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Abstract

Estimating the geometric median of a dataset is a robust counterpart to mean estima-
tion, and is a fundamental problem in computational geometry. Recently, [HSU24]
gave an (¢, ¢)-differentially private algorithm obtaining an a-multiplicative ap-

proximation to the geometric median objective, - 3. ey I — Xill, given a dataset

D := {X;}ie[n) C R% Their algorithm requires n > Vd - — samples, which they
prove is information-theoretically optimal. This result is surprising because its
error scales with the effective radius of D (i.e., of a ball capturing most points),
rather than the worst-case radius. We give an improved algorithm that obtains
the same approximation quality, also using n > \/d - i samples, but in time
O(nd+ a%) Our runtime is nearly-linear, plus the cost of the cheapest non-private
first-order method due to [CLM™ 16]. To achieve our results, we use subsampling
and geometric aggregation tools inspired by FriendlyCore [TCK*22] to speed up
the “warm start” component of the [HSU24] algorithm, combined with a careful
custom analysis of DP-SGD’s sensitivity for the geometric median objective.

1 Introduction

The geometric median problem, a.k.a. the Fermat-Weber problem, is one of the oldest problems in
computational geometry. In this problem, we are given a dataset D = {X; };c[n] C R9, and our goal

is to find a point x, € R? that minimizes the average Euclidean distance to points in the dataset:
. 1
X € arg min fp(x), where fp(x) = - g] I — x| ey
K2 n

This problem has received widespread interest due to its applications in high-dimensional statistics.
In particular, the geometric median of a dataset D enjoys robustness properties that the mean (i.e.,

L5, ¢[n) Xi» the minimizer of Ly, e X — =i ||%) does not. For example, it is known (cf. Lemma 4)

that if greater than half of D lies within a distance r of some X € R?, then the geometric median lies
within O(r) of x. Thus, the geometric median provides strong estimation guarantees even when D
contains outliers. This is in contrast to simpler estimators such as the mean, which can be arbitrarily
corrupted by a single outlier. As a result, studying the properties and computational aspects of the
geometric median has a long history, see e.g., [Web29, LR91] for some famous examples.

We provide improved algorithms for estimating (1) subject to (¢, ¢)-differential privacy (DP, Defini-
tion 1), the de facto notion of provable privacy in modern machine learning. Privately computing the
geometric median naturally fits into a recent line of work on designing DP algorithms in the presence
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of outliers. To explain the challenge of such problems, the definition of DP implies that privacy must
hold for worst-case datasets. This stringent definition affords DP a variety of desirable properties,
most notably composition of private mechanisms (cf. [DR14], Section 3.5). However, it also begets
challenges: for example, estimating the empirical mean of D subject to (e, §)-DP necessarily results
in error scaling < R, the diameter of the dataset (cf. Section 5, [BST14]). Moreover, the worst-case
nature of DP is at odds with typical average-case machine learning settings, where most (or all) of D
is drawn from a distribution that we wish to learn about. From an algorithm design standpoint, the
question follows: how do we design methods with privacy guarantees for worst-case data, but also
with improved utility guarantees for (mostly) average-case data?

Such questions have been successfully addressed for various statistical problems, e.g., parameter esti-
mation [BD14, KV17, BKSW19, DFM 20, BDKU20, BGS*21, AL22, LKJO22, KDH23, BHS23],
clustering [NRS07, NSV16, CKM*21, TCK*22], and more. However, existing approaches for (1)
(even non-privately) are based on iterative optimization methods, as the geometric median does not
admit a simple, closed-form solution. Much of the DP optimization toolkit is exactly plagued by the
aforementioned “worst-case sensitivity” issues, e.g., lower bounds for general stochastic optimization
problems again scale with the domain size. This is troubling in the context of (1), because a major
appeal of the geometric median is its robustness: its error should not be significantly affected by
any small subset of the data. Privately estimating the geometric median thus poses an interesting
technical challenge, beyond its potential appeal as a subroutine in downstream robust algorithms.

To explain the distinction between worst-case and average-case error rates in the context of (1), we
introduce the following helpful notation: for all quantiles 7 € [0, 1], we let

1
() . ind S = in = > |x—x
ri7 = argmin lix;—x,||<r = TN p , where x, := arg min lIx — x|,
i€[n] i€[n] )

1 X — X || <7
and'|xi—x*|3r={’ i =%l <

0  otherwise

when D = {X;}ie[n) C R? is clear from context. In other words, 7(7) is the smallest radius describing
a ball around the geometric median x, containing at least 7n points in D. We also use R to denote an
a priori overall domain size bound, where we are guaranteed that D C B%(R). Note that in general,
it is possible for, e.g., 7*9) <« R if ~ 10% of D consists of outliers with atypical norms. Due to
the robust nature of the geometric median (i.e., the aforementioned Lemma 4), a natural target is
estimation error scaling with the “effective radius” (") for some quantile 7 € (0.5,1). This is a
much stronger guarantee than the error rates oc R that typical DP optimization methods give.

Because a simple argument (Lemma 3) shows (") = O(fp(x,)) for all 7 < 1, in this introduction
our goal is to approximate the minimizer of (1) to additive error afp(x,) for some « € (0,1), i.e.,
to give a-multiplicative error guarantees on optimizing fp.! Again, datasets with outliers may have
fp(x4) < R, so this is beyond the reach of naively applying DP optimization methods.

In a recent exciting work, [HSU24] bypassed this obstacle and obtained such private multiplicative

approximations to the geometric median, and with near-optimal sample complexity. Assuming that D
has size n > v/d - é,z [HSU24] gave two algorithms for estimating (1) to a-multiplicative error (cf.
Appendix A). They also proved a matching lower bound, showing this many samples is information-
theoretically necessary.> From both a theoretical and practical perspective, the main outstanding
question left by [HSU24] is computational efficiency: in particular, the [HSU24] algorithms ran in
time O(n?d + ne?) or O(nd + nd* + d*37). This leaves a significant gap between algorithms
for privately solving (1), and their counterparts in the non-private setting, where [CLM™16] showed

that (1) could be approximated to a-multiplicative error in nearly-linear time O(min(nd, 4).

Our results (and those of [HSU24]) in fact give stronger additive error bounds of ar™ for any 7 € (0.5,1).
2In this introduction only, we use 6, <, 2 to hide polylogarithmic factors in problem parameters, i.e., d, é,
s %, and %, where D C Bd(R) and r < 79 Our formal theorem statements explicitly state all dependences.
*Intuitively, we require o & d~'/? to obtain nontrivial estimation when D consists of i.i.d. Gaussian data (as

a typical radius is ~ v/d), matching known lower bounds of n ~ % for Gaussian mean estimation [KLSU19].

1
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1.1 Our results

Our main contribution is a faster algorithm for privately approximating (1) to a-multiplicative error.

Theorem 1 (informal, see Theorem 4). Let D = {x; }icn) C B(R) for R > 0,0 < r < r®9, and
(a,€,8) € [0,1]%. There is an (e, §)-DP algorithm that returns X such that with probability > 1 — §,
fp(%X) < (1+ a)fp(xs), assuming n = g. The algorithm runs in time O(nd + -%).

To briefly explain Theorem 1’s statement, it uses a priori knowledge of 0 < r < R such that R
upper bounds the domain size of D, and r lower bounds the “effective radius” r(©-9) However, its
runtime only depends polylogarithmically on the aspect ratio %, rather than polynomially (as naive

DP optimization methods would); we also remark that our sample complexity is independent of %
The runtime of Theorem 1 is nearly-linear when n > % (e.g., if V/d - £ > 1), but more generally
it does incur an additive overhead of a%. This overhead matches the fastest non-private first-order
method for approximating (1) to a-multiplicative error, due to [CLM ™' 16]. We note that [CLM ™ 16]
also gave a second-order interior-point method, that non-privately solves (1) in time 6(nd), i.e., with
polylogarithmic dependence on -.. We leave removing this additive runtime term in the DP setting,
or proving this is impossible in concrete query models, as a challenging question for future work.

Our algorithm follows a roadmap by [HSU24], who split their algorithm into two phases: an initial
“warm start” phase that computes an O(1)-multiplicative approximation of the geometric median,
and a secondary “boosting” phase that uses iterative methods to improve the warm start to an a-
multiplicative approximation. The warm start improves the domain size of the boosting phase to scale
with the effective radius. However, both the warm start and the boosting phases of [HSU24] required
superlinear ~ n2d time. Our improvement to the warm start phase of the [HSU24] is quite simple,
and may be of independent interest, so we provide a self-contained statement here.

Theorem 2 (informal, see Theorem 3). Let D = {x; }icn) C BY(R) for R > 0,0 < r < r(®9, and
(€,8) € [0,1]%. There is an (e, 8)-DP algorithm that returns X such that with probability > 1 — 6,
fp(X) = O(fp(x4)), assuming n 2 @. The algorithm runs in time O(nd).

1.2 Our techniques

As discussed previously, our algorithm employs a similar framework as [HSU24]. It is convenient to
further split the warm start phase of the algorithm into two parts: finding an estimate 7 of the effective
radius of D, and finding an approximate centerpoint at distance O(7) from the geometric median x,.

