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ABSTRACT

Masked Language Modeling (MLM) has been one of the most prominent ap-
proaches for pretraining bidirectional text encoders due to its simplicity and ef-
fectiveness. One notable concern about MLM is that the special [MASK] symbol
causes a discrepancy between pretraining data and downstream data as it is present
only in pretraining but not in fine-tuning. In this work, we offer a new perspec-
tive on the consequence of such a discrepancy: We demonstrate empirically and
theoretically that MLM pretraining allocates some model dimensions exclusively
for representing [MASK] tokens, resulting in a representation deficiency for real
tokens and limiting the pretrained model’s expressiveness when it is adapted to
downstream data without [MASK] tokens. Motivated by the identified issue, we
propose MAE-LM, which pretrains the Masked Autoencoder architecture with
MLM where [MASK] tokens are excluded from the encoder. Empirically, we
show that MAE-LM improves the utilization of model dimensions for real token
representations, and MAE-LM consistently outperforms MLM-pretrained models
on the GLUE and SQuAD benchmarks.

1 INTRODUCTION

Pretraining text encoders to learn from bidirectional contexts has achieved enormous success in
various natural language processing (NLP) tasks (Clark et al.| 2020; Devlin et al., 2019} [Liu et al.,
2019). Masked Language Modeling (MLM) (Devlin et al.| [2019) is among one of the most prominent
pretraining approaches due to its conceptual simplicity and empirical effectiveness: By randomly
masking a portion of input tokens and training a Transformer encoder to predict the original content
based on the remaining bidirectional contexts, the model learns robust representations that generalize
well to diverse downstream tasks. Besides its broad impact in NLP, MLM has also been widely
adopted for pretraining in other domains, such as images (Bao et al [2022} Xie et al. [2022),
videos (Tong et al.,|2022; |Wang et al., [2022) and graphs (Hou et al.| [2022).

Despite its remarkable success, the effectiveness of MLM may be hindered by a discrepancy be-
tween pretraining and fine-tuning: The special [MASK] token occurs only in pretraining but not
in downstream tasks. While a few previous studies (Clark et al., 2020; |Yang et al., 2019) have at-
tempted to address this issue, they end up proposing new training objectives instead of systematically
investigating why and how such a discrepancy impacts the generalization of MLM-pretrained models.

In this work, we study the consequence of including [MASK] tokens in MLM pretraining by
examining the learned token representation space. We empirically and theoretically show that
[MASK] token representations exclusively occupy some model dimensions, thereby reducing the
model capacity for representing real tokens. Such a representation deficiency issue may not be simply
addressed by fine-tuning on downstream tasks: Those dimensions exclusively used for [MASK]
tokens have not been pretrained to represent real tokens, and will have to be either trained from
scratch on downstream data, raising the risk of overfitting (Hendrycks et al., [2019; |[Kumar et al.,
2022), or become unused, resulting in a waste of model capacity.
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To address the representation deficiency issue, we propose a simple text encoder pretraining method,
MAE-LM, which conducts MLM pretraining based on the Masked Autoencoder architecture (He
et al.} 2022). Notably, [MASK] tokens are omitted from the encoder’s input so that the real token
representations can utilize the entire model dimensions theoretically. An auxiliary decoder, used
only in pretraining and not in fine-tuning, takes the encoder’s output representations and [MASK]

positions to predict the original tokens. We demonstrate empirically that by excluding [MASK]

tokens from the encoder, MAE-LM improves the utilization of model dimensions both in pretraining
and downstream tasks and achieves consistent and notable improvements over previous models
pretrained by MLM and its variants on the GLUE and SQuAD benchmarksﬂ

Our main contributions are as follows: (1) We investigate the token representation space trained by
MLM, and identify a previously unknown representation deficiency issue when the pretrained model
is applied to real data without [MASK] tokens. (2) Based on empirical and theoretical analyses, we
explain why the representation deficiency issue occurs in the conventional MLM pretraining setup.
(3) We show that a simple pretraining method MAE-LM can address the identified issue and improve
the downstream task performance of previous MLM-pretrained models under multiple pretraining
and fine-tuning settings.

2 ANALYSIS OF TOKEN REPRESENTATIONS IN MLM

2.1 PRELIMINARIES

Transformer Encoder. Transformer encoders contain multiple Transformer layers, where each layer
consists of two submodules, multi-head self-attention (MHSA) and feed-forward network (FFN). The
self-attention mechanism uses queries @ and keys K to compute attention weights, and outputs a
weighted sum of the values V. MHSA performs self-attention in parallel over N heads as follows:

QKT>
Attn(Q, K, V') = Softmax ( Vv,
(@ H.V) i

MHSA(X) = Concat(head,, . .., heady )W, head), = Atn(X W2, XWEK XW,/),

where X € R™*? is the input representations to MHSA, n is the number of tokens and d is the model
dimension. dj, is the dimension of head % and is usually set to d/N. W}? , Wff( , W,Y € R¥¥dn and
WO ¢ R4*? are learnable weight matrices. The outputs of MHSA are further passed to FEN which
learns nonlinear transformations to derive the final outputs of the Transformer layer.

Masked Language Modeling (MLM). Given a text sequence € = [21,...,Z;,...,Zy], MLM
randomly replaces a set of token positions M with [MASK] symbols. The resulting partially masked
sequence & = [21,..., [MASK];,...,x,] is then fed to the Transformer encoder 6 which outputs
the token representations H = [hq,..., h;, ..., h,]. The encoder @ is trained to predict the original
token out of the vocabulary ) at each masked position by minimizing the cross-entropy loss Lyim:

T hv’
poluilé) = 5= exp(es, i) Lvim=E (— > logpe (xi|5c)> : 8))

wevexples h;)’ =

where e, refers to the embedding of token z.

2.2 RANK-DEFICIENT REAL TOKEN REPRESENTATIONS

MLM pretraining introduces a special [MASK] token to replace the token positions to be predicted,
but such [MASK] tokens are usually absent from downstream task data. Therefore, to study the
PLM’s capacity for downstream data representation, we examine the real token representation space
trained with MLM. A common measure of the representation space capacity is the rank of the data
representation matrix (Ansuini et al.,[2019;|Bhojanapalli et al.,|2020). In our case, this refers to the real
token representation matrix Hr € R™*% (n > d) where each row corresponds to the representation
of a real token. Ideally, one would hope Hx to have high column rank (i.e., rank(Hz) = d) so that
more model dimensions are effective for modeling real tokens. However, as we will show next, a

'Code can be found at https://github.com/yumeng5/MAE-LM.
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portion of the model dimensions will be exclusively used for [MASK] token representations in MLM
pretraining, so that Hy is necessarily rank-deficient (i.e., not all model dimensions are leveraged to
represent real tokens).

