies J∗ −
J(πϵ) ≤ ϵ as a prioritised objective and is as robust as possible according to Definition 2.

3 CHARACTERISATION OF ROBUST POLICIES

An important question to be addressed, before trying to synthesise robust policies through LRL, is
what these robust policies look like, and how they are related to DOMDP properties. The robustness
notion in Definition 2 is intuitive and it allows us to classify policies. We begin by exploring what
are the types of policies that are maximally robust, starting with the set of constant policies and set
of fix point of the operator ⟨·, T ⟩, whose formal descriptions are now provided.

Definition 3. A policy π : X 7→ ∆(U) is said to be constant if π(x) = π(y) for all x, y ∈ X , and
the collection of all constant policies is denoted by Π̄. A policy π : X 7→ ∆(U) is called a fixed
point of the operator ⟨·, T ⟩ if π(x) = ⟨π, T ⟩(x) for all x ∈ X . The collection of all fixed points will
be denoted by ΠT .

In other words, a constant policy is any policy that yields the same action distribution for any state,
and a fixed point policy is any policy whose action distributions are un-altered by the noise kernel.
Observe furthermore that ΠT only depends on the kernel T and the set4 X . We now present a
proposition that links the two sets of policies in Definition 3 with our notion of robustness.

Proposition 1. Consider a DOMDP as in Definition 1, the robustness notion given in Definition 2
and the concepts in Definition 3, then we have that

Π̄ ⊆ ΠT ⊆ Π0.

The importance of Proposition 1 is that it allows us to produce (approximately) maximally robust
policies by computing the distance of a policy to either the set of constant policies or to the fix point
of the operator ⟨·, T ⟩, and this is at the core of the construction in Section 4. However, before this,
let us introduce another set that is sandwiched between Π0 and ΠT . Let us assume we have a policy
iteration algorithm that employs an action-value function Qπ and policy π. The advantage function
for π is defined as Aπ(x, u) := Qπ(x, u) − V π(x) and can be used as a maximisation objective
to learn optimal policies (as in, e.g., A2C (Sutton et al., 1999), A3C (Mnih et al., 2016)). We can
similarly define the noise disadvantage (a form of negative advantage) of policy π as:

Dπ(x, T ) := V π(x)− Eu∼⟨π,T ⟩(x)[Q
π(x, u)], (4)

which measures the difference of applying at state x an action according to the policy π with that
of playing an action according to ⟨π, T ⟩ and then continuing playing an action according to π. Our
intuition says that if it happens to be the case that Dπ(x, T ) = 0 for all states in the DOMDP, then
such a policy is maximally robust. And this is indeed the case, as shown in the next proposition.

Proposition 2. Consider a DOMDP as in Definition 1 and the robustness notion as in Definition 2.
If a policy π is such that Dπ(x, T ) = 0 for all x ∈ X , then π is maximally robust, i.e., let

ΠD := {π ∈ Π : µπ(x)D
π(x, T ) = 0 ∀x ∈ X}.

then we have that ΠD ⊆ Π0.

4There is a (natural) bijection between the set of constant policies and the space ∆(U). The set of fixed
points of the operator ⟨·, T ⟩ also has an algebraic characterisation in terms of the null space of the operator
Id(·)− ⟨·, T ⟩. We are not exploiting the later characterisation in this paper.
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So far we have shown that both the set of fixed points Π and the set of policies for which the
disadvantage function is equal to zero ΠD are contained in the set of maximally robust policies.
More interesting is the fact that the inclusion established in Proposition 1 and the one in Proposition
2 can be linked in a natural way. We call this connection, which is the main result of this section,
the Inclusion Theorem.

Theorem 1 (Inclusion Theorem). For a DOMDP with noise kernel T , consider the sets Π,ΠT ,ΠD

and Π0. Then, the following inclusion relation holds:

Π ⊆ ΠT ⊆ ΠD ⊆ Π0.

Additionally, the sets Π,ΠT are convex for all MDPs and kernels T , but ΠD,Π0 may not be.

Let us reflect on the inclusion relations5 of Theorem 1. The inclusions are in general not strict, and
in fact the geometry of the sets (as well as whether some of the relations are in fact equalities) is
highly dependent on the reward function, and in particular on the complexity (from an information-
theoretic perspective) of the reward function. As an intuition, less complex reward functions (more
uniform) will make the inclusions above expand to the entire policy set, and more complex reward
functions will make the relations collapse to equalities. The following Corollary illustrates this.

Corollary 1. For any ergodic DOMDP there exist reward functions R and R such that the resulting
DOMDP satisfies: (i) ΠD = Π0 = Π (any policy is max. robust) if R = R, (ii) ΠT = ΠD = Π0

(only fixed point policies are maximally robust) if R = R.

We can now summarise the insights from Theorem 1 and Corollary 1 in the following conclusions:
(1) The set Π is maximally robust, convex and independent of the DOMDP, (2) The set ΠT is
maximally robust, convex, includes Π, and its properties only depend on T , (3) The set ΠD includes
ΠT and is maximally robust, but its properties depend on the DOMDP.

4 ROBUSTNESS THROUGH LEXICOGRAPHIC OBJECTIVES

We have now characterised robustness in a DOMDP and explored the relation between the sets of
policies that are robust according to the definition proposed. We have seen in the Inclusion Theorem
that several classes of policies are maximally robust, and our goal now is to connect these results
with lexicographic optimisation. To be able to apply LRL results to our robustness problem we
need to first cast robustness as a valid objective to be maximised, and then show that a stochastic
gradient descent approach would indeed find a global maximum of the objective, therefore yielding
a maximally robust policy. Then, this robustness objective can be combined with a primary reward-
maximising objective K1(θ) = Ex0∼µ0 [V

πθ (x0)] and any algorithm with certified convergence to
produce a solution to Problem 1.

We do not know T In the introduction, we emphasised the motivation for this work came partially
from the fact that we may not know T in reality, or have a way to estimate it. However, the theoretical
results until now depend on T . Our proposed solution to this lies in the results of Theorem 1. If
we use an assumed generator T̃ with the smallest possible fixed point set (i.e. the constant policy
set), the robustness lexicographic objective will drive the policy towards the set of fixed points of T̃ ,
which will be included in the fixed points of T (from Theorem 1). We argue that this is reasonable
since we expect that it will improve robustness for any noise structure. If we do have information
about the noise generator, it may be sensible to pick a different T̃ . For details on how T may relate
to T̃ see Appendix B.3. A reasonable choice for the stochastic kernel T̃ discussed in the above
paragraph is the uniform kernel, following the Principle of Maximum Entropy (when no information
about T is available, we consider the maximum entropy distribution). In specific problems, other
priors, adversarial noise, etc., may be more appropriate.

