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ABSTRACT

Multimodal Large Language Models (MLLMs) have made great progress in video
understanding tasks. However, when it comes to understanding complex or lengthy
videos, MLLMs tend to overlook details or produce hallucinations. To alleviate
these issues, recent work has attempted to leverage reinforcement learning (RL) to
boost models’ deep linguistic reasoning of complex videos. But these methods have
two main problems: First, the RL framework they used has unstable training, high
training costs, and is difficult to train satisfactory video reasoning models; Second,
the linguistic reasoning process is difficult to guarantee the reliability of visual
information. To alleviate these problems, we propose to use multimodal elements
for reasoning, and we design a novel framework to build and enhance versatile
video reasoning capabilities on MLLMs. We carefully design a multi-task cold start
and multi-task reinforcement learning to improve the model’s visual perception and
proficiency in multiple capabilities. In the inference phase, we leverage multimodal
reasoning and dynamic sampling to further improve the performance. We verified
the efficiency of the framework on a base MLLM (Qwen2-VL-7B-Base). Through
cold-start with 3k data and reinforcement learning training with 5k data, combined
with inference design, our final model significantly outperforms the base model on
seven public video benchmarks, even surpassing and approaching the state-of-the-
art Instruct Models such as Qwen2.5-VL-7B-Instruct.

1 INTRODUCTION

The recent surge of large language reasoning models (Jaech et al., 2024; Shao et al., 2024; Guo
et al., 2025a; Yang et al., 2025a) has marked great progress towards a new era of artificial intelli-
gence, particularly in addressing challenging and realistic tasks such as mathematics, reasoning, etc.
These advances have also promoted the rapid development of multimodal large language models
(MLLMs) (OpenAI, 2025; Hurst et al., 2024a; Guo et al., 2025b). A notable trend is the extension of
reinforcement learning (RL) methods from the linguistic to the multimodal domain. Recent studies
focus on improving RL algorithms (Meng et al., 2025), designing more effective verifiers (Wang
et al., 2025b;d), and expanding to diverse modalities (Wang & Peng, 2025; Zhao et al., 2025a).

Despite the promising performance of MLLMs trained with RL algorithms on image understand-
ing tasks (Chen et al., 2025a; Zhang et al., 2025b), RL training on video tasks has not achieved
comparable improvements (Feng et al., 2025; Wang et al., 2025a), and establishing a stable and
efficient RL framework for video understanding remains an open challenge. Existing RL training
frameworks (Feng et al., 2025; Chen et al., 2025b) for videos typically involve high-cost long chain-
of-thought (CoT) reasoning annotations, large-scale CoT cold start, and large-scale RL training. For
example, Video-R1 (Feng et al., 2025) curates 165k data for cold start and 260k data for RL training.
These models build on Instruct Models (e.g., Qwen2.5-VL-Instruct), which have already undergone
large-scale SFT and post-training on image and video tasks using a direct-response paradigm, i.e.,
generating a brief answer immediately in response to a question. However, the inherent prior of
such models favors direct responses over step-by-step reasoning, limiting their performance on tasks
requiring logical reasoning (Zhang et al., 2024b). Therefore, it requires large-scale data and extensive
training to enable the model to develop robust reasoning capabilities and adapt to reasoning formats
and tasks. Although recent methods (Feng et al., 2025; Wang et al., 2025a) have enhanced the model’s
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ability to reason over video content and generate summaries, they still lag behind the original Instruct
Models, revealing a performance gap between reasoning training and direct-response models.

Furthermore, recent works (Feng et al., 2025; Guo et al., 2025b) only use RL training to incentivize
the linguistic reasoning path, which may include reasoning contents such as problem analysis, video
perception, information reasoning, and summary. However, using only a textual reasoning path makes
it difficult to ensure the long-term accuracy of visual information, and long-term text reasoning is
prone to lead to incorrect and hallucination (Lanham et al., 2023). For video tasks, more effective
and accurate reasoning paradigms involving multimodal elements should be explored instead of
relying merely on text elements, in order to better cope with reasoning-intensive video understanding
tasks. Meanwhile, although giving the model a longer budget during reasoning (e.g., more than 1k
tokens) can stimulate a self-reflective mechanism during the reasoning process, it also leads to a
longer inference time, which will become a crucial bottleneck in real-world video applications.

