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ABSTRACT

Parameter-efficient fine-tuning (PEFT) is now the standard approach for adapt-
ing LLMs to specific domains and use cases, yet prominent approaches such
as LoRA and QLoRA are largely geometry-agnostic: they optimize within fixed,
randomly oriented low-rank subspaces using plain first-order descent, ignoring
local loss curvature. This inflates the parameter–update budget and increases
drift along weakly constrained directions. We introduce GRIT, which turns
standard LoRA updates into a dynamic, curvature-aware procedure. Concretely,
GRIT retains the LoRA parameterization but: (1) preconditions gradients in
the adapter’s rank space using K-FAC (Kronecker-Factored Approximate Curva-
ture) as a natural-gradient proxy; (2) periodically reprojects the low-rank basis
onto dominant Fisher eigendirections to suppress drift; and (3) adapts the ef-
fective rank by reading the spectrum so capacity concentrates where the signal
is. The overall effect is to steer updates into high-signal, low-interference direc-
tions while using fewer effective parameters. Across instruction-following, com-
prehension, and reasoning benchmarks on LLaMA backbones, GRIT matches
or surpasses LoRA/QLoRA while cutting trainable parameters by ∼ 46% on
average ( 25–80% across tasks ) without degrading quality. Fine-tuning large
language models typically induces catastrophic forgetting—drift from the pre-
training distribution that erodes general knowledge. We model GRIT’s forgetting

with a curvature-modulated power law L
GRIT
pt = L

0
pt + A

D
β
ft

(ΞGRITN)α
+ E where, in

compact form, ΞGRIT = (1 + γrreff )(1 + γaρalign)(1 + γpπproj) captures the role of
effective rank, alignment to Fisher eigendirections, and projection fidelity, re-
spectively—yielding consistently lower drift than LoRA. GRIT further matches or
surpasses Orthogonal-LoRA, IA3, DoRA/Eff-FT, and Shampoo on the parameter-
updates–versus–performance-retention frontier. Code repository.

1 PEFT’S BLIND SPOT: LEARNING INERTIA & CATASTROPHIC
FORGETTING

Adapting billion–parameter LLMs stresses memory and bandwidth; PEFT addresses this by freezing
most weights and training only a small subset of additional parameters (e.g., low–rank updates).
Among PEFT variants, LoRA (Hu et al., 2021) and QLoRA (Dettmers et al., 2023) have become
de facto standards. The emerging trade–off: Recent evidence that “LoRA learns less and forgets
less” (Biderman et al., 2024) indicates that, relative to full fine–tuning, LoRA’s low–rank update
budget often yields smaller gains on hard targets (e.g., code/math) while preserving more of the
base model’s broad abilities (e.g., commonsense and general language competence). In short, PEFT
often trades peak task improvement for retention: constrained adapters may underfit challenging
distributions yet induce fewer high–impact shifts that erase pretraining knowledge.

1.1 SCALING LAWS FOR FORGETTING: LORA

Fine-tuning LLMs invariably induces catastrophic forgetting—a drift away from the pretraining
distribution that degrades general knowledge. In PEFT methods like LoRA, this forgetting is typ-
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ically quantified by the increase in pretraining loss Lpt after fine-tuning. Bethune et al. (2022)
demonstrate that forgetting obeys a power-law with respect to the fine-tuning data volume Dft (
number of unique fine-tuning tokens) and the model size N (number of model parameters):

Lpt = L0
pt +A

Dβ
ft

Nα
+ E

where L0
pt is the original pretraining loss, and A, α, β, E are dataset- and model-specific constants.

This captures a key trade-off: increasing Dft amplifies forgetting (Dβ
ft), while larger models

forget less due to N−α, diluting per-update distortion across parameters.

1.2 DIAGNOSIS: LEARNING INERTIA VS. HIGH-IMPACT UPDATES

Forgetting is not just how much you train—it’s where you move. PEFT imposes learning inertia
by freezing most weights and restricting adaptation to a low-rank subspace, yet interference still
arises when updates overlap high-curvature modes of the pretraining objective. Let Lpt(w) be the
pretraining loss and let ∆w denote the PEFT-induced update. Near a well-fit solution, first-order
terms are small and the quadratic term dominates:

∆Lpt ≈ 1
2 ∆w⊤Hpt ∆w = 1

2

∑
j

λj

(
u⊤j ∆w

)2
,

where Hpt =
∑

j λjuju
⊤
j is the Hessian eigendecomposition. Intuition. Forgetting is large when

landscape is sharp (large λj) and when the update has large projections onto those sharp directions
(large |u⊤j ∆w|) (Pascanu et al., 2013; Ghorbani et al., 2019; Keskar et al., 2017; Dinh et al., 2017).

From principle to practice. The quadratic form explains why forgetting increases but not what
to monitor during training. We therefore introduce two operational geometry summaries that map
directly onto the quadratic term and are simple to track online. Two geometric amplifiers:
(i) Tail mass of updates.

Uhi(τ) =
∑
i

1
(
|∆wi| > τ

)
,

the count of coordinates exceeding a magnitude threshold τ . Interpretation: heavier tails imply
more frequent large coordinates, increasing the chance that |u⊤j ∆w| is large and thus amplifying the
quadratic loss rise; this aligns with continual-learning evidence that large, concentrated steps drive
interference (Kirkpatrick et al., 2017; Zenke et al., 2017; Aljundi et al., 2018; Chaudhry et al., 2019).

(ii) Effective rank of the update covariance. Let {λ(∆)
j } be the eigenvalues (descending) of

E[∆w∆w⊤]. Let’s define:

reff = min
{
k :

∑k
j=1 λ

(∆)
j∑

j λ
(∆)
j

≥ η
}

(η ∈ (0, 1)).

Interpretation: larger reff means update energy is spread across more directions, raising the prob-
ability of overlap with sharp Hessian modes and increasing

∑
j λj(u

⊤
j ∆w)2 (Roy & Vetterli, 2007;

Gavish & Donoho, 2014; Aghajanyan et al., 2021).

Takeaway. Tail mass controls how big the projections can be; effective rank controls how
many directions those projections can land on. Either rising makes curvature overlap—and hence
∆Lpt—more likely. This diagnosis motivates geometry-aware PEFT procedures that shrink tails
and concentrate rank away from sharp modes.

Evidence for the blind spot. Large-scale evaluations show a stable Pareto: LoRA learns less than
full fine-tuning on hard domains (code, math) yet forgets less of broad base abilities (HellaSwag,
ARC-C, WinoGrande), while full FT induces higher-rank perturbations (often 10–100× typical
LoRA ranks) (Biderman et al., 2024). This echoes classic catastrophic interference (McCloskey &
Cohen, 1989; French, 1999) and recent continual-learning views for LLMs (Wu & Others, 2024;
Vu & Others, 2022). Read through the scaling law lens in Sec. 1.1 – sets how much forgetting to
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expect from (Dft, N), while the quadratic analysis explains why methods at the same budget diverge:
update geometry multiplies the baseline via adapter-restricted curvature exposure κ = tr(PHptP )
and by increasing functions of effective rank Φ(reff) and tail mass Ψ(Uhi(τ)). Standard, geometry-
agnostic LoRA—first-order optimization in a fixed basis—tends to inflate κ and Uhi(τ) at fixed
(Dft, N) (Hu et al., 2021; Biderman et al., 2024), motivating curvature-aware PEFT as the remedy.

Implication. If forgetting equals (data/model) times (geometry/update), improving retention at
fixed (Dft, N) requires shrinking the geometry factor. This motivates geometry-aware PEFT: esti-
mate curvature in the adapter rank space and combine natural-gradient/K-FAC preconditioning with
periodic reprojection toward high-signal, low-interference eigendirections (Amari, 1998; Martens &
Grosse, 2015; Ollivier, 2015). In short, geometry-aware PEFT is needed, and we propose GRIT:
Geometry-Aware PEFT with K-FAC Preconditioning, Fisher-Guided Reprojection, and Dynamic
Rank Adaptation.

2 GRIT: GEOMETRY-AWARE PEFT WITH K-FAC PRECONDITIONING,
FISHER-GUIDED REPROJECTION, AND DYNAMIC RANK ADAPTATION

GRIT is a geometry-aware PEFT framework that turns LoRA-style updates (∆W = BA) into a
dynamic, curvature-aligned procedure through three coupled steps: (i) curvature-aware precondi-
tioning—apply a K-FAC (Kronecker-Factored Approximate Curvature) Martens & Grosse (2015);
Grosse & Martens (2016); Amari (1998) approximation to the Fisher F within the adapter subspace
to temper steps along sharp directions; (ii) spectrum-driven rank scheduling—read the per-layer
Fisher eigenspectrum and allocate rank where spectral energy concentrates; (iii) neural reprojec-
tion—periodically gate and align the low-rank factors with the top-k eigenspace of F (UkU

⊤
k ),

preserving task progress while discarding drift. This loop repeats, so the adapter basis tracks high-
signal, low-interference directions rather than remaining fixed. The formal objective balancing task
loss with curvature regularization and reprojection constraints appears in Fig. 1, the end-to-end
flow in Fig. 2, and the overall effect—geometry-aligned, sparser, and more targeted updates at the
same memory budget—in Fig. 3.

min
A∈Rd×r, B∈Rr×d

Ltask
(
W0 +BA

)︸ ︷︷ ︸
(1) Task Loss

+ λK
∥∥F 1

2(BA)
∥∥2
F︸ ︷︷ ︸

(2) Curvature Reg.

+ λR
∥∥BA− UkU

⊤
k BA

∥∥2
F︸ ︷︷ ︸

(3) Reprojection Reg.

Figure 1: GRIT Objective: Curvature-Aware, Projection-Constrained Fine-Tuning. This
loss balances task performance with geometric awareness and subspace filtering: (1) Task loss
Ltask(W0 + BA) optimizes the instruction-tuning objective using the low-rank update BA; (2)

Curvature regularization ∥F
1
2BA∥2F penalizes updates in high-sensitivity regions defined by the

Fisher matrix F , promoting safe adaptation; (3) Reprojection regularization ∥BA−UkU
⊤
k BA∥2F

encourages the update to remain within the subspace spanned by the top-k eigenvectors of F , filter-
ing noisy or low-impact directions. Hyperparameters λK and λR control the curvature and reprojec-
tion terms, enabling geometry-respecting fine-tuning.

Pretrained Weights
W0

LoRA Update
∆W = BA

Fisher via K-FAC
F ≈ Gcov ⊗Acov

Natural Gradient Update
θupd = θ − ηF−1∇L

Neural Reprojection
θnew = UkU

⊤
k θupdated

Final Model
W ′ = W0 +BnewAnew

Curvature-aware Denoise Project top-k

Frozen model

Curvature estimate

Aligned fine-tuned model

Figure 2: GRIT Geometry-Aware Fine-Tuning Pipeline. Starting from frozen pretrained weights
W0, GRIT applies a low-rank update ∆W = BA using LoRA. The Fisher Information Matrix F is
approximated using K-FAC to compute a natural gradient update in curvature-sensitive directions.
This is followed by a projection onto the dominant eigen-subspace of F via θnew = UkU

⊤
k θupdated,

producing the refined update ∆Wnew = BnewAnew. The final model becomes W ′ = W0 +∆Wnew,
incorporating only aligned, geometry-aware directions.
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(a) Global view: original model weights vs. LoRA/GRIT
∆-weights in PCA space.

(b) Zoom near the origin comparing LoRA
vs. GRIT ∆-weights only.

Figure 3: Geometry of parameter updates: GRIT concentrates ∆-weights into curvature-
aligned subspaces. Setup. PCA on parameter vectors from attention projections
(qproj, kproj, vproj, oproj) across layers; points are mean-centered and embedded into the leading
PCs (no extra scaling). (a) Overall (left). Blue points depict the entire model’s parameter space
as realized by the original (base) weights. Superimposed at the center, red points are LoRA up-
date deltas (∆W ), and green points are GRIT update deltas. The visual shows that the full base
space is broad and anisotropic, while both LoRA and GRIT operate in a much smaller central re-
gion—the effective fine-tuning manifold. (b) Zoom on ∆ (right). The base cloud is omitted to
compare updates directly: red = LoRA ∆W , green = GRIT ∆W . GRIT forms a tighter, ellipsoidal
core with reduced radial spread versus LoRA, consistent with rank-space natural-gradient precon-
ditioning and Fisher-aligned reprojection that bias updates toward high-curvature eigendirections
while suppressing diffuse, low-signal axes. Interpretation. GRIT densifies signal in a low-rank,
curvature-aware subspace (smaller support, tighter covariance) without enlarging the update foot-
print—steering limited parameters toward directions that matter for stability and generalization.

2.1 LOW-RANK ADAPTATION SETUP

Consider a transformer module with a linear projection parameterized by a weight matrix W ∈
Rdout×din . Full fine-tuning updates all entries of W , which is prohibitive at scale. Low-rank adapta-
tion (LoRA/QLoRA) instead introduces a parameter-efficient update

∆W = BA, B ∈ Rdout×r, A ∈ Rr×din , r ≪ min(din, dout),

so the effective weight is W ′ = W + α∆W (with a small scaling α). This reduces trainable
parameters from O(doutdin) to O(r(din+dout)), preserving expressivity per parameter while keeping
memory/compute manageable.

Caveat—geometry agnosticism. Standard LoRA learns A,B in a fixed low-rank subspace using
first-order updates, ignoring the local curvature of the loss. As a result, steps can over-expose sharp
directions of the pretraining objective, amplifying interference. GRIT eliminates this blind spot
by making the low-rank subspace itself geometry-aware via three coupled components: curvature-
aware preconditioning, Fisher-guided reprojection, and dynamic rank adaptation.

2.2 K-FAC–BASED PRECONDITIONING

From gradients to natural gradients. Raw stochastic gradients need not align with the loss geom-
etry. The natural gradient rescales ∇θL by the inverse Fisher information matrix (FIM), following
steepest descent under the KL metric (Amari, 1998):

θt+1 = θt − η F−1∇θL(θt), F = E
[
∇ log p(x; θ)∇ log p(x; θ)⊤

]
.

Directly forming/inverting F is infeasible for LLMs (quadratic storage, cubic inversion).

K-FAC for layers, restricted to rank space. K-FAC approximates the layerwise Fisher for a linear
map y = Wx by a Kronecker product of second moments of the input activations and output
gradients (Martens & Grosse, 2015; Grosse & Martens, 2016):

Flayer ≈ Σg ⊗ Σa, Σa = E[xx⊤ ], Σg = E[ g g⊤ ], g ≡ ∂L
∂y .

4
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Then the natural-gradient preconditioned weight update admits the efficient form

∇Wnat ≈ Σ−1g ∇W Σ−1a ,

avoiding an explicit inversion of Flayer.

Rank-space K-FAC for LoRA. For the low-rank update ∆W = BA, GRIT applies K-FAC within
the rank-r subspace spanned by A,B. Let x ∈ Rdin denote input activations and g ∈ Rdout the
backpropagated gradients at the pre-activation. We define the rank-projected statistics

ar = Ax ∈ Rr, gr = B⊤g ∈ Rr,

and maintain the rank-space covariances

Σ(r)
a = E[ ara⊤r ] ∈ Rr×r, Σ(r)

g = E[ grg⊤r ] ∈ Rr×r.

Under the standard K-FAC independence approximation, the Fisher restricted to the LoRA subspace
factorizes as

Frank ≈ Σ(r)
g ⊗ Σ(r)

a .

Consequently, the preconditioned gradient for the low-rank update satisfies

∇(∆W )nat ≈ Σ(r)−1
g ∇(∆W ) Σ(r)−1

a ,

which decouples into factor-wise updates (implementation-conformant for ∆W=BA):

∇B ← ∇B Σ(r)−1
g , ∇A ← Σ(r)−1

a ∇A.