We propose now a valid lexicographic objective for which a minimising solution yields a maximally
robust policy. One of the messages of the Inclusion Theorem is the fact that fixed points and constant
policies are maximally robust, the latter being completely oblivious to the choice of T̃ , a relevant

5The above inclusions are equalities for some MDPs. See Appendix A for examples.
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feature to the design of robust policies. Consider the optimisation problem

minimise
θ

KT̃ (θ) =
∑
x∈X

µπθ
(x)

1

2
∥πθ(x)− ⟨πθ, T̃ ⟩(x)∥22, (5)

where we recall that πθ is a given parameterisation of the set of policies. Notice that the optimisation
problem 5 projects the current policy onto the set of fixed points of the operator ⟨·, T̃ ⟩, and due to
Assumption 1, which requires µπθ

(x) > 0 for all x ∈ X , the optimal solution is equal to zero if
and only if there exists a value of the parameter θ for which the corresponding πθ is a fixed point
of ⟨·, T̃ ⟩. In practice, the objectives are computed for a batch of trajectory sampled states Xs ⊂ X ,
and averaged over 1

|Xs| ; we denote these approximations with a hat. By applying standard stochastic
approximation arguments, we can prove that convergence is guaranteed for a SGD iteration using
∇θK̂T̃ (θ)(x) = (πθ(x) − πθ(y))∇θπθ(x), y ∼ T̃ (· | x) (which is an unbiased estimator for the
objective) to the optimal solution of problem 5. For details and proof, see Appendix B.

Remark 2. The gradient approximation∇θK̂T̃ (θ)(x) is not the true gradient of KT̃ . However, this
approximation is sufficient to ensure convergence of the policy πθ to a fixed point of the operator
⟨·, T̃ ⟩, provided we have a fully parameterised policy. Such an approximation is also easy to compute
from sampled points x ∈ X both on- and off-policy. Other types of policy parameterisations may
also yield a fixed point of ⟨·, T̃ ⟩ if it is such that we can make the policy state independent, i.e., if
there is a parameter θ for which πθ(x) = πθ(y) for all x, y ∈ X . This is the case, for example, when
considering general neural network architectures if we set the weights to zero (but not the bias).
Assumption 2 (Learning Rates). We assume all learning rates αt(x, u) ∈ [0, 1] satisfy the condi-
tions

∑∞
t=1 αt(x, u) =∞ and

∑∞
t=1 αt(x, u)

2 <∞.

Algorithm 1 LRPG

1: input Simulator, T̃ , ϵ
2: initialise θ, critic (if using), λ, {β1

t , β
2
t , η}

3: set t = 0, xt ∼ µ0

4: while t < max iterations do
5: perform ut ∼ πθ(xt)

6: observe rt, xt+1, sample y ∼ T̃ (· | x)
7: if K̂1(θ) not converged then k̂1 ← K̂1(θ)

8: update critic (if using)
9: update θ and λ using equation 1

10: output θ

Now, the convergence of PB-LRL algorithms is
guaranteed as long as the original policy gradi-
ent algorithm (such as PPO (Liu et al., 2019)
or A2C (Konda & Tsitsiklis, 2000; Bhatnagar
et al., 2009)) for each single objective con-
verges Skalse et al. (2022b). We can then com-
bine Lemma 1 with these results to guarantee
that Lexicographically Robust Policy Gradient
(LRPG), Algorithm 1, converges to a policy
that maximise robustness while remaining (ap-
proximately) optimal with respect to R.
Theorem 2. Consider a DOMDP as in Defi-
nition 1 and let πθ be a parameterised policy. Take K1(θ) = Ex0∼µ0

[V πθ (x0)] to be computed
through a chosen algorithm (e.g., A2C, PPO) that optimises K1(θ), and let K2(θ) = −KT̃ (θ).
Given an ϵ > 0, if the iteration θ ← projΘ

[
θ + ∇θK̂1

]
is guaranteed to converge to a parame-

ter set θ∗ that maximises K1, and hence J (locally or globally), then LRPG converges a.s. under
PB-LRL conditions to parameters θϵ that satisfy:

θϵ ∈ argmin
θ∈Θ′

KT̃ (θ) such that K∗
1 ≥ K1(θ

ϵ)− ϵ, (6)

where Θ′ = Θ if θ∗ is globally optimal and a compact local neighbourhood of θ∗ otherwise.

We reflect again on Figure 1. The main idea behind LRPG is that by formally expanding the set of
acceptable policies with respect to K1, we may find robust policies more effectively while guaran-
teeing a minimum performance in terms of expected rewards.

5 EXPERIMENTS

We verify the theoretical results of LRPG in a series of experiments on discrete state/action safety-
related environments (Chevalier-Boisvert et al., 2018). Minigrid-LavaGap, Minigrid-LavaCrossing
are safe exploration tasks where the agent needs to navigate an environment with cliff-like regions
and receives a reward of 1 when it finds a target. Minigrid-DynamicObstacles is a dynamic obstacle-
avoidance environment where the agent is penalised for hitting an obstacle, and gets a positive
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(a) MiniGrid-LavaGap (b) MiniGrid-LavaCrossing (c) MiniGrid-DynamicObstacles

Figure 2: Screenshots of the environments used.

reward when finding a target. Minigrid-LavaGap is small enough to be fully observable, and the
other two environments are partially observable. In all cases observations consist of a 7× 7 field of
view in front of the agent, with 3 channels encoding the color and state of objects in the environment.
We use A2C (Sutton & Barto, 2018) and PPO (Schulman et al., 2017) for our implementations of
LRPG which we denote by LR-PPO and LR-A2C, respectively. In all cases, the lexicographic
tolerance was set to ϵ = 0.99k̂1 to deviate as little as possible from the primary objective.

Sampling T̃ To simulate T̃ we disturb x as x̃ = x + ξ for (1) a uniform bounded noise signal
ξ ∼ U[−b,b] (T̃u) with b = 2 (1.5 for LavaCrossing) and (2) and a Gaussian noise (T̃ g) such that
ξ ∼ N (0, 0.5). We test the resulting policies against a noiseless environment (∅), a kernel T1 = T̃u

and a kernel T2 = T̃ g . The main point of these combinations is to also test the policies when the
true noise T is similar to T̃ .