To address these limitations, we propose VideoReasoner, an efficient framework that builds and
enhances versatile video reasoning capabilities for base MLLMs. To construct a simple and usable
framework and verify the effectiveness of this framework. We set the task to conduct training based
on Base MLLMs. The basic goal is to use this framework to enhance video understanding capabilities
more efficiently; that is, the video understanding performance needs to exceed the corresponding
Instruct Model, and explore whether this framework can bring about effects beyond expectations. As
mentioned earlier, there is an inherent performance gap when using the Instruct Model. The usage of
the Base Model is proposed here to avoid the performance gap and to verify the effectiveness of the
basic framework. However, in the experimental section, we also presented the training results based
on the Instruct Model. As for how to bridge this gap, more subsequent work is needed for exploration.
Meanwhile, since this framework subsequently designs the reasoning process of multimodal elements,
which involves multitask learning, the Base Model is more suitable as a baseline because it has only
undergone multimodal pre-training and can adapt to multitask learning more efficiently.

To avoid error accumulation and hallucinations of visual content understanding caused by only
using textual reasoning, we extend it to three perspectives: event reasoning, keyframe reasoning,
and direct-response. As important contents in videos, events and keyframes can express clearer
information than text. To this end, we design a two-stage training method to enable the model to
learn and enhance its reasoning ability from these perspectives. In the first stage, a multi-task SFT
is designed as a cold start. We design a unified instruction for multiple tasks as shown in Table 6.
These tasks have different task prefixes and subsequent specific contents. An example is shown in
the left part of Figure 1. For keyframe reasoning, we do not directly output the indices of keyframes
for reasoning. Instead, we adopt a simple approach that predicts the key elements. In the second
stage, we propose a novel multi-task reinforcement learning method. For a given video-question pair,
multiple sets of responses are generated using prompts with different task prefixes, and task-specific
rewards are defined for Group Relative Policy Optimization (GRPO). After training, we design an
inference pipeline leveraging the model’s three video reasoning capabilities. Specifically, the model
performs event reasoning and keyframe reasoning in parallel, conducts dense sampling of the outputs,
and then feeds the sampled video frames back into the model to generate a direct response.

Through extensive experiments on various public video benchmarks, including general video under-
standing, video reasoning, and video temporal grounding benchmarks, we validate the effectiveness
of the proposed VideoReasoner framework. Based on Qwen2-VL-7B-Base, through a cold start with
3k samples and RL training with 5k samples, combined with the proposed inference pipeline, the
framework achieves substantial improvements across seven benchmarks, outperforming Qwen2-VL-
7B-Instruct on five benchmarks and Qwen2.5-VL-7B-Instruct on three benchmarks. Compared with
the data and training costs required for SFT or post-training used in training two Instruct Models, our
framework requires only 8k data while achieving comparable results, demonstrating its efficiency
and highlighting its potential for real-world applications.

2 RELATED WORK

2.1 MULTIMODAL LARGE LANGUAGE MODELS FOR VIDEOS

Multimodal Large Language Models (MLLMs) (Hurst et al., 2024b; Anthropic, 2024; Comanici et al.,
2025; ByteDance, 2025; Zhu et al., 2025; Bai et al., 2025) have achieved significant advancements in
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video understanding tasks, and open-source models are gradually catching up with closed-source
models in terms of multimodal capabilities. MLLMs treat video input as a sequence of images and
bridge the visual tokens and language space through a modality alignment module, and these works
use Q-Former (Li et al., 2023) to aggregate temporal information or simple MLP projectors. The
training paradigms of MLLMs for video understanding continue to evolve. Recently, Qwen2.5-
VL (Bai et al., 2025) fuses adjacent frames and further compresses encoded multiple visual tokens
into a single token, which is then connected to the language model via MLP. To enhance temporal
awareness, some works propose explicit temporal textual prompts (Ren et al., 2024), temporal
module (Zeng et al., 2025), and MRoPE techniques (Bai et al., 2025). As for video training, many
works adopt a hybrid data training strategy. For example, InternVL2.5 (Chen et al., 2024b) and
Qwen2.5-VL are trained on a combination of single images, multi-frame image sequences, and videos.
Additionally, post-training techniques are widely used to improve video reasoning performance (Bai
et al., 2025; Zhu et al., 2025; Guo et al., 2025b). In parallel, video benchmarks have been introduced
to assess the various MLLMs, such as general video understanding tasks (Fu et al., 2024; Wang
et al., 2024b; Wu et al., 2024) and video reasoning tasks (Yang et al., 2024; Zhao et al., 2025b).
Recently, the use of reinforcement learning to enhance the reasoning ability of models (Wang &
Peng, 2025; Feng et al., 2025), the ability to use tools (Zhang et al., 2025a), and evolve into video
agents (Zhang et al., 2025c) are the cutting-edge directions for the development of multimodal large
language models towards more powerful and practical video understanding.