Empirical Evidence. We evaluate the
representation space of a pretrained 12-
layer RoBERTap,se model (Liu et al.,
2019) on the validation set of the pre-
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Effective Rank
Effective Rank

training corpus with 5 million tokens. We 4501/ o 1, . nasg 200 T T
first apply 15% random masks to these Inputs w/o. [MASK] Real Tokens
input sequences (same as the pretraining 400 3 g D 0 3 G T 12
Setting), and obtain the token representa- Encoder Layer Index Encoder Layer Index
tion matrix H' € R"*¢ (n ~ 5 x 108 (a) (b)

is the total number of tokens in the cor-

pus, d = 768 is the model dimension), Figure 1: In an MLM-pretrained model, (a) some model
which contains both real token and mask ~ dimensions are exclusively used for representing [MASK ]
token representations, for each layer [ in  tokens, resulting in a representation deficiency for model-
the pretrained RoOBERTa. We then feed ing inputs without [MASK], especially in deeper layers;
the same input sequences in their original ~ (b) the effective rank of [MASK] token representation
form (i.e., without [MASK]) to the pre- space increases throughout Transformer layers.

trained RoBERTa model and obtain the

token representation matrix H' € R™*¢ which consists of real token representations only. Compar-

ing the rank of H! with H' gives insights about the change in representation capacity when adapting
a pretrained MLM model to inputs without [MASK].

Since numerical errors and small perturbations practically render any large matrix full-rank re-
gardless of its actual rank, we compute the effective rank (Cai et al., [2021)) of a matrix H: We
only consider H’s most significant components that account for the majority of the variance re-
flected by singular values. Given a threshold value 7, we define the 7-effective rank of H as

k 2
o
ple, rankg o (H') = 10 means that 90% of H’s variance can be captured with 10 dimensions. We
follow the definition of effective rank in|Cai et al.|(2021) only to perform empirical computations of
the rank to showcase the issue, and we do not use it in our theoretical analysis below.

rank,(H) = arg min, ( > 7-) , where o; is the ith largest singular value of H. For exam-

Figure shows rankg o(H') (Input w. [MASK]) and ranko,g(ﬁl) (Input w/o. [MASK]). It

generally holds that rankg o(H'!) < rankg o(H'), and the gap is more prominent in deeper layers.
This demonstrates that some model dimensions are reserved for [MASK] token representations in
almost all encoder layers, and these dimensions are not active when the input sequences consist of
real tokens entirely. Such representation deficiencies for modeling real tokens become more severe in
deeper layers where [MASK] token representations occupy more dimensions, shown in Figure

Theoretical Analysis. We theoretically validate the empirical observation above that MLM necessar-
ily allocates a subspace for [MASK] token representations which is not contained by the real token
representation subspace, so that the real token representations are rank-deficient.

Lemma 2.1 (Rank increase of [MASK] token representations in Transformer encoder). The rank of
[MASK] token representations will increase from the input layer to the output layer of an L-layer
Transformer encoder trained with MLM (i.e., rank(HY,) > rank(HS,)).

Proof. We first show that H /%/1 will be high-rank in a well-trained MLM model and then show that
H 9\4 is necessarily low-rank, and thus the statement holds.

As shown in Equation (T)), the output token probability distributions at masked positions are computed
from the encoder’s output representations H /%/t € R™*4 and token embeddings E € RIV*?, Denote
the true log probability distributions of the masked token prediction task as T € R™*IVI:

logp (z1|#1) logp (z2]@1) - logp (x)y|#1)
logp (z1|22) logp(wa|®2) --- logp 56\14@2)

log p (x1|"im) logp (x2|§3m) -+ logp ($|V\ |:ﬁm)
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then HY, and E are trained to approximate T with a row shift (due to the softmax normaliza-
tion) (Yang et al., [2018)):

HYE" =T +cl', )
where ¢ € R™ contains the shifting constant added to each row, and 1 € RIV! is a vector of all ones.

It is shown in |Yang et al.|(2018)) that the true probability distribution 7" is high-rank (as high as
[V|) due to the complexity of natural language. Since rank(H%, E") < min{rank(HZ%,),rank(E)},
both H /L\A and E need to be high-rank to achieve a good approximation of T+ c1".

Next, we show H 9\4 is low-rank. H 9\/1 is the sum of token embeddings and position embeddings at
masked positions:

HS =1e|yee) + P,
where e yask] € R¢ is the [MASK] token embedding, and P € R™*d ig the position embeddings.

Since we have rank(1e | q¢; + P) < rank(ley,qy) + rank(P) = rank(P) + 1, we only need
to show P is low-rank. Previous studies (He et al., [2021; |[Ke et al.l [2021) have identified that
position embeddings P and token embeddings E encode disjoint information, and are learned in
separate subspaces of R?. Therefore, rank(P) < d — rank(E). We also showed that E must be
high-rank to satisfy Equation , and thus P is necessarily low-rank. Finally, H ?\/t is also low-rank
as rank(HY,) < rank(P) + 1. O

Remark. Lemma[2.T|corresponds to the empirical observation in Figure and can be intuitively
interpreted as a necessary consequence of the [MASK] token contextualization process in Trans-
formers: The [MASK] representations at the input layer are context-free, and they need to aggregate
contextual information from other tokens in the sequence for predicting the original word, resulting in
an increase in the information content of [MASK] token representations. We also note that the rank
increase statement does not necessarily apply to real token representations. This is because MLM
does not directly train the real token representations (e.g., the training objective in Equation (2)) does
not apply to real token position.

Based on Lemma we proceed to prove that H 5\4 occupies a different subspace that is not
contained by the subspace of H7lz resulting in deficient representations for real tokens. In the
following, we analyze the rank change induced by the self-attention mechanism since it is the source
of contextualization of [MASK] tokens, and the effectiveness of text encoders is typically attributed
to the contextualized representations (Ethayarajh, |[2019). While we do not account for MLPs and
residual connections, our analysis validates that the rank deficiency is caused by the self-attention
mechanism, and in practice, MLPs and residual connections do not prevent the issue from happening.

Theorem 2.2 (Rank deficiency of real token representations). There exists some layer | in the
Transformer encoder where the real token representation H. éa is rank-deficient. In particular, the row

space of H7lz does not contain the row space of [MASK] token representation H 5\/1

Proof. We provide a proof sketch below. Detailed proofs can be found in Appendix [A] We prove the
statement by contradiction: Suppose that the row space of H. 7% € R™*4 contains the row space of

H j\,( € R™*4 then we can represent H j\/l with H, via a linear combination weight matrix U’
Hj\/t :UHé?'7 U ER”LXH. (3)

We show that under this assumption, H j\/[ will converge exponentially (with /) to a rank-1 matrix,
which contradicts with Lemma[2.1} To examine the matrix rank, we follow the definition of matrix
residual R (Dong et al., 2021)) which measures the difference between H. 711 and a rank-1 matrix:

R = H7lz —1h", h=argmin HH;2 — 13:TH .
x

“Some MLM training settings adopt a trick that keeps 10% of [MASK] as original tokens and randomly
replaces another 10% of [MASK] with other tokens. Even with this trick, the training signals on real token
representations are scarce. Furthermore, later studies (Wettig et al., [2023) report that this trick is not necessary—
training exclusively on [MASK] positions performs well.
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Based on the self-attention formula and the assumption in Equation (3), we can derive a bound for
the norm of R' as a function of R'~!:

wewx’
Vi HWVWOHLOOHUIIOC(1+||UHOO)-
1

where ||, .. denotes the geometric mean of ¢, and /o, norm. This shows that || R' Hl ., converges

_1113
HRlHl,oo §4€||Rl 1||1,c>o7 €=

exponentially with [ to zero, and thus H7l3 converges exponentially with [ to a rank-1 matrix. We
also have rank(H',,) < rank(HY%) as the row space of H', , is contained by the row space of H.
Hence, H 5\4 will also converge exponentially to a rank-1 matrix, which contradicts with Lemmaﬁ
Therefore, the statement holds. U

Remark. Theorem[ZZ] demonstrates that at least some [MASK] token representations and real token
representations need to be linearly independent so that the rank of H 5\/1 may increase through encoder
layers. As a result, the real token representation H. 712 cannot utilize the entire model dimensions and
is prone to rank deficiency.