Radius estimation. Our radius estimation algorithm is almost identical to that in [HSU24], Section
2.1, which uses the sparse vector technique (cf. Lemma 2) to detect the first time an estimate 7 is

such that most points have > j of D at a distance of = 7. The estimate 7 is geometrically updated
over a grid of size O(log(£)). Naively implemented, this strategy takes > n*d time due to the need
for pairwise distance comparisons (cf. Appendix A); even if dimesionality reduction techniques are
used, this step appears to require (n?) time. We make a simple observation that a random sample of
R log(%) points from D is enough to determine whether a given point has > 3 neighbors, or < ~,

for appropriate (constant) quantile thresholds 3, v, which is enough to obtain an 6(nd) runtime.

Centerpoint estimation. Our centerpoint estimation step departs from [HSU24], Section 2.2, who
analyzed a custom variant of DP gradient descent with geometrically-decaying step sizes. We
make the simple observation that directly applying the FriendlyCore algorithm of [TCK*22] yields
the same result. However, the standard implementation of FriendlyCore again uses Q(n?) time to
estimate weights for each data point. We show that FriendlyCore can be sped up to run in O(nd)
time (independently of %) using subsampled weights. Our privacy proof is subtle, and based on an
argument (Lemma 1) that couples our subsampled algorithm to an idealized algorithm that never
fails to be private. We use this to account for the privacy loss due to the failure of our subsampling,
i.e., if the estimates are inaccurate. We note that the [HSU24] algorithm for this step already ran in
nearly-linear ~ nd log(g) time, so we obtain an asymptotic improvement only if % is large.

Boosting. The most technically novel part of our algorithm is in the boosting phase, which takes
as input a radius and centerpoint estimate from the previous steps, and outputs an a-multiplicative



approximation to (1). Like [HSU24], we use iterative methods to implement this phase. However, a
major bottleneck to a faster algorithm is the lack of a nearly-linear time DP solver for non-smooth

empirical risk minimization (ERM) problems. Indeed, such O(1)-pass optimizers are known only
when the objective is convex and sufficiently smooth [FKT20], or n 2> d? samples are taken [CJJ*23].
This is an issue, because while computing the geometric median (1) is a convex ERM problem, it is
non-smooth, and multiplicative guarantees are possible even with n &~ v/d samples.

We give a custom analysis of DP-SGD, specifically catered to the (non-smooth) ERM objective (1).
Our main contribution is a tighter sensitivity analysis of DP-SGD’s iterates, leveraging the structure
of the geometric median. To motivate this observation, consider coupled algorithms with iterates z, z’,
both taking gradient steps with respect to the subsampled function ||- — x;|| for some dataset element
x; € D. A simple calculation (7) shows these gradients are unit vectors u, u’, in the directions of
z — x; and z’ — x; respectively. It is not hard to formalize (Lemma 11) that updating z < z — nu
and z’ <+ z' — nu’ is always contractive, unless z, z’ were both already very close to x; (and hence,
each other) to begin with. We use this structural result to inductively control DP-SGD’s sensitivity,
which lets us leverage a prior reduction from private optimization to stable optimization [FKT20].

Our result is the first we are aware of that obtains a nearly-linear runtime for DP-SGD on a structured
non-smooth problem. We were inspired by [ALT24], who also gave faster runtimes for (smooth) DP
optimization problems with outliers under further assumptions on the objective. We hope that our
work motivates future DP optimization methods that harness problem structure for improved rates.

1.3 Related work

Differentially private convex optimization. DP convex optimization has been studied extensively
for over a decade [CMO08, KST12, BST14, KJ16, BFGT20, FKT20, BGN21, GLL22, GLL"23]
and inspired the influential DP-SGD algorithm widely adopted in deep learning [ACGT16]. In
the classic setting, where functions are assumed to be Lipschitz and defined over a convex do-
main of diameter R, optimal rates have been achieved with linear dependence on R [BFTGT19].
Recent years have seen significant advancements in the gradient complexity of DP stochastic con-
vex optimization [FKT20, AFKT21, KLL21, ZTC22, CJJ*23, CCGT24]. Despite these efforts,
a nearly-linear gradient complexity has only been established for sufficiently smooth functions
[FKT20, ZTC22, CCGT24] and for non-smooth functions [CJJT23] when /. 2> d is satisfied.
Finally, in a related direction, [KMM™25] study private convex hull estimation and it remains an
interesting future direction to see if our techniques apply to their setting. As noted in their work, the
convex hull can be a very unstable function of the dataset, whereas multiplicative approximations to
the geometric median are not affected drastically by a single datapoint (e.g., Lemma 4).

Differential privacy with average-case data. Adapting noise to the inherent properties of data,
rather than catering to worst-case scenarios, is critical for making differential privacy practical in real-
world applications. Several important approaches have emerged in this direction: smooth sensitivity
frameworks [NRSO7] that refine local sensitivity to make it private; instance optimality techniques
[AD20] with tailored guarantees for specific datasets; dmethods with improved performance under
distributional assumptions such as sub-Gaussian or heavy-tailed i.i.d. data [CWZ21, AL23, ALT24];
and data-dependent sensitivity computations that adapt during algorithm execution [ATMR21]. These
approaches collectively represent the frontier in balancing privacy and utility beyond worst-case
analyses. We view our work as another contribution towards this broader program.

2 Preliminaries

Throughout, vectors are denoted in lowercase boldface, and the all-zeroes and all-ones vectors in
dimension d are respectively 04 and 14. We use ||-|| to denote the Euclidean (¢3) norm of a vector.
We use [d] to denote {i € N | 1 < i < d}. Weuse B(p,7) := {x € R? | ||x — p|| < r} to denote
the Euclidean ball of radius ~ > 0 around g € R%; when p is unspecified, then . = 0,4 by default.
For compact K C R, we use ITx(x) to denote the Euclidean projection arg minycx [|x — y|.

We let l¢ denote the 0-1 indicator random variable of an event £. For two densities pu,v
on the same sample space {2 and « > 1, we define the «-Rényi divergence D, (u|v) :=

—L-log(f (4 EZ; )*v(w)dw). We use N(u,0%1,) to denote the multivariate normal distribution



with mean g € R? and covariance 0214, where 1, is the d x d identity. We let Laplace()\) be the

Laplace distribution with scale parameter A > 0, whose density is exp(f%). We let Unif(.S)
denote the uniform distribution over a set S, and Bern(p) denote the Bernoulli distribution taking on
values {0, 1} with mean p € [0, 1]. We refer to a product distribution consisting of k i.i.d. copies of a
base distribution D by D®*. We also use the bounded Laplace distribution with parameters \, 7 > 0,
denoted BoundedLaplace(), 7), i.e., the distribution of X ~ Laplace()) conditioned on | X| < 7.

Differential privacy. Let X’ be some domain, and let D € X" be a dataset consisting of n elements
from X. We say datasets D, D' € X™ are neighboring if their symmetric difference has size 1, i.e.,
they differ in a single element. We use the following definition of differential privacy in this paper.

Definition 1 (Differential privacy). Let (¢,8) € [0,1]2* We say that a randomized algorithm
A X" — Q satisfies (e, 0)-differential privacy (or, is (e,6)-DP) if for all events £ C ), and for all
neighboring datasets D, D’ € X", Pr[A(D) € £] < exp(e) Pr[A(D’) € €] + 6.

DP algorithms satisfy basic composition (Theorem B.1, [DR14]), i.e., if A; : X™ — Q1 is (€1, 61)-
DPand A; : X" x Q1 — Qs is (€2, d2)-DP, then their composition is (e + €3, 01 + d2)-DP. We next
state the Gaussian mechanism. Recall that if v : X — R* is a vector-valued function of a dataset,
we say v has sensitivity A if for all neighboring D, D’ € X™, |v(D) — v(D’')|| < A.

Fact 1 (Theorem A.1, [DR14]). Let v : X™ — R¥ have sensitivity A, and let (¢,0) € [0, 1]%. Then,

drawing a sample from N (v(D), 0%} is (€,6)-DP, for any o > 22 . | [log(2).

We also require the bounded Laplace mechanism, which is known to give the following guarantee.

Fact 2 (Lemma 9, [ALT24]). Let s : X™ — R have sensitivity A, and let (¢,6) € [0,1]%. Then,
drawing & ~ BoundedLapIace(%7 7) and outputting s(D) + & is (¢,0)-DP for any T > % log (%)

Fact 2 is proven in [ALT24] using a coupling argument, using the fact that BoundedLaplace()\) and
Laplace(A) result in the same sample except with some probability. We appeal to this technique
several times in Section 3, so we explicitly state it here for convenience (with a proof in Appendix B).
Lemma 1. For (¢,5) € [0,1]%, A: X" — Q be an (¢, )-DP algorithm, and let A be an algorithm
such that on any input D € X™, we have that the total variation distance between A(D) and A(D)
is at most &'. Then, Ais an (€,8 + 43')-DP algorithm.

We next recall the following well-known result on detecting the first large element in a stream.
Lemma 2 (Theorems 3.23, 3.24, [DR14]). AboveThreshold (Algorithm 4) is (e,0)-DP. Moreover,

og( 2T
Jorv € (0,1), let v = % and D € X™. AboveThreshold halts at time k € [T + 1] such that
with probability > 1 —v: ¢(D) < 7+ aforallt <k,and q(D) > 17— aork=T + 1.