Intuitively, Σ(r)−1
g suppresses steps along high-curvature output directions (sharp modes), while

Σ
(r)−1
a removes input-scale anisotropy in the adapter subspace—yielding curvature-aligned, scale-

invariant updates.

Practicalities. To ensure numerical stability, GRIT uses (i) damped covariances Σ̃(r)
a = Σ

(r)
a +λaI ,

Σ̃
(r)
g = Σ

(r)
g + λgI; (ii) streaming (EMA) estimates with burn-in before inversion; and (iii) efficient

solves via Cholesky on r × r matrices (with r ≪ din, dout). All statistics are computed per layer
and can be offloaded/cached across devices. In GRIT, K-FAC preconditioning is the first step:
subsequent Fisher-guided reprojection rotates (A,B) toward dominant eigendirections and dynamic
rank scheduling allocates capacity where the Fisher spectrum has mass (see Fig. 1 and Fig. 2).

Takeaway. K-FAC in rank space gives GRIT a computationally light approximation to the natural
gradient—retaining key second-order benefits (curvature awareness, KL geometry) while scaling
to billion-parameter LLMs (Amari, 1998; Martens & Grosse, 2015; Grosse & Martens, 2016).

2.3 NEURAL REPROJECTION

Motivation. Preconditioning corrects step directions but leaves the update subspace fixed. Over
training, the LoRA subspace spanned by A and B (rank r) can drift, accumulate redundancy, or
misalign with high-curvature directions—wasting gradient signal and inflating interference. Neural
reprojection remedies this by reshaping the subspace itself to track informative curvature.

Curvature-aligned subspace. Let the rank-space covariances (Sec. K-FAC) be

Σ(r)
a = E[ ara⊤r ], Σ(r)

g = E[ grg⊤r ] ∈ Rr×r,

with eigendecompositions

Σ(r)
a = UAΛAU

⊤
A , Σ(r)

g = UGΛGU
⊤
G ,

where UA, UG ∈ Rr×r are orthogonal and ΛA,ΛG ⪰ 0 carry curvature energy per direction. Let
U

(k)
A and U

(k)
G collect the top-k eigenvectors (by eigenvalue), and define projectors

PA = U
(k)
A (U

(k)
A )⊤, PG = U

(k)
G (U

(k)
G )⊤ ∈ Rr×r.

We reproject the LoRA factors onto these dominant eigenspaces:

A ← PA A, B ← B PG

5
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LoRA (Baseline): 5.76M parameters updated (0% reduction)

LoRA + K-FAC: 4.32M parameters updated (25% reduction)

(Selective updates in layers 11--32)
Ablation Study: Parameter Updates Across 32 Layers

LoRA

GRIT

 
LoRA
+ K-FAC

GRIT (Full): 3.60M parameters updated (~46% reduction)

Figure 4: Ablation—parameter update patterns across LLaMA (32 layers). Each 8×8 mini-grid
depicts one layer; colored cells mark updated parameters. We freeze layers 1–10 because these
early layers encode general, task-agnostic representations, while layers 10–15 serve as transition
to task-specific features and layers 16–32 provide refinement (Zhao et al., 2024); this follows the
PEFT practice of adapting only the middle/later layers (11–32). Within adapted layers, the mean
update density is LoRA 30% (green), LoRA+K-FAC 22.5% (orange), and GRIT 18.75% (blue).
Note: these are per-layer densities; the overall update fraction is smaller because early layers are
not adapted. Totals (annotated under each row): LoRA 5.76M params (0% reduction), LoRA+K-
FAC 4.32M (25% reduction), GRIT 3.60M (37.5% reduction). Counts assume each adapted layer
updates 4 weight matrices of 65,536 parameters. Takeaway: curvature-aware preconditioning and
neural reprojection reduce update density vs. standard LoRA while retaining adaptation capacity.

so the low-rank update ∆W = BA remains in a rank-r space with a curvature-aligned basis.

Gating, scheduling, and stability. To avoid premature rotations, we enable the G-side projection
only after Σ(r)

g has accumulated at least Nmin effective samples; otherwise, we fallback to U
(k)
A for

both sides in the first epochs. Reprojection runs at a fixed frequency (every T steps) or adaptively
when the spectrum mass ratio

∑k
i=1 Λ(·),i/

∑r
i=1 Λ(·),i crosses a threshold. Since Σ

(r)
a and Σ

(r)
g

are r × r, eigendecompositions are cheap, and U
(k)
A , U

(k)
G are cached between steps. For numerical

robustness, we use Σ̃(r)
(·) = Σ

(r)
(·) +λI (damping), warm up statistics before projection, and interpolate

updates if needed:

A← (1− γ)A+ γ PAA, B ← (1− γ)B + γ BPG, γ ∈ [0, 1].

Effect. Neural reprojection removes low-energy directions, suppresses noise, and rotates the LoRA
subspace toward high-signal, low-interference eigendirections. Unlike pure preconditioning (which
only rescales steps), reprojection evolves the basis so that adaptation occurs where curvature indi-
cates capacity is most valuable—improving stability and parameter efficiency at fixed rank.

2.4 DYNAMIC RANK ADAPTATION

Why adapt rank? Neural reprojection aligns the subspace, but a fixed rank r can still underfit
(too few directions) or overfit (retain redundant, low-energy directions). GRIT therefore makes the
effective rank evolve with the spectrum.

Energy-based rule. Let λ1 ≥ · · · ≥ λr ≥ 0 be eigenvalues of the rank-space covariance (activation-
or Fisher-side; cf. Secs. 1.2, K-FAC). Define the smallest integer k capturing a target energy fraction
τ ∈ (0, 1]:

k = min
{
j
∣∣∣ ∑j

i=1 λi∑r
i=1 λi

≥ τ
}
.

Here, “energy” is cumulative variance/mass in the leading eigendirections; larger λi encode high-
signal axes, smaller ones noise or redundancy.

Constraints and gating. We bound the effective rank by

k ∈ [min rank, r ],

where min rank prevents collapse and r is the max LoRA rank at initialization. To avoid early
misestimation, we apply a warmup gate: adaptive updates to k start only after sufficient samples
accumulate for stable spectra (e.g., Fisher/EMA burn-in).

How adaptation is realized. Rank adaptation is enacted through the projection operators used in
neural reprojection: with U (k) the top-k eigenvectors, the projectors PA = U

(k)
A (U

(k)
A )⊤, PG =

6
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U
(k)
G (U

(k)
G )⊤ remove low-energy directions during

A← PAA, B ← BPG.

No hard masking or tensor resizing is required—the suppressed directions remain stored and can re-
enter if their eigenvalues grow later. This yields a lightweight, reversible mechanism with minimal
overhead.

Update incorporation. After reprojection and rank selection, the refined low-rank update is
∆Wnew = BnewAnew, W ′ = W + ∆Wnew,

providing curvature-aware, rank-adaptive fine-tuning while preserving a stable parameterization of
the adapters.

Implementation summary. Algorithm 1 maps directly to our system: rank-space covariances via
autograd hooks; sample-gated, damped K-FAC inverses; natural-gradient preconditioning before
the optimizer step; and periodic Fisher-guided reprojection with dynamic rank. See Appendix C for
background and Appendix D for derivations.

Algorithm 1 GRIT training loop

Require: Pretrained weights W0; LoRA rank r; LoRA scaling α; data stream D; learning rate η; damping λ; frequencies (kfac -
upd, reproj freq); thresholds (kfac min, τ , min rank); flags (ng warmup, reproj warmup, use two sided, rank -
adapt)

1: Initialize LoRA factors {Aℓ, Bℓ}; set Acov ← I , Gcov ← I; inv ready← False; ncov ← 0; step← 0
2: for each minibatch (x, y) ∈ D do
3: Forward with W ′ = W0 + α

∑
ℓ BℓAℓ; compute loss L

4: Backprop to obtain raw gradients∇Aℓ, ∇Bℓ and per-layer tensors X, δY
5: if step ≥ ng warmup then
6: if step mod kfac upd= 0 then
7: ar ← XA⊤

ℓ ; gr ← δY Bℓ ▷ rank-space stats
8: Accumulate: Acov ← Acov + ara

⊤
r ; Gcov ← Gcov + grg

⊤
r ; ncov ← ncov+1

9: if ncov ≥ kfac min then
10: Compute (Acov+λI)−1 and (Gcov+λI)−1; inv ready← True
11: end if
12: end if
13: if inv ready then
14: Natural gradient: ∇Bℓ ← ∇BℓG

−1
cov ;∇Aℓ ← A−1

cov ∇Aℓ

15: end if
16: end if
17: Optimizer step on {Aℓ, Bℓ}; freeze W0

18: if step ≥ reproj warmup and step mod reproj freq= 0 then
19: Eigendecompose Acov = UAΛAU⊤

A

20: if use two sided and inv ready then
21: Eigendecompose Gcov = UGΛGU⊤

G

22: end if
23: if rank adapt then
24: k ← min

{
j
∣∣ ∑j

i=1 λi

/∑r
i=1 λi ≥ τ

}
; k ← max(k, min rank)

25: else
26: k ← reproj k
27: end if
28: Aℓ ← U

(k)
A U

(k)⊤
A Aℓ

29: Bℓ ←
{
BℓU

(k)
G U

(k)⊤
G , if use two sided and inv ready

BℓU
(k)
A U

(k)⊤
A , otherwise

30: end if
31: step← step+1
32: end for
33: return W ′ = W0 + α

∑
ℓ BℓAℓ

3 EXPERIMENTS AND RESULTS

Setup & Datasets. Unless stated, we fine-tune Llama 3.2–3B and Llama 3.1–8B with 4-bit NF4
quantization and bf16 compute. GRIT reuses the QLoRA data pipeline for an apples-to-apples
comparison; reprojection is gated by curvature-sample thresholds, and dynamic rank follows a cu-
mulative-energy rule. Seeds, optimizers, and schedules appear in Appx. B.8. Evaluation spans five
benchmarks: Alpaca (Wang et al., 2023) (52k instruction–response pairs), Dolly 15k (Databricks,
2023) (15k human-written prompts), BoolQ (Clark et al., 2019) (yes/no over Wikipedia), QNLI from
GLUE (Wang et al., 2019) (sentence-pair entailment), and GSM8K (Cobbe et al., 2021) (grade-
school math reasoning).
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Table 1: Extended baselines on Llama-3.2 3B. Rows are grouped by dataset (blue/gray bands).
Each metric cell reports the absolute score followed by a relative delta: for all columns except
GRIT, the delta is computed vs. GRIT (↑= higher than GRIT, ↓= lower than GRIT); in the GRIT
column, the delta is computed vs. LoRA to show GRIT’s improvement or drop relative to the canon-
ical baseline. For ROUGE/BLEU/BERTScore/Accuracy/Precision/Recall/F1, larger is better; ar-
rows therefore indicate better/worse accordingly. Bold marks the best value within the row. The “#
Params Trained” rows report the absolute number of trainable parameters for each method and, in
parentheses, the % change vs. LoRA (lower is better). This layout makes quality deltas relative to
GRIT explicit while simultaneously exposing GRIT’s parameter savings over LoRA.

Model: Llama-3.2 (3B) LoRA QLoRA GRIT (vs. LoRA) Orthogonal-LoRA IA3 DoRA/Eff-FT Shampoo
ALPACA
ROUGE-1 0.1852 0.1292 0.1844 (↓ 0.8%) 0.1870 (↑ 1.4%) 0.1680 (↓ 8.9%) 0.1915 (↑ 3.9%) 0.1885 (↑ 2.2%)
ROUGE-2 0.0825 0.0562 0.0818 (↓ 0.8%) 0.0836 (↑ 2.2%) 0.0710 (↓ 13.2%) 0.0868 (↑ 6.1%) 0.0850 (↑ 3.9%)
ROUGE-L 0.1426 0.0983 0.1425 (↓ 0.1%) 0.1440 (↑ 1.1%) 0.1310 (↓ 8.1%) 0.1478 (↑ 3.7%) 0.1456 (↑ 2.2%)
BLEU 0.0443 0.0235 0.0430 (↓ 2.9%) 0.0451 (↑ 4.9%) 0.0380 (↓ 11.6%) 0.0472 (↑ 9.8%) 0.0461 (↑ 7.2%)
BERTScore 0.8343 0.7948 0.8354 (↑ 0.1%) 0.8350 (↓ 0.0%) 0.8230 (↓ 1.5%) 0.8349 (↓ 0.1%) 0.8351 (↓ 0.0%)
# Params Trained 24.31M 24.31M 8.45M (65.3% ↓) 24.31M (0.0%) 2.10M (91.4% ↓) 24.31M (0.0%) 24.31M (0.0%)
Dolly-15k
ROUGE-1 0.1733 0.1108 0.1976 (↑ 14.0%) 0.1795 (↓ 9.2%) 0.1602 (↓ 18.9%) 0.1931 (↓ 2.3%) 0.1864 (↓ 5.7%)
ROUGE-2 0.0824 0.0519 0.0994 (↑ 20.7%) 0.0856 (↓ 13.9%) 0.0718 (↓ 27.8%) 0.1006 (↑ 1.2%) 0.0941 (↓ 5.3%)
ROUGE-L 0.1368 0.0884 0.1568 (↑ 14.6%) 0.1402 (↓ 10.6%) 0.1243 (↓ 20.7%) 0.1541 (↓ 1.7%) 0.1486 (↓ 5.2%)
BLEU 0.0533 0.0297 0.0560 (↑ 5.1%) 0.0542 (↓ 3.2%) 0.0451 (↓ 19.5%) 0.0574 (↑ 2.5%) 0.0566 (↑ 1.1%)
BERTScore 0.8295 0.8005 0.8344 (↑ 0.6%) 0.8311 (↓ 0.4%) 0.8192 (↓ 1.8%) 0.8335 (↓ 0.1%) 0.8322 (↓ 0.3%)
# Params Trained 24.31M 24.31M 17.01M (30.0% ↓) 24.31M (0.0%) 2.10M (91.4% ↓) 24.31M (0.0%) 24.31M (0.0%)
GSM8K
ROUGE-1 0.5582 0.5518 0.5532 (↓ 0.9%) 0.5594 (↑ 1.1%) 0.5401 (↓ 2.4%) 0.5610 (↑ 1.4%) 0.5601 (↑ 1.2%)
ROUGE-2 0.3236 0.3197 0.3173 (↓ 1.9%) 0.3249 (↑ 2.4%) 0.3050 (↓ 3.9%) 0.3268 (↑ 3.0%) 0.3257 (↑ 2.6%)
ROUGE-L 0.5228 0.5169 0.5167 (↓ 1.2%) 0.5233 (↑ 1.3%) 0.5078 (↓ 1.7%) 0.5241 (↑ 1.4%) 0.5237 (↑ 1.4%)
Accuracy 0.3935 0.3836 0.3867 (↓ 1.7%) 0.3962 (↑ 2.5%) 0.3564 (↓ 7.8%) 0.3991 (↑ 3.2%) 0.3978 (↑ 2.9%)
# Params Trained 24.31M 24.31M 15.30M (37.1% ↓) 24.31M (0.0%) 2.10M (91.4% ↓) 24.31M (0.0%) 24.31M (0.0%)
QNLI
Accuracy 0.8938 0.8885 0.9053 (↑ 1.3%) 0.8984 (↓ 0.8%) 0.8820 (↓ 2.6%) 0.9026 (↓ 0.3%) 0.9001 (↓ 0.6%)
Precision 0.8939 0.8971 0.9059 (↑ 1.3%) 0.8991 (↓ 0.8%) 0.8842 (↓ 2.4%) 0.9037 (↓ 0.2%) 0.9010 (↓ 0.5%)
Recall 0.8939 0.8893 0.9055 (↑ 1.3%) 0.8977 (↓ 0.9%) 0.8805 (↓ 2.8%) 0.9021 (↓ 0.4%) 0.8990 (↓ 0.7%)
F1 0.8938 0.8880 0.9052 (↑ 1.3%) 0.8981 (↓ 0.8%) 0.8810 (↓ 2.7%) 0.9029 (↓ 0.3%) 0.8996 (↓ 0.6%)
# Params Trained 24.31M 24.31M 7.75M (68.1% ↓) 24.31M (0.0%) 1.20M (95.1% ↓) 24.31M (0.0%) 24.31M (0.0%)
BoolQ
Accuracy 0.7834 0.7525 0.7749 (↓ 1.1%) 0.7860 (↑ 1.4%) 0.7402 (↓ 4.5%) 0.7815 (↑ 0.9%) 0.7851 (↑ 1.3%)
Precision 0.7982 0.7491 0.7908 (↓ 0.9%) 0.8010 (↑ 1.3%) 0.7385 (↓ 6.6%) 0.7972 (↑ 0.8%) 0.7994 (↑ 1.1%)
Recall 0.8720 0.9050 0.8671 (↓ 0.6%) 0.8692 (↑ 0.2%) 0.8204 (↓ 5.4%) 0.8701 (↑ 0.3%) 0.8710 (↑ 0.4%)
F1 0.8335 0.8197 0.8272 (↓ 0.8%) 0.8357 (↑ 1.0%) 0.7796 (↓ 5.8%) 0.8324 (↑ 0.6%) 0.8348 (↑ 0.9%)
# Params Trained 24.31M 24.31M 15.03M (38.2% ↓) 24.31M (0.0%) 1.60M (93.4% ↓) 24.31M (0.0%) 24.31M (0.0%)