General Robustness Results. Firstly, we investigate the robustness of four algorithms where we
do not have a Q function. If we do not have an estimator for the critic Qπ , Proposition 1 suggests
that minimising the distance between π and ⟨π, T ⟩ can serve as a proxy to minimise the robustness
regret. We consider the algorithms:

1. Vanilla PPO (noiseless). 3. LR-PPO with a Gaussian noise kernel (Kg
T ).

2. LR-PPO with a uniform noise kernel (Ku
T ). 4. SA-PPO from Zhang et al. (2020).

In these experiments, we use PPO with a neural policies and value functions; the architectures and
hyper-parameters used in each case can be found in Appendix C. The results are summarised in the
left-hand side of Table 1. Each entry is the median of 10 independent training processes, with reward
values measured as the mean of 100 independent trajectories.

Robustness through Disadvantage Objectives. If we have an estimator for the critic Qπ we can
obtain robustness without inducing regularity in the policy using Dπ , yielding a larger policy sub-
space to steer towards, and hopefully achieving policies closer to optimal. With the goal of diving
deeper into the results of Theorem 1, we consider the objective:

KD(θ) :=
∑
x∈X

µπθ
(x)

1

2
∥Dπθ (x, T )∥22.

We aim to test the hypothesis introduced through this work: by setting K2 = KD and thus aiming
to minimise the disadvantage D, we may obtain policies that yield better robustness with similar
expected rewards. Observe that πD ∈ ΠD =⇒ KD(πD) = 0. To test this, we compare the
following algorithms on the same environments:

1. Vanilla A2C (noiseless). 3. LR-A2C with Kg
T .

2. LR-A2C with Ku
T . 4. LR-A2C with K2 = KD.

We use A2C in this case since the structure of the original cost functions are simpler than PPO, and
hence easier to compare between the scenarios above, and we modified A2C to retain a Q function as
a critic. With each objective function resulting in gradient descent steps that pull the policy towards
different maximally robust sets (KT → ΠT and KD → ΠD respectively), we would expect to
obtain increasing robustness for KD. The results are presented in the right-hand side of Table 1.

8
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PPO on MiniGrid Environments A2C on MiniGrid Environments

Noise Vanilla LRPPO(K
u
T ) LRPPO(K

g
T ) SA-PPO Vanilla LRA2C(K

u
T ) LRA2C(K

g
T ) LRA2C(KD)

LavaGap
∅ 0.95±0.003 0.95±0.075 0.95±0.101 0.94±0.068 0.94±0.004 0.94±0.005 0.94±0.003 0.94±0.006
T1 0.80±0.041 0.95±0.078 0.93±0.124 0.88±0.064 0.83±0.061 0.93±0.019 0.89±0.032 0.91±0.088
T2 0.92±0.015 0.95±0.052 0.95±0.094 0.93±0.050 0.89±0.029 0.94±0.008 0.93±0.011 0.93±0.021

LavaCrossing
∅ 0.95±0.023 0.93±0.050 0.93±0.018 0.88±0.091 0.91±0.024 0.91±0.063 0.90±0.017 0.92±0.034
T1 0.50±0.110 0.92±0.053 0.89±0.029 0.64±0.109 0.66±0.071 0.78±0.111 0.72±0.073 0.76±0.098
T2 0.84±0.061 0.92±0.050 0.92±0.021 0.85±0.094 0.78±0.054 0.83±0.105 0.86±0.029 0.87±0.063

DynamicObstacles
∅ 0.91±0.002 0.91±0.008 0.91±0.007 0.91±0.131 0.91±0.011 0.88±0.020 0.89±0.009 0.91±0.013
T1 0.23±0.201 0.77±0.102 0.61±0.119 0.45±0.188 0.27±0.104 0.43±0.108 0.45±0.162 0.56±0.270
T2 0.50±0.117 0.75±0.075 0.70±0.072 0.68±0.490 0.45±0.086 0.53±0.109 0.52±0.161 0.67±0.203

Table 1: Reward values gained by LRPG and baselines.

6 DISCUSSION

Experiments. We applied LRPG on PPO and A2C algorithms, for a set of discrete action, dis-
crete state grid environments. These environments are particularly sensitive to robustness problems;
the rewards are sparse, and applying a sub-optimal action at any step of the trajectory often leads
to terminal states with zero (or negative) reward. LRPG successfully induces lower robustness re-
grets in the tested scenarios, and the use of KD as an objective (even though we did not prove the
convergence of a gradient based method with such objective) yields a better compromise between
robustness and rewards. When compared to recent observational robustness methods, LRPG obtains
similar robustness results while preserving the original guarantees of the chosen algorithm (it even
outperforms in some cases, although this is probably highly problem dependent, so we do not claim
an improvement for every DOMDP).

Further Considerations on LRPG. The characterisation of robustness as a policy being invari-
ant to a stochastic operator may be useful for other versions of robustness in RL. For example, in
robustness against transition probability disturbances (or distributional shifts), one may consider
distribution ambiguity sets and exploit distributionally robust optimisation ideas to investigate pol-
icy invariances. In this case, investigating the structure of maximally robust policies may yield a
mechanism to design RL algorithms that are generally robust to model uncertainties.

Shortcomings The motivation for LRPG comes partially from the situation where, when deploy-
ing a model free controller in a complex dynamical system, we may not have a feasible way of
estimating the noise generator. There is an alternative approach for robust RL (exploited in most of
the literature), which consists on taking a disturbance structure (e.g. adversarial noise) and training
directly to optimise the rewards in the disturbed MDP. Apart from LRPG preserving formal guaran-
tees, there is no clear answer over what approach is more rational, or more effective in general. The
choice would depend on the problem at hand, the possible existence of an adversary, the requirement
(or lack thereof) for formal guarantees, etc. We cannot claim that our approach is better in every
way; we simply show through this work that it is a useful approach for learning policies in specific
problems where, for example, we need to control dynamical system where the noise sources are
unknown and we need to retain certain formal guarantees of the algorithms used.

Robustness, Complexity and Invariances. Sections 2 and 3 discuss at large the structure, shape and
dependence of the maximally robust policy sets. These insights help derive optimisation objectives
to use in LRPG, but there is more to be said about how policy robustness is affected by the underlying
MDP properties. We hint at this in the proof of Corollary 1. More regular (less complex in entropy
terms, or more symmetric) reward functions (e.g., reward functions with smaller variance across the
actions R(x, ·, y)) seem to induce larger robust policy sets. In other words, for a fixed policy, a
more complex reward function yields larger robustness regrets as soon as any noise is introduced in
the system. This raises questions on how to use these principles to derive more robust policies in a
comprehensive way, but we leave these questions for future work. Additionally, one could extend
these ideas to use LRL to obtain policies that generalise to a subclass of reward functions.
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A EXAMPLES AND FURTHER CONSIDERATIONS

We provide here two examples to show how we can obtain limit scenarios Π0 = Π (any policy
is maximally robust) or Π0 = ΠT (Example 1), and how for some MDPs the third inclusion in
Theorem 1 is strict (Example 2).