Geometric median. In the rest of the paper, for R > 0, we fix a dataset D := {X; };c[n] C B4(R),
i.e., with domain X := Bd(R). Our goal is to approximate the geometric median of D, i.e.,

. 1
x4 (D) = arg min fo(x), where fp(x) := - EZ[] Ix — x;]| 3)

is the average Euclidean distance to the dataset. Following e.g., [CLM ™16, HSU24], we also define
the quantile radii associated with our dataset D centered at X € R? by

r((D; %) := arg rrnzig Z[:] ljx;—x|<r > Tn ¢, forall 7 € [0,1]. )
eln

When x is unspecified, by default X = x, (D). In our utility analysis we will often suppress the
dependence on D in x,, ("), etc., as the dataset of interest will not change. In the privacy analysis,
we specify the dependence of these functions on the dataset explicitly when comparing algorithms
run on neighboring datasets. Finally, we include two helper results from prior work.

“In principle, € can be larger than 1. However, in this paper, sample complexities are unaffected up to
constants for any € > 1 if we simply obtain (1, §)-DP guarantees rather than (¢, §)-DP guarantees, which are
only stronger. Thus we state all results for € € [0, 1] for convenience, which simplifies some bounds.



Lemma 3. Let D := {x;}icn) C RL Then, fp (x,) > (1 —7)r(™ forall € [0,1].
Lemma 4 (Lemma 24, [CLM*16]). Let D := {x; };cn] C R® and let S C [n] have |S| < %. Then,

Ix, — x|| < 2n —2|5|
n — 2|9]

3 Constant-Factor Approximation

max |x; — x||, forall x € RY.

(3

In this section, we give our first result: a fast algorithm for computing an O(1)-approximation to the
geometric median. We first show how to estimate quantile radii up to constant factors in nearly-linear
time using subsampled scores, improving Section 2.1 of [HSU24]. We then adapt a weighted variant
of FriendlyCore to give a simple algorithm for approximate centerpoint computation, improving
Section 2.2 of [HSU24] for large aspect ratios. Proofs from this section are deferred to Appendix C.

We first present our radius estimation algorithm.

Algorithm 1 FastRadius(D, r, R, ¢, 0)

Input: D € B4(R)",0 <r < R, (¢,6) € [0,1]2
1 (T, k,7) + ([logy(£)],31log(4L),0.775n)
2: 7 4= T + Vthresh TOT Vthresh ~ Laplace(?)

3: fort € [T]) do
for i € [n] do
S« Unif ([n])®*
Nt(l) — % ZjES(“ IHXi—XjHSTt forry < r- 2t—1

end for 0

Qs < %Zie[n] Ny
9: vy ~ Laplace(12)

10:  if ¢ + v, > 7 then

PR

11: Return: r;
12:  end if
13: end for

14: Return: R

Algorithm 1 is an instance of AboveThreshold with A = 3, where the queries are given on Line 8.
However, our queries have random sensitivities depending on the subsampling in Line 5. Nonetheless,
Chernoff bounds control this sensitivity with high probability, which yields privacy via Lemma 2.

Lemma 5. Algorithm I is (e, §)-DP.

The proof of Lemma 5 is a simple combination of Fact 4, Lemma 1, and Lemma 2. Next, we state
a utility bound for Algorithm 1, whose proof is essentially identical to the proof in [HSU24], after
applying Chernoff bounds to ensure our estimated counts are accurate.

Lemma 6. Algorithm 1 runs in time O(ndlog(£)log(log(£)%)). Moreover, if r < 4r(®9 and
n > @ log(%), with probability > 1 — §, Algorithm 1 outputs  satisfying %r(o.m) <7 < 4p(09),

In summary, Lemmas 5 and 6 show that we can privately estimate 7 satisfying 1r(®-7) < 7 < 47(0-9)
in nearly-linear time. The upper bound implies (with Lemma 3) that 7 = O(fp(x4)); on the other
hand, the lower bound will be critically used in our centerpoint estimation procedure, Algorithm 2.

Algorithm 2 is a simplification of the FriendlyCore algorithm of [TCK™*22], that outputs a noisy
weighted average of the dataset, where the weights {p; };c[,) linearly interpolate estimated scores
fi € [0.5k,0.75k] into the range [0, 1], sending f; > 0.75k to 1, and f; < 0.5k to 0. We first make
some basic observations about the points that contribute positively to the weighted combination X.

1)

Lemma 7. Assume that 7 > %7 in the context of Algorithm 2. With probability > 1 — 1%

i € [n] that is assigned p; > 0 in Algorithm 2 satisfies ||x; — X, || < 37, and Z > 0.6n.

every



Algorithm 2 FastCenter(D, 7, ¢, 0)
Input: D € BY(R)", # € Rxo, (¢,6) € [0,1]?
1: k <+ 600log(182)

2: for i € [n] do

3:S; + Unif([n))®*

4 fi — lees’(i) IHfoxJH<2r

5:  p; < min(max(0, f‘o 2%2k), 1)

6: end for

7. Z Zie[n] Di

8 &~ BoundedLapIace(24 2 log(2))

9: if Z + & — Zlog(3) <0. 55n then
10:  Return: Od
11: end if

12: X = 5 D) PiX
13: € ~ N(04,0%1y), for o « 19997, [log(12)
14: Return: X + §

We remark that to make Lemma 7 compatible with the output guarantee of Lemma 6, it is enough to
pass in 7 <— 47 where 7 is the output of Algorithm 1. By inspection, this only changes the definition
of the constant in Theorem 3, the main export of this section.

Lemma 7 constitutes most of our utility analysis, as all contributing points to x are O(#) away from
X, our final desired error. We next note that whenever the algorithm does not return on Line 10, all
surviving points lie in a ball of diameter O(7), under a high-probability event over our subsampling.

Importantly, this holds independently of any assumption on 7 (e.g., we do not require 7 > r(0-75)),
Lemma 8. Suppose that it is the case that in the context of Algorithm 2, we have

fr <045k = f; < 0.5k, and f} < 0.55k = f; < 0.6k, 5)

foralli € [n). If Z > 0.55n, there exists some x € R% such that {x; | p; > 0};c(n) C B(x, 47).
Moreover, the event (5) occurs with probability > 1 — g.

We are now ready to prove a privacy bound on Algorithm 2. Our proof follows the original privacy
analysis of FriendlyCore [TCK™22], but accounts for the failure of the “accurate subsampling” event
(5) by coupling to an algorithm that always ensures (5), and then applying Lemma 1.

Lemma 9. Ifn > 20, Algorithm 2 is (€, 9)-DP.

Combining our developments gives our constant-factor approximation to the geometric median.

Theorem 3. Let D = {x;};cn) C B4(R )foi‘RI/% >> 0, let 0 < 7 < 4r09(D), and let (¢, 8) € [0,1]%
1 o og T

Suppose thatn > C - (\f log( 5) Log( )) for a sufficiently large constant C. There is an

(e, 8)-DP algorithm that returns (X 7") such that with probability > 1 — 6, following notation (3),

fp(%) < (40C" + 1) fp(x,(D)), 7 < 4709, (6)

for a universal constant C'. Moreover, ||x.(D) — X|| < C'#. The algorithm runs in time

o (vt () (252 ).

We remark that Theorem 3 actually comes with the slightly stronger guarantee that we obtain the
optimal value for the geometric median objective fp, up to an additive error scaling as O(r(o'g)).
In general, while 7(*9 = O(fp(x.(D))) always holds (Lemma 3), it is possible that r(*9) <
fp(%x4(D)) if a small fraction of outliers contributes significantly to fp. We also note that for
datasets where we have more a priori information on the number of outliers we expect to see, we can
adjust the quantile 0.9 in Theorem 3 to be any quantile > 0.5 by appropriately adjusting constants.




4 Boosting Approximations via Stable DP-SGD

In this section, we give a DP algorithm that efficiently minimizes the geometric median objective
(3) over a domain B%(x, 7), given a dataset D := {x; };[,]. In our final application to the geometric
median problem, the optimization domain (i.e., the parameters x &€ R? and 7 € R>0) will be
privately estimated using Theorem 3, such that with high probability # = O(fp(x.(D))) and
| x — x,(D)|| < #. In the meantime, we treat the domain B¢ (%, #*) as a public input here.

Our strategy is to use a localization framework given by [FKT20], which gives a query-efficient
reduction from private DP-SGD to stable DP-SGD executed in phases. Observe that outputting?

2 V= x| (2) (7)

1z — i

for ¢ ~ Unif([n]) is unbiased for a subgradient of fp(z), leading to the following Algorithm 3.

Algorithm 3 StableDPSGD(D, x, 7, p, 6,1, T)
Input: D = {xi}ie[n] C R4, (x,7) € R x R>0,p>0,0€(0,1),n>0,T = 2K _ 1> nfor
KeN

1:m <+ 3(L +1log(%))

2: for k € [K] do

3 (T, n®) k) o (27K(T + 1), 4y, 3~k Cmtlny

NG
4: if Kk = 1 then
5: (Z(()k)7 ]C(k)) — ()*(7 Bd(f(, ,,:))
6: else
7 (@, W) kD, B, 260, [dlog(4))
8: endif
9: for0<t<T® do
(k) 2 —x; . .
10 g o, ford ~ Unif(n])
b o, e T - 9g?)
12:  end for

_ 1 k
13: - xk) TRy ZO§t<T(k) ZE )

14 €W~ N(0g, (09)21,)
15: %) xk) 4 gk

16: end for

17: Return: x(¥)

Remark 1. Several steps in Algorithm 3 are used only in the worst-case utility proof, and do not affect
privacy. Practical optimizations can be made while preserving privacy guarantees, e.g., removing
projections onto the changing domains KK*) rather than KKV, which is not used in the privacy proof.