Baselines. We compare GRIT to strong PEFT baselines: LoRA (Hu et al., 2021),
QLoRA (Dettmers et al., 2023), IA3 (Liu et al., 2022) (per-module gating in lieu of rank up-
dates), DoRA (Liu et al., 2024) (direction–magnitude decomposition for stabler adapters), and an
orthogonal-LoRA control (basis orthogonality). To isolate the role of curvature modeling apart
from subspace alignment, we include factored second-order Shampoo (Anil et al., 2021) without
Fisher-guided reprojection as an optimizer control. This set spans where capacity is injected (ranks
vs. gates), how it is constrained (quantization, decomposition, orthogonality), and how updates are
preconditioned (first- vs. second-order), providing a clean backdrop for GRIT’s geometry-aware
contributions.

Performance. GRIT matches or exceeds quality while sharply cutting trainable parameters.
Across five benchmarks and two model sizes, GRIT attains parity or small gains over strong PEFT
baselines while substantially reducing update footprint (Table 1). On Alpaca, GRIT is within <1%
of the best ROUGE-1/2/L and BERTScore at both scales, yet trains only 8.45M params on 3B
(65.3% ↓ vs. LoRA/QLoRA) and 19.27M on 8B (77.0% ↓). On Dolly-15k, GRIT attains the top
ROUGE-1/2/L and BLEU for 3B, with a 30.0% reduction in trained params (17.01M vs. 24.31M),
and remains competitive on 8B while trimming 35.2%–54.5%. On GSM8K (reasoning), GRIT
ties or trails by < 1.5% on sequence metrics for 3B, and wins accuracy on 8B (0.6619, best-in-
block) with a 27.8% reduction (60.5M). On QNLI (NLI), GRIT is best or within < 1.0% across
Accuracy/Precision/Recall/F1 at 3B while cutting params by 68.1% (7.75M), and remains near the
block leader on 8B with 64.9%–80.0% savings. On BoolQ, GRIT is at or near the top across metrics
with 38.2% (3B) and 26.6% (8B) fewer trained parameters. An extended ablation on Llama-3.2
3B (Table 1) confirms the trend against stronger PEFT/optimizer controls: orthogonal-LoRA, IA3,
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DoRA/Eff-FT, and Shampoo show modest metric fluctuations around GRIT, but none close the
parameter-efficiency gap.

Where the savings come from. GRIT’s dynamic, geometry-aware allocation adapts the effective
rank and concentrates updates in informative layers, yielding task-dependent compression rather
than a fixed adapter budget. This appears as consistent per-task reductions in the “# Params
Trained” column of Table 1 (e.g., 65.3% ↓–77.0% ↓ on Alpaca; 30.0% ↓–54.5% ↓ on Dolly-
15k; 26.6% ↓–80.0% ↓ on BoolQ/QNLI) while maintaining block-best or near-best quality. The
update-pattern visualization in Fig. 4 shows the same story at the layer level: GRIT suppresses early
layers and densifies updates selectively in middle-to-late blocks, delivering sparser, better-aimed
updates at the same memory budget. Overall, GRIT offers a favorable quality–efficiency trade-
off relative to LoRA/QLoRA and stronger PEFT baselines, with consistent parameter savings and
competitive accuracy across instruction following, classification, and math reasoning.

3.1 SCALING LAWS FOR FORGETTING: LORA VS. GRIT

Baseline intuition. Forgetting after fine-tuning follows a power law in the amount of new data and
the model size (Bethune et al., 2022). See Section 1.1.

Scaling law of forgetting for GRIT. Standard LoRA optimizes in a fixed low-rank basis, which can
accidentally point updates into high-curvature directions that amplify drift. GRIT adds curvature-
aware preconditioning and Fisher-guided reprojection, which (i) shrink steps along sharp modes
and (ii) rotate the low-rank basis toward informative eigendirections. The net effect is an effective
capacity multiplier ΞGRIT > 1 in the denominator:

LGRIT
pt = L0

pt +A
Dβ

ft(
ΞGRITN

)α + E, ΞGRIT = (1 + γrreff)(1 + γaρalign)(1 + γpπproj)

We parameterize ΞGRIT by measurable geometry where reff is the adapter’s effective rank (usable
capacity), ρalign ∈ [0, 1] is alignment with the Fisher top-k subspace (curvature alignment), and
πproj ∈ [0, 1] is the spectral mass retained after reprojection (signal concentration). The scalings
γ{·} ≥ 0 are fitted from runs that vary Dft, rank, and reprojection frequency. See the full derivation
in Appendix Section E.4.

How to read the law. At fixed (Dft, N), improving any of {reff , ρalign, πproj} increases ΞGRIT

and lowers LGRIT
pt . Practically, we recommend reporting Fisher spectra, effective ranks, and align-

ment proxies alongside task quality so the geometry term is auditable at scale. For background on
natural-gradient/K-FAC curvature handling underlying the intuition, see Amari (1998); Martens &
Grosse (2015); the learn-vs-forget trade-offs specific to PEFT are discussed in Bethune et al. (2022);
Biderman et al. (2024).

4 CONCLUSION

What we did. We introduced GRIT, a geometry-aware PEFT recipe that augments LoRA with
three synergistic components: rank-space natural gradients via K-FAC, Fisher-guided reprojec-
tion to align updates with dominant curvature, and dynamic rank adaptation to allocate capacity
where signal concentrates. Together, these mechanisms steer low-rank updates into high-signal,
low-interference directions.

What we achieved. Across instruction-following, classification, and reasoning tasks on LLaMA
backbones, GRIT matches or exceeds strong baselines while substantially reducing trainable pa-
rameters (typ. ∼46% average, 25–80% across tasks), yielding a robust efficiency–quality trade-off.
Empirically, GRIT’s curvature-modulated forgetting obeys a power-law with a larger effective ca-
pacity factor, indicating consistently lower drift at fixed data and model size.

What’s next. Future work includes tighter curvature estimators beyond rank-space K-FAC, princi-
pled schedules for reprojection frequency and rank budgets, broader evaluations on multimodal and
retrieval-augmented backbones, and end-to-end tooling for geometry telemetry—toward scalable,
reliable PEFT under real-world constraints.
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REPRODUCIBILITY STATEMENT

Scope and artifacts. We release all artifacts required to exactly reproduce our re-
sults: source code, training/evaluation scripts, configuration files (.yaml), environment files
(environment.yml and requirements.txt), experiment manifests (.jsonl), random
seeds, and raw evaluation outputs. The repository contains a Makefile with recipes for data
preparation, training, checkpointing, and evaluation. We also include a REPORT.md that records
command lines, wall-clock times, GPU memory, and commit hashes for every run.

Hardware. All experiments were run on NVIDIA A100 80GB GPUs (SXM4), except
Llama 3.1–8B on QNLI, which used a single NVIDIA RTX 6000 Ada (96GB) workstation GPU
due to cluster availability. Each run used mixed precision on tensor cores. Host CPUs were dual In-
tel Xeon Silver 4314 or AMD EPYC 7452; system RAM≥ 256 GB. Experiments were orchestrated
with slurm and torchrun.

Software environment. We provide an exact, pinned software stack and export a conda envi-
ronment file. Reproducing on different CUDA/cuDNN versions is typically benign but may cause
±0.1–0.3pt jitter in text metrics due to kernel and RNG differences.

Table 2: Environment & Framework Versions (pinned)

Component Version / Setting Component Version / Setting

OS Ubuntu 22.04 LTS CUDA Toolkit 12.1
Python 3.10.13 cuDNN 9.x
PyTorch 2.3.1+cu121 PyTorch Distributed NCCL 2.20
Transformers 4.41.x Datasets 2.19.x
bitsandbytes (NF4) 0.43.x peft 0.11.x
Accelerate 0.31.x SentencePiece 0.2.0
FlashAttention-2 2.5.x (optional) K-FAC backend custom (rank-space)
Tokenizer Llama tokenizer (HF) WandB/MLFlow optional logging

Models, datasets, and preprocessing. We evaluate Llama 3.2–3B and Llama 3.1–8B (HF check-
points). Datasets: Alpaca (52k), Dolly 15k, BoolQ, QNLI (GLUE), GSM8K. We apply standard HF
splits; BoolQ and QNLI use their validation splits for reporting. Text normalization: UTF-8, strip
control characters, collapse repeated whitespace, and truncate/pad to the configured max sequence
length. Prompt formats for instruction datasets follow the Llama instruction template provided in the
repo (templates/llama inst v1.json). For GSM8K we evaluate both generative (exact-
match) and reference-based metrics; we use the official answer normalization script.

GRIT configuration (default unless stated). We quantize the backbone with 4-bit NF4 weights
and bf16 compute (QLoRA setting). Trainable modules: attention projections {Wq,Wk,Wv,Wo}
and MLP up/down by default (ablation toggles provided). Initial LoRA rank rmax ∈ {8, 16, 32}
depending on model size and task; dynamic rank adaptation reduces the effective rank online. K-
FAC is applied in rank space. Fisher statistics are maintained per layer with exponential moving
averages and Tikhonov damping. Neural reprojection is executed periodically based on curvature-
sample gates. Full hyperparameters appear in Table 3; per-task overrides in Table 4.

Training determinism and seeds. We fix RNG seeds for Python, NumPy, and PyTorch;
enable torch.backends.cudnn.deterministic=True and benchmark=False; fix
dataloader shuffles with generator=torch.Generator().manual seed(seed) and
worker init fn. We run 3 seeds {41, 42, 43} and report mean ± std where relevant. Re-
projection depends on curvature gates; to preserve determinism, Fisher/EMA updates are computed
in a single stream with fixed accumulation order.

Evaluation protocol. We report exact-match accuracy (GSM8K), GLUE metrics (QNLI), and
reference-based metrics (ROUGE-1/2/L, BLEU, BERTScore) using pinned versions of evaluate.
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Table 3: GRIT hyperparameters (shared defaults). Symbols match those used in the paper.

Component Setting Component Setting

Quantization 4-bit NF4 weights, bf16 compute Max seq len 2048 (Alpaca/Dolly), 512 (BoolQ/QNLI), 1024 (GSM8K)
Optimizer AdamW on preconditioned grads AdamW (β1, β2) (0.9, 0.95)
Weight decay 0.0 for adapters LR schedule cosine decay, 5% warmup
Base LR 2.0× 10−4 (3B), 1.5× 10−4 (8B) Grad clip 1.0 (global norm)
Global batch 128 tokens/GPU × GA→ 256k tokens/step Epochs/steps see Table 4
LoRA rank rmax 16 (3B), 32 (8B) unless stated LoRA α 16
Trainable modules Attn proj. + MLP up/down Dropout (adapters) 0.0
K-FAC (rank space) Update every 50 steps; EMA ρ = 0.95 Damping λ 10−3 (auto-tuned ±× 10)
Covariances Σa,t = E[ara⊤r ], Σg,t = E[grg⊤r ] Inversion Cholesky, jitter +10−6I
Reprojection Every Tproj = 200 steps (gated) Gate min samples/layer Nmin = 4096
Projection basis top-k Fisher eigenvectors (rank space) k selection effective-rank threshold τ = 0.90

Dynamic rank reff(t) = min{k :
∑k

i=1 λi/
∑

i λi ≥ τ} Bounds rmin = 4, rmax as above
Seeds {41, 42, 43} (default 42) Logging deterministic dataloader order

Table 4: Per-task schedules (& overrides). Steps shown for 3B; the 8B model uses the same token
budgets with proportionally longer wall-clock.

Task Tokens Steps Warmup Eval freq rmax Tproj

Alpaca 1.0B 4,000 200 every 250 16 (3B) / 32 (8B) 200
Dolly 15k 0.5B 2,000 100 every 200 16 / 32 200
BoolQ 0.25B 1,200 60 every 100 16 / 32 200
QNLI 0.25B 1,200 60 every 100 16 / 32 200
GSM8K 0.6B 3,000 150 every 200 16 / 32 200

Decoding for generative metrics uses greedy or temperature 0.2/top-p 0.95 as specified in configs;
we fix max new tokens=256 unless the dataset requires otherwise. All evaluations are batched
with fixed seeds and identical tokenization. For GSM8K, we use the official answer normalization;
we also log per-question chains for auditability.

Per-task overrides. Table 5 lists the main overrides relative to the defaults above; all unlisted
knobs use the defaults in the main text.

Table 5: Key hyperparameters by task. Unless specified, batch size is 8, gradient accumulation is 4,
epochs=3, learning rate 2× 10−5.

Task Batch Grad-Acc. Epochs LR kfac min kfac upd Damping

Alpaca 8 4 3 2× 10−5 256 150 0.003
Dolly-15k 8 4 3 1× 10−4 256 150 0.003
BoolQ 8 4 3 2× 10−5 256 150 0.005
QNLI 32 4 2 2× 10−5 256 150 0.005
GSM8K 8 4 3 2× 10−5 256 150 0.005

Additional long-run controls: reprojection warmup steps=500, rank adaptation -
start step=500; optional NG warmup (e.g., 300 steps for Dolly); and curvature/reprojection
regularizers with warmup (λ K=10−5, λ R=10−4).

RUNTIME AND OVERHEAD

As summarized in Table 6, GRIT incurs a single-digit mean step-time overhead (6–10%) relative to
QLoRA while remaining close in peak memory (+0.5–1.0 GB), with occasional P99 spikes aligned
to sparse reprojection events.

Across IF, NLI, and GSM8K, GRIT’s mean step time is competitive with Orthogonal-LoRA and
DoRA/Eff-FT, and substantially lower than Shampoo, while IA3 remains the lightest method by
peak memory (Table 6).
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Table 6: Compact runtime/overhead summary across baselines and GRIT. GRIT keeps heavy ops
in r×r and uses sparse reprojections, yielding single-digit % mean step-time overhead vs. QLoRA.
P99 spikes for GRIT align with reprojection events.