Example 1 Consider the simple MDP in Figure 3. First, consider the reward function
R1(x1, ·, ·) = 10, R1(x2, ·, ·) = 0. This produces a “dummy” MDP where all policies have the
same reward sum. Then, ∀T, π, V ⟨π,T ⟩ = V π , and therefore we have ΠD = Π0 = Π.

x1 x2

{ 1
2 ,

1
2}

{ 1
2 ,

1
2}

{ 1
2 ,

1
2}

{ 1
2 ,

1
2}

Figure 3: Example MDP. Values in brackets represent {P (·, u1, ·), P (·, u2, ·)}.

Now, consider the reward function R2(x1, u1, ·) = 10, R2(·, ·, ·) = 0 elsewhere. Take a non-
constant policy π, i.e., π(x1) ̸= π(x2). In the example DOMDP (assuming the initial state is drawn
uniformly from X0 = {x1, x2}) one can show that at any time in the trajectory, there is a stationary
probability Pr{xt = x1} = 1

2 . Let us abuse notation and write π(xi) = ( π(xi, u1) π(xi, u2) )⊤

and R(xi) = ( R(xi, u1, ·) R(xi, u2, ·) )⊤. For the given reward structure we have R(x2) =
( 0 0 )⊤, and therefore:

J(π) = Ex0∼µ0

[ ∞∑
t=0

γtRt

]
=

1

2
⟨R(x1), π(x1)⟩

γ

1− γ
. (7)

Since the transitions of the MDP are independent of the actions, following the same principle as
in equation 7: J⟨π, T ⟩ = 1

2 ⟨R(x1), ⟨·, T ⟩(π)(x1)⟩ γ
1−γ . For any noise map ⟨·, T ⟩ ̸= Id, for the

two-state policy it holds that π /∈ ΠT =⇒ ⟨π, T ⟩ ≠ π. Therefore ⟨π, T ⟩(x1) ̸= π(x1) and:

J(π)− J(⟨π, T ⟩) = 5γ

1− γ
·
(
π(x1, 1)− ⟨π, T ⟩(x1, 1)

)
̸= 0,

which implies that π /∈ Π0.

Example 2 Consider the same MDP in Figure 3 with reward function R(x1, u1, ·) =
R(x2, u1, ·) = 10, and a reward of zero for all other transitions. Take a policy π(x1) = (1 0),
π(x2) = (0 1). The policy yields a reward of 10 in state x1 and a reward of 0 in state x2. Again we
assume the initial state is drawn uniformly from X0 = {x1, x2}. Then, observe:

J(π) = Ex0∼µ0

[ ∞∑
t=0

γtRt

]
=

1

2
⟨R(x1), π(x1)⟩

γ

1− γ
=

1

2

10γ

1− γ
=

5γ

1− γ
.

Define now noise map T (· | x1) = ( 12
1
2 ) and T (· | x2) = ( 12

1
2 ). Observe this noise map

yields a policy with non-zero disadvantage, Dπ(x1, T ) =
5γ
1−γ −

(
5γ
1−γ − 2.5

)
= 2.5 and similarly

Dπ(x2, T ) = −2.5, therefore π /∈ ΠD. However, the policy is maximally robust:

J(⟨π, T ⟩) = 1

2
⟨R(x1), ⟨π, T ⟩(x1)⟩

γ

1− γ
+
1

2
⟨R(x2), ⟨π, T ⟩(x2)⟩

γ

1− γ
=

1

2

γ

1− γ

(
5+5

)
=

5γ

1− γ
.

(8)
Therefore, π ∈ Π0.
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B THEORETICAL RESULTS

B.1 AUXILIARY RESULTS

Theorem 3 (Stochastic Approximation with Non-Expansive Operator). Let {ξt} be a random se-
quence with ξt ∈ Rn defined by the iteration:

ξt+1 = ξt + αt(F (ξt)− ξt +Mt+1),

where:

1. The step sizes αt satisfy Assumption 2.

2. F : Rn 7→ Rn is a ∥ · ∥∞ non-expansive map. That is, for any ξ1, ξ2 ∈ Rn, ∥F (ξ1) −
F (ξ2)∥∞ ≤ ∥ξ1 − ξ2∥∞.

3. {Mt} is a martingale difference sequence with respect to the increasing family of σ−fields
Ft := σ(ξ0,M0, ξ1,M1, ..., ξt,Mt).

Then, the sequence ξt → ξ∗ almost surely where ξ∗ is a fixed point such that F (ξ∗) = ξ∗.

Proof. See Borkar & Soumyanatha (1997).

Theorem 4 (PB-LRL Convergence). Let M be a multi-objective MDP with objectives Ki, i ∈
{1, ...,m} of the same form. Assume a policy π is twice differentiable in parameters θ, and if using
a critic Vi assume it is continuously differentiable on wi. Suppose that if PB-LRL is run for T steps,
there exists some limit point w∗

i (θ) when θ is held fixed under conditions C on M, π and Vi. If
limT→∞ Et[θ] ∈ Θϵ

1 for m = 1, then for any m ∈ N we have limT→∞ Et[θ] ∈ Θϵ
m where ϵ

depends on the representational power of the parameterisations of π, Vi.

Proof Sketch. We refer the interested reader to Skalse et al. (2022b) for a full proof, and here attempt
to provide the intuition behind the result in the form of a proof sketch.

Let us begin by briefly recalling the general problem statement: we wish to take a multi-objective
MDPM with m objectives, and obtain a lexicographically optimal policy (one that optimises the
first objective, and then subject to this optimises the second objective, and so on). More precisely,
for a policy π parameterised by θ, we say that π is (globally) lexicographically ϵ-optimal if θ ∈ Θϵ

m,
where Θϵ

0 = Θ is the set of all policies inM, Θϵ
i+1 := {θ ∈ Θϵ

i | maxθ′∈Θϵ
i
Ki(θ

′)−Ki(θ) ≤ ϵi},
and Rm−1 ∋ ϵ ≽ 0.6

The basic idea behind policy-based lexicographic reinforcement learning (PB-LRL) is to use a multi-
timescale approach to first optimise θ using K1, then at a slower timescale optimise θ using K2 while
adding the condition that the loss with respect to K1 remains bounded by its current value, and so on.
This sequence of constrained optimisations problems can be solved using a Lagrangian relaxation
(Bertsekas, 1999), either in series or – via a judicious choice of learning rates – simultaneously, by
exploiting a separation in timescales (Borkar, 2008). In the simultaneous case, the parameters of the
critic wi (if using an actor-critic algorithm, if not this part of the argument may be safely ignored)
for each objective are updated on the fastest timescale, then the parameters θ, and finally (i.e., most
slowly) the Lagrange multipliers for each of the remaining constraints.