One optimization we found useful in our experiments (described in Section 5) is replacing the random
sampling on Line 10 with deterministic passes through the dataset in a fixed order. By doing so,
we know the total number of accesses of any single element is < m := (%] (rather than the high-
probability estimate in Lemma 10 for the randomized variant in Algorithm 3). This lets us tighten the
noise level o®) by a fairly significant constant factor, resulting in improved empirical performance.

We provide a privacy bound on Algorithm 3 in Appendix D.1, and a utility bound in Appendix D.2.
Our utility proof is fairly standard, and makes small modifications to the original localization analysis
in [FKT20] to obtain a high-probability error guarantee using martingale arguments.

Our main technical novelty lies in our privacy proof, which is unconventional as it requires showing
stability of DP-SGD on a non-smooth function (3). This contrasts with [FKT20], which assumed

smoothness to achieve fast runtimes. Our main observation to this end is in Lemma 11 and Corollary 1,

which show Line 11 implemented with a shared x;, but different starting sz“), (sz”)’ , Is contractive,

By default, if x = x;, we let (7) evaluate to 04, which is a valid subgradient by first-order optimality.



unless zgk), (zgk))’ were close. This yields a refined bound on the stability of each phase, allowing us

to use the [FKT20] reduction for DP. Combining these pieces yields our following main result.

Theorem 4. Let D = {x;}ic(n) C BY(R) for R > 0, let 0 < r < 4r(®9(D), and let (a,€,6) €
[0,1]3. Suppose that n > C - (ﬁ log2'5(%)), for a sufficiently large constant C. There is

(673

an (€,8)-DP algorithm that returns X such that with probability > 1 — §, following notation (3),
fo(%X) < (1 + ) fp(x.(D)). The algorithm runs in time

0] (ndlog (f) log <(ﬂ(;g5(€}3)> + %log (%)) )

5 Experiments

We present empirical evidence supporting the efficacy of our techniques.® We conduct experiments on
Algorithm 1 (the radius estimation step of Section 3) and Algorithm 3, to evaluate how subsampled
estimates and DP-SGD respectively improve the performance of our algorithm.

We do not present experiments on Algorithm 2, as our current analysis results in loose constants,
which in our preliminary experimentation significantly impacted the performance of Algorithm 2 in
practice. We leave optimizing the performance of this step as an important step for future work. Our
Algorithm 2 and Section 2.2 of [HSU24] had essentially the same theoretical guarantees, so we find
it in line with the conceptual contribution of this work to evaluate the other two components.

We use two types of synthetic datasets with outliers, described in Appendix E: GaussianCluster (used
in [HSU24] as well), and HeavyTailed (a multivariate Student’s ¢ distribution).

Subsampling. We performed experiments to show the benefit of subsampling in FastRadius (Algo-
rithm 1) over RadiusFinder (Algorithm 1 from [HSU24]) for differentially private estimation of the
quantile radius, which is the first step in differentially private estimation of the geometric median.
Across a variety of settings of n, d, and aspect ratios in our GaussianCluster experiment and degrees
of freedom in our HeavyTailed, both FastRadius and RadiusFinder consistently resulted in estimates
~ 1.2-3x the true quantile radius, with FastRadius’s estimates consistently about 10-20% worse.
However, the average wall-clock time for our algorithm was roughly 30x faster, even at n = 1000,
d = 10. We present plots and experimental results for this evaluation in Appendix E.

Boosting. We also evaluate the performance of our boosting algorithm in Section 4, compared to
the baseline method from [HSU24]. We in fact evaluate three methods: (1) the baseline method,
DPGD (vanilla DP gradient descent), as described in Algorithms 3 and 6, [HSU24], but with an
optimized step size selected through ablation studies (cf. Appendix E); (2) StableDPSGD, i.e., our
Algorithm 3 implemented as written, and (3) FixedOrderDPSGD, a variant of our Algorithm 3 with
the last optimization described in Remark 1. We calibrated our noise level in FixedOrderDPSGD to
ensure a fixed level of CDP via a group privacy argument, where we use that each dataset element is
deterministically accessed at most m = [%] times in FixedOrderDPSGD with T iterations.

We present here a representative experiment, deferring a more comprehensive set of experiments
to Appendix E. Here, we vary n only, fixing all other parameters in a GaussianCluster dataset in
R0, We report the performance of all three methods, plotting the passes over the dataset used by the
excess error. Our error metric is % - (fp(%X) — fp(X)), i.e., a multiple of the “effective radius” used.
This is a more reflective performance metric than the corresponding multiple of fp, as our algorithms
achieve this bound (cf. discussion after Theorem 3), and fp > 7 for our datasets due to outliers.

Throughout our experiments, we observed consistent trends to Figure 3, where our (optimized)
algorithm FixedOrderDPSGD outperformed the baseline by an amount depending on n (with better
performance for larger n), and the unoptimized StableDPSGD achieved worse, but competitive,
results. We remark that one limitation of our evaluation is that DPGD gradient computations can be
parallelized, which leads to wall-clock time savings; we discuss this point further in Appendix E.

SQur subsampling experiments were performed on a single Google Colab CPU, and our boosting experiments
were performed on a personal Apple M4 with 16GB RAM.



GaussianCluster dataset, n = 100, R = 50 GaussianCluster dataset, n = 1000, R = 50 GaussianCluster dataset, n = 10000, R = 50
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Figure 1: Comparison of DPGD, StableDPSGD, and FixedOrderDPSGD across different datasets
over R%Y. All plots are averaged across 20 trials and standard deviations are reported as error bars.
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A Discussion of [HSU24] runtime

We give a brief discussion of the runtime of the [HSU24] algorithm in this section, as the claimed
runtimes in the original paper do not match those described in Section 1. As the [HSU24] algorithm
is split into three parts (the first two of which correspond to the warm start phase and the third of
which corresponds to the boosting phase), we discuss the runtime of each part separately.

Radius estimation. The radius estimation component of [HSU24] corresponds to Algorithm 1 and
Section 2.1 of the paper. The authors claim a runtime of O(n? log(£)) for this step due to need to
do pairwise distance comparisons on a dataset of size n, for O(log(%)) times in total. However, we
believe the runtime should be O(n?dlog(£)), accounting for the O(d) cost of each comparison.

Centerpoint estimation. The centerpoint estimation component of [HSU24] corresponds to Algo-
rithm 2 and Section 2.2 of the paper. We agree with the authors that this algorithm runs in time
O(nd log(g)), and in particular, this step does not dominate any runtime asymptotically.

Boosting. The boosting component of [HSU24] corresponds to Algorithms 3 and 4 and Section 3
of the paper. The authors provide two different boosting procedures (based on gradient descent and
cutting-plane methods) and state their runtimes as O (n2d) and O(nd? + d2+%), where w < 2.372 is
the current matrix multiplication exponent [ADV25]. We agree with the latter runtime analysis;
however, we believe there is an additive O (n3€?) term in the runtime of gradient descent. This follows

. . 2.2 . . . . .
by noting that Algorithm 3 uses ~ "~ iterations, each of which takes O(nd) time to implement.

B Deferred material from Section 2

In this appendix, we provide missing material from Section 2. We begin by proving Lemmas 1 and 3.

Lemma 1. For (¢,6) € [0,1]%, A : X™ — Q be an (¢, 5)-DP algorithm, and let A be an algorithm
such that on any input D € X™, we have that the total variation distance between A(D) and A(D)
is at most &'. Then, Ais an (€,8 + 43')-DP algorithm.

Proof. For neighboring datasets D, D’, and any event £ € (), we have that
Pr[A(D) € £] < Pr[A(D) € €]+ ¢
<exp(e)PrlAD) €& +6+ 0
(e)Pr[A(D') € &] +6+45.

The first and last lines used the assumption between A and A, and the second used that A is DP. [J

Pr
< exp(e) Pr
Lemma 3. Let D := {X;}icn C RY. Then, fp (x,) > (1 —7)r™) forall T € [0, 1].

Proof. This is immediate from the definition of fp and nonnegativity of each summand |- — x;||. O

Next we provide pseudocode for Algorithm 4, analyzed in Lemma 2.

Algorithm 4 AboveThreshold(D, {q: }+e[ry, 7, €)

Input: D € X", sensitivity-A queries {¢; : ™ — R}yci7). 7 € R, e >0
2A)

€

1: T 4= T + Vthresh TOT Vhresh ~ Laplace(
2: fort € [T] do

vy~ Laplace(%)
4. if ¢(D)+ v, > 7 then
5 Output: a; < T
6 Halt
7:  else
8
9
10:

Output: a; <+ L
end if
end for
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Finally, our developments in Section 4 use the notions of Rényi DP (RDP) and central DP (CDP). We
provide a self-contained summary of the definitions and properties satisfied by RDP and CDP here,
but refer the reader to [BS16, Mirl7] for a more detailed overview.

Definition 2 (RDP and CDP). Let a > 1, p > 0. We say that a randomized algorithm A : X™ —
satisfies (o, p)-Rényi differential privacy (or; is («, p)-RDP) if for all neighboring datasets D, D’ €
xn,

Do (A(D)[A(D)) < ap.
If this holds for all a > 1, we say A satisfies p-central differential privacy (or, is p-CDP).
Fact 3 ([Mirl7]). RDP and CDP satisfy the following properties.