3 MAE-LM: MASKED AUTOENCODERS FOR MLM

To address the representation defi-

ciency issue in MLM, we propose a 73 P
simple framework MAE-LM, which Ly Ly
pretrains bidirectional Transformer
encoders using the MLM objective, |
but based on the Masked Autoen- L] A 1 1 1 "
coder (He et al 2022} [Liao et al. ( ':1 ) ’:2 J(emsa J( ';4 J(ewusa] - - - Ma?ﬁeie‘éé’i’é’f,-”niii’fed
2022) structure. An overview of

MAE-LM is shown in Figure[2] While
previous applications of the archi-
tecture are mainly motivated by the % T T - _
efficiency benefit of reduced input ( z1 ) 22 | (2 ) e Dy e
sequence lengths, its effects on the  _ .. ... ... .. . ...ol... .

learned tokens representations have X Masked Sequence: 122 [MASK] 24 [MASK] ... ',

.....................................

not been thoroughly studied. e .+ Apply random masks

Not used in

Bidirectional (Shallow) Decoder downstream tasks

Fine-tuned for

Bidirectional Encoder T % downstream tasks

Excluding [MASK] from the En- R RRRS '

coder. An important design in MAE-  Fjgyre 2: Overview of MAE-LM. Masked positions are omit-
LM is that [MASK] tokens are ex- ted from encoder inputs so that the encoder purely models
cluded from the encoder inputs so that  rea] tokens. A shallow decoder takes the encoder’s output
no model dimensions will be used to  representations and masked positions to predict the original
represent [MASK] tokens. Hence, the tokens. After pretraining, only the encoder (but not the de-

representations of real tokens H can  ¢oder) is fine-tuned for downstream tasks.
theoretically utilize the entire space
R?, which addresses the representa-
tion bottleneck in conventional MLM pretraining. Specifically, given a masked sequence & =
[z1,..., [MASK],,...,2y] and let M denote the set of masked positions, the encoder’s input se-
quence H? consists of the sum of token embeddings e,, and position embeddings p; at real token
positions i ¢ M:

HO — {hg}iw , hY=e, +pi
Decoder Configuration. In order to predict the original tokens at masked positions, the encoder’s
output token representations H” are further passed to an auxiliary bidirectional decoder. While
standard Transformer decoders perform unidirectional self-attention (and cross-attention to encoder
outputs) for autoregressive decoding, our decoder performs bidirectional self-attention (same as the
encoder). It is called a decoder as it takes encoded representations as input and outputs tokens. The

decoder’s input sequence H° needs to include the [MASK] token embedding e ask) and position
embeddings p; so that the decoder is aware of the positions to be predicted:

7 N N +pi €M
=R} R e _
i g hE +p; i¢ M

1<i<n
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Table 1: Standard single-task, single-model fine-tuning results (medians over five random seeds)
evaluated on GLUE and SQuAD 2.0 development sets. Results not available in prior research are
marked with “~”. We use Spearman correlation for STS, Matthews correlation for CoLA, and
accuracy for the other tasks on GLUE. The “AVG” column contains the averaged results across the
eight GLUE tasks. All baseline results are taken from public reports unless marked with (Ours).

Model GLUE (Single-Task) SQuAD 2.0
MNLI-m/mm) QQP QNLI SST-2 CoLA RTE MRPC STS-B AVG EM F1
base setting: Pretrained on Wikipedia & Book Corpus (16GB)

BERT 84.5/- 91.3 91.7 93.2 58.9 68.6 873 89.5 83.1 73.7 763
ALBERT 81.6/- - - 90.3 - - - - - 77.1  80.0
UniLMv2 86.1/86.1 - - 93.2 - - - - - 809 83.6
TUPE 86.2/86.2 91.3 92.2 93.3 63.6 73.6 899 89.2 849 - -

RoBERTa 84.7/- - - 92.7 - - - - - - 79.7
RoBERTa (Ours)  85.9/85.8 91.6 92.3 93.7 64.3 755  88.7 89.5 852 783 815
MAE-LM 87.2/87.1 91.6 92.9 93.8 63.1 79.1  90.2 90.9 86.1 81.1 84.1

base++ setting: Pretrained on larger pretraining corpora (160GB)

ALBERT 82.4/- - - 92.8 - - - - - 763  79.1
RoBERTa 87.6/- 91.9 92.8 94.8 63.6 78.7  90.2 91.2 864 80.5 837
UniLMv2 88.5/- 91.7 93.5 95.1 65.2 81.3 918 91.0 87.1 83.3 86.1
MAE-LM 89.1/89.1 91.7 93.8 95.1 65.9 852 902 91.6 87.8 83,5 86.5

The decoder’s output representations will be trained with the MLM objective shown in Equation (T).
Since the decoder includes [MASK] tokens, it is subject to the representation deficiency for modeling
real tokens as analyzed in Section [2| Therefore, the decoder is not used in fine-tuning on downstream
tasks. The decoder is made to be shallow (the decoder depth is 1/6 — 1/3 of the encoder in our
experiments) not only for pretraining efficiency, but also to push the encoder to learn robust token
representations—if the decoder is too strong, it alone may learn the MLM task well without requiring
good encoder representations H .

Despite using an additional decoder in pretraining, MAE-LM’s pretraining time cost is roughly equal
to that of conventional MLM pretraining (e.g., RoOBERTa). This is because the exclusion of [MASK]
tokens from the encoder practically reduces its input sequence length (e.g., 15% random masks
shorten the encoder’s input length by 15%), bringing down the encoder’s computation cost.

4 EXPERIMENTS

4.1 PRETRAINING AND EVALUATION SETUP

Pretraining Settings. We evaluate MAE-LM mainly under the base model scale for two pretraining
settings: base and base++. Both settings pretrain 12-layer Transformers with 768 model dimensions.
The base setting uses 16GB training corpus following BERT (Devlin et al., 2019) while the base++
setting uses 160GB training corpus following RoBERTa (Liu et al.|[2019). The details can be found
in Appendix [D} Additional results of larger model scales are presented in Appendix [E] All settings
use the MLM objective for pretraining without any sequence-level tasks.