The proof proceeds via induction on the number of objectives, using a standard stochastic approx-
imation argument (Borkar, 2008). In particular, due to the learning rates chosen, we may consider
those more slowly updated parameters fixed for the purposes of analysing the convergence of the
more quickly updated parameters. In the base case where m = 1, we have (by assumption) that
limT→∞ Et[θ] ∈ Θϵ

1. This is simply the standard (non-lexicographic) RL setting. Before con-
tinuing to the inductive step, Skalse et al. (2022b) observe that because gradient descent on K1

converges to globally optimal stationary point when m = 1 then K1 must be globally invex (where
the opposite implication is also true) (Ben-Israel & Mond, 1986a).7

6The proof in Skalse et al. (2022b) also considers local lexicographic optima, though for the sake of sim-
plicity, we do not do so here.

7A differentiable function f : Rn → R is (globally) invex if and only if there exists a function g : Rn ×
Rn → Rn such that f(x1)− f(x2) ≥ g(x1, x2)

⊤∇f(x2) for all x1, x2 ∈ Rn (Hanson, 1981).
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The reason this observation is useful is that because each of the objectives Ki shares the same
functional form, they are all invex, and furthermore, invexity is conserved under linear combinations
and the addition of scalars, meaning that the Lagrangian formed in the relaxation of each constrained
optimisation problem is also invex. As a result, if we assume that limT→∞ Et[θ] ∈ Θϵ

i as our
inductive hypothesis, then the stationary point of the Lagrangian for optimising objective Ki+1 is
a global optimum, given the constraints that it does not worsen performance on K1, . . . ,Ki. Via
Slater’s condition (Slater, 1950) and standard saddle-point arguments (Bertsekas, 1999; Paternain
et al., 2019), we therefore have that limT→∞ Et[θ] ∈ Θϵ

i+1, completing the inductive step, and thus
the overall inductive argument.

This concludes the proof that limT→∞ Et[θ] ∈ Θϵ
m. We refer the reader to Skalse et al. (2022b)

for a discussion of the error ϵ, but intuitively it corresponds to a combination of the representational
power of θ, the critic parameters wi (if used), and the duality gap due to the Lagrangian relaxation
(Paternain et al., 2019). In cases where the representational power of the various parameters is
sufficiently high, then it can be shown that ϵ = 0.

Lemma 1. Let πθ be a fully-parameterised policy in a DOMDP, and αt a learning rate satisfying
Assumption 2. Consider the following approximated gradient for objective KT̃ (π) and sampled
point x ∈ X:

∇θK̂T̃ (θ)(x) = (πθ(x)− πθ(y))∇θπθ(x), y ∼ T̃ (· | x). (9)
Then, the following iteration with x ∈ X and some initial θ0,

θt+1 = θt − αt∇θK̂T̃ (θt) (10)

yields θ → θ̃ almost surely where θ̃ satisfies KT̃ (θ̃) = 0.

Proof. See Appendix B.2.

B.2 PROOFS

We now present the proofs for the statements through the work.

Proposition 1. If a policy π ∈ Π is a fixed point of the operator ⟨·, T ⟩, then it holds that ⟨π, T ⟩ = π.
Therefore, one can compute the robustness of the policy π to obtain ρ(π, T ) = J(π)− J(⟨π, T ⟩) =
J(π)− J(π) = 0 =⇒ π ∈ Π0. Therefore, ΠT ⊆ Π0.

For a discrete state and action spaces, the space of stochastic kernels K : X 7→ ∆(X) is equivalent
to the space of row-stochastic |X| × |X| matrices, therefore one can write T (y | x) ≡ Txy as the
xy−th entry of the matrix T . Then, the representation of a constant policy as an X × U matrix
can be written as π = 1|X|v⊤, where 1|X| where v ∈ ∆(U) is any probability distribution over the
action space. Observe that, applying the operator ⟨π, T ⟩ to a constant policy yields:

⟨π, T ⟩ = T1|X|v
⊤. (11)

By the Perron-Frobenius Theorem (Horn & Johnson, 2012), since T is row-stochastic it has at
least one eigenvalue eig(T ) = 1, and this admits a (strictly positive) eigenvector T1|X| = 1|X|.
Therefore, substituting this in equation 11:

⟨π, T ⟩ = T1|X|v
⊤ = 1|X|v

⊤ = π =⇒ Π ⊆ ΠT .

Proposition 2. Recall the definition in equation 2 and that the noise disadvantage function of a
policy π is given by equation 4. We want to show that Dπ(x, T ) = 0 =⇒ ρ(π, T ) = 0. Taking
Dπ(x, T ) = 0 one has a policy that produces an disadvantage of zero when noise kernel T is applied.
Then,

Dπ(x, T ) = 0 =⇒ Eu∼⟨π,T ⟩(x)[Q
π(x, u)] = V π(x) ∀x ∈ X. (12)

Now define the value of the disturbed policy

V ⟨π,T ⟩(x0) := E uk∼⟨π,T ⟩(xk),
xk+1∼P (·|xk,uk)

[ ∞∑
k=0

γkr(xk, uk)

]
,
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and take:
V ⟨π,T ⟩(x) = Eu∼⟨π,T ⟩(x),

y∼P (·|x,u)

[
r(x, u, y) + γV ⟨π,T ⟩(y)

]
.

We will now show that V π(x) = V ⟨π,T ⟩(x), for all x ∈ X . Observe, from equation 12 using
V π(x) = Eu∼⟨π,T ⟩(x)[Qπ(x, u)], we have ∀x ∈ X:

V π(x)− V ⟨π,T ⟩(x) =Eu∼⟨π,T ⟩(x)[Q
π(x, u)]− Eu∼⟨π,T ⟩(x)

y∼P (·|x,u)

[
r(x, u, y) + γV ⟨π,T ⟩(y)

]
=Eu∼⟨π,T ⟩(x)

y∼P (·|x,u)

[
r(x, u, y) + γV π(y)− r(x, u, y)− γV ⟨π,T ⟩(y)

]
=γEy∼P (·|x,u)

[
V π(y)− V ⟨π,T ⟩(y)

]
.