2.2 MULTIMODAL REASONING LARGE LANGUAGE MODELS

Large language reasoning models using Chain-of-Thought (CoT) (Wei et al., 2022), test-time scal-
ing (Jaech et al., 2024), and reinforcement learning (RL) (Shao et al., 2024) have achieved great
success for the reasoning and instruction-following abilities, such as in mathematics, coding, and
agentic tasks. Recently, DeepSeek-R1 (Shao et al., 2024) demonstrates that large-scale RL with
verifiable rewards induces emerging reasoning capabilities in LLMs. Inspired by this, the introduction
of reasoning and design reasoning on multimodal large models (MLLM) is continuously evolving
and has demonstrated some promising results (Xu et al., 2024a; Yang et al., 2025b; Liu et al., 2025;
Peng et al., 2025; Wang et al., 2025b). To explore the multimodal reasoning effect for complex video
understanding tasks, some works focus on step-by-step reasoning, CoT training, and RL training.
VideoCoT (Wang et al., 2024c) propose a high-quality video dataset with chain-of-thought reasoning
annotations. Video-of-Thought (Fei et al., 2024) breaks down a complex video task into simpler
sub-problems, such as tracking or action analysis, and it addresses them using step-by-step reason-
ing from a low-level pixel perception to high-level cognitive interpretation. For Video-MLLM RL
training, (Wang & Peng, 2025; Feng et al., 2025) introduce GRPO training for MLLM to reasoning
for fully understanding the video-language relationship before the final answer. Recent RL training
frameworks often involve offline and online training stages. Seed1.5-VL (Guo et al., 2025b) incorpo-
rates video data into the pretraining phase and designs a post-training phase through a combination of
supervised fine-tuning (SFT) and RL techniques. Keye-VL-1.5 leverages a slow-fast video encoding
method, and the post-training stage is continuous iterative SFT and RL training. InternVL3.5 (Wang
et al., 2025c) also propose a cascade RL framework that consists of a mixed preference optimization
and an online RL stage. However, these RL frameworks merely rely on linguistic reasoning to analyze
and interpret video content. While our proposed framework involves not only linguistic reasoning but
also multimodal element reasoning.

3 METHOD

Overview In this section, we propose a two-stage training framework to build and enhance versatile
video capabilities for base Multimodal Large Language Models (MLLMs). The main idea is to fully
explore the various video capabilities to enhance video understanding, with the expectation that the
model can effectively leverage its pre-trained knowledge to perform these tasks. The framework
consists of three steps: (1) a multi-task cold start (Section 3.2); (2) a multi-task RL (Section 3.3), and
(3) an efficient video inference pipeline (Section 3.4). See Figure 1 for the overview.
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Step1: Multi-task Cold Start

<system> <query>

“The answer is: A. She 

places the pot on the 

stove”

<system> <query> <system> <query>

“I want to locate the 

key event in the video. 

To determine the 

manner, ... The key 

event occurs between a 

proportion of 

<|event_start|>[0.44, 

0.7]<|event_end|>”

“I want to output the 

key elements: blue 

plaid shirt, headphones, 

golden saxophone, 

playing”

Multimodal Large Language Model

Step2: Multi-task Reinforcement Learning

Multimodal Large Language Model

<system> <query>

Task-1: Task-2: 

<system> <query>

Accuracy 

reward

IoU

reward

Format 

reward

Task-1: Task-2: Task-3: 

Next Token Prediction

…

Group Relative Policy Optimization

“<|im_start|>assistant\n

The answer is:”

“<|im_start|>assistant\n

I want to locate the key 

event in the video.”

Figure 1: The proposed training paradigm aims to build and enhance versatile video reasoning
capabilities for MLLMs, including a multi-task Cold Start and a multi-task RL with high efficiency.

3.1 BACKGROUND OF GRPO

Group Relative Policy Optimization (GRPO) (Shao et al., 2024) is proposed to save the training costs
of reinforcement learning. It foregoes the critic model that is typically the same size as the policy
model, and estimates the baseline from group scores instead. Specifically, for each question q, GRPO
samples a group of outputs {o1, o2, · · · , oG} from the old policy πθold and then optimizes the policy
model πθ by maximizing the following objective:

JGRPO(θ) = E[q ∼ P (Q), {oi}Gi=1 ∼ πθold(O|q)]

1

G

G∑
i=1

(
min

(
πθ(oi|q)
πθold(oi|q)

Ai, clip
(

πθ(oi|q)
πθold(oi|q)

, 1− ϵ, 1 + ϵ

)
Ai

)
− βDKL (πθ||πref )

)
,

(1)

DKL (πθ||πref ) =
πref (oi|q)
πθ(oi|q)

− log
πref (oi|q)
πθ(oi|q)

− 1, (2)

where ϵ and β are hyper-parameters, and Ai is the advantage, computed using a group of rewards
{r1, r2, . . . , rG} corresponding to the outputs within each group:

Ai =
ri −mean({r1, r2, · · · , rG})

std({r1, r2, · · · , rG})
. (3)

3.2 MULTI-TASK SUPERVISED FINE-TUNING AS A COLD START

A base multimodal large language model (MLLM) is built upon a large language model and trained
with multimodal pretraining to align visual signals with language tokens, such as Qwen2-VL (Wang
et al., 2024a), which processes 1.4 trillion tokens during pretraining. Considering that the base model
is exposed to large-scale and diverse linguistic and visual scenarios during the pre-training stage, it is
expected that the model can utilize this prior knowledge for various visual tasks, including complex
video understanding. To this end, we innovatively design three core tasks for the MLLM to learn:
video question answering, video event grounding, and keyframe detection. However, “keyframes”
are difficult to define, and current MLLMs still struggle to predict them accurately. To address this,
we reformulate keyframe detection as key element generation and employ a visual encoder to retrieve
the corresponding video frames.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

To support the model’s adaptability to the three aforementioned tasks, we curate datasets specifically
tailored for each task. For video question answering, which is the most commonly used task for
training MLLMs, we adopt multi-choice QA data from the training sets of (Feng et al., 2025). For
video event grounding, we use the temporal grounding training set from (Gao et al., 2017). For
key element generation, we collect raw videos from (Zhang et al., 2024c) and employ a proprietary
model (Guo et al., 2025b) to generate key elements, constructing paired video and textual key element
annotations. For each input video Xv and instruction (comprising a system prompt and a video
query), the target answer corresponds to one of three types, as illustrated in the left part of Figure 1.
The most distinctive feature of these three responses lies in their prefixes: “The answer is:”, “I want
to locate the key event in the video.”, and “I want to output the key elements:”. All tasks share the
same system prompt, which specifies the principles the model should follow, as detailed in Table 6.

For a sequence of length L, the probability of various target answers is defined as follows:

p(Xa|Xv, Xinstruct) =

L∏
i=1

πθ(xi|Xv, Xinstruct,<i, Xa,<i) (4)

where θ is the trainable parameter of MLLM. All parameters of the visual encoder and the language
model backbone are trainable. Xinstruct,<i and Xa,<i are instruction and answer tokens before the
current prediction token xi, and the whole response (including the prefix) is used to compute the loss
for next token prediction.

For video event grounding, we observe that using absolute numerical predictions (Zeng et al., 2025)
makes the model’s outputs highly dependent on the training distribution. For instance, if the model is
trained on short videos, it tends to predict very small time values and has difficulty handling event
localization in long videos. To address this issue, we propose a relative numerical prediction for event
grounding, i.e., predicting the time ratio for durations [start ratio, end ratio]. We also
insert two learnable special tokens <|event start|> and <|event end|> to make the model
stably predict the grounding results when performing this task.

We employ only pre-trained multimodal large language models for multi-task fine-tuning instead of
adopting post-trained SFT models. Although the latter typically achieve stronger performance, they
also exhibit stronger preferences or inductive biases and demand larger-scale multi-task datasets for
effective fine-tuning. In our setting, we utilize approximately 3k training samples in total, with each
task accounting for around 1k samples.

3.3 MULTI-TASK REINFORCEMENT LEARNING

The Cold Start enables the base MLLM to adapt to the responses of various tasks, but it is more
about proficient format output rather than truly effective learning of these capabilities. To enhance
these capabilities, we utilize the commonly used reinforcement learning algorithm GRPO (Shao et al.,
2024) to incentivize the diverse capabilities of the model. Although recently there have been some
works focusing on RL for video understanding (Feng et al., 2025; Wang et al., 2025e), they only use
GRPO for a single task, such as video QA or temporal grounding. In this work, we propose a novel
multi-task GRPO algorithm. At the model level, the model can generate rollouts of multiple tasks
and separate optimized policy models based on the relative advantages between groups obtained from
the rollouts of different tasks. At the data level, given the same video-query pair, we use different
prefix hints to prompt the model to roll out different tasks for the same query, effectively improving
the utilization efficiency of data.

As shown in the right part of Figure 1, we select two tasks—event grounding and video QA—to
construct the multi-task GRPO for video training. Given the same video and query, we prepend task-
specific prefixes after the default assistant generation prompt (e.g., <assistant>). Specifically,
the event grounding prefix is: “I want to locate the key event in the video.”, and the video QA prefix is:
“The answer is:”. Importantly, we do not need to manually construct such data. The dataset of (Xiao
et al., 2024) provides both the answer metadata and reference time intervals for the same video-query
pairs. Although (Xiao et al., 2024) introduces a new video QA task, we instead repurpose this dataset
to build the training set for multi-task GRPO.