Downstream Tasks and Fine-Tuning. We evaluate the pretrained models on the GLUE (Wang
et al.} 2018)) and SQuAD 2.0 (Rajpurkar et al., 2018)) benchmarks. The details about GLUE tasks
can be found in Appendix [B] We adopt standard fine-tuning as in BERT (Devlin et al.| 2019) and
RoBERTa (Liu et al., [2019). The hyperparameter search space for fine-tuning can be found in
Appendix [D| All reported fine-tuning results are the medians of five random seeds on GLUE and
SQuAD, following previous studies (Liu et al.,2019). Additional few-shot and zero-shot evaluation
results are presented in Appendix

Baselines. We compare with various baselines pretrained by MLM (and variants of MLLM) under
each setting, including BERT (Devlin et al.,2019), ALBERT (Lan et al., 2020), UniLMv2 (Bao
et al., [2020), TUPE (Ke et al.,2021)), and RoBERTa (Liu et al., 2019). The baseline results, unless
marked by “(Ours)”, are taken from the original papers. To eliminate the performance difference due
to implementation details and computation environment, we also pretrain and fine-tune RoOBERTa
(the most important baseline) under exactly the same base pretraining setting with MAE-LM, which
is denoted with “RoBERTa (Ours)”.
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Figure 3: MNLI dev set accuracy by fine-tuning Figure 4: GLUE average scores and SQuAD EM
intermediate MAE-LMy,,. checkpoints at differ- scores when different fractions of [MASK] tokens
ent time steps. We also mark the pretraining time are included in the input sequences to the encoder
and final performance of RoBERTa (Ours). of MAE-LMp,e.

4.2 OVERALL RESULTS

Table[T|shows the results under the two base model pretraining settings on the GLUE and SQuAD 2.0
benchmarks. Overall, MAE-LM outperforms previous models pretrained by MLM and its variants.
Notably, the gains of MAE-LM over RoBERTa (the standard MLM pretrained model) are quite
consistent across tasks and pretraining settings.

Pretraining Efficiency. In Figure [3] we illustrate MAE-LMy,.’s fine-tuning performance when
pretrained for different amounts of time. MAE-LM takes slightly more time than RoBERTa when
trained on the same amount of data, but to reach RoOBERTa’s MNLI accuracy, MAE-LM only needs
about 40% of its pretraining time.

4.3 ABLATION STUDIES

Table 2] shows several groups of ablations to study the important components in MAE-LM.

Naive Baselines. To validate that the effectiveness of MAE-LM is not from simply using the
additional decoder in pretraining, we first compare two naive baselines: (1) the standard MLM (enc.
w. [MASK]) and (2) adding the same decoder used in MAE-LM but still pretrains the encoder with
[MASK] tokens included in inputs (enc. w. [MASK] + dec.). The two baselines perform similarly,
confirming that naively using the decoder does not benefit downstream tasks.

Handling [MASK]. We compare

with other ways of handling [MASK]  Table 2: Ablations evaluated with GLUE average scores.
tokens 1n.the encod’er.: (D) including  The setting of MAE-LMy, is: enc. w/o. [MASK]; aligned
[MASK] in encoder’s inputs but reset-  position encoding w. relative position encoding; bi. self-

ting [MASK] token positions to the attention; 4 layer, 768 dimension.
[MASK] token embedding e yask; in

decoder’s inputs (enc. w. [MASK], Group Setting GLUE
dec. resets '[MASK]) and (2) ran- “Original  MAE-LMyue 36.1
domly replacing [MASK] tokens in - -

encoder’s inputs with other real to- ~ Naive enc. w. [MASK] (i.e., MLM) 85.2

kens from the vocabulary (random enc. w. [MASK] + dec. 85.1

replace w. real token). The first Handling enc. w. [MASK], dec. resets [MASK]  85.9
variation improves the performance [MASK] random replace w. real token 85.1
over vanilla MLM, showing that when

¢ : Position misaligned position encoding 86.0

[MASK] 1s present In the encoder,  Encoding no relative position encoding 86.1
resetting the [MASK] token embed- - - -
dings in the decoder helps. This vali- Decoder  bi. self-attention + cross-attention 85.4
dat lvsis in Th ) that Attention uni. self-attention + cross-attention 85.5
ates ouranalysis n eorem@] a cross-attention 86.0
the rank increase of [MASK] token : .
representations is the main cause of ~ Decoder 2 layer, 768 dimension 85.8
representation deficiency, and prevent-  Size 2 :ayer, ;?g g}mensfon ggg
. : ayer, 1mension .
ing [MASK] token representations 4 layer, 1024 dimension 255

in the encoder from being explicitly
trained is one way to mitigate the is-
sue, though it is slightly worse than completely excluding [MASK] from the encoder. The second
variation demonstrates that replacing [MASK] tokens with random real tokens, though avoiding the
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representation deficiency problem, worsens the context quality in pretraining. On balance, it does not
yield better results than MLM.

Position Encoding. MAE-LM aligns the position encoding based on each token’s position in the
original sequence, and the position indices of masked positions are skipped. MAE-LM also uses
relative position encoding (Raffel et al., [2019). We create two ablations: (1) apply consecutive
position encoding that does not reflect the masked positions (misaligned position encoding); and (2)
remove the relative position encoding from MAE-LM (no relative position encoding). Overall, the
variations in position encoding do not result in notable performance differences.

Decoder Attention. MAE-LM uses bidirectional self-attention in the decoder. We compare with
other decoder attention configurations: (1) additionally use cross-attention to encoder’s output
representations (bi. self-attention + cross-attention); (2) use unidirectional self-attention and cross-
attention for autoregressive decoding of the entire sequence, similar to BART (Lewis et al.| 2020al)
(uni. self-attention + cross-attention); and (3) only use cross-attention (cross-attention). Bidirectional
self-attention only in the decoder is simple and performs the best.

Decoder Size. MAE-LM uses a 4-layer decoder with the same dimensionality (768) as the encoder.
We experiment with other decoder sizes (when the decoder’s dimension is different from the encoder,
we add a linear projection between the encoder’s output and the decoder’s input): (1) 2-layer, 768
dimension; (2) 6-layer, 768 dimension; (3) 4-layer, 512 dimension; and (4) 4-layer, 1024 dimension.
Overall, using a relatively small decoder yields good results.

Gradual Transition from MAE-LM to Standard MLM. To further examine the empirical benefits
of excluding [MASK] tokens from MAE-LM’s encoder, we create a set of “stepping stones” between
MAE-LM and standard MLLM as follows: Out of all [MASK] tokens in the sequence &, we include a
fraction (§) of them in the encoder’s input sequence. The rest (1 — §) of [MASK] tokens are excluded
from the encoder’s input and added to the decoder’s input. Then § = 0 represents MAE-LM, and
0 = 1 refers to the standard MLMﬂ Figure [4|illustrates the fine-tuning performance changes on
GLUE and SQuAD as we transition from MAE-LM to standard MLM. There is a clear trend that
including a higher portion of [MASK] tokens in the encoder degrades its performance.

4.4 MAE-LM IMPROVES MODEL DIMENSION UTILIZATION

To further validate the effectiveness of

MAE-LM in improving the utilization

. . . 4 v —e— MAE-LM
of model dimensions for representing = 5y Z 400 MLM

. [a=ly ~
real tokens, we compute the 0.9-effective ¢ B
rank of the encoder’s token representa- T 4507/ —° MMw. sl 5
. ) .. & MLM w/o. [MASK] £ 200
tions rankg o (H ™) both after pretraining = —— MABLM &
idati 400

(evaluated on the validation set of the 3 6 9 5 0 10000 20000
pretraining COI‘pLIS) and after further fine- Encoder Layer Index Fine-Tuning Steps
tuning on MNLI. Figure 5(a)|shows the (a) (b)

effective rank throughout encoder lay-

ers for (1) RoBERTa when the inputs Figure 5: (a) MAE-LM effectively closes the rank gap
contain [MASK] (MLM w. [MASK]); in vanilla MLM with inputs containing or not containing
(2) RoBERTa when the inputs are all [MASK]. (b) During fine-tuning, the advantage in effec-
real tokens (MLM w/o. [MASK]); and tive rank of MAE-LM over vanilla MLM still holds.