(13)

Now, taking the sup norm at both sides of equation 13 we get

∥V π(x)− V ⟨π,T ⟩(x)∥∞ = γ
∥∥∥Ey∼P (·|x,u)

[
V π(y)− V ⟨π,T ⟩(y)

]∥∥∥
∞

. (14)

Observe that for the right hand side of equation 14, we have∥∥Ey∼P (·|x,u)
[
V π(y)− V ⟨π,T ⟩(y)

]∥∥
∞ ≤ ∥V π(x)− V ⟨π,T ⟩(x)∥∞. Therefore, since γ < 1,

∥V π(x)− V ⟨π,T ⟩(x)∥∞ ≤ γ∥V π(x)− V ⟨π,T ⟩(x)∥∞ =⇒ ∥V π(x)− V ⟨π,T ⟩(x)∥∞ = 0. (15)

Finally, ∥V π(x) − V ⟨π,T ⟩(x)∥∞ = 0 =⇒ V π(x) − V ⟨π,T ⟩(x) = 0 ∀x ∈ X , and V π(x) −
V ⟨π,T ⟩(x) = 0∀x ∈ X =⇒ J(π) = J(⟨π, T ⟩) =⇒ ρ(π, T ) = 0.

Inclusion Theorem 1. Combining Proposition 1 and Proposition 2, we simply need to show that
ΠT ⊂ ΠD. Take π to be a fixed point of ⟨π, T ⟩. Then ⟨π, T ⟩ = π, and from the definition in
equation 4:

Dπ(x, T ) =V π(x)− Eu∼⟨π,T ⟩(x,·)[Q
π(x, u)]

=V π(x)− Eu∼π(x,·)[Q
π(x, u)]

=V π(x)− V π(x)

=0.

Therefore, π ∈ ΠD, which completes the sequence of inclusions.

To show convexity of Π,ΠT , first for a constant policy π ∈ Π, recall that we can write π = 1v⊤,
where v ∈ ∆(U) is any probability distribution over the action space. Now take π1, π2 ∈ Π. For
any α ∈ [0, 1], απ1 + (1− α)π2 = α1v⊤1 + (1− α)1v⊤2 = 1(αv1 + (1− α)v2)

⊤ ∈ Π.

At last, for the set ΠT , assume there exist two different policies π1, π2 both fixed points of ⟨·, T ⟩.
Then, for any α ∈ [0, 1], ⟨(απ1 + (1 − α)π2), T ⟩ = αTπ1 + (1 − α)Tπ2 = απ1 + (1 − α)π2.
Therefore, any affine combination of fixed points is also a fixed point.

Corollary 1. For statement (i), let R(·, ·, ·) = c for some constant c ∈ R. Then, J(π) =
Ex0∼µ0

[
∑

t γ
trt | π] = cγ

1−γ , which does not depend on the policy π. For any noise kernel T
and policy π, J(π)− J⟨π, T ⟩ = 0 =⇒ π ∈ Π0.

For statement (ii) assume ∃π ∈ Π0 : π /∈ ΠT . Then, ∃x∗ ∈ X and u∗ ∈ U such that π(x∗, u∗) ̸=
⟨π, T ⟩(x∗, u∗). Let:

R(x, u, x′) :=

{
c if x = x∗ and u = u∗

0 otherwise
.

Then, E[R(x, π(x), x′] < E[R(x, ⟨π, T ⟩(x), x′] and since the MDP is ergodic x is visited infinitely
often and J(π) − J(⟨π, T ⟩) > 0 =⇒ π /∈ Π0, which contradicts the assumption. Therefore,
Π0 \ΠT = ∅ =⇒ Π0 = ΠT .

Lemma 1. We make use of standard results on stochastic approximation with non-expansive op-
erators (specifically, Theorem 3 in the appendix) Borkar & Soumyanatha (1997). First, observe
that for a fully parameterised policy, one can assume to have a tabular representation such that
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πθ(x, u) = θxu, and ∇θπθ(x) ≡ Id. We can then write the stochastic gradient descent problem in
terms of the policy. Let y ∼ T̃ (· | x). Then:

πt+1(x) = πt(x)− αt

(
πt(x)− πt(y)

)
=

= πt(x)− αt

(
πt(x)− ⟨πt, T̃ ⟩(x)−

(
πt(y)− ⟨πt, T̃ ⟩(x)

))
.

We now need to verify that the necessary conditions for applying Theorem 3 hold. First, αt satisfies
Assumption 2. Second, making use of the property ∥T̃∥∞ = 1 for any row-stochastic matrix T̃ , for
any two policies π1, π2 ∈ Π:

∥⟨π1, T̃ ⟩ − ⟨π2, T̃ ⟩∥∞ = ∥T̃ π1 − T̃ π2∥∞ = ∥T̃ (π1 − π2)∥∞ ≤ ∥T̃∥∞∥π1 − π2∥∞ = ∥π1 − π2∥∞.

Therefore, the operator ⟨·, T̃ ⟩ is non-expansive with respect to the sup-norm. For the final condition,
we have

Ey∼T̃ (·|x)

[
πt(y)− ⟨πt, T̃ ⟩(x) | πt, T̃

]
=

∑
y∈X

T̃ (y | x)πt(y)− ⟨πt, T̃ ⟩(x) = 0.

Therefore, the difference πt(y)−⟨πt, T̃ ⟩(x) is a martingale difference for all x. One can then apply
Theorem 3 with ξt(x) ≡ πt(x), F (·) ≡ ⟨·, T̃ ⟩ and Mt+1 ≡ πt(y) − ⟨πt, T̃ ⟩(x) to conclude that
πt(x)→ π̃(x) almost surely. Finally from assumption 1, for any policy all states x ∈ X are visited
infinitely often, therefore πt(x) → π̃(x)∀x ∈ X =⇒ πt → π̃ and π̃ satisfies ⟨π̃, T̃ ⟩ = π̃, and
KT̃ (π̃) = 0.

Theorem 2. We apply the results from Skalse et al. (2022b) in Theorem 4. Essentially, Skalse et al.
(2022b) prove that for a policy gradient algorithm to lexicographically optimise a policy for multiple
objectives, it is a sufficient condition that the stochastic gradient descent algorithm finds optimal
parameters for each of the objectives independently. From Lemma 1 we know that a policy gradient
algorithm using the gradient estimate in equation 9 converges to a maximally robust policy, i.e. a
set of parameters θ′ = argmaxθ KT̃ . Additionally, by assumption, the chosen algorithm for K1

converges to an optimal point θ∗. While the two objective functions are not of the same form – as
in Skalse et al. (2022b) – the fact they are both invex (Ben-Israel & Mond, 1986b) either locally or
globally depending on the form of K1, implies that K̂ is also invex and hence that the stationary
point θϵ computed by LRPG satisfies equation 6.