1. (Composition): If Ay : X™ — Qq is («, p1)-RDP and Ay : X" x Q1 — Qg is («, p2) for
any fixed choice of input from €y, the composition of Ay and A, is («, p1 + p2)-RDP.

2. (RDP 1o DP): If A'is (e, p)-RDP, it is also (ap + -1 log %, 6)-DP for all 6 € (0,1).

3. (Gaussian mechanism): Let v : X™ — RF have sensitivity A. Then for any o > 0, drawing
a sample from N (v(D), 0°1},) is %-CDP.

Finally, we require the following standard bound on binomial concentration.

Fact 4 (Chernoff bound). For all i € [n], let X; ~ Bern(p;) for some p; € [0,1], and let y =
Yiem i and i = 3,1 Xio Then, Prii > (1 + €)pu] < exp(—éi’i)for all e > 0, and
Prion < (1—eu] < exp(—E%“)for alle € (0,1).

C Deferred material from Section 3

In this appendix, we provide missing material from Section 3.
Lemma 5. Algorithm I is (¢,0)-DP.

Proof. Fix neighboring datasets D, D’ € B%(R)", and assume without loss that they differ in the n'®
entry. Observe that FastRadius (independently) uses randomness in two places: the random subsets
in Line 5, and the Laplace noise added as in the original AboveThreshold algorithm in Lines 2 and 9.
We next claim that in any iteration ¢ € [T], as long as the number of copies of the index n occurring
in Uie[n_l] St(z) is at most 2k, then the sensitivity of the query ¢, is at most 3. To see this, denoting
by g¢t, ¢; the random queries when Algorithm 1 is run on D, D’ respectively, and similarly defining
{Nt(z), (Nt(z))’ }iein)» We observe that the sensitivity is controlled as follows:

. . / n
@—a < D (Nf') - (Nt(”> ) + -

i€[n—1]

—_

<

S|

. % - | number of copies of n occurring in U S’t(i) +1<3.
i€[n—1]

The first line holds because the n" (neighboring) point has Nt(n) < nand (Nt(”))’ > 0; the second is
because every l|x, x| <r, used in the computation of Nt(l) is coupled except when j = n is sampled.

Now, let A denote Algorithm 1, and let A denote a variant that conditions on the randomly-sampled
U, eln—1] St(l) containing at most 2k copies of the index n, in all encountered iterations ¢t € [T]. By

using Fact 4 (with g < k - ”T*I, € < 1), due to our choice of k, Uie[nfl] St(i) contains at most 2k

copies of n except with probability %, so by a union bound, the total variation distance between
A and A is at most $. Moreover, A is (e, 0)-DP by using Lemma 2. Thus, A is (e, §)-DP using
Lemma 1. [

Lemma 6. Algorithm I runs in time O(ndlog(£)log(log(£)%)). Moreover, if r < 4r(®9 and

n> @ log(%), with probability > 1 — 6, Algorithm 1 outputs 7 satisfying %7’(0'75) <7 < 4r(09),
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Proof. The first claim is immediate. To see the second, for all ¢ € [T] denote the “ideal” query by:
1
S S e
i€[n] j€[n]

and recall Eq; = ¢;. Our first claim is that with probability > 1 — £ the following guarantees hold
for all iterations ¢ € [T'] that Algorithm 1 completes:

q; >0.8n = ¢ > 0.79n, and ¢; < 0.75n = ¢ < 0.76n. 8)

To see the first part of (8), we can view ng; as a random sum of Bernoulli variables with mean
ngy > 0 8n? > 20000 1og( 7 ), 80 Fact 4 with € < &5 ylelds the claim in iteration ¢ with probability

> 1 — 5. Similarly, the second part of (8) follows by using Fact 4 with 1 < 0.7n2 and (1 + €)p
0.71n2, because
eu e €l n? )
- < — = —— )< — < — 9
eXp( 2+e> —eXp< 1516> eXp( 151) —eXp< 15100) = 9T ©)

for the relevant range of n and € > 75 s €1t = {55+ We thus obtain (8) after a union bound over all
te[T).

Now, suppose that ¢ € [T is the first index where ¢; + 14 > 7, so that # = r; and %f = r4_1, where
we let 79 := 7. If no such query passes, then we set t = T + 1 by default. Then by the utility

guarantees of Lemma 2, we have that with probability > 1 — 2,

qr > 0.76n, g1 < 0.79n,

since 155 = @ = % log(%) . By taking the contrapositive of (8), we can conclude that with
probability > 1 — §, we have g; > 0.75n and ¢;_; < 0.8n. Condition on this event for the rest of

the proof.

Because g; > 0.75n, there is clearly some x; € D such that |D N B%(x;,#)| > 0.75n, as this is the
average number of dataset elements in a radius-7 ball centered at a random x € D. Now applying
Lemma 4 with S set to the indices of D \ B%(x;, #), so that |S| < 0.25n, gives

[, — xi]| < 3F = ||x, — x| < 47 forall x; € DN B x;,7).

This implies 47 > 7(975) as claimed. Further, because ¢;_; < 0.8n, we claim g > 2709 cannot

hold. Assume for contradiction that this happened, and let S := D N B%(x,, T(O'g)). By the triangle
inequality, for all of the 0.9n choices of x; € S, we have that

Z s, 1< 5 = 09,

(0.9)

which implies that ¢;_; > 0.81n, a contradiction. Thus, we obtain 7+ < 4r as well.

We remark that all of this logic handles the case where 2 < ¢ < T is the iteration where Algorithm 1
returns. However, it is straightforward to check that the conclusion holds whent = 1 (i.e., 7 = 1)
because we assumed r < 4709 and the lower bound logic on 7 is the same as before. Similarly, if
# = R, then the upper bound logic on # is the same as before, and 2R > (1) > (0-75) > %T(O'75) is
clear. O

Lemma 7. Assume that 7 > r(%7) in the context of Algorithm 2. With probability > 1 —
i € [n] that is assigned p; > 0 in Algorithm 2 satisfies ||x; — X.|| < 37, and Z > 0.6n.

18, every

Proof. Our proof is analogous to Lemma 6, where for all i € [n] we define the “ideal score”

k
fi= - Z lix; —x;|1 <275
j€ln]
such that Ef; = f7. We first claim that with probability > 1 — 18, the following hold for all i € [n]:
fr>0.75k = f; >0.7k, and f} < 0.45k = f; < 0.5k. (10)
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The first claim above is immediate from our choice of k and Fact 4 (with failure probability < %
for each i € [n]); the second follows (with the same failure probability) similarly to (9), i.e.,

e —ezu <e (fﬂ><e ,i <i
AT ) =P \To0) =P "0 ) < 180

in our application, with € > % and ey > %. Thus a union bound proves (10).

To obtain the first claim, observe that any ¢ € [n] with ||x; — x,|| > 37 must have that B(x;, 27) does
not intersect B(x,, 7*). However, B(x,, ) contains 0.75n points in D by assumption, so f* < 0.25k
and thus as long as the implication (10) holds, then p; = 0 as desired. For the second claim, any x;
satisfying ||x; — x,|| < r(*™) has |B(x;, 27) N D| > 0.75n, so that f# > 0.7k. Thus, every such x;
has p; > 0.8 as long as (10) holds, so the total contribution made by the > 0.75n such x; to Z is at
least 0.6mn. O

Lemma 8. Suppose that it is the case that in the context of Algorithm 2, we have
fI <045k = f; < 0.5k, and f} <0.55k = f; < 0.6k, 5)

foralli € [n]. If Z > 0.55n, there exists some x € R% such that {x; | p; > 0};c[n) C B(x, 47).
Moreover, the event (5) occurs with probability > 1 — g.

Proof. The first statement in (5) was proven in (10) to hold with probability 1%’ and the second
statement’s proof is identical to the first half up to changing constants, so we omit it. Conditioned on
this event, every x; with p; > 0 has f* > 0.45k. Moreover, because Z > 0.55n, there exists some
J € [n] (i.e., with the maximum value of p;) such that p; > 0.55, which implies f; > 0.6k and thus
J; > 0.55k.

So, we have shown that B(x;, 27*) contains more than 0.55n points in D, and every surviving i € [n]
(i.e., with positive p;) contains more than 0.45n points in D. Thus, B(x;, 27) and B(x;, 27) intersect,
and in particular, B(x;, 47) contains every surviving point by the triangle inequality. O

Lemma 9. Ifn > 20, Algorithm 2 is (€, 9)-DP.

Proof. Fix neighboring datasets D, D’ € B%(R)", and assume without loss that they differ in the n'"
entry x,, # x,,. We will define .4, an alternate variant of Algorithm 2, which we denote A, where we
condition on the following two events occurring. First, the index n should occur at most 2k times in
U ien—1] S;. Second, the implications (5) must hold. It is clear that the first described event occurs

with probability > 1 — 1% by using Fact 4 with our choice of k, and we proved in Lemma 8 that the
second described event occurs with probability > 1 — g. Thus, the total variation distance between A
and A is at most $. We will prove that A is (¢, $)-DP, from which Lemma 1 gives that A is (e, §)-DP.