(3) MAE-LM. MAE-LM closes the gap

caused by [MASK] tokens in vanilla MLM pretraining. Figure [5(b)|further validates that MAE-LM
maintains its advantage in the effective rank of real token representations during fine-tuning on MNLI.
This highlights the importance of addressing the representation deficiency issue in pretraining: The
model dimensions not pretrained to represent real tokens may not be easily leveraged in fine-tuning.

5 RELATED WORK

Language Model Pretraining. Various pretraining methods have been proposed for different
purposes: Standard autoregressive language modeling (Brown et al., 2020; [Radford et al., [2018};

3 Although standard MLM (i.e., RoOBERTa) does not have the decoder, its fine-tuning results are almost the
same as § = 1 (with the decoder) as shown in Table@
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2019) is commonly used to pretrain generative models that excel in text generation; MLM (Devlin
et al., |2019; Liu et al., 2019) is prominently used to pretrain bidirectional text encoders to achieve
superior performance for language understanding; Other language modeling objectives (Lewis et al.,
2020a; [Raffel et al., 2019) are designed to build sequence-to-sequence models that serve as both
text generators and text encoders. As one of the most prominent pretraining approaches, MLM has
stimulated many follow-up developments for pretraining bidirectional encoders (Bao et al., 2020;
Clark et al.l 2020; |Gong et al.} 2023} |He et al., 2021} Joshi et al.} 2019; |Lan et al.l 2020; [Liao et al.|
2022; | Meng et al., 2021;[2022; Sanh et al.| 2019} |Yang et al.| 2019). Remarkably, the idea of MLM is
highly generalizable to different domains (Bao et al., 2022} |Dosovitskiy et al.} 2021} [Hou et al.,|2022;
Tong et al., 2022} Wang et al.| 2022; [Xie et al.,[2022) and leads to developments of unified pretraining
frameworks for different modalities (Baevski et al.| 2023;/2022). Given the broad impact of MLM,
our analyses of representation deficiency in MLM may provide insights for future developments of
pretraining algorithms in various fields.

Study of Pretrained Models’ Representations. The powerful language representations learned by
pretrained models have driven a series of studies to understand how linguistic knowledge is acquired
through pretraining. Previous work studying the token representations in pretrained encoders has
found that deeper layers generate more contextualized token representations (Ethayarajh, [2019),
and these representations encode syntax structures (Goldberg, [2019; Hewitt & Manning, [2019) and
fine-grained word senses (Coenen et al.,[2019), offering supporting evidence for the effectiveness of
pretrained models in downstream tasks. The success of learning such linguistic patterns is usually
attributed to the self-attention mechanism which automatically learns to extract useful features through
pretraining (Clark et al,2019). Furthermore, different types of linguistic information are shown to
be represented in a hierarchical way from shallower to deeper layers, reflecting the traditional NLP
pipeline (Tenney et al.l 2019a3b). There have also been prior efforts that investigate the limitations of
pretrained models’ representations. It has been revealed that the contextualized embedding space
learned by pretrained models is generally anisotropic (Cai et al.,| 2021} L1 et al.,|2020) and is subject
to a degeneration problem that token representations tend to be distributed into a narrow cone (Gao
et al., 2019)). \Gong et al.|(2019) identify that self-attention in Transformers tends to assign higher
weights to local tokens as well as the starting token, which motivates the design of a progressive
stacking algorithm for efficient pretraining. In this work, we investigate a previously unknown issue
regarding MLM-pretrained models’ representations that hinders the model’s expressiveness on input
sequences without [MASK] tokens. Our findings contribute a new perspective to understanding the
limitations of representations in pretrained models.

6 CONCLUSION

Limitations. The focus of our work is on MLM and our analyses do not apply to other pretrain-
ing settings not using [MASK] tokens, and we discuss potential implications of our findings on
autoregressive language models in Appendix [F} While the current large language models are mostly
autoregressive models, we believe that text encoder models still have important and wide applications
in NLP, including but not limited to (1) Non-generation tasks. Many natural language understanding
tasks do not have to be modeled autoregressively, for which encoder-only models are generally more
parameter efficient and effective (Zhong et al.,|2023)). (2) Retrieval-augmented text generation (Lewis
et al.| 2020b), which typically uses an encoder for retrieval to enhance the generator’s factualness.
(3) Reward models in reinforcement learning from human feedback (RLHF) can use encoder mod-
els (Song et al., 2023). Empirically, we mainly compare with models pretrained by MLM and its
simple variants and do not include all state-of-the-art models, as they typically require integrating
multiple pretraining strategies and/or architecture changes (He et al., 2023)).

Conclusion. In this work, we investigate the discrepancy caused by [MASK] tokens in MLM pre-
training and demonstrate for the first time that this will necessarily result in real token representations
being rank-deficient, thus limiting the model’s expressiveness on real data without [MASK]. We
propose a simple method MAE-LM that excludes [MASK] tokens from the encoder in pretraining
to address the representation deficiency issue. We empirically show that MAE-LM improves the
utilization of model dimensions for representing real tokens in pretraining and downstream tasks.
MAE-LM consistently outperforms MLM-pretrained models on the GLUE and SQuAD benchmarks
across multiple pretraining settings.
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A DETAILED PROOFS

Theorem 2.2 (Rank deficiency of real token representations). There exists some layer | in the
Transformer encoder where the real token representation H. %2 is rank-deficient. In particular, the row
space of H7lz does not contain the row space of [MASK] token representation H jv(

Proof. We prove the statement by contradiction: We suppose that the row space of H7l3 always
contains the row space of H 5\/1 in all layers 1 <[ < L, and we will show that under this assumption,
H 5\/1 will converge exponentially (with [) to a rank-1 matrix, which contradicts with Lemma In
the following, we assume single-head self-attention is used, and the analysis can be easily generalized
to the multi-head case.

The following proof extends Dong et al.|(2021) by considering the representations of real tokens and
mask tokens separately and following the residual norm analysis in Dong et al.| (2021) to study the
rank changes.

The self-attention module in the Ith layer takes the previous layer representations H (the superscript
I — 1 is omitted for convenience) as input and derives the output representations H':

H' = Atn (HWC HWX HW") W
HWeWK HT
Vd

= Softmax ( ) HWYwW?©°

= AHW"O,
where we denote the attention matrix computed from softmax as A, and W0 = WV WO,
We study how the real token representations change (i.e., comparing H7, with Hy) through the
self-attention module. To facilitate easy analyses, we partition the input token representation matrix
H e Rt xd into blocks consisting of real token representations Hz € R"*¢ and [MASK]
token representations H n € R™>?, and partition the attention matrix A into blocks consisting of

attention weights from real tokens to real tokens Ar.g € R"*" and from real tokens to [MASK]
tokens A.pq € R

H= [Igﬂ . Ag=[Arr Aroad.
We further denote
Srr =exp [HRWOKHL], Sgpm=exp [ HRWOFH|, Z = diag(Sr-r1+Sr:Mm1),
where exp|-] denotes the element-wise exponential function, diag(-) constructs a diagnal matrix from
a vector, WK = WQWKT/\/ﬁ, and 1 is a vector of all ones. Then

Arr = Z'Srr, Arm=Z 'Sr.m.