B.3 ON ADVERSARIAL DISTURBANCES AND OTHER NOISE KERNELS

A problem that remains open after this work is what constitutes an appropriate choice of T̃ , and
what can we expect by restricting a particular class of T̃ . We first discuss adversarial examples, and
then general considerations on T̃ versus T .

Adversarial Noise As mentioned in the introduction, much of the previous work focuses on adver-
sarial disturbances. We did not directly address this in the results of this work since our motivation
lies in the scenarios where the disturbance is not adversarial and is unknown. However, following
the results of Section 3, we are able to reason about adversarial disturbances. Consider an adversarial
map Tadv to be

⟨π, Tadv⟩(x) = π(y), y ∈ argmaxy∈Xad(x)
d
(
π(x), π(y)

)
,

with Xad(x) ⊆ X being a set of admissible disturbance states for x, and d(·, ·) is a distance measure
between distributions (e.g. 2-norm).
Proposition 3. Constant policies are a fixed point of Tadv , and are the only fixed points if for all
pairs x0, xk there exists a sequence {x0, ..., xk} ⊆ X such that xi ∈ Xad(xi).

Proof. First, it is straight-forward that if π ∈ Π =⇒ ⟨π, Tadv⟩(x) = π(x). To show they are the
only fixed points, assume that there is a non-constant policy π′ that is a fixed point of Tad. Then,
there exists x, z such that π′(x) ̸= π′(z). However, by assumption, we can construct a sequence
{x, ..., z} ⊆ X that connects x and z and every state in the sequence is in the admissible set of
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the previous one. Assume without loss of generality that this sequence is {x, y, z}. Then, if π′ is
a fixed point, ⟨π′, Tadv⟩(x) = π′(x), ⟨π′, Tadv⟩(y) = π′(y) and ⟨π′, Tadv⟩(z) = π′(z). However,
π′(x) ̸= π′(z), so either π′(x) ̸= π′(y) =⇒ d(π′(x), π′(y)) ̸= 0 or π′(y) ̸= π′(z) =⇒
d(π′(y), π′(z)) ̸= 0, therefore π′ cannot be a fixed point of Tadv .

The main difference between an adversarial operator and the random noise considered throughout
this work is that Tadv is not a linear operator, and additionally, it is time varying (since the policy is
being modified at every time step of the PG algorithm). Therefore, including it as a LRPG objective
would invalidate the assumptions required for LRPG to retain formal guarantees of the original PG
algorithm used, and it is not guaranteed that the resulting policy gradient algorithm would converge.

Assumption of Noise Kernel A question emerging from Section 4 is how to choose T̃ , and how
the choice influences the resulting policy robustness towards any other true T . In general, for any
arbitrary policy landscape with respect to utility in a given MDP, there is no way of bounding the
distance of resulting policies for two different noise kernels T1, T2. As a counter-example, consider a
MDP where there are 2 possible optimal policies π∗

1 , π
∗
2 , and take these two policies to be maximally

different, i.e. ∥π∗
1(x) − π∗

2(x)∥∞ = 1 ∀x ∈ X . Then, when using LRPG to obtain a robust
policy, a slight deviation in the choice of T̃ can cause the gradient descent scheme to deviate from
converging to π∗

1 to converging to π∗
2 , yielding in principle a completely different policy. However,

what remains bounded is the optimality of the policy: Through LRPG guarantees we know that, for
both cases, the resulting policy will be at most ϵ far from the optimal sum of rewards. We can,
however, state the following. Take T to be any arbitrary noise kernel, and T̃ a kernel that satisfies
ΠT̃ ≡ Π. Let π to be a policy resulting from a LRPG algorithm. Assume, for a distance metric d,
that minπ′∈ΠT̃

d(π, π′) ≤ a for some a < 1. Then, it holds for any T that minπ′∈ΠT
d(π, π′) ≤ a:

That is, the resulting policy is at most a far from the set of fixed points (and therefore a maximally
robust policy) with respect to the true T . This is the key argument behind our choices for T̃ : A priori,
the most sensible choice is a kernel that has no other fixed point than the set of constant policies.

C EXPERIMENTS METHODOLOGY

We use in the experiments well-tested implementations of A2C and PPO adapted from Zhang (2018)
to include the computation of the lexicographic parameters in equation 1. Since all the environments
use a pixel representation of the observation, we use a shared representation for the value function
and policy, where the first component is a convolutional network, implemented as in Zhang (2018).
The hyper-parameters of the neural representations are presented in Table 2.

Layer Output Func.

Conv1 16 ReLu
Conv2 32 ReLu
Conv3 64 ReLu

Fc4 256 ReLu

Table 2: Shared Observation Layers

The actor and critic layers, for both algorithms, are a fully connected layer with 256 features as input
and the corresponding output. We used in all cases an Adam optimiser. We optimised the parameters
for each (vanilla) algorithm through a quick parameter search, and apply the same parameters for
the Lexicographically Robust versions.
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LavaGap LavaCrossing DynamicObstacles
Steps 106 106 8× 105

γ 0.99 0.999 0.99
α 0.001 0.001 0.001
ϵ(Adam) 10−8 10−8 10−8

Grad. Clip 0.5 0.5 0.5
Gae 0.95 0.95 0.95
Rollout 256 512 256

Table 3: A2C Parameters

LavaGap LavaCrossing DynamicObstacles
Parallel Envs 8 8 8
Steps 106 106 8× 105

γ 0.99 0.99 0.99
α 0.001 0.001 0.001
ϵ(Adam) 10−8 10−8 10−8

Grad. Clip 0.5 0.5 0.5
Ratio Clip 0.2 0.2 0.2
Gae 0.95 0.95 0.95
Rollout 256 512 256
Epochs 10 10 10
Entr. Weight 0 0 0

Table 4: PPO Parameters

For the implementation of the LRPG versions of the algorithms, in all cases we allow the algo-
rithm to iterate for 1/3 of the total steps before starting to compute the robustness objectives. In
other words, we use K̂(θ) = K1(θ) until t = 1

3 max steps, and from this point we resume the
lexicographic robustness computation as described in Algorithm 1. This is due to the structure of
the environments simulated. The rewards (and in particular the positive rewards) are very sparse in
the environments considered. Therefore, when computing the policy gradient steps, the loss for the
primary objective is practically zero until the environment is successfully solved at least once. If
we implement the combined lexicographic loss from the first time step, many times the algorithm
would converge to a (constant) policy without exploring for enough steps, leading to convergence
towards a maximally robust policy that does not solve the environment.