Unlike the Cold Start stage, where the model is required to predict task prefixes, in GRPO, the tokens
corresponding to task prefixes are not used to compute the loss. Given a video Xv, and a query q,
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<query> : Question: From where does the cartoon mouse escape to the outside of the house?\nOptions:\nA. Door\nB. Tunnel\nC. Hole in the wall\nD. Window

Figure 2: Inference for video understanding using three capabilities of the enhanced model.

generation prompt g, and a task prefix in {p1, p2}, a multimodal query is defined as m = [Xv, q, g, p],
where [·] denotes token concatenation. The objective of multi-task GRPO is defined as:

JM -GRPO(θ) = E[p ∼ {p1, p2}, {oi}Gi=1 ∼ πθold(O|m)
1

G

G∑
i=1

[
min

(
πθ(oi|m)

πθold(oi|m)
Ai,

clip
(

πθ(oi|m)

πθold(oi|m)
, 1− ϵ, 1 + ϵ

)
Ai

)
− βDKL (πθ||πref )

] (5)

where KL divergency DKL and advantage Ai are are the same as defined in Equation 2 and Equation 3,
respectively.

Reward Modeling The definition of the reward ri guides the model’s learning objective. Our
goal is to enable the model to find the direction for optimization within its own search space while
maintaining proficiency in multiple tasks. At the same time, since we choose not to predict task
prefixes, we prevent the model from getting stuck on which format to output or overfitting to a single
format during rollout and optimization. Instead, it performs autoregressively to continue generating
subsequent tokens for a given specific prefix. To better leverage the role of the two tasks in enhancing
video comprehension ability, we have designed three rewards, including an IoU reward rIoU, a format
reward rform, and an accuracy reward racc.

IoU Reward rIoU: this reward is designed for the event grounding task. It is computed as the IoU
between the predicted interval ratio and the ground-truth interval ratio.

Format Reward rform: this reward is used for the event grounding task to evaluate whether the
model correctly predicts the two special tokens, <|event start|> and <|event end|>.

Accuracy Reward racc: this reward is for the video QA task, and it takes a value of either 0 or 1.

For the collaborative optimization of the two tasks, GRPO only computes importance weights of the
rollout tokens, targeting the probability of the model’s response to the input sequence. Thus, although
query data from different tasks are sampled in the same batch, the optimization objectives of each
task do not interfere with each other. For the event grounding task, the objective is to optimize the
model’s response quality given the input video, query, and task prefix. In this case, the accuracy
reward can be set to 0, allowing the model to focus on improving the format reward rform and IoU
reward rIoU. For the Video QA task, the goal is to optimize the model’s response quality for this task
input. We set the format reward and IoU reward to 0 and let the model improve the accuracy reward
racc. The overall reward function is defined as their sum:

r(o) = rIoU + rform + racc (6)

For the training data of this stage, we use only 5k video queries. The training at this stage is very
data-efficient and does not require long context rollouts, resulting in high training efficiency.
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Table 1: Performance on public video benchmarks compared to previous models.

Model \Benchmark Video-MME LongVB MLVU LVBench VideoEval-Pro
Short Medium Long Overall Val M-Avg Overall MCQ

LLaVA-Video-72B (Zhang et al., 2024c) 81.4 68.9 61.5 70.6 62.4 71.3 46.1 50.1
InterlVL2.5-72B (Chen et al., 2024b) 82.8 70.9 62.6 72.1 - - 37.9 -

PLLaVA-7B (Xu et al., 2024b) - - - - 40.2 - - -
LongVA (Zhang et al., 2024a) 61.4 50.9 45.0 52.4 - 56.3 - 38.0
Long-LLaVA (Song et al., 2024) 61.9 51.4 45.4 52.9 - - - 36.9
Kangaroo-8B (Liu et al., 2024) 66.1 55.3 46.6 56.0 54.2 - - -
VideoTree (Wang et al., 2025f) - - - 56.1 52.3 - - -
InternVL2-8B (Chen et al., 2024c) 68.0 52.0 48.9 56.3 54.6 56.3 - 39.9
ViLA-1.5-8B (Lin et al., 2024) - - - 58.2 56.3 56.7 - -
Qwen2-VL-7B-Instruct (Wang et al., 2024a) 70.7 57.6 50.2 59.3 55.2 61.7 39.7 39.6
LongVILA (Chen et al., 2024a) - - - 60.1 - - - -
MiniCPM-V-2.6 (Yao et al., 2024) 71.3 59.4 51.8 60.9 54.9 - - -
LongVILA-R1 (Chen et al., 2025b) - - - 62.4 - - - -