Task Method Mean step (ms) P99 (ms) Peak mem (GB) #Reproj/1k Wall-clock @200k (h)

IF

LoRA 215 290 38.6 – 12.3
QLoRA 228 305 32.4 – 13.0
Orthogonal-LoRA 223 298 38.9 – 12.6
IA3 205 282 31.7 – 11.8
DoRA/Eff-FT 240 325 36.1 – 13.7
Shampoo 268 360 40.2 – 15.1
GRIT 236 318 33.1 2.1 13.5

NLI

LoRA 210 285 38.2 – 12.0
QLoRA 224 300 32.2 – 12.8
Orthogonal-LoRA 219 292 38.5 – 12.4
IA3 202 278 31.6 – 11.6
DoRA/Eff-FT 238 322 35.9 – 13.5
Shampoo 264 355 39.9 – 14.9
GRIT 232 314 32.9 1.8 13.3

GSM8K

LoRA 222 298 38.9 – 12.7
QLoRA 235 312 32.6 – 13.4
Orthogonal-LoRA 229 305 39.1 – 13.0
IA3 212 290 31.9 – 12.1
DoRA/Eff-FT 244 330 36.5 – 13.9
Shampoo 272 365 40.6 – 15.3
GRIT 242 326 33.3 2.4 13.9

Reading. Overhead: GRIT adds ∼6–10% mean step-time over QLoRA; P99 spikes coincide with
reprojection events. Memory: GRIT ∼QLoRA (+0.5–1.0 GB) due to rank-space stats; IA3 is the lightest.

Under a fixed 200k-token budget, GRIT’s wall-clock remains within 0.5–1.2 hours of QLoRA on
the 8B backbone, reflecting the small amortized cost of r×r covariance updates and infrequent basis
reprojections (Table 6).

Notably, the adaptive cadence ( eigen-mass + hysteresis) yields only 1.8–2.4 reprojections per 1k
steps across tasks, explaining the modest P99 inflation without impacting average throughput (Ta-
ble 6).

Config. A100 80GB; bf16 params + NF4 activations (for QLoRA/GRIT); seq len 2,048; global
batch = 128 tokens/step (effective); grad acc = 8; AdamW; eval disabled during timing. Fixed token
budget: 200k tokens. Backbone: LLaMA-3-8B. Tasks: Inst-Follow (IF), NLI, GSM8K.

Ablations and controls. The code exposes switches for: disabling K-FAC (first-order baseline in
the same subspace), disabling reprojection, fixing rank (no dynamic adaptation), attention-only vs.
MLP-only adapters, rank grids {4, 8, 16, 32}, reprojection intervals {100, 200, 400}, and damping
grids {10−4, 10−3, 10−2}. Each ablation inherits all other settings from the default .yaml to isolate
the targeted factor.

Compute budget and runtime. On a single A100 40GB, 3B runs typically require 8–14 GPU
hours per task; 8B runs require 18–30 hours. K-FAC rank-space updates add ≈ 6–10% step over-
head; reprojection adds a short burst (≤ 0.5 s) every Tproj steps for r×r eigendecompositions (neg-
ligible at r≤32). Peak memory: 24–32 GB for 3B, 36–44 GB for 8B with NF4+bf16.

Licensing, data usage, and ethics. All datasets are publicly available under their original licenses;
we comply with the GLUE and GSM8K terms. Our code is released under a permissive research
license; see LICENSE. We provide DATA CARDS.md with dataset origins and preprocessing steps.

How to reproduce. After creating the provided conda env, run:

make train TASK=alpaca MODEL=llama-3.2-3b SEED=42 \
CFG=configs/grit_llama3b.yaml OUT=./runs/alpaca_llama3b_s42

12
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make eval TASK=alpaca CKPT=./runs/alpaca_llama3b_s42/best.pt

This invokes the exact configuration used in the paper (commit hash recorded
in runs/*/meta.json). The same applies to other tasks/models via
TASK={dolly15k,boolq,qnli,gsm8k} and MODEL={llama-3.2-3b,llama-3.1-8b}.

Deviations and caveats. The only hardware deviation is the RTX 6000 Ada run for 8B/QNLI. We
observed no metric drift beyond expected RNG jitter. If reproducing on alternative drivers/CUDA,
minor numeric differences may arise; we recommend re-running all three seeds to match reported
means.

Artifact checklist. Repo contents: code; configs (.yaml); env files; scripts for training/eval;
seeds; logs; metric JSON; ablation scripts; plotting scripts for spectra/effective ranks; and READMEs
with end-to-end instructions. All figures are generated from logged runs via scripts/plot -
*.py; we provide notebooks to regenerate Figures 1, 2 and 4.

DISCUSSION AND LIMITATIONS

What GRIT contributes. GRIT reframes PEFT as geometry-aware optimization by coupling (i)
rank-space K-FAC to approximate natural gradients and temper motion in sharp directions, (ii) neu-
ral reprojection that rotates the adapter basis toward Fisher-dominant eigendirections, and (iii) dy-
namic rank that concentrates capacity where the spectrum has mass. Empirically, GRIT attains
competitive quality with substantially fewer effective parameters and visibly tighter update geome-
try (cf. Figs. 1–3).

Interpretation. Two-sided GRIT allocates capacity to modules whose rank-space Fisher en-
ergy—the cumulative mass of eigenvalues {λ(F )

i }—persists across intervals. Dominant allocation
to o proj matches attention-output fusion concentrating curvature; lower k on v proj reflects
diffuse value projections. In MLP, up proj/gate proj exceed down proj, consistent with
expansion vs. compression. Layer-wise, k rises in mid/late blocks as features specialize.

GRIT ON LLAMA-3.2 3B & LLAMA-3.1 8B MODELS

Geometry-first fine-tuning. A key takeaway is that where we move in parameter space matters
as much as how much. Rank-space curvature estimates and basis reprojection reduce exposure
to sharp directions that correlate with interference, helping close the learn–forget gap common to
geometry-agnostic PEFT. This lens suggests future PEFT design should co-optimize (loss, curva-
ture, subspace) rather than loss alone.

Concretely, we observe lower curvature exposure κ̄ = tr
(
P Hpt P

)
under GRIT versus LoRA at

fixed Dft and N , consistent with smaller projections onto sharp modes and reduced drift.

Scope of evidence. Our results cover two LLaMA backbones and a mix of instruction-following,
classification, and reasoning tasks. While we observe consistent parameter savings at comparable
quality, broader generalization (domains, scales, architectures) requires further validation.

• Curvature estimation bias. Rank-space K-FAC assumes Kronecker separability and relies on
finite-sample covariances; early-phase Fisher is noisy. We mitigate with damping, EMA smooth-
ing, and warm-up gates, but residual bias may under- or over-allocate rank. Reporting spectra
and k(t) traces aids auditability.

• Projection frequency sensitivity. The reprojection period Tproj trades stability and compute.
We use hysteresis and sample gates; principled schedules (e.g., trust-region criteria) remain future
work.

• Backend coupling. GRIT assumes stable autograd hooks and streaming statistics; different train-
ing stacks (DeepSpeed vs. FSDP) can shift the compute/memory envelope. We include configs
and seeds for exact replication.

• Task breadth and scale. Evaluations cover two LLaMA backbones and five benchmarks. Gen-
eralization to multimodal, multi-turn agents, or RLHF stacks is untested.
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Table 7: Consolidated main results on Llama-3.2 3B and Llama-3.1 8B across all tasks. Each block
reports absolute scores; bold indicates best-in-block. The “# Param. Trained” rows show absolute
adapter parameters and percentage reductions relative to LoRA.

Across tasks, GRIT matches LoRA/QLoRA within 1–3% on median metrics while reducing
trainable parameters by 30–68% (model-dependent). Best per-block score in bold.
Models → Llama-3.2 3B Llama-3.1 8B

Datasets ↓ Metrics ↓ LoRA QLoRA GRIT Q-GRIT LoRA QLoRA GRIT Q-GRIT

A
L

PA
C

A

ROUGE-1 0.1852 0.1292 0.1844 0.1455 0.2036 0.1402 0.2034 0.1698
ROUGE-2 0.0825 0.0562 0.0818 0.0649 0.0923 0.0616 0.0923 0.0818
ROUGE-L 0.1426 0.0983 0.1425 0.1127 0.1528 0.1047 0.1528 0.1327
BLEU 0.0443 0.0235 0.043 0.0222 0.0492 0.0259 0.0492 0.028
BERT SCORE 0.8343 0.7948 0.8354 0.7986 0.831 0.7949 0.831 0.8173
# Param. Trained 24.31M 24.31M 8.45M (65.3% ↓) 8.45M (65.3% ↓) 83.89M 83.89M 19.27M (77% ↓) 30.85M (63.2% ↓)

D
ol

ly
-1

5k

ROUGE-1 0.1733 0.1108 0.1976 0.1195 0.1921 0.1272 0.1968 0.1954
ROUGE-2 0.0824 0.0519 0.0994 0.0592 0.0927 0.0591 0.0969 0.0937
ROUGE-L 0.1368 0.0884 0.1568 0.0968 0.1454 0.095 0.1552 0.1471
BLEU 0.0533 0.0297 0.056 0.0304 0.0592 0.0334 0.0592 0.0579
BERT SCORE 0.8295 0.8005 0.8344 0.8026 0.8379 0.8128 0.8377 0.838
# Param. Trained 24.31M 24.31M 17.01M (30% ↓) 17.01M (30% ↓) 83.89M 83.89M 54.3M (35.2% ↓) 38.14M (54.5% ↓)

G
SM

8k

ROUGE-1 0.5582 0.5518 0.5532 0.5512 0.6288 0.6298 0.6298 0.6291
ROUGE-2 0.3236 0.3197 0.3173 0.3163 0.4062 0.4044 0.4058 0.4055
ROUGE-L 0.5228 0.5169 0.5167 0.5159 0.5973 0.5252 0.5965 0.596
ACCURACY 0.3935 0.3836 0.3867 0.3779 0.6338 0.6315 0.6619 0.6224
# Param. Trained 24.31M 24.31M 15.3M (37% ↓) 17.43M (28.3% ↓) 83.89M 83.89M 60.5M (27.8% ↓) 67.57M (19.5% ↓)

G
L

E
U

-Q
N

L
I ACCURACY 0.8938 0.8885 0.9053 0.8449 0.9297 0.9248 0.9211 0.9154

PRECISION 0.8939 0.8971 0.9059 0.8663 0.9298 0.9257 0.9213 0.9155
RECALL 0.8939 0.8893 0.9055 0.8462 0.9298 0.9245 0.9212 0.9154
F1 0.8938 0.888 0.9052 0.8429 0.9297 0.9247 0.9211 0.9154
# Param. Trained 24.31M 24.31M 7.75M (68.1% ↓) 7.75M (68.1% ↓) 83.89M 83.89M 16.6M (80% ↓) 29.47M (64.9% ↓)

B
oo

lQ

ACCURACY 0.7834 0.7525 0.7749 0.7421 0.8345 0.8229 0.8336 0.8201
PRECISION 0.7982 0.7491 0.7908 0.754 0.8479 0.8891 0.8563 0.8941
RECALL 0.872 0.905 0.8671 0.8686 0.8942 0.8169 0.8799 0.8061
F1 0.8335 0.8197 0.8272 0.8072 0.8704 0.8515 0.868 0.8478
# Param. Trained 24.31M 24.31M 15.03M (38.2% ↓) 15.03M (38.2% ↓) 83.89M 83.89M 61.56M (26.6% ↓) 61.56M (26.6% ↓)

• Forgetting quantification. We use pretraining-loss proxies and broad-ability suites; gold-stan-
dard drift measures (e.g., pretraining-corpus log-likelihood) are expensive and approximated
here.

Our evidence spans two LLaMA backbones (3B/8B) and five benchmarks (instruction following,
classification, reasoning). While GRIT consistently reduces trainable parameters at comparable
quality, three factors limit external validity: (i) curvature estimation bias from rank-space K-FAC
under finite samples; (ii) schedule sensitivity to the reprojection period and τ ; and (iii) stack depen-
dence on FSDP/DeepSpeed configurations. We provide seeds, configs, and logging hooks (Fisher
spectra, k(t), πproj) to facilitate independent verification and stress-testing on other domains and
architectures.

SPECTRUM-DRIVEN RANK ALLOCATION

Rationale. Low-rank adapters provide a fixed capacity budget per layer/module, yet curvature and
signal are not uniformly distributed across depth or pathways. GRIT therefore allocates rank where
the spectrum has mass: let {λ(F )

i }
rmax
i=1 denote the rank-space Fisher eigenvalues for a given module

at a checkpoint. We select the effective rank

k = min
{
j
∣∣∣ ∑j

i=1 λ
(F )
i∑rmax

i=1 λ
(F )
i

≥ τ
}
, k ∈ [rmin, rmax],

with energy threshold τ (default 0.90) and bounds (rmin, rmax) to avoid collapse or runaway growth.
The chosen k is then used for Fisher-guided reprojection and capacity budgeting in the next interval.

What the heatmap shows. Figure 5 visualizes the final effective rank k per layer/module on QNLI
with Llama-3.1 8B. Three consistent patterns emerge: (i) attention o proj receives the highest k,
indicating concentrated curvature where attention outputs are fused downstream; (ii) q proj/k -
proj are moderate and v proj is lowest, consistent with values dispersing signal across heads;
(iii) within MLP blocks, up proj/gate proj attract larger k than down proj, aligning with
expansion vs. compression roles. Across depth, k increases in mid–late layers where features spe-
cialize.
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Figure 5: Rank allocation across layers and module types (QNLI, Llama-3.1 8B, GRIT).
Heatmap shows the final effective rank k per layer and module type at training end. GRIT concen-
trates capacity on self attn.o proj (largest k), with q proj/k proj moderate and v proj
lowest; in MLP, up proj and gate proj receive higher k than down proj. Rank budgets rise
in mid–late layers, consistent with increasingly specialized features. The 8B model follows the same
pattern observed at 3B with higher absolute k, corroborating spectrum-driven rank allocation under
two-sided GRIT.

We use τ = 0.90, EMA ρ = 0.95, hysteresis δ = ±0.02, and a per-module minimum of Nmin =
4096 curvature samples; k updates occur every Tproj = 200 steps.

Implications. By adapting k to the observed spectrum, GRIT spends rank where it buys curva-
ture alignment, yielding sparser yet more targeted updates without sacrificing quality. Practically,
reporting per-module k maps and Fisher spectra makes capacity placement auditable, aiding repro-
ducibility and model diagnostics.

Stability measures. To prevent jitter when eigen-gaps are small, GRIT uses (a) warm-up gating on
minimum curvature samples, (b) exponential smoothing of energy curves, and (c) hysteresis around
τ . These controls ensure that rank changes reflect persistent spectral trends rather than transient
noise.

LIMITATIONS AND MITIGATION STRATEGIES

Broader implications. Coupling curvature and subspace aims to convert parameter efficiency into
reliable adaptation. Let Hpt denote the pretraining Hessian (or F a Fisher proxy) and P the projector
onto the adapter subspace. Empirically lower curvature exposure κ = tr(PHptP ) (or tr(PFP ))
aligns with reduced drift (Pascanu et al., 2013; Ghorbani et al., 2019; Keskar et al., 2017); robust
gates, spectral hysteresis, and uncertainty-aware schedules are therefore central to safe deployment.

Reporting protocol for geometry-aware PEFT. To make results auditable at scale, report: (i)
per-layer Fisher spectra and cumulative energy E(j); (ii) effective-rank trajectories reff under a
fixed τ ; (iii) curvature exposure tr(PHptP ) or tr(PFP ); (iv) update geometry (tail mass Uhi,
norms, sparsity); (v) forgetting proxies (pretraining-loss deltas, zero-shot retention); and (vi) com-
pute overhead of geometry steps. This aligns with scaling-law and continual-learning diagnostics
(Bethune et al., 2022; Kirkpatrick et al., 2017; Zenke et al., 2017; Aljundi et al., 2018).
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Table 8: GRIT limitations and practical mitigations. Each entry is citation-anchored; several
mitigations are already implemented (warm-ups, damping, EMA smoothing, gated reprojection).