Noise Kernels. We consider two types of noise; a normal distributed noise T̃ g and a uniform
distributed noise T̃u. For the environments LavaGap and DynamicObstacles, the kernel T̃u produces
a disturbed state x̃ = x + ξ where ∥ξ∥∞ ≤ 2, and for LavaCrossing ∥ξ∥∞ ≤ 1.5. The normal
distributed noise is in all cases N (0, 0.5). The maximum norm of the noise is quite large, but this
is due to the structure of the observations in these environments. The pixel values are encoded as
integers 0 − 9, where each integer represents a different feature in the environment (empty space,
doors, lava, obstacle, goal...). Therefore, any noise ∥ξ∥∞ ≤ 0.5 would most likely not be enough to
confuse the agent. On the other hand, too large noise signals are unrealistic and produce pathological
environments. All the policies are then tested against two “true” noise kernels, T1 = T̃u and
T2 = T̃ g . The main reason for this is to test both the scenarios where we assume a wrong noise
kernel, and the case where we are training the agents with the correct kernel.

LRPG Parameters. The LRL parameters are initialised in all cases as β1
0 = 2, β2

0 = 1, λ = 0

and η = 0.001. The LRL tolerance is set to ϵt = 0.99k̂1 to ensure we never deviate too much
from the original objective, since the environments have very sparse rewards. We use a first order
approximation to compute the LRL weights from the original LMORL implementation.

Comparison with SA-PPO. One of the baselines included is the State-Adversarial PPO algorithm
proposed in Zhang et al. (2020). The implementation includes an extra parameter that multiplies the
regularisation objective, kppo. Since we were not able to find indications on the best parameter for
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PPO on MiniGrid Environments A2C on MiniGrid Environments

Noise Vanilla LRPPO(K
u
T ) LRPPO(K

g
T ) SA-PPO Vanilla LRA2C(K

u
T ) LRA2C(K

g
T ) LRA2C(KD)

LavaGap
∅ 0.95±0.003 0.95±0.075 0.95±0.101 0.94±0.068 0.94±0.004 0.94±0.005 0.94±0.003 0.94±0.006
T1 0.80±0.041 0.95±0.078 0.93±0.124 0.88±0.064 0.83±0.061 0.93±0.019 0.89±0.032 0.91±0.088
T2 0.92±0.015 0.95±0.052 0.95±0.094 0.93±0.050 0.89±0.029 0.94±0.008 0.93±0.011 0.93±0.021
T 0.5
adv 0.56±0.194 0.93±0.101 0.91±0.076 0.90±0.123 0.92±0.034 0.94±0.003 0.94±0.007 0.93±0.015

T 1
adv 0.20±0.243 0.90±0.124 0.68±0.190 0.90±0.135 0.75±0.123 0.94±0.006 0.92±0.038 0.88±0.084

T 2
adv 0.01±0.051 0.71±0.251 0.21±0.357 0.87±0.116 0.27±0.119 0.79±0.069 0.68±0.127 0.56±0.249

LavaCrossing
∅ 0.95±0.023 0.93±0.050 0.93±0.018 0.88±0.091 0.91±0.024 0.91±0.063 0.90±0.017 0.92±0.034
T1 0.50±0.110 0.92±0.053 0.89±0.029 0.64±0.109 0.66±0.071 0.78±0.111 0.72±0.073 0.76±0.098
T2 0.84±0.061 0.92±0.050 0.92±0.021 0.85±0.094 0.78±0.054 0.83±0.105 0.86±0.029 0.87±0.063
T 0.5
adv 0.29±0.098 0.91±0.081 0.91±0.054 0.87±0.045 0.56±0.039 0.51±0.089 0.43±0.041 0.68±0.126

T 1
adv 0.03±0.022 0.83±0.122 0.86±0.132 0.87±0.059 0.27±0.158 0.25±0.118 0.17±0.067 0.43±0.060

T 2
adv 0.0±0.004 0.50±0.171 0.38±0.020 0.82±0.072 0.06±0.056 0.04±0.030 0.01±0.008 0.09±0.060

DynamicObstacles
∅ 0.91±0.002 0.91±0.008 0.91±0.007 0.91±0.131 0.91±0.011 0.88±0.020 0.89±0.009 0.91±0.013
T1 0.23±0.201 0.77±0.102 0.61±0.119 0.45±0.188 0.27±0.104 0.43±0.108 0.45±0.162 0.56±0.270
T2 0.50±0.117 0.75±0.075 0.70±0.072 0.68±0.490 0.45±0.086 0.53±0.109 0.52±0.161 0.67±0.203
T 0.5
adv 0.74±0.230 0.89±0.118 0.85±0.061 0.90±0.142 0.46±0.214 0.55±0.197 0.51±0.371 0.62±0.249

T 1
adv 0.26±0.269 0.79±0.157 0.68±0.144 0.84±0.150 0.19±0.284 0.35±0.197 0.23±0.370 0.10±0.379

T 2
adv -0.49±0.312 0.51±0.234 0.33±0.202 0.55±0.170 -0.54±0.209 -0.21±0.192 -0.53±0.261 -0.51±0.260

Table 5: Extended Reward Results.

discrete action environments, we implemented kppo ∈ {0.1, 1, 2} and picked the best result for each
entry in Table 1. Larger values seemed to de-stabilise the learning in some cases. The rest of the
parameters are kept as in the vanilla PPO implementation.

C.1 EXTENDED RESULTS: ADVERSARIAL DISTURBANCES

Even though we do not use an adversarial attacker or disturbance in our reasoning through this work,
we implemented a policy-based state-adversarial noise disturbance to test the benchmark algorithms
against, and evaluate how well each of the methods reacts to such adversarial disturbances.

Adversarial Disturbance We implement a bounded policy-based adversarial attack, where at
each state x we maximise for the KL divergence between the disturbed and undisturbed state, such
that the adversarial operator is:

T ε
adv(y | x) = 1 =⇒ y ∈ argmax

x̃
DKL(π(x), π(x̃))

s.t. ∥x− x̃∥2 ≤ ε.

The optimisation problem is solved at every point by using a Stochastic Gradient Langevin Dynam-
ics (SGLD) optimiser. The results are presented in Table 5.

This type of adversarial attack with SGLD optimiser was proposed in Zhang et al. (2020). As one can
see, the adversarial disturbance is quite successful at severely lowering the obtained rewards in all
scenarios. Additionally, as expected SA-PPO was the most effective at minimizing the disturbance
effect (as it is trained with adversarial disturbances), although LRPG produces reasonably robust
policies against this type of disturbances as well. At last, A2C appears to be much more sensitive to
adversarial disturbances than PPO, indicating that the policies produced by PPO are by default more
robust than A2C.
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