Based on the above notations, the output representations at real token positions H7, can be written
as:

Hp

H7/3 = ARHWVO = [AR:R AR:M] |:HM

:| WVO = Z_l (SRRHR + SRMHM) WVO'
“

If the row space of Hy contains the row space of H 54, each row of H » can be represented as a
linear combination of the rows in Hz:

Hy,, =UHg,
where U € R™*" is the linear combination weight matrix. We can rescale the vector norm of each
row in H » so that U has a row sum of one (i.e., U1 = 1).

To examine the rank of real token representations, we examine the change in matrix residual through
Transformer layers, inspired by |Dong et al|(2021). Specifically, we define the following residual R
which measures the difference between Hy and a rank-1 matrix:

R=Hg —1h", h=argmin ||H72 — la:TH .
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We aim to show that the norm of R converges exponentially (with layer depth) to zero, meaning that
Hp converges (with layer depth) to a rank-1 matrix.

By plugging Hr = R+1h" and Hy = UHzr =UR+U1h'" = UR+1h" into Equation @])
we obtain

Hp = Z ' (Sgr (R+1h") + Sgou (UR+1R7)) WVO

=z (Srr +SrMU)R+Z ' (Sr.rl+ Sr.m1)hT | WYO
=1
=Z "' (Srr + Sr:MmU) RWVP + 1hTWVO. )
Next we write out Si.r and Sr.aq:

Srir = exp [HRWQKHT]

[
|

—exp [(R+1RHWOK (R +1h7)T ]

= exp |[RWO¥RT +1h"WeKRT + (RWQKh+ lhTWQKh) ]

= exp [RWQKRT
=F

T

® exp [1 hTWQKRT] ® exp (RWQKh + 1hTWQKh) 17|,
=g ~-

and

Sr:M = exp [HRWQK }
= exp [ (R+ 1R WS (UR+1n") ]
[RWQKR U +1h WRTUT 4 (RWQKh n 1hTWQKh) ]

= exp

T

=F'

RWQKRTUT] ® exp [1 hTWQKRTUT] ® exp (RWQKh + lhTWQKh) 17,
— —_—
- ~-

where © denotes the element-wise product. Let F = RWCSKRT F' = RWSCKR'UT, g™ =
h"TWCRKRT ¢ T = h"TWRKRTUT, and c = RW®Kh + lhTWQKh we can further write
out Z:

Z = diag (Sr.r1+ Sr.m1)

= diag (((exp [F] ®exp [1g"]) 1+ (exp [F'] @ exp [1g'T]) 1) @ exp|c]) .
Let F = [F' F’] be the augmented matrix by combining the columns of F' and F’, and let f and I
denote the maximum and minimum element across each row of F', respectively:

fi= mjaxﬁij, L, = mjinﬁij.
Then we can derive a lower bound of each element in Z ' Sz.x:
(21 Sp], = exp(Fi;) exp(g;) exp(ci)
(3 exp(Fiy) explgr) + 5,0 exp(F) exp(g),) ) exple:)

exp(Fi;) exp(g;)

exp (F3) (X exploy) + X explg)))

7) exp(gj) )
VX2 explgyr) + 305 exp(g))

v

= exp (FZJ —

Similarly, we can derive an upper bound:

exp(g;)

L) > exp(gy) + >, exp(g))

(Z7Sr.%] i < exp (Fij -
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Using the the Taylor expansion of exp, we have
exp (F'L'j — 71) Z 1—|—FZJ—?7 Z 1+iz_?7’ exp (FU — iz) S 1+2 (Fij — iz) S 1+2 (?z — I’L) .
Therefore,

3 exp(g;) “1g - exp(g;)
(1+£, fz)zj/ p(3y) + 5, o0(d)) < [27'Srr],, < (142F, Qii)zj, () + 3, exp(@)

Denote D = diag (7 — i) and g4 = exp [gw 1+ exp [g’T] 1, then the above bound can be
expressed in matrix form as follows (the inequality between matrices holds element-wise):

1 1
g—(I —D)lexplg'] < Z7'Srir < g—(I +2D)lexp[g']. (6)
+ +

An analogous derivation gives the bound of Z~1Sx.q:
1 1
— (I -D)lexp[g''] < Z7'Srim < —(I+2D)1lexp [g'"]. (7
9+ 9+

Since the upper and lower bounds are in very similar forms, we will only focus on the upper bound in
the derivations below.

Combining Equation (6) with Equation (7)), we have

explg'] +expgT|U Lop1 | O g +exp[g'T|U
9+ g+

=rT —pT

=17 +2D17" ®
Plugging Equation (8) into Equation (3], we have

Z ' (Srr +SrmU) <1

Hj < (1r" +2D1r ") RWYO+1A™WYO =1 [ rTRWY? + ATWVC | +2D1r TRWVO.
=h'T

Therefore,

Hj;, —1h'T <2D17"RWVO,
With a similar derivation, we have the following lower bound:

Hj — 10T > -D1r"RWVO.

Overall, we can bound the element-wise absolute values of R’ = H, — 1h'", which measure the
distance between H, and a rank-1 matrix:

|R};| = ‘[H;a - 1h'TLj’ < ‘[QDITTRWVO]

i
This allows us to further bound the norm of R’. For #; norm, we have
IR, < |2D1r"RWYO|,

<2|D1f|||[rTRWYC|, Based on Holder’s inequality
<2|D1]_ ||7'TH1 | R HWVOH1 ; Submultiplicativity of matrix norms
where
ID1]., = max]|F, - 1,
<2|7]
1

< 2max { [ RBWSRT |, [RWOSRTUT|,)
< 2R, [|WOK |, R, max (1, U]}
< 2||R|, [W, IR] U] U] = 1since U1 =1
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and
el < e Tl

exp[g'] +exp[gT|U

9+ o
< | exe [gT] exp [g’T] U
B 9+ - 9+ -
Therefore, we can bound the ¢; norm of || R’||, as follows:
2
IR, < 4[WeE [ WY T @+ U ) IR IR - ©
Similarly, we can obtain the bound for the /., norm of || R’||;:
2
IRl < 4[WEE[ WYl L IUll 1+ 11T IR 1R - (10)

Denote the geometric mean of ||R||; and || R as [|R]|, ., = /IR, [ Rl then from Equa-
tion (9) and Equation (I0), we have

IR o < 4WEK| [WYO, T, 1+ [Tl IR

||1,oo

=c

3
= 4| Rl . -

The above inequality reflects how the residual changes within one self-attention layer. Applying it
recursively throughout all layers in an L-layer encoder, we have:

L_
[RH, < 0 R o= mae

where R” and R denote the residuals corresponding to the encoder’s output real token representa-
tions H% and input real token representations H'%, respectively.

This demonstrates that the residual norms of real token representations converge exponentially (with
layer depth) to zero. Hence, the real token representation matrix H. éz converges exponentially (with
layer depth) to a rank-1 matrix. Since the row space of [MASK] token representations vat is
contained by the row space of H, we have rank(H',) < rank(HY ), and H',; will also converge
exponentially (with layer depth) to a rank-1 matrix, which contradicts with Lemma 2.1} Finally,
we conclude that the row space of H. éz must not contain the row space of H j\/l which necessarily
implies that HY is rank-deficient. O

B DETAILS ABOUT GLUE TASKS

More details of all the GLUE tasks can be found as follows.