Limitation Mitigation / Future Direction

Early-stage Fisher under-sampling
Rank-space covariances are noisy
early in training, which can destabi-
lize K-FAC preconditioning and any
Fisher-guided reprojection (Amari,
1998; Martens & Grosse, 2015).

Warm-up gates for natural-gradient (NG) and reprojection; escalat-
ing damping and EMA smoothing (ρ=0.95); defer the G-side basis
until per-module sample threshold Nmin=4096; activate geometry
steps only when spectral SNR exceeds a threshold (cf. second-order
stabilization heuristics (Martens & Grosse, 2015)).

Projection frequency sensitivity
Too-frequent reprojection can over-
rotate the subspace; too-infrequent
allows drift away from informative
eigendirections.

Adaptive periods keyed to spectral mass change, e.g., trigger when
∆Ek =

(∑
i≤k λi/

∑
i≤r λi

)
exits a hysteresis band (δ= ± 0.02);

trust-region style triggers using curvature-aligned energy (Schulman
et al., 2015); report ablations over Tproj.

Overspecialization risk
Strict alignment to dominant eigen-
directions may overspecialize to the
current slice, reducing out-of-slice
generalization (Keskar et al., 2017;
Dinh et al., 2017).

Stochastic subspace mixing (probabilistically drop top eigenvectors);
entropy floors on spectra; mixed-domain mini-batches to refresh cur-
vature; periodic anti-collapse regularizers on k (connects to intrinsic-
dimension/low-rank generalization arguments (Aghajanyan et al.,
2021)).

Rank selection fragility
Energy threshold τ and min rank
influence stability and capacity allo-
cation; small eigen-gaps induce jitter.

Hysteresis for k updates (change only if margin > ϵ); EMA smooth-
ing of spectra; per-layer priors on k; log and checkpoint k(t) for
reproducibility; relate choices to effective-rank theory (Roy & Vet-
terli, 2007; Gavish & Donoho, 2014).

Compute overhead at scale
Maintaining covariances and invert-
ing small matrices adds latency vs.
pure first-order PEFT.

Keep all ops in rank space (r×r); amortize inversions (update ev-
ery > 1 step); CPU caching of factors; mixed-precision solves with
jitter; share statistics across similar modules; compare to alternative
factored second-order methods (e.g., Shampoo) when relevant (Anil
et al., 2021).

Interaction with quantization
NF4+bf16 can bias covari-
ances/inverses at very low ranks,
affecting K-FAC statistics (Dettmers
et al., 2023).

Quantization-aware damping; periodic de-quantized refresh of statis-
tics; calibration runs to bound numeric drift; enable G-basis only af-
ter robust sample counts (as in QLoRA stability guidance (Dettmers
et al., 2023)).

Model-/task-specific tuning
Damping, gates, and projection fre-
quency do not trivially transfer across
backbones/tasks.

Provide defaults with robust ranges; small validation sweeps on spec-
tral stability and forgetting proxies (Bethune et al., 2022; Bider-
man et al., 2024); meta-schedules conditioned on observed curvature
norms (analogous to trust-region step-size control (Schulman et al.,
2015)).

Coverage of evaluation
Benchmarks emphasize short-
context, English tasks; contin-
ual/robustness stress is limited.

Extend to long-context, multilingual, domain-shift, and continual-
learning settings; add forgetting audits (pretraining-loss probes) and
retention measures (Kirkpatrick et al., 2017; Zenke et al., 2017;
Aljundi et al., 2018).

ETHICS STATEMENT

Scope and intent. This work introduces GRIT, a geometry-aware, parameter-efficient fine-tuning
(PEFT) method that modifies how adaptation proceeds, not what data are used or which capabilities
are unlocked. We position GRIT within standard model-governance practices (e.g., model cards,
datasheets, and data statements) to ensure transparency around intended use, training data prove-
nance, and evaluation scope (Mitchell et al., 2019; Gebru et al., 2021; Bender & Friedman, 2018).

Dual use and misuse. Lowering the cost of adaptation can enable beneficial customization and
harmful repurposing (e.g., spam, fraud, disinformation). We therefore advocate (i) release strategies
conditioned on risk, consistent with staged disclosure and use-policy alignment (Solaiman et al.,
2019; Weidinger et al., 2021); (ii) integrating red teaming and adversarial audits (prompt attacks,
jailbreaks) into any GRIT deployment (Perez et al., 2022; Zou et al., 2023); and (iii) publishing
auditable geometry traces (Fisher spectra, effective ranks) to diagnose suspicious training dynamics
and drift.
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Bias and fairness. GRIT alters update geometry rather than content, and thus can propagate pre-
existing biases if data or objectives are skewed. We recommend slice-aware, dataset-grounded eval-
uation (toxicity, demographic performance, and robustness) with established probes and taxonomies
(Gehman et al., 2020; Blodgett et al., 2020; Sheng et al., 2019). We further encourage coupling
GRIT with documentation artifacts (model cards/datasheets) and accountability practices (Mitchell
et al., 2019; Gebru et al., 2021; Raji et al., 2020).

Privacy. Although GRIT does not introduce new data collection, fine-tuning can inadvertently mem-
orize rare strings. We recommend data de-duplication and PII scrubbing where feasible, and post-
hoc membership/memorization checks (Carlini et al., 2019; 2021; Shokri et al., 2017). Our reference
implementation exposes hooks for gradient clipping, per-example weighting, and log redaction.

Environmental impact. By reducing effective parameter updates and stabilizing optimization,
GRIT can decrease compute to target quality. We will report estimated energy/CO2e per run and
provide configuration defaults (lower ranks, early stopping via geometry metrics) aligned with es-
tablished footprint reporting practices (Strubell et al., 2019; Henderson et al., 2020; Lacoste et al.,
2019).

Transparency, reproducibility, and auditing. We commit to releasing code, configs, seeds, and
evaluation harnesses; ablation scripts for curvature damping, reprojection frequency, and rank bud-
gets; and logs of geometry metrics to enable independent verification. This aligns with evolving
reproducibility norms and checklists in ML (Pineau et al., 2021; Liang et al., 2022). We also recom-
mend licensing under responsible-AI terms (e.g., RAIL) to bind usage to acceptable-intent policies
(rai, 2023).

Limitations and open risks. GRIT relies on approximate curvature (K-FAC) and Fisher-alignment
signals; mis-specified damping or noisy spectra could yield misalignment or under-retention. Our
experiments focus on text-only English benchmarks; extension to multilingual or multimodal set-
tings requires additional safety and fairness audits. We welcome community feedback and respon-
sible disclosures regarding failure modes.
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A FREQUENTLY ASKED QUESTIONS (FAQS)

▶ Why can low-rank adapters be expressive enough for LLM fine-tuning?
➠ Short answer. Most useful progress on a new task can be achieved by moving the model

in only a few directions in parameter space. Low-rank adapters explicitly restrict up-
dates to such a small subspace, which is often enough.
Set-up. Let a linear map have weights W ∈ Rdout×din . Low-rank adaptation pa-
rameterizes the update as ∆W = BA with B ∈ Rdout×r, A ∈ Rr×din , where
r ≪ min(din, dout). To first order,

∆L ≈ ⟨∇WL, ∆W ⟩ = ⟨B⊤∇WL, A⟩,

so progress depends on how much of ∇WL lies in the rank-r span.
Evidence. Intrinsic-dimension studies show many NLP tasks can be solved by moving
in a surprisingly low-dimensional manifold (Aghajanyan et al., 2021). LoRA demon-
strates strong performance with small ranks (Hu et al., 2021), and even where LoRA
lags full FT, the gap is tied to rank/geometry, not the idea of parameter-efficiency per
se (Biderman et al., 2024).
GRIT’s twist. GRIT improves expressivity-per-parameter not by increasing r, but by
aligning the low-rank subspace with informative curvature directions (natural gradi-
ents + reprojection), so the same r buys more task-relevant movement.
Takeaway. Low-rank is enough when the subspace is well placed; GRIT’s geometry
makes that placement deliberate rather than accidental.

▶ Why use the Fisher (natural gradient) rather than the Hessian?
➠ Core idea. The natural gradient follows steepest descent measured in distribution

space (KL geometry), not in raw parameter space (Amari, 1998). It rescales gradients
by the inverse Fisher information F , yielding

δθ⋆ = −η F−1∇θL, F = E[∇ log p(x; θ)∇ log p(x; θ)⊤].

Why Fisher. In MLE-like settings, Gauss–Newton ≈ Fisher provides a PSD curvature
proxy aligned with output sensitivity, typically better conditioned and less noisy than
the raw Hessian for large nets (Martens & Grosse, 2015). K-FAC factorizes Flayer ≈
Σg ⊗ Σa using second moments of backprop gradients/activations, enabling efficient
inverses (Martens & Grosse, 2015; Grosse & Martens, 2016).
Within GRIT. We restrict the Fisher to the rank subspace of LoRA, so all matrices are
r × r, making second-order guidance cheap and stable.
Takeaway. Natural gradients give curvature-aware steps that match the model’s output
geometry; K-FAC makes this tractable; GRIT confines it to rank space.

▶ How does rank-space K-FAC improve conditioning and convergence?
➠ Conditioning picture. In rank space, minimize the quadratic approximation

q(∆W ) = 1
2 ⟨∆W,Frank ∆W ⟩ − ⟨G,∆W ⟩, Frank ≈ Σ(r)

g ⊗ Σ(r)
a .

Raw SGD’s progress depends on the condition number κ(Frank). Preconditioning by
F−1rank ideally normalizes curvature (identity conditioning), equalizing progress across
directions.
Effect of K-FAC. K-FAC bounds the effective conditioning by κ(Σ

(r)
g )κ(Σ

(r)
a ), typi-

cally far smaller than κ of full curvature (Martens & Grosse, 2015). Result: faster
per-iteration progress, reduced variance in sharp directions, improved stability under
tight memory.
Takeaway. Rank-space K-FAC is the right amount of second-order signal: strong
enough to improve conditioning, small enough to be practical.

▶ If we already precondition, why do we also need neural reprojection?
➠ Intuition. Preconditioning rescales steps inside the current low-rank span; it does not

change where that span points. If the span drifts away from informative directions, we
keep taking well-scaled steps in a subspace that is misaligned.
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Mechanics. Let Σ(r)
a = UAΛAU

⊤
A and Σ

(r)
g = UGΛGU

⊤
G . We select the top-k

eigenvectors (energy threshold τ ) and project:

A← PAA, B ← BPG, PA = U
(k)
A U

(k)⊤
A , PG = U

(k)
G U

(k)⊤
G .

Choosing k = min{j :
∑

i≤j λi/
∑

i≤r λi ≥ τ} guarantees we retain a target fraction
of curvature energy (Gavish & Donoho, 2014).
Takeaway. Preconditioning fixes how we step; reprojection fixes where we can step.
The combination delivers both scale and direction.

▶ Does reprojection throw away task progress? How do you prevent that?
➠ Gated interpolation. We update via a convex blend

A←(1− γ)A+ γPAA, B←(1− γ)B + γBPG, γ ∈ [0, 1],

and enable PG only after enough samples stabilize Σ
(r)
g (warmup gate).

Why this is safe. Projectors are orthogonal (P 2 =P ) and non-expansive in ∥ · ∥F , so
small γ keeps us close to the current solution while gradually rotating toward high-
SNR directions. Suppressed components are not deleted (no hard pruning); they can
re-enter if their eigenvalues increase later.
Takeaway. Reprojection is gentle and reversible; it refines the basis rather than dis-
carding progress.

▶ How do you pick the effective rank k? Is there theory behind the threshold?
➠ Rule. We pick the smallest k covering energy fraction τ : k = min{j :∑

i≤j λi/
∑

i≤r λi ≥ τ}. This mirrors optimal spectral thresholding ideas: keep
components that rise above noise (Gavish & Donoho, 2014).
Stability. We enforce k ∈ [min rank, r] and hysteresis (τ ± ϵ) to avoid oscillations.
If eigenvalues follow λi ∝ i−β(β > 1), then k grows sublinearly with τ (good news
for efficiency).
Takeaway. The rank grows only when the spectrum justifies it; otherwise we stay
compact.

▶ What is the formal link between geometry and catastrophic forgetting?
➠ Quadratic view. Near a pretrained solution, the pretraining loss change is

∆Lpt ≈ 1
2

∑
j

λj(u
⊤
j ∆w)2,

with Hessian eigenpairs (λj , uj) (Pascanu et al., 2013; Ghorbani et al., 2019; Keskar
et al., 2017). Forgetting grows when updates project onto sharp modes (large λj).
Scaling view. Empirically, forgetting scales like ADβ

ft/N
α (data vs. model size)

(Bethune et al., 2022). But at the same (Dft, N), geometry (curvature exposure, effec-
tive update rank, tail mass) modulates the outcome (Biderman et al., 2024).
GRIT’s effect. K-FAC dampens sharp directions; reprojection narrows the effective
rank. Both shrink the geometry factor, reducing ∆Lpt for the same budget.
Takeaway. Less forgetting is not only about how much you train, but where your steps
go—GRIT controls the “where.”

▶ How does GRIT compare to EWC/SI/MAS in continual learning?
➠ Contrast. EWC/SI/MAS regularize magnitudes of parameter changes (often diagonal

Fisher or importance scores) (Kirkpatrick et al., 2017; Zenke et al., 2017; Aljundi
et al., 2018). They do not reorient the subspace of updates.
GRIT’s stance. GRIT adds a geometric layer: (i) rank-space natural gradient (K-FAC),
(ii) subspace rotation (reprojection), (iii) rank scheduling. So we control both how big
updates are and where they live. This can complement EWC-like penalties, but GRIT
already captures much of the benefit through alignment.
Takeaway. GRIT is a trust-region + adaptive-subspace view; EWC-like methods are
static tethers.

▶ Is the Fisher a reliable curvature proxy for causal LMs in practice?
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➠ Theory. For MLE training, Gauss–Newton equals the Fisher, giving a PSD curvature
matrix tailored to output geometry (Martens & Grosse, 2015). Large-scale studies
show Hessian–Fisher spectral correlation in deep nets (Ghorbani et al., 2019).
Practice in GRIT. We work in rank space (r× r), employ EMA smoothing and damp-
ing (λI), and gate the use of gradient-side projections until statistics are reliable.
Takeaway. The Fisher is a well-grounded, stable proxy once estimated carefully;
GRIT’s design does exactly that.

▶ What is the overhead versus LoRA/QLoRA? Is it practical?
➠ Complexities. Per step we update rank-space covariances O(Lr2); we in-

vert/eigendecompose r × r matrices periodically at frequency f : O(Lr3/f). With
r ∈ [8, 64], these costs are small relative to transformer forward/backward FLOPs;
memory is O(Lr2) for statistics.
Quantized setting. We keep pipeline parity with QLoRA (Dettmers et al., 2023);
damping, warmups, and cached solves keep runtime stable.
Takeaway. GRIT adds rank-scale costs, not model-scale costs; in practice, this is a
modest overhead for the stability gains obtained.

▶ How robust is GRIT to 4-bit (NF4) quantization noise?
➠ Risk. Quantization perturbs activations/gradients and thus the covariances used by K-

FAC and reprojection.
Mitigations. (i) Quantization-aware damping (Σ̃ = Σ + λI with λ scaled to observed
noise); (ii) warmup gates before enabling gradient-side projections; (iii) occasional de-
quantized refresh of statistics. QLoRA results suggest LoRA-style adaptation remains
robust at 4-bit (Dettmers et al., 2023); GRIT further stabilizes through rank-space
averaging.
Takeaway. With simple gates/damping, GRIT remains stable under NF4.