We begin by showing that according to A, the statistic Z + £ — % log(%) satisfies (5, %)—DP. To do
so, we will prove that Z has sensitivity < 12, and then apply Fact 2. Recall that by assumption, when
A is run the number of times n appears in Uiew S; is at most 2k. Thus, for coupled values of Z, Z’

corresponding to D, D’, where the coupling is over the random indices selected on Line 3,

1 1
7 — 7' < —— (k — 0) + —— | number of copies of n occurring in U S; | <12
’ ) i€ln—1]

In fact, we note that the following stronger unsigned bound holds:

S lpi—pil <4+ D pi—pil
i€[n] i€[n—1]
) (1)
<4+ 025k number of copies of n occurring in U S; | <12,

i1€[n—1]

because the clipping to the interval [0, 1] in the definitions of p;, p; can only improve |p; — p}|, and
the distance between the corresponding f;, f/ is at most the number of copies of n occurring in them.
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Now, it remains to bound the privacy loss of the rest of .4, depending on whether Line 9 passes. If
the algorithm terminates on Line 10, then there is no additional privacy loss.

Otherwise, suppose we enter the branch starting on Line 12. Our next step is to bound the sensitivity
of x. Observe that whenever this branch is entered, we necessarily have Z > 0.55n (and similarly,
Z' > 0.55n), because Z + ¢ — 22 log(4}) < Z deterministically. Thus, Lemma 8 guarantees that in
A, all x; € D with p; > 0 are contained in a ball of radius 47, and similarly all surviving elements
in D’ are contained in a ball of radius 47. However, there are at least 0.55n surviving elements of
both D and D’, and in particular, for the given range of n there are at least two common surviving
elements (one of which must be shared). A ball of radius 87 around this element, which we denote
X in the rest of the proof, contains all surviving elements in D (according to {p; };c[,)) and in D’

(according to {p} }ic[n))-
Now we wish to bound X — X, where X' := > ic[n) PiX;- We have shown thatin A, |7 —Z'| < 12

and min(Z, Z") > 0.55n. For convenience, define y; := x; — X for all ¢ € [n], and similarly define
y;. Recalling that all surviving elements of D U D’ are contained in B(x, 87),

”5{ - X/H = Z piyi — Z plyl
lE [n] ZE[’I’L]

1 1 1 ,

< 77 Z PiYil| + > Z (pi — p3)yi|| + ||}’nH + Hyn”
i€[n—1] 1€[n—1]

7' - Z 87 167

= Z" 2 il t e D i Bl e
ze[n 1] 1€[n—1]

967 1047 167 4007
< + + < :
— 0.55n  0.55n  0.55n T n

The first line shifted both X and X’ by %, and the second line applied the triangle inequality. The third
line applied the triangle inequality to the middle term, and bounded the contribution of y,, by using
that ||y,| < 87 if p, > 0; a similar bound applies to y/,. In the fourth line, we used the triangle
inequality on the first term, as well as that } -, ., _y; [p; — p;| < 1+ 12 by using (11) and accounting
400r

for the n'" point separately. Thus, X has sensitivity in A. Fact 1 now guarantees that Line 17 is
also (g, 6) -DP. O

(R) for R >0, let 0 < r < 47(99(D), and let (¢, 6) € [0,1]2.

log(R/T) )
k)

Theorem 3. Let D = {X; }ic[n] C

Suppose thatn > C - (\f 10@;(%)
(e, 8)-DP algorithm that returns (X,

fp(X) < (40C" + 1) fp(x,(D)), 7 < 4r(®9), (©6)

for a universal constant C'. Moreover, ||x,(D) — X|| < C'#. The algorithm runs in time

o (s () (22222

Proof. Regarding the utility bound, we will only establish that ||x,(D) — %|| < C’#, which also
gives (6) upon observing that fp is 1-Lipschitz, and fp(x,(D)) > 0.17(°9) (D), due to Lemma 3.

), for a sufficiently large constant C. There is an

c B?
+ log( _
) such that with probability > 1 — §, following notation (3),

We first run Algorithm 1 with (e, §) < (5, $), which gives for large enough C' (via Lemma 6)

1 (0 75) P < Ar (0.9) (12)
4 )

with probability > 1 — $. Next, we run Algorithm 2 with this value of #, and parameters (¢, J) <

(5, 2) The privacy of composmg these two algorithms now follows from Lemmas 5 and 9, and the
runtime follows from Lemma 6, because Algorithm 1’s runtime does not dominate upon inspection.
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It remains to argue about the utility, i.e., that ||x,(D) — x|| < C’#. Conditioned on (12) holding,
Lemma 7 guarantees that with probability > 1 — g, we have that | X — x,(D)|| < 37, as a positively-
weighted average of points in BY(x, (D), 37). Finally, for the given value of ¢ in Algorithm 1,
standard Gaussian concentration bounds imply that with probability > 1 — 2,

o 1
I% — x| = [|&]| < 30y /dlog (;‘) —0 <r W) — 0(f).

Thus, ||x.(D) — %x|| < C'# holds for an appropriate C’, except with probability J. O

D Deferred material from Section 4

In this appendix, we provide a privacy and utility proof for Algorithm 3, and combine them to prove
Theorem 4. To recall, Algorithm 3 proceeds in phases K =~ log(7T). In each phase (loop of Lines 2
to 16) other than k = 1, we define a domain C(*) centered at the output of the previous phase with
geometrically shrinking radius oc o(*); the domain for phase k& = 1 is simply B¢(%, #). After this,
we take T'%) steps of SGD over K*) with step size (), and output a noised variant of the average
iterate in Lines 13 to 15.

D.1 Privacy of Algorithm 3

We first show that Algorithm 3 satisfies (¢, §)-DP for an appropriate choice of p. When the sample
functions of interest are smooth (i.e., have bounded second derivative), [FKT20] gives a proof
based on the contractivity of iterates. This is based on the observation that gradient descent steps
with respect to a smooth function are contractive for an appropriate step size (see e.g., Proposition
2.10, [FKT20]). Unfortunately, our sample functions are of the form ||- — x;||, which are not even
differentiable, let alone smooth. Nonetheless, we inductively prove approximate contractivity of
Algorithm 3’s iterates by using the structure of the geometric median objective.

Throughout, we fix neighboring D, D’ € (R?)", and assume without loss of generality they differ
in the n'" entry. To simplify notation, we let Z € [n] denote the multiset of 7" indices sampled in
Line 10, across all phases. We prove DP of Algorithm 3 using Lemma 1, where we let A denote
Algorithm 3, and we let A denote a variant of Algorithm 3 conditioned on Z containing at most
m :=3(L +log(%)) copies of n. We first bound the total variation distance between .4 and A using
Fact 4.

Lemma 10. With probability > 1 — g, Algorithm 3 yields T containing < m copies of n.

Proof. In expectation, we have % > 1 copies, so the result follows from Fact 4 and our choice of
m. ]

We will show that A is (e, g)—DP, upon which Lemmas 1 and 10 imply that A4 (Algorithm 3) is

(e,0)-DP. To do so, we control the sensitivity of each iterate zgk), using the following two helper

facts.

Fact 5 ([Roc76]). Let K C R% be a compact, convex set. Then for any x,y € R?, we have
Tk (x) — e (y)] < Ix =y -
Lemma 11. For any unit vectors u,v € R, and a,b >0, let x = auandy = bv. Then, letting
x' + (a—n)uandy’ + (b—n)v, we have ||x" —y'|| < max(||x — y||, 37n).
Proof. We claim that
X =yl < llx =yl <= a+b=n, (13)

from which the proof follows from observing that if a 4+ b < 7, then we can trivially bound

[ —y'| <[x—yll+2n<a+b+2n<3n.
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Indeed, (13) follows from a direct expansion:
I = yI* = " = y'” = a® +5* = 2ab (u,v) = (a = n)* = (b= 1)” + 2(a = n)(b — ) (u, V)
= 2n(a +b) — 2% — 2n(a +b) (u,v) + 21 (u,v)
— 2n(a+b—n)(1 - (u,v)).
Thus, for n > 0 and (u, v) > 0, we conclude that (13) holds. O

Corollary 1. For any phase k € [K] in Algorithm 3, condition on the value of zék), and assume that
T contains at most m copies of n. Then for any 0 < t < T}, the sensitivity ofzgk) is < (2m+ 1)n(k).

Proof. Throughout this proof only, we drop the iteration k from superscripts for notational simplicity,

sowe let 7 := T*) and n) := n(*), referring to the relevant iterates as {z; }o<;<7 := {zgk)}OSKT(m.
We also refer to the index ¢ selected on Line 10 in iteration 0 < ¢t < T by i;.

Fix two copies of the k" phase of Algorithm 3, both initialized at z(, but using neighboring datasets
D, D' differing in the n'™ entry. Also, fix a realization of {i; }o<;<7, such that i; = n at most m
choices of ¢ (note that m is actually a bound on how many times i; = n across all phases, so it
certainly bounds the occurrence count in a single phase). Conditioned on this realization, Algorithm 3
is now a deterministic mapping from z to the iterates {z; }o<;<7, depending on the dataset used.

Denote the iterates given by the dataset D by {z; }o<;<7 and the iterates given by D’ by {2z} }o<i<T,
so that zy = z{, by assumption. Also, let &, := ||z; — z;|| forall 0 < ¢ < T. We claim that for all
0<t<T,
&, < max(2m; + 1,3)n, where m; := Z li=n, (14)
0<s<t
i.e., my is the number of times the index n was sampled in the first ¢ iterations of the phase. If we can
show (14) holds, then we are done because m; < m by assumption.