GRPO
Baseline: Qwen2.5-VL-7B-Instruct 74.6 61.2 51.4 62.4 59.3 63.0 37.7 40.3

+ Video-R1 (Feng et al., 2025) 72.2 59.4 47.0 59.5 49.7 62.0 38.6 42.2

Our Multi-task GRPO
Baseline: Qwen2-VL-7B-Base 68.3 57.0 49.6 58.3 53.7 61.4 36.8 39.2

+ RL 72.1 58.1 52.3 60.8 53.9 63.0 38.4 41.0
+ VideoReasoner 72.9 60.6 53.0 62.0 55.0 64.6 44.6 44.1
∆ +4.6↑ +3.6↑ +3.4↑ +3.7↑ +1.3↑ +3.2↑ +7.8↑ +4.9↑

3.4 INFERENCE WITH VERSATILE VIDEO REASONING CAPABILITIES

After reinforcement learning, the event grounding and video understanding abilities are enhanced,
and we try to combine the two abilities and keyframe detections to build an efficient video question-
answering process. As shown in Figure 2, we first input the video along with two types of task
prefixes to the MLLM, prompting the model to output the duration of the related event and key
elements in parallel. For key elements, we use a text encoder (Bolya et al., 2025) to extract the textual
embeddings, and feed the uniformly sampled video frames into a visual encoder (Bolya et al., 2025)
to obtain video embeddings, from which keyframes with high similarity are selected.

Specifically, the event grounding process outputs the most important event interval ratio [Sr, Er],
which is multiplied by the video duration to obtain the absolute time interval [St, Et]. The keyframe
detection process generates a series of keyframe positions. Based on the original segments division,
we obtained a series of time segments {[Sk1

, Ek1
], [Sk2

, Ek2
], · · · , [Skn

, Ekn
]}. Then, we merge and

sort all the selected time segments to obtain the key intervals. We adopt high fps dense sampling
to fully utilize key visual information. Meanwhile, to prevent the model from ignoring global
information, we also took into account other non-key time regions and implemented sparse sampling
using a low fps. We merge and sort the sampled frames of these two parts, and input them together
with the video QA prefix into the MLLM to obtain the final response.

4 EXPERIMENT

4.1 SETUP

Qwen2-VL-7B-Base (Wang et al., 2024a) is used as the base model, with all parameters of the MLLM
fully fine-tuned. For analysis experiments, we also finetuned Qwen2-VL-7B-Instruct (Wang et al.,
2024a) and Qwen2.5-VL-7B-Instruct (Bai et al., 2025). All experiments are conducted on H20 GPUs.
We sample 64 frames per video for both training stages and inference. The 3k training data for the
cold start stage are sampled from (Feng et al., 2025; Gao et al., 2017; Zhang et al., 2024c), and the 5k
training data for RL training are sampled from (Xiao et al., 2024). Evaluation is performed on 7 video
benchmarks: Video-MME (Fu et al., 2024), LongVB (Wu et al., 2024), MLVU (Zhou et al., 2024),
LVBench (Wang et al., 2024b), VideoEval-Pro (Ma et al., 2025), VSI-Bench (Yang et al., 2024), and
MMVU (Zhao et al., 2025b). The temporal grounding benchmark uses Charades-STA (Gao et al.,
2017).
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Table 2: Performance on public video reasoning benchmarks compared to previous models

Model \Benchmark VSI-Bench MMVU
Overall MCQ

LLaVA-OV-7B (Li et al., 2024) 32.4 49.2
ViLA-1.5-8B (Lin et al., 2024) 28.9 49.2
VideoTree (Wang et al., 2025f) - 54.2
LLaVA-Video-7B (Zhang et al., 2024c) 36.2 60.2
Qwen2-VL-7B-Instruct (Wang et al., 2024a) 33.4 63.4

Baseline: Qwen2.5-VL-7B-Instruct (Bai et al., 2025) 39.9 68.0
+ Video-R1 (Feng et al., 2025) 37.8 64.3

Baseline: Qwen2-VL-7B-Base (Wang et al., 2024a) 28.9 61.1
+ Our RL 33.7 62.4
∆ +4.8↑ +1.3↑

Table 3: Performance on temporal grounding task.

Model Charades-STA (Gao et al., 2017)
mIoU R1@0.3 R1@0.5 R1@0.7

InternVideo2 (Wang et al., 2024d) - - 70.0 48.9
TimeSuite (Zeng et al., 2025) - 79.4 67.1 43.0
Qwen2.5-VL-7B-Instruct (Bai et al., 2025) 43.6 76.1 42.9 26.2

Ours
- Cold Start 54.1 78.6 62.4 35.8
- RL 59.1 81.9 70.4 45.7

4.2 MAIN RESULTS

Quantitative Results Table 1 presents a comparison with previous models. Compared with
current state-of-the-art models, our framework achieves the best or second-best performance on
five benchmarks, except for LongVB. Notably, the results on MLVU, LVBench, and VideoEval-Pro
surpass or are close to models with 72B parameters. The last row demonstrates that our framework
achieves stable and significant improvements over the baseline. Our multi-task GRPO consistently
improves accuracy across all benchmarks and tasks relative to our baseline, whereas the GRPO in
Video-R1 exhibits decreases on three benchmarks and all tasks in Video-MME relative to its baseline.
These results highlight the potential of our proposed framework for video understanding tasks.