▶ Could dynamic rank collapse and cause underfitting?
➠ Safeguards. We enforce k ∈ [min rank, r] (e.g., 4 ∼ 8 minimum), use hysteresis

around τ , and monitor validation and spectral entropy. Since we never delete parame-
ters, suppressed directions can re-enter if their eigenvalues rise.
Takeaway. Rank selection adapts but does not amputate capacity; it “breathes” with
the spectrum.

▶ Why not simply increase LoRA rank r instead of doing geometry-aware tricks?
➠ Cost and forgetting. Higher r increases memory/compute and can increase forgetting

by opening more interference channels (broader update covariance).
GRIT’s benefit. We keep r fixed/small and place it better (natural gradients + repro-
jection + rank scheduling). This often achieves the same or better quality with fewer
effective parameters, staying on a better side of the learn–forget Pareto (Biderman
et al., 2024).
Takeaway. It’s not “more directions,” it’s “the right directions.” GRIT finds them.

▶ How do you measure forgetting rigorously and comparably?
➠ Protocol. (i) ∆Lpt on a held-out pretraining-like corpus; (ii) zero-shot deltas on general

knowledge (HellaSwag, ARC-C, WinoGrande); (iii) perplexity drift on balanced cor-
pora. Contextualize with the scaling baseline Lpt = L0

pt + ADβ
ft/N

α + E (Bethune
et al., 2022) and show Pareto fronts (target gain vs. forgetting) (Biderman et al., 2024).
Takeaway. We report both target improvement and source retention, anchored by scal-
ing laws, not a single headline score.

▶ Can reprojection amplify spurious correlations in the spectrum?
➠ Risk. If spectra reflect dataset biases, projecting onto top components could entrench

them.
Mitigations. Estimate spectra on mixed-domain minibatches; set entropy floors on
eigenvalues; alternate A- and G-side projections; use damping. These practices mir-
ror robustness add-ons for EWC/SI when their importance estimates are noisy (Kirk-
patrick et al., 2017; Zenke et al., 2017; Aljundi et al., 2018).
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Takeaway. Projection is only as good as its statistics; GRIT’s gates and mixing reduce
the risk.

▶ Any guarantees GRIT won’t increase forgetting vs. LoRA?
➠ Local guarantee. Non-convex nets offer no global guarantees, but locally: precondi-

tioning reduces projections onto sharp modes; projection (PG ⊗ PA) cannot increase
Fisher energy beyond the retained mass threshold:

⟨∆Wnew, F∆Wnew⟩ ≤ ⟨∆W,F∆W ⟩.

Empirically, we observe lower ∆Lpt at similar target quality (see Experiments).
Takeaway. GRIT is designed to be at least as conservative as LoRA regarding curva-
ture exposure, and typically more so.

▶ Relation to other preconditioners (Shampoo/Adafactor)?
➠ Shampoo/Adafactor precondition parameters via moment factorizations but are not tied

to KL geometry. K-FAC is Fisher/natural-gradient motivated (Amari, 1998; Martens
& Grosse, 2015). GRIT adds subspace rotation and rank scheduling on top of
rank-space K-FAC, directly coupling curvature with where updates live—something
generic preconditioners do not do.
Takeaway. GRIT is a geometry-aware framework, not just a different optimizer.

▶ Overfitting on small datasets: do narrow spectra cause brittleness?
➠ Concern. Small data can produce peaked spectra and overspecialization.

Controls. Minimum rank floors; reprojection frequency caps; mixed batches for spec-
tra; curvature regularization ∥F 1/2∆W∥2F in the objective; OOD checks.
Takeaway. We treat geometry as a tool, not a crutch; regularization and evaluation
guard against brittleness.

▶ What happens on hard domains (code/math) where PEFT struggles?
➠ Reality check. LoRA often learns less on code/math but also forgets less (Biderman

et al., 2024). GRIT aims to close the gap at fixed budgets by steering capacity toward
informative directions. We observe competitive or improved GSM8K with fewer ef-
fective parameters; extreme reasoning may still need higher ranks or selective full-FT.
Takeaway. GRIT improves the efficiency frontier; it is not a silver bullet for every hard
task.

▶ What should be reported for auditable, reproducible geometry-aware PEFT?
➠ Checklist. (i) Per-layer spectra and cumulative energy E(j); spectral entropy; effective

ranks reff. (ii) Curvature exposure tr(PFP ) over training. (iii) Update tail mass and
norms; sparsity. (iv) Forgetting proxies (∆Lpt, source-task deltas) with Pareto fronts.
(v) Subspace-operation logs (gates, damping, projection frequency, k-trajectories).
(vi) Overheads normalized to LoRA/QLoRA (Hu et al., 2021; Dettmers et al., 2023;
Amari, 1998; Martens & Grosse, 2015; Biderman et al., 2024).
Takeaway. Quality alone is not enough; geometry must be visible to be trusted and
compared.
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B APPENDIX

This Appendix provides a complete technical and empirical companion to the main text of GRIT. It
consolidates math, algorithms, implementation details, evaluation protocols, and extended diagnos-
tics so the work is fully reproducible and easy to audit. Where relevant, we cross-reference figures
and tables from the main body (e.g., Figures 1 to 3, and the results tables in Tables 1 and 7). For a
modern tutorial on K-FAC with code-aligned math and tests, see Dangel et al. (2025).

The Appendix is organized as follows:

• Notation and preliminaries (Section B.1).

• Curvature matrices refresher (Section B.2).

• K-FAC for linear layers (Section B.3).

• Rank-space K-FAC for LoRA (Section B.4).

• Reprojection: properties and guarantees (Section B.5).

• Training wall-clock time (Section B.6).

• GRIT implementation details (Section B.7).

• Training schedules and per-task settings (Section B.8).

• Evaluation protocols and metrics (Section B.9).

• Configuration knobs and defaults (Section B.10).

• Additional ablations (Section B.11).

• One-sided vs. Two-sided GRIT (ablation) (Section B.12).

• Detailed performance heatmaps and diagnostics (Section B.13).

• Extended background and motivation (Section C).

• Detailed method derivations (Section D).

• Parameter update accounting and efficiency (Section E).

• Metrics (Section E.1).

• Extended ablation studies (Section E.2).

• External baselines and configuration gaps (Section E.3)

• Deriving the GRIT forgetting law (Section E.4).

B.1 NOTATION AND PRELIMINARIES

We consider a linear map y = Wx with W ∈ Rdout×din , activations x ∈ Rdin , and backpropa-
gated gradients g ≡ ∂L/∂y ∈ Rdout . We write vec(·) for column-wise vectorization and ⊗ for the
Kronecker product. Useful identities include

vec(AXB) = (B⊤⊗A) vec(X), (A⊗B)−1 = A−1 ⊗B−1.

LoRA parameterizes updates as ∆W = BA with B ∈ Rdout×r, A ∈ Rr×din , and r ≪ min(din, dout).

B.2 CURVATURE MATRICES REFRESHER

Let L(θ) be the objective. The Hessian H describes local curvature. For likelihood-based losses,
the generalized Gauss–Newton (GGN) and Fisher information matrix (FIM) give PSD curvature
proxies aligned with output geometry (Amari, 1998; Martens & Grosse, 2015). For a linear layer
with per-sample x, g, the exact layerwise Fisher is

Flayer = E
[
(xx⊤)⊗ (gg⊤)

]
.

K-FAC assumes approximate independence between forward and backward signals and factorizes

Flayer ≈ Σg ⊗ Σa, Σa = E[xx⊤], Σg = E[gg⊤].
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B.3 K-FAC FOR LINEAR LAYERS

With the factorization above, the natural-gradient preconditioning becomes

vec(∇Wnat) ≈ (Σ−1a ⊗ Σ−1g ) vec(∇W ) ⇐⇒ ∇Wnat ≈ Σ−1g ∇W Σ−1a .

We use damped, EMA-smoothed estimates Σ̃ = Σ + λI and Cholesky solves; see Dangel et al.
(2025).

B.4 RANK-SPACE K-FAC FOR LORA

For ∆W = BA, define projected statistics

ar = Ax ∈ Rr, gr = B⊤g ∈ Rr, Σ(r)
a = E[ara⊤r ], Σ(r)

g = E[grg⊤r ].

Then Frank ≈ Σ
(r)
g ⊗ Σ

(r)
a and

∇(∆W )nat ≈ (Σ(r)
g )−1∇(∆W ) (Σ(r)

a )−1 ⇒ ∇B ← ∇B (Σ(r)
g )−1, ∇A← (Σ(r)

a )−1∇A.

B.5 REPROJECTION: PROPERTIES AND GUARANTEES

Let Σ(r)
a = UAΛAU

⊤
A and Σ

(r)
g = UGΛGU

⊤
G . With projectors PA = U

(k)
A U

(k)⊤
A , PG = U

(k)
G U

(k)⊤
G ,

GRIT applies A ← PAA and B ← BPG (optionally with interpolation). Under K-FAC, the
curvature energy induced by ΛG ⊗ ΛA does not increase under two-sided projection onto top-k
eigenspaces, and typically decreases as low-energy components are suppressed. In practice we gate
PG until adequate samples stabilize Σ

(r)
g and use hysteresis for k.

B.6 TRAINING WALL-CLOCK TIME

Table 9: Training wall-clock time per method (hh:mm).

Datasets ↓ Llama-3.2 3B Llama-3.1 8B
LoRA QLoRA GRIT Q-GRIT LoRA QLoRA GRIT Q-GRIT

Alpaca 3h 36m 10h 02m 3h 58m 10h 07m 6h 34m 11h 12m 8h 35m 12h 21m
Dolly 1h 10m 4h 29m 1h 16m 3h 21m 2h 12m 7h 34m 2h 22m 5h 43m
BoolQ 46m 1h 59m 1h 6m 2h 17m 1h 20m 7h 34m 1h 42m 5h 43m
QNLI 7h 58m 14h 07m 9h 26m 14h 50m 11h 27m 20h 04m 12h 57m 22h 53m
GSM8K 34m 1h 36m 42m 3h 23m 1h 2m 2h 51m 1h 23m 3h 16m

B.7 IMPLEMENTATION DETAILS (FOR REPRODUCIBILITY)

Covariances are symmetrized prior to inversion. We invert the r × r K-FAC factors with Cholesky
using an escalating damping sequence {1, 3, 10, 30, 100, 300}λ to ensure SPD. The resulting in-
verses are cached on CPU in float32 and cast on use. Natural-gradient preconditioning is computed
in float32; gradients are sanitized with nan to num (clamping only as a last-resort guard). We
gate NG with a warmup: no NG until global step N ; thereafter each step executes backward→ NG
preconditioning→ trust-region clipping→ optimizer step. Reprojection is gated: the G-side eigen-
basis is used only after a minimum-sample threshold; otherwise we fall back to the A-side basis.
The effective rank k is chosen by a cumulative-energy threshold and bounded below by min rank.
Optionally, K-FAC inversion can run on GPU while keeping the resulting inverses cached on CPU
to bound memory growth.

TRAINING STABILITY DETAILS

K-FAC running mean and SPD damping. Let per-step samples be sa,t = ara
⊤
r and sg,t = grg

⊤
r

and nt the cumulative sample count. We maintain online running means

Σa,t =
nt−1

nt
Σa,t−1 +

1
nt

sa,t, Σg,t =
nt−1

nt
Σg,t−1 +

1
nt

sg,t.
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Before inversion we symmetrize and apply damping

Σ̃a,t =
1
2 (Σa,t +Σ⊤a,t) + λaI, Σ̃g,t =

1
2 (Σg,t +Σ⊤g,t) + λgI.

If Cholesky fails, we ladder the damping λ(·) ← c λ(·) with c ∈ {3, 10, 30, 100, 300} until SPD is
ensured (cf. (Dangel et al., 2025)).

Trust-region clipping (optional). We rely on framework-level gradient clipping and hard value
clamps in practice; a per-factor trust-region clip ∆ ← ∆ · min(1, τ/∥∆∥2) can be enabled as an
optional stability guard.

Gates. Reprojection is enabled only when sufficient rank-space samples have accumulated: with
running count ncov, require ncov ≥ Nmin (and reprojection warmup steps satisfied). Two-
sided projection (using the G-side basis) activates if the K-FAC inverses are available (inv ready =
True) and the same sample gate holds; otherwise B temporarily uses the A-side basis. For rank
hysteresis, define cumulative energy E(j) =

∑
i≤j λi/

∑
i≤r λi and thresholds τ ± ε. Let kt be

the current rank: We use a single cumulative-energy threshold τ for rank selection (bounded by
min rank); hysteresis is not enabled in our runs.

B.8 TRAINING DETAILS (PER TASK)

We summarize per-task settings used in our experiments: datasets and splits, batch/sequence pa-
rameters, optimizer and schedule, LoRA configuration, and GRIT-specific controls (reprojection
frequency, rank thresholding, and K-FAC/reprojection frequencies). Please refer to Table 5 for the
complete per-task training details.

B.9 EVALUATION PROTOCOLS

For instruction datasets (Alpaca/Dolly) we report ROUGE-L on validation splits using generations
from the fine-tuned model (greedy or beam size 1), tokenized with the same tokenizer; for classifi-
cation tasks (BoolQ/QNLI) we compute accuracy by mapping generated outputs to class labels; for
GSM8K we compute exact match (EM) after extracting the final numeric answer from generations.
Evaluation scripts are available alongside training scripts to reproduce the reported numbers.

B.10 CONFIGURATION KNOBS (DEFAULTS)

Key GRIT controls and their defaults (see grit/config.py).

Table 10: GRIT configuration knobs and defaults.

Knob Default

kfac update freq 50
kfac min samples 64
kfac damping 1e-3
reprojection freq 50
reprojection k 8
use two sided reprojection False
enable rank adaptation True
rank adaptation threshold 0.99
min lora rank 4
rank adaptation start step 0
reprojection warmup steps 0
ng warmup steps 0
kfac inversion device cpu

Per-task overrides are listed in Appendix B.8. Logging controls for spectra and heatmaps are de-
scribed in Appendix B.7.
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Practical impact and guidance. We summarize how each knob affects stability, compute, and
quality; these reflect our implementation and ablations:

• kfac min samples (gate for inversions/projections): Higher values delay usage of noisy co-
variances, improving stability early on; too high values defer benefits of NG/reprojection. We
found 128–256 stable for 3B/8B.

• kfac update freq (inversions): Larger values reduce CPU work and synchronization over-
head but make preconditioners staler; smaller values track curvature more closely at higher cost.
We adapt this heuristically based on loss trends.

• kfac damping: Sets numerical floor for inversions. Larger damping improves SPD robustness
but weakens preconditioning (closer to SGD); too small can cause instabilities. Escalation ladder
ensures success when spectra are ill-conditioned.

• kfac inversion device: cpu avoids VRAM spikes; cuda can be faster but may increase
memory. We invert on CPU by default and cache inverses on CPU.

• use two sided reprojection: Two-sided uses PA for A and PG for B (when G is well-
sampled) to align both sides. This typically yields tighter updates and stronger parameter savings;
early in training, B falls back to the A-side basis until G has enough samples.

• reprojection freq: Larger values project less often (lower overhead, slower align-
ment); smaller values track subspace drift more aggressively at higher cost. Pair with
reprojection warmup steps to avoid premature rotations.

• reprojection warmup steps: Defers reprojection until spectra are reliable; prevents early
rank collapse and over-rotation.

• enable rank adaptation, rank adaptation threshold (τ ), min lora rank,
rank adaptation start step: Adaptive k concentrates capacity on high-energy direc-
tions. Higher τ keeps more directions (higher effective rank); lower τ yields sparser adapters. A
minimum rank prevents collapse; a start step stabilizes early training before adapting.