We are left with proving (14), which we do by induction. The base case ¢ = 0 is clear. Suppose (14)
holds at iteration ¢. In iteration t + 1, if my4; = m; +1 (i.e., ¢y = n was sampled), then (14) holds by
the triangle inequality and the induction hypothesis, because all gradient steps ng; have ||ng:|| < 7,
and projection to K can only decrease distances (Fact 5). Otherwise, let i, = ¢ # n be the sampled
index, using the common point x; € D N D’. Now, (14) follows from applying Lemma 11 with

, Zi — X; Z, — X;
X%Zt—Xi,y%Zt—Xi,u%f, f
12 — x| 27 — x|
In particular, we have that [|[x —y| = ®;, and ||x' —y'|| > P41 (due to Fact 5), following
notation from Lemma 11. We thus have ®;,1 < max(®;, 3n), which clearly also preserves (14)
inductively. O

We can now conclude our privacy proof by applying composition to Corollary 1.

Lemma 12. Lete € [0, 1]. If% > 41%2(%) + 2, Algorithm 3 is (¢, 8)-DP.

Proof. We claim that Algorithm 3 satisfies p-CDP, conditioned on Z containing at most m choices of ¢
2

(we denote this conditional variant by .A). By applying the second part of Fact 3 with o +— 21%(3) +1,

this implies that A is (e, g)—DP. Because A has total variation distance at most % to Algorithm 3 due

to Lemma 10, we conclude using Lemma 1 that Algorithm 3 is (¢, 6)-DP.

We are left to show A satisfies p-CDP. In fact, we will show that for all k¥ € [K], the output of the £

phase of A, i.e., x*), satisfies (1—96)*’C - £-CDP (treating the starting iterate zék) = %=1 as fixed).

Using composition of RDP (the first part of Fact 3), this implies A is p-CDP as desired.
Finally, we bound the CDP of phase k € [K]. Under .4, we showed in Corollary 1 that all iterates
of the k™ phase have sensitivity < (2m + 1);(*). Thus the average iterate x(*) also has sensitivity

< (2m + 1)n®) by the triangle inequality. We can now bound the CDP of the k™ phase using the
third part of Fact 3:

(@m+g®)> _ (@m+Dn)? ko p < (16> -

5"

2002 T ((2m+ 1)n)? 2\ 9
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D.2 Utility of Algorithm 3

We now analyze the error guarantees for Algorithm 3 on optimizing the geometric median objective
fp (3). We begin by providing a high-probability bound on the utility guarantees of each single
phase.

Lemma 13. Following notation of Algorithm 3, we have with probability > 1 — g that

72 77(1)

- | 2log(4K)
fD(X(l)_fD(X*) < W+ 4P =07

2 T

where X, = argmin, cga (5 7 f(x), and

2(cF)2dlog(2E) pk) 4K
fD(i(k)),fD(x(k—l)) < ( n()k)T(k)( 5) 77+80(k) log ( ) T(k for all2 <k < K.

4]

Proof. First, with probability > 1 — é, we have

HE(k)H < 20(k)mfor all k € [K],

by standard Gaussian concentration. Thus, =1 e ) forall 2 < k < K, and x, € K1), except
with probability g. Next, consider the k" phase of Algorithm 3, and for some 0 < ¢ < T}, let us
denote

(k) o,
(k) ._ %t Xi

g
ng) — X;

where i € [n] is the random index sampled on Line 10 in the ¢ iteration of phase k. We also denote
(k)

(k) . 1 — X
8 = n Z ) ’

1€[n] — X

We observe that E[g (k)] Ek) for any realization of the randomness in all previous iterations.
Now, by the standard Euclidean mirror descent analysis, see e.g., Theorem 3.2 of [Bub15], for any
(k)

ue K®,
k) (k ‘ 7" - uH2 ’ andll uH2 (n™)>?
(ng®, 2P —u) < o - L (s)

Here we implicitly used that Hgi’“) || < 1 for all choices of the sampled index ¢ € [n]. Now summing
(15) for all iterations 0 < t < T*), and normalizing by n(k)T(k) we obtain

[

1 5(k) (k)
Next, we claim that with probability > 1 — %,
1 N _ [2log 4K
5 Z <g§1) _ggl)’zgl) _ u> < 47 / T((1)6 )’
0<t<T 1)
1 4K 2d
A0 Z <g§k) — g§k>,z§ ) > < 85" log ( 5 ) A0 forall2 < k < K.
0<t<T(F)
In each case, this is because (g; (k) _ g,E’“% zgk) — u) is a mean-zero random variable, that is bounded

(with probability 1) by twice the diameter of (%), Thus we can bound the sub-Gaussian parameter
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of their sum, and applying the Azuma-Hoeffding inequality then gives the result. Now, finally by
convexity,

L (el - >2% S o) - fola) > fox®) - fo(u),

0<t<T®) 0<t<T™)
T 8t %t T(k D — fo(u) > fp(x'"™) — fp(u) forall 2 < k < K.
0<t<T () 0<t<T(F)

Combining the above three displays, and plugging in u + x, or u + X~ now gives the
conclusion. O

By summing the conclusion of Lemma 13 across all phases, we obtain an overall error bound.
Lemma 14. Following notation of Algorithm 3 and Lemma 13, we have with probability > 1 — § that

p2 log(%£)  1314Tndlog* (3K)
(1)) — < —— 197+ 8F 5 LAy
fo(x™) fD(X*)_16nT+ n+sr T T 2

Proof. Throughout this proof, condition on the conclusion of Lemma 13 holding, as well as

H,S(K)H < 20'(K)1 | dlog <§),

both of which hold with probability > 1 — § by a union bound. Next, by Lemma 13,

K
fo(%k) = fo(x.) = fo(xM) = fo(x) + D fo(x®) = fo(x* V) + fp(kk) — fo(Xk)

P2 (1) 2 log( 4K
P e [218()

2 OTM T 72 T

K (k)2 AK
o")2dlog(%) k) 4K
Z( poTm) T g T8 lee{ 5 \/ 5 ) + e

k

<

10g(4§< 144m ndlog(TK) N 12\/gm7710g(%)

<
— 169 T vpT
72 n log(‘l(S ) 1296T77d10g (TK) 36v/dTnlog (TK)
< + 5 +8
160T T pn? N
_ 1og(% 1314T77dlog (TK).
- 16nT

The third line used Lipschitzness of fp, the fourth summed parameters using various geometric
sequences, the fifth plugged in our value of m, and the last split the fifth term using 2ab < a? + b?
appropriately. O

By combining Lemmas 12 and 14 with Theorem 3, we obtain our main result on privately approxi-
mating the geometric median to an arbitrary multiplicative factor 1 + «, given enough samples.
Theorem 4. Let D = {x;}ic(n) C BY(R) for R > 0, let 0 < r < 4r(®9(D), and let (a,€,6) €

[0,1]3. Suppose that n > C - (g log2'5(%)), for a sufficiently large constant C. There is
an (e,0)-DP algorithm that returns X such that with probability > 1 — 0, following notation (3),
fo(%x) < (1 + a)fp(x.(D)). The algorithm runs in time

0] (ndlog <Jf) log <d1?):g6(e§)> + %10g (bg((softée))) ]
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Proof. We first apply Theorem 3 to compute a (X, #*) pair satisfying
# < C'rO(D), |x - x.(D)| <7,

for a universal constant C’, subject to (£, g)-DP and g failure probability. We can verify that
Theorem 3 gives these guarantees within the stated runtime, for a large enough C'. Next, we call

Algorithm 3 with p 32%;(&) and ¢ <— , which is ( -DP by Lemma 12, so this composition
8
is (€, 9)-DP.

Denoting X := %) to be the output of Algorithm 3, Lemma 14 guarantees that with probability
>1-2
i 2 b

: P (18 5256Tndlog” (15K)
fp(%x) — fp(x.(D)) < 60T + 199 + 87\/7 o ,

for some choice of 7, T" and our earlier choices of privacy parameters. Optimizing in 7, we have

272>

16K 377+ /dlog® (16K
fo(%) = fo(x.(D)) < 127 10g(T5 ) . T\/Ta).

, we obtain

Finally, for a large enough C' in the definition of n, and T" > n + 57600(¢" ()1 log(*5™)

(LK) dlog’ (1K) ar(0-9)
Fo(%) = fo(x.(D) < 127 225 ry/dles Y < (. (D)).

T - 1OC’ - 10
The last inequality used Lemma 3. Now, the runtime follows from combining Theorem 3 and the fact
that every iteration of Algorithm 3 can clearly be implemented in O(d) time. O

E Deferred material from Section 5

We first describe the datasets used for our experiments in Section 5.

GaussianCluster(R, n, d, o, fraci, ): This dataset is described in Appendix H of [HSU24]. We draw
Nin = fracy, n points i.i.d. from A (u,0?I;) with g uniform on the sphere of radius %, and
Nout = N — Nj, outliers uniformly from the Euclidean ball of radius R.

HeavyTailed(v, n, d): This dataset samples n points in R? from a zero-mean multivariate Student’s ¢
distribution with identity scale and degrees of freedom v.

To avoid contamination in hyperparameter selection, every experiment is performed with a fresh
dataset.

Subsampling. We now provide more details and results on our evaluation of Algorithm 1.