Table 2 presents a comparison on video reasoning benchmarks. Qwen2.5-VL-7B-Instruct achieves
the best result on both benchmarks. With the introduction of our multi-task RL training, the baseline
improves by 4.8% on VSI-Bench and 1.3% on MMVU, surpassing Qwen2-VL-7B-Instruct on
VSI-Bench. Compared with Video-R1, our multi-task RL approach shows consistent and stable
performance improvements on video reasoning tasks.

Table 3 presents a comparison of temporal grounding on Charades-STA.Notably, although our
baseline model, Qwen2-VL-7B, does not support temporal grounding, following cold-start training
it outperforms Qwen2.5-VL-7B-Instruct. After RL training, our models achieve the best results in
mIoU, R1@0.3, and R1@0.5, surpassing state-of-the-art models. These results demonstrate that our
framework can develop and enhance the emerging temporal grounding capability of base MLLMs.

4.3 ABLATION STUDY

Comparison of different settings in training Table 4 presents the detailed performance of cold start
and RL training under single-task and two-tasks settings. First, the cold start consistently improves
baseline performance. For RL training, using only temporal grounding data yields improvements
only in the long-video scenario of Video-MME, while degrading performance on other tasks. The
reason might be that this type of data does not use the final answer as the reward, which affects the
accuracy of the model’s response. Training using both video QA data and temporal grounding data
simultaneously achieved better results than using only video QA data, demonstrating the effectiveness
of multi-task RL training.
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Table 4: Ablation Study for our proposed method.

Model \Benchmark Video-MME LongVB MLVU LVBench VideoEval-Pro
Short Medium Long Overall Val M-Avg Overall MCQ

Baseline 68.3 57.0 49.6 58.3 53.7 61.4 36.8 39.2

- Cold Start 70.4 58.1 50.2 59.6 53.8 61.1 38.0 40.3

- RL training
w/ QA 72.1 57.0 51.7 60.2 51.6 61.3 37.5 41.0
w/ TG 70.4 56.8 51.5 59.5 53.1 60.8 37.4 39.5
w/ QA & TG 72.1 58.1 52.3 60.8 53.9 63.0 38.4 41.0

- Inference
w/ Event 72.5 60.3 52.4 61.7 54.3 62.4 43.3 43.5
w/ Keyframe 72.6 58.9 52.4 61.3 54.8 63.4 44.6 43.0
w/ Event & Keyframe 72.9 60.6 53.0 62.0 55.0 64.6 42.8 44.1

Table 5: Analysis of multi-task Cold Start and multi-task RL training.

Model \Benchmark Video-MME LongVB MLVU LVBench VideoEval-Pro
Short Medium Long Overall Val M-Avg Overall MCQ

Qwen2.5-VL-7B-Instruct 74.6 61.2 51.4 62.4 59.3 63.0 37.7 40.3
+ Cold Start 74.6 64.0 51.2 63.3 57.3 62.6 38.8 40.2
+ RL 73.2 64.0↑ 51.2 62.8↑ 59.0 64.3↑ 39.6↑ 41.7↑

Qwen2-VL-7B-Instruct 70.7 57.6 50.2 59.3 55.2 61.7 39.7 39.6
+ Cold Start 71.5 57.7 49.6 59.6 57.2 62.6 39.6 40.2
+ RL 71.2↑ 58.7↑ 48.9 59.6↑ 54.3 38.3 39.3 38.2

Qwen2-VL-7B-Base 68.3 57.0 49.6 58.3 53.7 61.4 36.8 39.2
+ Cold Start 70.4 58.1 50.2 59.6 53.8 61.1 38.0 40.3
+ RL 72.1↑ 58.1↑ 52.3↑ 60.8↑ 53.9↑ 63.0↑ 38.4↑ 41.0↑

Comparison of different settings in inference The last three rows in Table 4 show the model’s
performance using different multimodal reasoning results during inference. Using either event
grounding or keyframe detection results improves output accuracy, with comparable performance
across benchmarks. Notably, combining both multimodal elements yields further gains, highlighting
their complementary roles and importance in video reasoning.