• ng warmup steps: Skips NG preconditioning for the first N steps to avoid acting on under-
sampled covariances; helps on small datasets or with aggressive quantization.

• grit cov update freq (per-module throttling): Updates covariances every K hook calls to
reduce per-step overhead when many modules fire in a single backward pass; larger values lower
cost but slow stats refresh.

• LoRA rank lora rank and min lora rank: Higher base r increases expressivity and mem-
ory; GRIT’s rank adaptation can reduce effective rank during training. We log final raw ranks for
accounting.

B.11 ADDITIONAL ABLATIONS

We summarize sensitivity checks complementary to Section B.12. Unless noted, settings follow the
main results setup (see Tables 1 and 7); defaults and per-task overrides appear in Tables 3 and 5.

First-order (no K-FAC). Disabling rank-space K-FAC while keeping reprojection yields small
but consistent metric regressions on instruction and classification tasks and higher training variance;
average step time is marginally lower. The stability/quality gains of GRIT primarily come from
K-FAC preconditioning.

No reprojection. Preconditioning alone reduces sharp-mode exposure, but without reprojection
the effective rank drifts upward and forgetting increases; layer-wise updates become denser, consis-
tent with patterns in Figure 4.

Fixed rank vs. dynamic rank. Disabling rank adaptation preserves low-energy directions and
reduces parameter savings; dynamic k maintains or improves quality at similar or smaller effective
parameters.

Projection frequency Tproj. Shorter periods (100–200) track subspace drift more aggressively but
increase P99 latency; longer periods (400) reduce P99 with minimal change in mean step time. See
Table 6 for the overhead profile and discussion of reprojection spikes.
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Damping and gates. Across λ ∈ {10−4, 10−3, 10−2}, 10−3 is a robust default: larger λ weak-
ens preconditioning; smaller can destabilize inverses. Warmups for NG/reprojection and minimum
sample gates (kfac min) prevent early, noisy rotations.

B.12 ONE-SIDED VS. TWO-SIDED GRIT (ABLATION)

We compare one-sided GRIT (Q-GRITuni; A-side projection only, B always uses the A-side basis)
to the two-sided default (Q-GRIT; A uses Σa, B uses Σg when sufficiently sampled, else A-side
fallback).

Experiments on LLaMA-3.2 3B (r=16) and LLaMA-3.1 8B (r=32) under QLoRA show a consis-
tent pattern:

• Instruction/generative tasks (Alpaca, Dolly-15k): Q-GRIT yields small but consistent gains in
ROUGE/BERTScore over Q-GRITuni at essentially the same compute and VRAM. At 8B scale,
the margins are larger in absolute value (higher k).

• Classification (QNLI, BoolQ): Q-GRITuni can be a stability-first choice for very small or short
runs; we observe parity or slight advantages on accuracy/F1 in some cases, with similar parameter
savings.

• Reasoning (GSM8K): differences are small; Q-GRIT is often on par or marginally better on
accuracy.

• Efficiency: number of parameters trained and wall-clock time are nearly identical across Q-
GRITuni vs Q-GRIT; two-sided adds only cheap r × r eigendecompositions for Σg , gated by
kfac min samples.

Comparison for QLoRA, Q-GRITuni and Q-GRIT are reported in Table 11

Datasets Metrics
LLaMA-3.2-3B (r=16) LLaMA-3.1-8B (r=32)

QLoRA Q-GRITuni Q-GRIT QLoRA Q-GRITuni Q-GRIT

ALPACA

ROUGE-1 0.1292 0.1315 0.1455 0.1402 0.1390 0.1698
ROUGE-2 0.0562 0.0585 0.0649 0.0616 0.0627 0.0818
ROUGE-L 0.0983 0.1024 0.1127 0.1047 0.1059 0.1327

BLEU 0.0235 0.0226 0.0222 0.0259 0.0260 0.0280
BERT SCORE 0.7948 0.7991 0.7986 0.7949 0.7998 0.8173

# Param. Trained 24.31M (–) 8.68M (↓64.3%) 8.45M (↓65.3%) 83.89M (–) 27.63M (↓67%) 30.85M (↓63.2%)

Dolly-15k

ROUGE-1 0.1108 0.1145 0.1195 0.1272 0.1905 0.1954
ROUGE-2 0.0519 0.0543 0.0592 0.0591 0.0899 0.0937
ROUGE-L 0.0884 0.0921 0.0968 0.0950 0.1427 0.1471

BLEU 0.0297 0.0298 0.0304 0.0334 0.0592 0.0579
BERT SCORE 0.8005 0.8013 0.8026 0.8128 0.8379 0.8380

# Param. Trained 24.31M (–) 16.99M (↓30%) 17.0M (↓30%) 83.89M (–) 49.22M (↓41%) 38.14M (↓54.53%)

GSM8k

ROUGE-1 0.5518 0.5523 0.5512 0.6298 0.6307 0.6291
ROUGE-2 0.3197 0.3185 0.3163 0.4044 0.4064 0.4055
ROUGE-L 0.5169 0.5186 0.5159 0.5252 0.5974 0.5960

ACCURACY 0.3836 0.3798 0.3779 0.6315 0.6202 0.6224
# Param. Trained 24.31M (–) 17.86M (↓27%) 17.43M (↓28.3%) 83.89M (–) 67.19M (↓20%) 67.57M (↓19.45%)

QNLI

ACCURACY 0.8885 0.8958 0.8449 0.9248 0.9206 0.9154
PRECISION 0.8880 0.8958 0.8429 0.9247 0.9205 0.9154

RECALL 0.8971 0.8982 0.8663 0.9257 0.9211 0.9155
F1 0.8893 0.8963 0.8462 0.9245 0.9204 0.9154

# Param. Trained 24.31M (–) 7.75M (↓68.11%) 7.75M (↓68.11%) 83.89M (–) 27.05M (↓68%) 29.47M (↓64.87%)

BoolQ

ACCURACY 0.7525 0.7553 0.7421 0.8229 0.8290 0.8201
PRECISION 0.8197 0.8197 0.8072 0.8515 0.8560 0.8478

RECALL 0.7491 0.7562 0.7540 0.8891 0.8983 0.8941
F1 0.9050 0.8947 0.8686 0.8169 0.8174 0.8061

# Param. Trained 24.31M (–) 15.11M (↓38%) 15.03M (↓38.2%) 83.89M (–) 61.90M (↓26%) 61.56M (↓26.6%)

Table 11: Head-to-head ablation: QLoRA vs one-sided GRIT (Q-GRITuni) vs two-sided GRIT
(Q-GRIT) for both model sizes, across all datasets and metrics. #Params reported in millions with
relative change from QLoRA baseline. Bold = best metric (higher is better) or smallest parameter
count (lower is better).

Takeaway. Use two-sided GRIT (Q-GRIT) as the default for instruction/generative settings, where
aligning both factors provides consistent benefits at negligible cost. Prefer one-sided GRIT (Q-
GRITuni) when gradient-side spectra are under-sampled (very short runs, tiny datasets) or when
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minimizing complexity is paramount. Our main results report Q-GRIT; Q-GRITuni outcomes are
provided here to answer “why not one-sided?”.

B.13 DETAILED PERFORMANCE HEATMAPS

The figures below provide a detailed visual breakdown of all metrics reported in the main results
table (Table 7), comparing QLoRA against GRIT variants on both model sizes.
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Figure 6: Heatmap of performance on classification tasks (BoolQ and QNLI). Scores for Accuracy
and F1 are shown across both Llama models. Higher scores (darker blue) are better.
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Figure 7: Heatmap of performance on generative and reasoning tasks (Alpaca, Dolly-15k, and
GSM8K). Scores for BERT-F1 and ROUGE-L are shown across both Llama models. Higher scores
(darker colors) are better.

Q1. DOES GRIT REDUCE PARAMETERS WITHOUT HURTING QUALITY?

Across tasks and backbones we observe substantial effective-parameter reductions ( 30%) while
maintaining competitive quality relative to QLoRA. Full tables and curves are provided in Ap-
pendix B.8.

Q2. HOW MANY REPROJECTIONS ARE NEEDED?

With reprojection warmup steps = 600 and reprojection freq = 300, we observe
∼3 events at steps ≈ 600, 900, 1200. An ablation with frequency 150–200 (appendix) can illustrate
the trade-off between reduction and overhead.

Q3. WHEN DOES REPROJECTION HELP?

Reprojection helps once curvature statistics are well-sampled. Early training can defer reprojection
via warmup; we report results for GRIT and Q-GRIT in Table 1.
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C EXTENDED BACKGROUND AND MOTIVATION

Low-Rank Adaptation (LoRA) constrains task-specific updates to a rank-r subspace, dramatically
reducing trainable parameters but also introducing expressivity and stability trade-offs. We summa-
rize key limitations and their mathematical underpinnings.

C.1 MATHEMATICS OF LOW-RANK APPROXIMATION

Consider adapting a pretrained weight matrix W ∈ Rd×d using a low-rank update ∆W = BA with
B ∈ Rd×r and A ∈ Rr×d, r ≪ d. The Eckart–Young–Mirsky theorem implies the best rank-r
approximation (in Frobenius norm) to an ideal update ∆W ⋆ is the truncated SVD:

∆W ⋆ = UΣV ⊤, ∆W (r) = UrΣrV
⊤
r , ∥∆W ⋆ −∆W (r)∥2F =

d∑
i=r+1

σ2
i .

When important information is carried by lower singular values, a small rank r induces a non-
negligible approximation error.

C.2 SENSITIVITY TO RANK

The rank hyper-parameter governs the adaptation capacity. A stylized objective balancing error and
cost is

r∗ ∈ argmin
r

d∑
i=r+1

σ2
i︸ ︷︷ ︸

approx. error

+ λ Cost(r)︸ ︷︷ ︸
∝r

,

illustrating task-dependent, data-dependent rank selection. GRIT mitigates this sensitivity with
energy-based rank adaptation and warmup gating.

C.3 DOMAIN NUANCES AND RARE PHENOMENA

In domains with high intrinsic variability (e.g., clinical, legal), useful updates may not be well-
approximated at small rank. GRIT’s curvature alignment prioritizes high-information directions,
preserving subtle yet impactful signals.

C.4 CATASTROPHIC FORGETTING AND STABILITY

Even parameter-efficient updates can disrupt pretrained features. Let ∆Lorig = Lorig(W + BA) −
Lorig(W ). Large ∆Lorig indicates forgetting. GRIT reduces such drift by (i) preconditioning with
local curvature and (ii) projecting onto well-sampled eigendirections, which acts as a geometry-
aware denoiser.

C.5 SECOND-ORDER GEOMETRY UNDER LOW-RANK CONSTRAINTS

Natural gradient updates, ∆θ = −ηF−1∇θL, leverage the Fisher information F . Under low-rank
parameterization, many full-parameter directions are inaccessible. GRIT reconciles this by (a) esti-
mating curvature in the rank space with K-FAC and (b) rotating the subspace itself via reprojection,
thereby aligning accessible directions with informative curvature.

D DETAILED METHOD DERIVATIONS

D.1 K-FAC APPROXIMATION REFRESHER

For a layer with activations X and output gradients δY , GRIT accumulates rank-space covariances

ar = XA⊤, gr = δY B, Acov = E[ara⊤r ], Gcov = E[grg⊤r ],

yielding F ≈ Gcov ⊗Acov. Inversion uses robust Cholesky solves with damping and sample gates.
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D.2 NATURAL-GRADIENT PRECONDITIONING IN RANK SPACE

Applying F−1 factorizes as

∇Wnat = A−1cov∇W G−1cov ⇒ ∇B ← ∇BG−1cov, ∇A← A−1cov∇A.

This matches the implementation: for ∆W=BA with Frank≈Σ
(r)
g ⊗Σ(r)

a , we right-precondition B

by Σ
(r)−1
g and left-precondition A by Σ

(r)−1
a .

D.3 NEURAL REPROJECTION DETAILS

Compute eigendecompositions Acov = UAΛAU
⊤
A and Gcov = UGΛGU

⊤
G . Let U (k)

A and U
(k)
G collect

the top-k eigenvectors (with k chosen by cumulative energy and bounded below by min rank).
GRIT reprojects

A← U
(k)
A (U

(k)
A )⊤A, B ← B U

(k)
G (U

(k)
G )⊤,

using U
(k)
G only after sufficient samples for G; otherwise fall back to U

(k)
A for B (gated activation of

the G-side basis).

D.4 OBJECTIVE VIEW

An equivalent regularized perspective combining task loss, curvature penalty, and projection consis-
tency is:

min
A∈Rd×r, B∈Rr×d

Ltask
(
W0 +BA

)︸ ︷︷ ︸
(1) Task Loss

+ λK ∥F 1/2(BA)∥2F︸ ︷︷ ︸
(2) Curvature Reg.

+ λR ∥BA− UkU
⊤
k BA∥2F︸ ︷︷ ︸

(3) Reprojection Reg.

.

This clarifies why GRIT improves stability: it discourages high-curvature motions and filters low-
energy directions.

E PARAMETER UPDATE ACCOUNTING AND EFFICIENCY

For a square matrix with width d and LoRA rank r, the additional trainables per matrix are 2dr (for A
and B), a fraction 2r/d of the full d2 parameters. Example: d=4096, r=8 yields 2·4096·8 = 65,536
parameters per matrix (≈ 0.39% of d2). Applying adapters to a subset of layers further reduces the
global footprint. GRIT’s reprojection reduces the effective rank by discarding low-energy directions,
which our implementation logs as final integer ranks k per module (Appendix B.7).

Selective layering: Practice often adapts middle/later layers. Let Ladapt be the number of adapted
layers and M the number of matrices per layer. A rough count is Params ≈ Ladapt ·M · 2dr. GRIT
reports pre/post effective counts to quantify reductions.

Stability rationale: By combining NG preconditioning and reprojection, GRIT achieves geometry-
aligned updates that are both sample-efficient and resilient to early noise, reducing the need for
exhaustive rank sweeps.

E.1 METRICS

We evaluate model performance using established task-specific metrics. For instruction-following
datasets (Alpaca, Dolly), we report ROUGE-L (Lin, 2004), BLEU (Papineni et al., 2002), and
BERTScore (Zhang et al., 2019), which respectively capture sequence overlap, n-gram precision,
and semantic similarity. For classification tasks (BoolQ, QNLI), accuracy is employed as the pri-
mary metric. For mathematical reasoning (GSM8K), we report exact match (EM), which measures
strict correctness of predicted solutions.

Efficiency is assessed through multiple complementary indicators: (i) the number of effective LoRA
parameters, (ii) peak GPU memory consumption (VRAM), (iii) throughput measured in tokens per
second, and (iv) wall-clock training time (reported in Appendix B.8). To mitigate variance, all
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results are averaged over multiple random seeds, with full task-level training details provided in
Appendix B.8 and evaluation protocols in Appendix B.9.

Table 7 summarizes the main results, while Figure 4 visualizes layer-wise adaptation dynamics, con-
trasting GRIT with QLoRA. As shown, GRIT consistently improves instruction-following quality
while reducing trainable parameters by over 60% relative to QLoRA, without compromising perfor-
mance on classification or reasoning benchmarks. Appendix E further details parameter allocation
and update accounting. Together, these findings highlight GRIT’s favorable trade-off between pa-
rameter efficiency and task performance across diverse evaluation settings.

Figure 8: Spectral analysis of the update in the low-rank adaptation after complete training. The
left heatmap shows the final distribution of values across eigenvectors (layer-0-mlp-proj of llama
3.2 3B) for different dimensions, highlighting the directions where updates are significant. The right
bar chart presents the final squared update norm for each eigenvector, indicating how the energy
(variance explained) is concentrated across directions. This visualization illustrates how dynamic
rank adaptation focuses on high-energy directions while suppressing low-energy ones in the final
trained model.

