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Abstract
Recent Diffusion models (DMs) advancements
have explored incorporating the second-order dif-
fusion Fisher information (DF), defined as the
negative Hessian of log density, into various down-
stream tasks and theoretical analysis. However,
current practices typically approximate the diffu-
sion Fisher by applying auto-differentiation to the
learned score network. This black-box method,
though straightforward, lacks any accuracy guar-
antee and is time-consuming. In this paper, we
show that the diffusion Fisher actually resides
within a space spanned by the outer products of
score and initial data. Based on the outer-product
structure, we develop two efficient approximation
algorithms to access the trace and matrix-vector
multiplication of DF, respectively. These algo-
rithms bypass the auto-differentiation operations
with time-efficient vector-product calculations.
Furthermore, we establish the approximation error
bounds for the proposed algorithms. Experiments
in likelihood evaluation and adjoint optimization
demonstrate the superior accuracy and reduced
computational cost of our proposed algorithms.
Additionally, based on the novel outer-product
formulation of DF, we design the first numerical
verification experiment for the optimal transport
property of the general PF-ODE deduced map.

1. Introduction
The emerging diffusion models (DMs) (Sohl-Dickstein et al.,
2015; Ho et al., 2020; Song & Ermon, 2019; Song et al.,
2020), generating samples of data distribution from initial
noise by learning a reverse diffusion process, have been
proven to be an effective technique for modeling data distri-
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bution, especially in generating high-quality images (Nichol
et al., 2022; Dhariwal & Nichol, 2021a; Saharia et al., 2022;
Ramesh et al., 2022; Rombach et al., 2022; Ho et al., 2022).
The training process of DMs can be seen as employing
a neural network to match the first-order diffusion score
∇x log qt(x) at varying noise levels.

There has been a growing trend to recognize the impor-
tance of the diffusion Fisher (DF) in DMs, defined as the
negative Hessian of the diffused distributions’ log den-
sity, −∇2

x log qt(x). The DF provides valuable second-
order information on DMs and plays a crucial role in
downstream tasks, e.g., likelihood evaluation (Lu et al.,
2022a; Zheng et al., 2023), adjoint optimization (Pan et al.,
2023a;b; Blasingame & Liu, 2024), and the optimal trans-
port analysis of DMs (Zhang et al., 2024a). It is straight-
forward to access DFs by applying auto-differentiation
to the learned first-order diffusion score. Nevertheless,
the repeated auto-differentiation operations would be time-
consuming for large-scale tasks, even when incorporating
the Vector-Jacobian-product (VJP) and Hutchinson’s esti-
mation technique (Song & Lai, 2024). Recently, certain re-
search efforts investigated the time-evolving property of DM
and demonstrated that the DF can be explicitly expressed in
terms of the score and its covariance matrix (Benton et al.,
2024; Lu et al., 2022a). However, these results predom-
inantly concentrate on the theoretical aspects and fail to
enable efficient access to the DF.

In this paper, we derive a novel form for the diffusion Fisher,
which is composed of weighted outer-product sums. This
innovative formulation uncovers that the diffusion Fisher in-
variably lies within the span of a set of outer-product bases.
Notably, these bases solely depend on the initial data and the
noise schedule. Leveraging this outer-product structure, we
devise two efficient approximation algorithms to access the
trace and matrix-vector multiplication of DF, respectively.
Moreover, we design the first numerical verification exper-
iment to investigate the optimal transport property of the
diffusion-ODE deduced map under diverse types of initial
data and noise schedules. The main contributions of our
paper are listed as follows:

• We derive an analytical formulation of the diffusion
Fisher, which is the weighted summation of the outer
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product, under the setting when the initial distribution
is a sum of Dirac. The derivation process involves ap-
plying the consecutive partial differential chain rule to
the data-dependent form of marginal distributions. Sub-
sequently, we extend this formulation to a more general
setting. In this general case, we only assume that the
initial distribution has a finite second moment. These
novel formulations reveal that the diffusion Fisher in-
variably lies within the span of a set of outer-product
bases.

• Based on the outer-product structure of DF, we propose
two efficient approximation algorithms, each tailored
to access the trace and matrix-vector multiplication of
the DF, respectively. When it comes to evaluating the
trace of the diffusion Fisher, we introduce a parameter-
ized network to learn the trace, significantly reducing
the time complexity of trace evaluation from quadratic
to linear w.r.t. the dimension. In situations where we
need to access the matrix-vector multiplication of the
diffusion Fisher, we present a training-free method that
simplifies the complex linear transformation into sev-
eral simple vector-product calculations. Furthermore,
we rigorously establish the approximation error bounds
for these two algorithms.