MNLI: The Multi-genre Natural Language Inference (Williams et al.| 2018]) task includes 393K
training examples from crowdsourcing. The goal is to predict if a premise sentence entails, contradicts,
or is neutral with respect to a given hypothesis sentence.

QQP: Question Pairs (Shankar et al.,|2017)) includes 364K training examples from the Quora question-
answering website. The task is to determine if two given questions are semantically equivalent.

QNLI: Question Natural Language Inference includes 108K training examples derived from the
Stanford Question Answering Dataset (SQuAD) (Rajpurkar et al.,[2018)). The task is to predict if a
sentence contains the answer to a given question.

SST-2: Stanford Sentiment Treebank (Socher et al.l|2013)) includes 67K training examples on movie
reviews with human annotations. The task is to determine if a given sentence has positive or negative
sentiment.
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CoLA: Corpus of Linguistic Acceptability (Warstadt et al.,[2019) includes 8.5K training examples
from books and journal articles on linguistic theory. The task is to determine if a given sentence is
linguistically acceptable.

RTE: Recognizing Textual Entailment (Bentivogli et al.l|2009; |Dagan et al., 2005; Haim et al., [2006;
Giampiccolo et al.,|2007) includes 2.5K training examples from textual entailment challenges. The
task is to predict if a premise sentence entails a given hypothesis sentence.

MRPC: Microsoft Research Paraphrase Corpus (Dolan & Brockett, [2005) includes 3.7K training
examples collected from news sources. The task is to predict if two given sentences are semantically
equivalent.

STS-B: Semantic Textual Similarity (Cer et al.l [2017) includes 5.8K training examples collected
from multiple sources on sentence pair semantic similarity annotated by humans. The task is to
predict the semantic similarity of two sentences (based on a 1 to 5 scoring scale).

C IMPLEMENTATION DETAILS

Details of Pretraining Settings. The base setting follows BERTy,, (Devlin et al.,2019)) pretraining
which uses Wikipedia and BookCorpus (Zhu et al., [2015) (16GB of texts) as the pretraining corpora.
The encoder architecture is a 12-layer Transformer, and the model dimension is 768. We train both
absolute and relative position embeddings (Raffel et al.l 2019) in the encoder. The decoder is a
4-layer Transformer with the same model dimensions as the encoder. Since the decoder is not used in
downstream tasks, MAE-LM’s encoder can be fairly compared with previous 12-layer base-sized
models. The model is trained for 125K steps with 2, 048 sequences per batch, which amounts to
256M samples in total. The maximum input sequence length is 512 tokens. The vocabulary is
constructed with BPE (Sennrich et al.,[2015)) and consists of 32, 768 uncased subword units.

The base++ setting follows RoBERTa (Liu et al.|[2019) pretraining which extends the base setting
by incorporating larger pretraining corpora and training the same model architecture for longer.
Specifically, the following corpora are used along with Wikipedia and BookCorpus: OpenWeb-
Text (Gokaslan & Cohen, 2019), CC-News (Liu et al., |2019), and STORIES (Trinh & Lel, [2018)).
This expands the pretraining corpora to contain 160GB texts. The model is trained for 2M steps with
2,048 sequences per batch, which amounts to 4B samples in total. The base++ setting also expands
the vocabulary size to 64,000 (Bao et al.,2020) by using cased subword units.

The large++ setting extends the base++ setting by scaling up the encoder architecture to 24 layers
and 1,024 model dimensions. The decoder is still a 4-layer Transformer with the same model
dimensions as the encoder. Due to the high cost of training large models, we train for 1M steps (half
of the base++ setting) with 2, 048 sequences per batch, which amounts to 2B samples in total. Note
that this is also half of the pretraining data used in RoOBERTa (Liu et al.,[2019) and BART (Lewis
et al., [2020a).

Computation Environment. The experiments in this paper are conducted on 64 A100 GPUs.

Masking. For all pretraining settings, we apply 15% random masks to input sequeces. We do not use
the trick in conventional MLM (Devlin et al.,[2019; Liu et al.,[2019) that replaces 10% of [MASK]
tokens with the original ones and another 10% with random tokens. We also experiment with higher
masking rates (e.g., 40%) which are shown to be beneficial in|Wettig et al.|(2023)) for training large
models, but they do not yield better results than the default 15% masking rate in our experiments.
This is probably because |Wettig et al.|(2023)) use an efficient pretraining recipe that is different from
the standard pretraining setup, with a larger learning rate, a larger batch size, a shorter sequence
length, and fewer training steps.

Position Embedding. We learn both absolute and relative position embeddings (Raffel et al.,[2019)
in the encoder, and only learn absolute position embeddings in the decoder.

Dropout. During the pretraining of MAE-LM, dropout is applied to the encoder but not the decoder,
which we find to slightly improve stability.

D HYPERPARAMETER SETTINGS
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Table 3: Hyperparameters used in pretraining.

Hyperparameter base base++ large++
Max Steps 125K 2M M
Peak Learning Rate Se-4 2e-4 le-4
Batch Size 2048 2048 2048
Warm-Up Steps 10K 10K 10K
Sequence Length 512 512 512
Relative Position Encoding Buckets 32 64 128
Relative Position Encoding Max Distance 128 128 256
Adam € le-6 le-6 le-6
Adam (61, B2) (0.9,0.98) (0.9,0.98) (0.9, 0.98)
Clip Norm 2.0 2.0 1.0
Dropout 0.1 0.1 0.1
Weight Decay 0.01 0.01 0.01

Table 4: Hyperparameter ranges searched for fine-tuning on GLUE. GLUE small tasks include CoLA,
RTE, MRPC and STS-B. GLUE large tasks include MNLI, QQP, QNLI and SST-2.

Hyperparameter GLUE Small Tasks Search Space GLUE Large Tasks Search Space

Max Epochs {2,3,5,10} {2,3,5}

Peak Learning Rate baselbase++: {2e-5, 3e-5, 4e-5, 5e-5}  baselbase++: {l1e-5, 2e-5, 3e-5, 4e-5}
large++: {7e-6, le-5, 2e-5, 3e-5} large++: {5e-6, Te-6, le-5, 2e-5}

Batch Size {16, 32} 32

Warm-Up Proportion {6%, 10%} 6%

Sequence Length 512 512

Adam € le-6 le-6

Adam (51, B2) (0.9, 0.98) (0.9, 0.98)

Clip Norm - -

Dropout 0.1 0.1

Weight Decay 0.01 0.01

Table 5: Hyperparameter ranges searched for fine-tuning on SQuAD 2.0.

Hyperparameter SQuAD 2.0 Search Space
Max Epochs {2,3}

baselbase++: {2e-5, 3e-5, 4e-5, 5e-5}
large++: {7e-6, le-5, 2e-5, 3e-5}

Peak Learning Rate

Batch Size {16, 32}
Warm-Up Proportion {6%, 10%}
Sequence Length 512
Adam € le-6
Adam (81, B2) (0.9, 0.98)
Clip Norm -
Dropout 0.1
Weight Decay 0.01
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Table 6: Standard single-task, single-model fine-tuning results (medians over five random seeds)
evaluated on GLUE and SQuAD 2.0 development sets for large models. : MAE-LM is pretrained on
half of ROBERTa/BART’s data.