In the first experiment (Figure 2a), we set n = 1000, d = 10, inlier fraction frac;, = 0.9, standard
deviation ¢ = 0.1, and choose an upper bound R from the set {0.5,1,2,4,8,10}. The dataset is
generated as GaussianCluster(R, n, d, o, fraci,) dataset. We set privacy parameters ¢ = 1.0 and
§ = 1075, quantile fraction v = 0.75, and for each trial we sample 7y,;, ~ Unif([0.005,0.02]) to
randomly initialize our search grid. Since v < fraci,, we estimate the ground-truth quantile radius
Ttrue = 0V d, run both algorithms on this dataset, measure the estimated radius 7 and wall-clock
runtime, and report the mean and standard deviation of the estimation ratio /7, and runtime over
100 independent trials.

In the second experiment (Figure 2b), we assess the robustness of FastRadius and RadiusFinder
to heavy-tailed data. We set n = 1000 and d = 10 in the HeavyTailed(v, n,d) dataset with
varying degrees of freedom v € {2,4,6,8,10,12,14, 16, 18,20}. For each trial, we sample 7y, ~
Unif([0.005, 0.02]), set privacy parameters ¢ = 1.0, § = 10~° and quantile fraction v = 0.75. We
estimate the theoretical quantile radius 7yue = /d Fy, () where Fy, is the CDF of an F(d, v)
distribution, which is the Fisher F-distribution with d and v degrees of freedom, execute both
algorithms, record # and runtime, and summarize the mean and standard deviation of the ratio 7 /7t,ue
and runtime across 100 repetitions.

23



Effect of tail heaviness on private radius estimation

Effect of changing aspect ratio ,% on private radius estimation
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with varying data radius R. radius with varying degrees of freedom v.

Figure 2: Comparison of RadiusFinder and FastRadius across different data distributions. All plots
are averaged across 100 trials and standard deviations are reported as error bars.

We observe that in both cases, across a range of increasingly heavier tails of the distributions, both al-
gorithms achieve reasonable approximation to the true quantile radius, always staying multiplicatively
between roughly 1.2 to 3 of the true quantile radius. We further record the average wall-clock time
required by both algorithms in Table 1. We observe that FastRadius is significantly faster compared
to RadiusFinder, while performing competitively in terms of estimation quality.

We remark that we also experimented with varying n € {500, 1000, 2000} and d € {5, 10,20} and
observed qualitatively similar trends for the performance of both algorithms.

Table 1: Average wall-clock time in seconds over 100 trials for each algorithm in each experiment
Experiment RadiusFinder FastRadius

Varying R (Figure 2a) 1.192 £0.047 0.0411 £ 0.002
Varying v (Figure 2b)  1.204 £0.171  0.0413 4+ 0.007

Boosting. We conclude by describing our evaluation the performance of our boosting algorithm
in Section 4 based on a low-pass DP-SGD implementation, compared to the baseline method from

[HSU24].

We briefly describe our hyperparameter optimization process for the baseline, DPGD. To satisfy

p-CDP, Algorithm 3 in [HSU24] recommends a constant step size of pase = 27 6;%, where 7 is

the estimated radius. We examined performance using various step Sizes 17 = 7hase * Jmultiplier With
multipliers Nmuitiptier € {0.5,1,10,30,50,100}. Our results indicate that the Nutiplier depends
significantly on dataset size, in that larger datasets benefit from higher Nmuitiplier- Specifically,
we observe that as n increases, larger Nmultiplier Values consistently reduce optimization error, but
with diminishing returns. Based on these experiments, we select mulsiplier = 30 for DPGD in our
experiments, as this consistently provides nearly the best performance across the range of datasets
and parameter settings in our evaluation.

We now describe our setup. In all our experiments, we set d = 50, p = 0.5, and vary n €
{100, 1000, 10000}. For the GaussianCluster dataset, we set o = 0.1 and vary the bounding radius
R € {25,50,100}. We set our estimated initial radius # = 20'v/d and initialize all algorithms at

a uniformly random point on the surface of B¢(0.757).” For the HeavyTailed dataset, we use the
same values of d, p, and the same range of n. We vary v € {2.5,5.0,10.0}, set our estimated initial

radius 7# = 204/dFy,,,(0.75) to be consistent with our subsampling experiment, and again initialize
randomly on the surface of B¢(0.75#).

"We chose a relatively pessimistic multiple of 7 to create a larger initial loss and account for estimation error.
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In our first set of experiments, we used the middle “scale” parameter, i.e., R = 50 for the
GaussianCluster dataset and v = 5.0 for the HeavyTailed dataset, varying n only. We report
the performance of the three evaluated methods, plotting the passes over the dataset used by the
excess error. Our error metric is + - (fp(X) — fp(X)), i.e., a multiple of the “effective radius” used in
the experiment. This is a more reflective performance metric than the corresponding multiple of fp,
as our algorithms achieve this bound (see discussion after Theorem 3), and fp > 7 for our datasets
due to outliers.

GaussianCluster dataset, n = 100, R = 50 GaussianCluster dataset, n = 1000, R = 50 GaussianCluster dataset, n = 10000, R = 50
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Figure 3: Comparison of DPGD, StableDPSGD, and FixedOrderDPSGD across GaussianCluster
data over R®%, varying n. Plots averaged across 20 trials and standard deviations are reported as error
bars.

Across GaussianCluster datasets of size n € {100,1000, 10000}, we consistently saw that our
optimized FixedOrderDPSGD performed the best, with comparisons between the baseline DPGD
and StableDPSGD fluctuating depending on the dataset size. As the theory predicts, the gains of
stochastic methods in terms of error-to-pass ratios are more stark when dataset sizes are larger,
reflecting the superlinear gradient query complexity (each requiring one pass) that DPGD needs to
obtain the optimal utility.

HeavyTailed dataset, n = 1000, nu = 5
—4— Baseline

HeavyTailed dataset, n = 10000, nu = 5
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Figure 4: Comparison of DPGD, StableDPSGD, and FixedOrderDPSGD across HeavyTailed data
over R®?, varying n. Plots averaged across 20 trials and standard deviations are reported as error bars.

We next present our comparisons for the HeavyTailed dataset. Here, a step size multiple of 9puyiiplier =
30 was too aggressive for the baseline DPGD to reliably converge when n = 100, but smaller
steps impacted the performance of DPGD with larger sample sizes. On the sample sizes where
DPGD successfully converged, we saw that our FixedOrderDPSGD consistently outperformed
StableDPSGD, whereas the baseline DPGD slightly outperformed FixedOrderDPSGD when n =
1000 was moderate. The improved performance of DPGD may be related to the relative simplicity of
this dataset, where all the data is distributed in a rotationally symmetric way around the “population
geometric median,” i.e., the mean.

In our second set of experiments, we fixed the size of the dataset at n = 1000, varying the scale
parameter (R for GaussianCluster and v for HeavyTailed). We observed that the relative performance
of our evaluated algorithms was essentially unchanged across the parameter settings we considered.

Finally, we remark that one major limitation of our evaluation is that full-batch gradient methods
such as DPGD can be implemented with parallelized gradient computations, leading to wall-clock
time savings. In our experiments, DPGD often performed better than FixedOrderDPSGD in terms
of wall-clock time (for the same estimation error), even when it incurred significantly larger pass
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Figure 5: Comparison of DPGD, StableDPSGD, and FixedOrderDPSGD across GaussianCluster
data over R°, varying R. Plots averaged across 20 trials and standard deviations are reported as error
bars.
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Figure 6: Comparison of DPGD, StableDPSGD, and FixedOrderDPSGD across HeavyTailed data
over R®?, varying v. Plots averaged across 20 trials and standard deviations are reported as error bars.

complexities. On the other hand, we expect the gains of methods based on DP-SGD to be larger as
the dataset size and dimension (n, d) grow. There are interesting natural extensions towards realizing
the full potential of private optimization algorithms in practice, such as our Algorithm 3, e.g., the
benefits of using adaptive step sizes or minibatches, which we believe are important and exciting
future directions.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We claimed a theoretical improvement to the private geometric median problem,
which we formally prove and provide an experimental evaluation of.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We describe limitations of our theoretical results (e.g., a potentially suboptimal
additive runtime term) when introduced in Section 1, and limitations of our experimental
evaluation (e.g., accounting for parallelization and heuristics for centerpoint estimation) in
Section 5.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All theoretical results except standard ones (e.g., in textbooks) have self-
contained proofs.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We give a full description of every experiment in the paper, and provide
reproducible code in the supplemental material.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: As described above, we provide reproducible code.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: As described above, we specify all such details.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: All reported figures come with at least 20 runs and error bars.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We discuss the computational resources used in our experiments in Section 5.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We confirm that our research conforms with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work is primarily theoretical in nature, as it studies a fundamental com-
putational problem. There is likely a significant pipeline for applications of our results to
have downstream social implications, which we do not feel is within our scope to comment
on in this paper. We remark that ultimately our algorithms are motivated by robustness and
privacy desiderata, so they are in line with (potential) positive societal impacts.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: All of our data is synthetic, so we do not foresee this as a relevant concern.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: We do not use any existing assets in this paper.
Guidelines:

e The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We do not release new assets beyond (simple) synthetic dataset creation.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: These concerns are not relevant to the scope of this paper.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: These concerns are not relevant to the scope of this paper.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

32


paperswithcode.com/datasets

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLMs do not play any significant component in this research.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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