Comparison of different baselines in training Table 5 presents the detailed training results of
three baselines, including Qwen2.5-VL-7B-Instruct, Qwen2-VL-7B-Instruct/Base. As discussed
in Sec 1, Instruct Models have stronger preference and bias than Base Models. To ensure a fair
comparison, all three baselines are trained using the same dataset. Evaluation results are indicated
with arrows, denoting metrics where the RL-trained model outperforms the baseline. When Qwen2.5-
VL-7B-Instruct serves as the baseline, improvements are observed in 5 out of 8 indicators. With
Qwen2-VL-7B-Instruct as the baseline, 3 out of 8 indicators improve, while a sharp decline is
observed on MLVU, likely due to instruction disobedience after RL training. Using Qwen2-VL-7B-
Base as the baseline, improvements are observed across all indicators. These results suggest that
Base Models are more suitable for scalable RL training.

5 CONCLUSION

This work aims to establish a stable and efficient RL training framework for video understanding
tasks. Unlike previous frameworks, which merely rely on linguistic reasoning for video content, we
propose a novel framework that involves multimodal element reasoning, and our goal is to build and
enhance versatile video reasoning capabilities on MLLMs. During the training phase, we proposed a
multi-task cold start and a multi-task reinforcement learning. The collaboration of the two training
stages can continuously improve the performance of the model and the ability of multimodal element
reasoning. Based on the multimodal element reasoning capabilities, in the inference phase, we
leverage multimodal reasoning and dynamic sampling to further improve the performance. We
verified the efficiency of the proposed framework on a base MLLM. Through cold-start with 3k data
and reinforcement learning training with 5k data, the final model significantly outperforms the base
model on seven public video benchmarks, and even surpasses the state-of-the-art models trained by
large-scale supervised fine-tuning.
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This study follows ethical guidelines and uses publicly available datasets and models, or those from
published research. No human subjects were involved. There are no conflicts of interest or concerns
regarding privacy, security, or discrimination. All research complies with applicable ethical standards
and transparency requirements.

B REPRODUCIBILITY STATEMENT

The datasets and models used in this study are publicly available. Following the methods and
experimental details outlined in the main text, we believe the results can be easily reproduced.

C USE OF LLMS

The originality of the research and the scientific contributions come solely from the authors, with no
involvement of LLMs in the research tasks. No LLMs were used to write or revise the manuscript;
the paper was written entirely by the authors. Automated tools were limited to standard utilities such
as spell-checkers, citation managers, and LATEX packages.

D DETAILS

System-message <STOP>
Human:
Given a video, please analyze the content carefully and provide
your response in one of the following formats:

1. **Event localization**: locate the event using the format:
<|event start|> [start ratio, end ratio] <|event end|>, where the
ratios are floats between 0 and 1 indicating the relative position
in the video.

2. **Key elements extraction**: list important elements or
actions in the video, output them as a comma-separated list:

3. **Direct answer**: If the question can be answered directly
without additional processing, provide the answer clearly.
Question: {Query} <STOP>
Assistant: Xa <STOP>

Table 6: The input sequence used to train base MLLM for multi-task, and only green sequence/tokens
are used to compute the loss of the next token prediction.

E QUALITATIVE RESULTS

Figure 3 presents an inference example of the Needle Question Answering task. A video segment is
embedded into a long video. It can be seen that uniform sampling is difficult to obtain the frames of
these embedded short videos, which leads to incorrect responses from the MLLM. In our framework,
apart from the model achieving capability enhancement through reinforcement learning, we propose
to use a dynamic sampling method. For the results obtained from the event reasoning and keyframe
reasoning of the model, we convert them into time intervals, using dense sampling in these intervals
and sparse sampling in the remaining parts. Figure 4 presents an inference example of the Plot
Question Answering task. Because the plot of this kind of video is very rich, when uniformly sampled
video frames are input into an MLLM, the model has difficulty distinguishing important information,
which may lead to hallucinations or errors in the responses. Our method first conducts event reasoning
and keyframe reasoning. After dense sampling of the obtained results, important visual information
can be directly input into the MLLM to improve the accuracy of the model’s responses.
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Figure 3: An inference example of the Needle Question Answering task.
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Figure 4: An inference example of the Plot Question Answering task.

15


	Introduction
	Related Work
	Multimodal Large Language Models for Videos
	Multimodal Reasoning Large Language Models

	Method
	Background of GRPO
	Multi-task Supervised Fine-tuning as a Cold Start
	Multi-task Reinforcement learning
	Inference with Versatile Video Reasoning Capabilities

	Experiment
	Setup
	Main Results
	Ablation Study

	Conclusion
	Ethics Statement
	Reproducibility Statement
	Use of LLMs
	Details
	qualitative Results