Model GLUE (Single-Task) SQuAD 2.0
MNLI-(m/mm) QQP QNLI SST-2 CoLA RTE MRPC STS-B AVG EM F1
large++ setting: larger Transformer model trained on larger pretraining corpora (160GB)
BART 89.9/90.1 92.5 949 96.6 62.8 87.0 904 91.2 88.2 86.1 892
RoBERTa 90.2/90.2 922 947 96.4 68.0 86.6  90.9 92.4 889 865 894
MAE-LM f 90.4/90.6 922 951 96.2 68.7 88.8  90.7 92.1 89.3 87.0 898

Table 7: Zero-shot and few-shot performance. Few-shot results include mean and standard deviation
(as subscripts) performance over 5 different training splits defined in|Gao et al.| (2021). T: Results
from |Gao et al.[|(2021).

GLUE (Single-Task)

Model MNLI-(m/mm) QQP QNLI SST-2 CoLA RTE MRPC STS-B AVG
zero-shot prompting: direct inference on tasks via cloze-type MLM predictions

RoBERTa"  50.8/51.7 49.7 50.8 83.6 2.0 51.3 61.9 —-3.2 43.4

MAE-LM  52.1/54.3 52.0 52.3 83.5 2.0 54.5 63.4 -3.0 44.7

head-based few-shot fine-tuning: fine-tuning on 16 samples per label with a linear classification head

RoBERTa' 45.86,4/47.86,3 60.743 60.26.5 81438 33.914.3 bHd.439 76.605 5H3.5g5 5H8.4
MAE-LM 48.745/51.16.0 64.542 62161 81.239 3l.1139 58.025 78221 53.09.0 59.8

prompt-based few-shot fine-tuning: fine-tuning on 16 samples per label with cloze-type MLM templates

RoBERTa'  68.353/70.51.9 65553 64.502 92.709 9.373 69.136 74.553 71.070 64.5
MAE-LM 70.72.0/73.31.8 67346 65.1a3 92411 14.339 71.233 74841 72365 66.2

We report the detailed hyperparameters used for pretraining in Table 3] The hyperparameter search
ranges of fine-tuning are shown in Tables @ and [5|for GLUE and SQuAD 2.0, respectively.

For fair comparisons, the same set of hyperparameters (in both pretraining and fine-tuning) is used
for MAE-LM, RoBERTa (Ours) and ablations. We follow previous pretraining studies (Liu et al.,
2019) to report the medians of downstream task fine-tuning results under the same set of five different
random seeds.

E MORE EVALUATION RESULTS

BERT Masking Strategy. In addition to our default masking strategy
which directly applies 15% random masks to input sequences, we also
validate our findings under the original BERT masking strategy that
replaces 10% of [MASK] tokens with the original ones and another
10% with random tokens. Figure E] demonstrates that the gap in ef-
fective representation rank between inputs with and without [MASK]
under this setting is also notable, similar to the findings in Figure[I(a)] 400 3 G T
This confirms that randomly replacing a small percentage of [MASK] Encoder Layer Index
tokens with real tokens does not effectively address the representation
deficiency issue, as the ratio of [MASK] tokens in pretraining is still BERT masking strategy, the

high. .

effective rank across layers
Large Model Results. We also show the performance of MAE- for inputs without [MASK]
LM under larger model sizes in Table @ Even trained on half of and with [MASK].
the pretraining data used in RoBERTa (Liu et al., |2019), MAE-LM
still performs comparably or better, demonstrating the potential of
MAE-LM for larger models.

Zero-Shot and Few-Shot Results. Since MAE-LM is trained with the MLM objective, it is
applicable to zero-shot and few-shot learning via prompt-based approaches. We report three groups
of zero-shot/few-shot results on the GLUE tasks comparing MAE-LM (large++) with RoOBERTa

500 /M

of
p
Vi —eo— Inputs w. [MASK]
{
Inputs w/o. [MASK]

Effective Rank
5

Figure 6: With the original
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(large++) in Table[7} (1) zero-shot prompting which converts the classification tasks into cloze-type
MLM predictions and directly uses pretrained models for inference on test sets; (2) head-based
few-shot fine-tuning which adds a linear classification head to the pretrained encoders for fine-tuning
on 16 samples per label; and (3) few-shot prompt-based fine-tuning which fine-tunes the MLM models
on tasks converted to cloze-type MLM formats with 16 samples per label. We follow the basic manual
prompt/label word setting and the training/development splits in |Gao et al.| (2021). For few-shot
learning, the average and standard deviation over 5 different training/development splits are reported.
Overall, MAE-LM can be combined with prompt-based methods for effective zero-shot and few-shot
learning.

F MORE DISCUSSIONS

Ethical Considerations. Despite their remarkable performance, pretrained models have been shown
to come with risks such as exacerbating harmful biases (Bender et al., 2021 Bommasani et al., 2021)).
In our experiments, we follow the standard pretraining settings (e.g., data preparation, collection and
preprocessing), and we expect more well-documented and filtered text corpora (Dodge et al., [2021)),
as well as future developments of harm reduction techniques (Liang et al., 2021)) may help mitigate
the ethical concerns about pretrained models.

Connections to Prior Work. Since the advent of BERT (Devlin et al.l 2019), there have been numer-
ous developments in new pretraining and fine-tuning methods aiming to improve the effectiveness of
pretrained models in downstream tasks. The advantages of these proposed methods, however, are
mostly demonstrated via empirical evidence alone, and our understanding of why certain methods
are better than the others remains limited. Our analyses in this work may advance the understanding
of the benefits of some prominent methods: ELECTRA (Clark et al., 2020) fills [MASK] positions
with real tokens; therefore, the encoder does not suffer from the representation deficiency issue.
Different from the ablation in Section @] where we randomly sample real tokens to fill [MASK],
ELECTRA employs an MLM model to sample replaced tokens which are generally plausible al-
ternatives to the original tokens, thus better preserving the contexts in pretraining. These designs
may help partially explain the effectiveness of ELECTRA. Prompt-based methods (Gao et al., 2021}
Schick & Schiitzel 2021) adapt pretrained MLM models to downstream tasks by creating prompt
templates that convert the target task into a masked token prediction problem. This helps mitigate
the representation deficiency issue that occurs in standard fine-tuning of MLM models as [MASK]

tokens are also introduced into downstream data, resulting in more model dimensions being utilized.
Our findings may also shed light on certain previously observed phenomena in MLM models. For
example, the rank deficiency issue might be responsible for the de-contextualization in self-attention
patterns (Gong et al.,[2019).

Implications on Autoregressive LMs. While autoregressive LM pretraining generally does not
introduce artificial symbols such as [MASK], our analyses can be easily extended to show that the
representation deficiency issue can also arise in autoregressive pretraining when certain real tokens
exist exclusively in the pretraining data but are either absent or occur infrequently in downstream
data. Similar to the impact of [MASK] tokens, these tokens occupy dimensions during pretraining
that may not be effectively utilized in downstream tasks. Consequently, it is desirable to maximize
the vocabulary overlap between pretraining data and downstream data, which can be realized via
pretraining data selection, training corpora pre-processing, and vocabulary pruning. We leave these
explorations as future work.
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