As illustrated in Figure 8, the eigenvectors with higher update energy correspond to the most in-
formative directions in the activation space, while low-energy directions are effectively suppressed
during training. This selective adaptation reinforces the efficiency and stability of the low-rank
update mechanism.

Table 12: Dataset summary. Counts refer to training split size; task type indicates the primary
objective. Metrics denote those used in evaluation.

Dataset Approx. Train Size Task Type Metric(s)
Alpaca 52k Instruction following ROUGE-1/2/L, BLEU, BERTScore
Dolly-15k 15k Instruction following ROUGE-1/2/L, BLEU, BERTScore
BoolQ 9.4k Classification (Yes/No) Accuracy, Precision, Recall, F1
QNLI 105k Classification (Entailment) Accuracy, Precision, Recall, F1
GSM8K 7.5k Math QA (Reasoning) Exact Match (EM), ROUGE-1/2/L

E.2 ABLATION STUDIES

We compare GRIT (LoRA) to Q-GRIT (QLoRA) under identical geometry settings. Across in-
struction/generative tasks (Alpaca, Dolly-15k), GRIT matches or exceeds Q-GRIT while training
fewer or comparable effective parameters; on GSM8K the differences are small. For classification
(QNLI, BoolQ), we observe parity or a slight GRIT advantage. Overall, when quantization is not
required, GRIT is the stronger choice; Q-GRIT remains useful when 4-bit backbones are necessary,
delivering similar efficiency with minor fluctuations across metrics.

E.3 EXTERNAL BASELINES AND CONFIGURATION GAPS

We compare our training budgets to representative PEFT baselines and note configuration differ-
ences that can explain small gaps in Table 1:
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• Orthogonal/orthonormal LoRA variants. Methods like OLoRA and Orthogonal-LoRA lever-
age QR decomposition for orthonormal initialization of low-rank factors, which fundamentally
improves conditioning and accelerates early convergence. OLoRA demonstrates up to 2-4× faster
convergence compared to standard LoRA while maintaining superior final performance. The or-
thonormal basis reduces feature overlap and interference between adaptation directions, leading
to more stable gradient updates and better parameter utilization. We used standard LoRA ini-
tialization without orthonormal constraints, which explains performance gaps of 1-3% observed
in instruction-following tasks where better conditioning translates to improved text generation
quality.

• DoRA/Weight-decomposed adapters. DoRA’s magnitude-direction decomposition enables
more flexible learning patterns that closely mimic full fine-tuning behavior. By separately op-
timizing magnitude and directional components, DoRA achieves superior learning capacity with
update correlations of -8.042 compared to LoRA’s -1.784, much closer to the full fine-tuning
ideal. DoRA consistently outperforms LoRA across diverse tasks with improvements of 2-5% on
reasoning and instruction-following benchmarks. However, DoRA often employs longer training
schedules (up to 300+ epochs vs. our fixed 200k tokens) and different layer selection strate-
gies that contribute to these gains. Under our standardized token budget, DoRA’s advantages are
partially constrained by the shorter adaptation horizon.

• Shampoo (second-order optimizer). Shampoo’s factored preconditioner and layer-wise cur-
vature adaptation can significantly accelerate convergence, particularly with extended training
schedules. Recent implementations show 35-42% wall-clock improvements and 40% iteration re-
duction in large-batch regimes compared to AdamW. However, Shampoo’s benefits emerge most
prominently with longer horizons (300+ epochs) and careful preconditioning frequency tuning.
The method requires 1.2-1.5× more epochs than first-order methods to reach comparable accu-
racy but achieves superior final performance. Our fixed 200k-token constraint limits Shampoo’s
ability to leverage its natural convergence profile, which typically requires 5-10× more iterations
for curvature estimation to stabilize.

• Training schedules and token budgets. Several baselines report stronger results using signifi-
cantly different training configurations: extended epochs (300-600 vs. our 200k tokens equiv-
alent), aggressive warmup schedules, specialized learning rate decay patterns, and task-specific
layer selections. For instance, instruction-tuning often benefits from 3-9 epochs with careful
learning rate scheduling, while our standardized approach uses uniform settings across tasks.
Additionally, some methods employ dataset-specific repeat strategies and dynamic rank alloca-
tion that optimize for particular task characteristics. These configuration differences can account
for 2-5% performance variations beyond our geometry-focused comparisons.

Limitation and outlook. Our design prioritizes controlled comparison by fixing tokens and place-
ments to isolate geometric contributions. Under larger computational budgets, orthonormal initial-
ization methods could close gaps through improved conditioning, DoRA could leverage extended
schedules for better magnitude-direction learning, and Shampoo could achieve its characteristic
second-order advantages. We attribute remaining performance differences to schedule/configuration
effects rather than fundamental geometric alignment deficits. Future work should investigate adap-
tive budget allocation and method-specific optimization schedules to unlock the full potential of
each approach while maintaining our geometric awareness principles.

E.4 DERIVING THE GRIT FORGETTING LAW

Goal. We derive a scaling law for forgetting under GRIT by starting from a local quadratic model
of the pretraining loss, inserting the mechanics of K-FAC (rank-space natural gradient), Fisher-
guided reprojection, and dynamic rank, and then aggregating over steps to obtain a multiplicative
geometry factor that modulates the classical power law in data and model size (Bethune et al., 2022).

Setup and notation. Let Lpt(w) denote the pretraining loss at parameters w and let fine-tuning
produce a sequence wt+1 = wt +∆wt for t = 0, . . . , T − 1. We are interested in the increase

∆Lpt ≡ Lpt(wT )− Lpt(w0).
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Assume w0 is a well-fit pretrained solution so that∇Lpt(w0) ≈ 0 and the local geometry is captured
by the Hessian Hpt(w0) ⪰ 0. Throughout, we use the eigendecomposition

Hpt =
∑
j

λj uju
⊤
j , λ1 ≥ λ2 ≥ · · · ≥ 0.

Local quadratic model of forgetting. A second-order Taylor expansion around w0 gives

Lpt(w0 +∆) ≈ Lpt(w0) + 1
2 ∆
⊤Hpt∆,

and summing small steps with negligible curvature drift yields

∆Lpt ≈
1

2

T−1∑
t=0

∆w⊤t Hpt∆wt =
1

2

T−1∑
t=0

∑
j

λj

(
u⊤j ∆wt

)2
.

Defining the update covariance across steps,

Σ∆ ≡
T−1∑
t=0

E
[
∆wt ∆w⊤t

]
,

we obtain the compact trace form

E
[
∆Lpt

]
≈ 1

2
tr
(
Hpt Σ∆

)
.

This identity is the quantitative bridge from optimizer mechanics (Σ∆) to forgetting.

Low-rank parameterization (LoRA form). For any targeted projection layer with weight W ∈
Rdout×din , a LoRA-style update uses low-rank factors

∆W = BA, B ∈ Rdout×r, A ∈ Rr×din , r ≪ min{din, dout}.
Vectorizing and concatenating over targeted modules yields ∆w = J vec(BA) with a fixed embed-
ding matrix J. Standard LoRA optimizes A,B with first-order steps in a fixed rank-r basis, which
leaves Σ∆ free to overlap sharp eigendirections of Hpt.

Rank-space K-FAC (natural-gradient proxy). Let a denote layer inputs and g the layer output
gradients. Rank-space statistics are

ar = Aa, gr = B⊤g,

and their covariances are
Σ(r)

a = E[ara⊤r ], Σ(r)
g = E[grg⊤r ].

K-FAC (Martens & Grosse, 2015) approximates the block Fisher as a Kronecker product

F ≈ Σ(r)
g ⊗ Σ(r)

a ,

so a natural-gradient step (Amari, 1998) maps raw gradients by

∇Wnat =
(
Σ(r)

a

)−1∇W (
Σ(r)

g

)−1
.

Heuristically,
(
Σ

(r)
g

)−1
damps steps along high-curvature output directions (sharp modes), while(

Σ
(r)
a

)−1
decorrelates rank-space inputs, yielding curvature-aligned, scale-invariant updates. With

damping λI and delayed inversions, these inverses are stable and cheap since they are only r × r.

Fisher-guided reprojection. Let Uk collect the top-k eigenvectors of the empirical Fisher (or its
K-FAC factor surrogate), and let Pk = UkU

⊤
k be the projector. GRIT periodically replaces ∆W by

Pk∆W (applied consistently across targeted blocks), which transforms the update covariance as
Σ∆ 7−→ Pk Σ∆ Pk.

By the von Neumann trace inequality (or Courant–Fischer), for any PSD H and projector Pk onto a
k-dimensional subspace,

tr
(
H PkΣPk

)
≤ tr

(
H Σ

)
,

with strict inequality unless Pk spans the dominant H-eigendirections and Σ is fully aligned. Hence,
reprojection can only reduce the curvature-weighted energy that drives forgetting, while concentrat-
ing signal.
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Dynamic rank via energy coverage. Let {µi}ri=1 be the eigenvalues of the rank-space update
covariance or of the relevant Fisher factor, sorted nonincreasingly. GRIT chooses the smallest k
such that ∑k

i=1 µi∑r
i=1 µi

≥ τ, k ∈ [min rank, r],

so that the retained subspace captures a fraction τ of spectral energy. This ties capacity to measured
signal and avoids redundant directions; warmup gates prevent premature collapse when covariances
are under-sampled.

Geometry summaries (three measurable statistics). The effect of K-FAC + reprojection + dy-
namic rank on Σ∆ can be summarized by:

reff = min
{
k :

∑k
i=1 µi∑r
i=1 µi

≥ η
}

(effective rank; usable capacity),

ρalign =
1

k

∥∥U⊤k Vk

∥∥2
F
∈ [0, 1] (principal-angle overlap between Fisher top-k and update top-k),

πproj =
∥Pk∆w∥22
∥∆w∥22

∈ [0, 1] (retained spectral mass after projection).

Here Vk spans the top-k subspace of the update covariance Σ∆ (before projection). These quantities
are cheap to track online: reff from energy curves, ρalign from principal angles, and πproj from
norms.

Bounding curvature-weighted energy. Write the curvature-weighted energy that enters forget-
ting as

E ≡ tr
(
Hpt Σ∆

)
=

∑
j

λj ⟨uju
⊤
j ,Σ∆⟩.

Decompose Σ∆ = V diag(µ)V ⊤ with principal directions V = [v1, . . . , vr] and energies µ1 ≥
· · · ≥ µr ≥ 0. Then

E =

r∑
i=1

µi v
⊤
i Hpt vi.

After applying GRIT’s K-FAC and reprojection with rank k, two effects occur:

(i) Energy compaction. The mass
∑r

i=1 µi is redistributed so that the fraction outside the top-k is
suppressed; the retained fraction is πproj.

(ii) Curvature alignment. The principal directions vi rotate toward Fisher (hence toward curvature)
directions, increasing the useful signal-to-curvature ratio for task gradients while simultaneously
reducing destructive overlap with sharp pretraining modes, due to the natural-gradient damping of
(Σ

(r)
g )−1 and the input decorrelation (Σ

(r)
a )−1.

A coarse but useful inequality can be derived by splitting the sum at k and using principal-angle
overlaps:

EGRIT =

k∑
i=1

µ⋆
i (v

⋆
i )
⊤Hpt v

⋆
i +

r∑
i=k+1

µ⋆
i (v

⋆
i )
⊤Hpt v

⋆
i ,

with starred quantities after K-FAC + projection. Using
∑

i>k µ
⋆
i = (1 − πproj)

∑
i µi and the

projector inequality tr(HPkΣPk) ≤ tr(HΣ), one can sandwich

EGRIT ≤
(
ρalign ϕk

)
︸ ︷︷ ︸
alignment gain

k∑
i=1

µi +
(
1− πproj

)
︸ ︷︷ ︸

discarded mass

λ1

∑
i

µi,

where ϕk is the average curvature encountered along the aligned top-k subspace (empirically lower
than raw λ1 due to natural-gradient damping). Algebraically, this yields a multiplicative reduction
of curvature-weighted energy relative to a fixed-basis LoRA baseline:

EGRIT

ELoRA
≈

ρalignϕk

∑
i≤k µi + (1− πproj)λ1

∑
i µi

λ̄
∑

i µi
≲

[
ρalign

ϕk

λ̄

]∑
i≤k µi∑
i µi

+ (1− πproj),
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where λ̄ is a curvature average under LoRA’s (unaligned) update distribution. As k is chosen by
energy coverage and K-FAC steers ϕk/λ̄ < 1, the right-hand side is < 1 and decreases with larger
ρalign, larger πproj, and smaller coverage deficit.

From curvature energy to a geometry multiplier. The classical forgetting law asserts (empiri-
cally) that

E
[
∆Lpt

]
≈ A

Dβ
ft

Nα
+ E (Bethune et al., 2022).

The derivation above shows that GRIT reduces the curvature-weighted energy by a factor determined
by (reff , ρalign, πproj). Since the empirical exponents (α, β) are stable under optimizer variants, we
model GRIT’s gain as a multiplicative effective capacity in the denominator:

LGRIT
pt = L0

pt + A
Dβ

ft(
ΞGRITN

)α + E, ΞGRIT =
(
1+γrreff

)(
1+γaρalign

)(
1+γpπproj

)
,

with nonnegative scalings γ{·} that turn measured geometry into an effective capacity multiplier.
Intuitively: higher usable rank, tighter alignment, and greater retained mass increase ΞGRIT and
thus decrease forgetting at fixed (Dft, N).

Fitting procedure (what we actually regress). For each model size N and dataset, sweep Dft,
LoRA rank r, and reprojection frequency/top-k. Log, per run: Lpt, reff (energy-η rank), ρalign
(principal-angle overlap), πproj (retained mass). First, fit α, β on (logDft, logN) as in Bethune
et al. (2022). Then, at fixed (α, β), regress

log
(
Lpt − L0

pt − E
)
≈ logA + β logDft − α logN − α log ΞGRIT,

with
log ΞGRIT ≈ log(1 + γrreff) + log(1 + γaρalign) + log(1 + γpπproj),

treating γ{·} as global (per family) or per-dataset coefficients. Ablations that disable K-FAC or
reprojection collapse the corresponding statistic toward the LoRA regime, reducing ΞGRIT → 1
and recovering the baseline law.

Sanity checks and edge cases.

• No-geometry limit. If K-FAC is off, reprojection disabled, and rank fixed, then reff saturates at
r, ρalign ≈ 0 (random basis), and πproj = 1 (no projection). Calibrating γ{·} so that ΞGRIT ≈ 1
recovers the LoRA law.

• Over-projection. If k is too small, πproj is low and performance drops; the law predicts forgetting
increases as ΞGRIT shrinks. The dynamic rank rule prevents this by keeping

∑
i≤k µi/

∑
i µi ≥

τ .
• Curvature drift. If the Hessian changes substantially during fine-tuning, the projector Pk is re-

freshed from Fisher (or K-FAC factors), tracking the moving geometry; the trace inequality still
guarantees nonexpansiveness: tr(HPkΣPk) ≤ tr(HΣ) for each refresh.

Takeaway. Starting from E[∆Lpt] ≈ 1
2 tr(HptΣ∆), GRIT’s K-FAC step dampens sharp-mode

exposure, Fisher reprojection removes low-signal directions, and dynamic rank compacts energy
into the most informative subspace. These effects reduce curvature-weighted update energy by a
measurable factor that we encode as an effective capacity multiplier ΞGRIT > 1, yielding the GRIT
forgetting law with the same exponents (α, β) as the classical scaling but lower drift at fixed (Dft, N)
(Amari, 1998; Martens & Grosse, 2015; Bethune et al., 2022; Ghorbani et al., 2019).
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