• Utilizing the novel outer-product formulation of DF,
we derive a corollary for the optimal transport (OT)
property of the diffusion-ODE deduced map. Subse-
quently, we design the first numerical experiment to
examine the OT property of any general diffusion ODE
deduced map based on the corollary. Our numerical
experiments indicate that for all commonly employed
noise schedules (VE (Ho et al., 2020), VP (Song &
Ermon, 2019), sub-VP (Song et al., 2020), and EDM
(Karras et al., 2022)), the diffusion ODE map exhibits
the OT property when the initial data follows a single
Gaussian distribution or has an affine form. Conversely,
it does not exhibit this property when the initial data is
non-affine. These numerical results not only validate
the conclusions presented in (Khrulkov et al., 2023;
Zhang et al., 2024a; Lavenant & Santambrogio, 2022),
but also open up new avenues for the exploration of
more general cases.

We evaluate our DF access algorithms on likelihood evalua-
tion and adjoint optimization tasks. The empirical results
demonstrate our DF methods’ enhanced accuracy and re-
duced time cost.

2. Preliminaries
Notation. The Euclidean norm over Rd is denoted by ∥·∥,
and the Euclidean inner product is denoted by ⟨·|·⟩. Through-
out, we simply write

∫
g to denote the integral with respect

to the Lebesgue measure:
∫
g(x)dx. When the integral is

with respect to a different measure µ, we explicitly write∫
gdµ. When clear from context, we sometimes abuse nota-

tion by identifying a measure µ with its Lebesgue density.
We also use δ(·) to denote the Dirac Delta function. For
a vector v ∈ Rd, we denote the d × d matrix vv⊤ as the
outer-product of v.

2.1. Diffusion Models and Diffusion SDEs

Suppose that we have a d-dimensional random variable
x0 ∈ Rd following an unknown target distribution
q0(x0). Diffusion Models (DMs) define a forward pro-
cess {xt}t∈[0,T ] with T > 0 starting with x0, such that the
distribution of xt conditioned on x0 satisfies

qt|0(xt|x0) = N (xt;α(t)x0, σ
2(t)I), (1)

where α(·), σ(·) ∈ C([0, T ] ,R+) have bounded derivatives,
and we denote them as αt and σt for simplicity. The choice
for αt and σt is referred to as the noise schedule of a DM.
According to (Kingma et al., 2021; Karras et al., 2022),
with some assumption on α(·) and σ(·), the forward process
can be modeled as a linear SDE which is also called the
Ornstein–Uhlenbeck process:

dxt = f(t)xtdt+ g(t)dBt, (2)

where Bt is the standard d-dimensional Brownian Motion
(BM), f(t) = d logαt

dt and g2(t) =
dσ2

t

dt −2 d logαt

dt σ2
t . Under

some regularity conditions, the above forward SDE equa-
tion 2 have a reverse SDE from time T to 0, which starts
from xt (Anderson, 1982):

dxt =
[
f(t)xt − g2(t)∇xt log q(xt, t)

]
dt+ g(t)dB̃t,

(3)
where B̃t is the reverse-time Brownian motion and q(xt, t)
is the single-time marginal distribution of the forward pro-
cess. In practice, DMs (Ho et al., 2020; Song et al., 2020)
use εθ(xt, t) to estimate −σ(t)∇xt log q(xt, t) and the pa-
rameter θ is optimized by the following loss:

L = Et

{
λtEx0,xt

[
∥sθ(xt, t)−∇xt log p(xt, t|x0, 0)∥2

]}
,
(4)

where sθ represents the parameterized score, i.e.,
sθ(xt, t) = −εθ(xt,t)

σt
. This familiar parameterization

is called ϵ-prediction. There are also y-prediction and
v-prediction (Salimans & Ho, 2022). The correspond-
ing loss is equal to replace the term |ϵ − εθ(xt, t)| with
αt

σt
|x0−ȳθ(xt, t)| and |αtϵ−σtx0−vθ(xt, t)|. The learned

εθ(xt, t) can be also transformed to a y-prediction form by
ȳθ(xt, t) =

xt−σtεθ(xt,t)
αt

.

2.2. Diffusion Models Inference as Neural ODE

It is noted that the reverse diffusion SDE in equation 3 has an
associated probability flow ODE (PF-ODE, also called diffu-
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sion ODE), which is a deterministic process that shares the
same single-time marginal distribution (Song et al., 2020):

dxt =

[
f(t)xt −

1

2
g2(t)∇xt

log qt(xt, t)

]
dt. (5)

By replacing the score function in equation 5 with the noise
predictor εθ, the inference process of DMs can be con-
structed by the following neural ODE:

dxt

dt
= hθ (xt, t) := f(t)xt +

g2(t)

2σt
ϵθ (xt, t) , (6)

where initial xT ∼ N
(
0, σ2

T I
)
.

2.3. Fisher Information in Diffusion Models

The diffusion Fisher information matrix in DMs is defined
as the negative Hessian of the marginal diffused log-density
function, which takes the following matrix-valued form
(Song et al., 2021; Song & Lai, 2024):

Ft(xt, t) := − ∂2

∂x2
t

log qt (xt, t) (7)

The current technique typically approximately accesses the
diffusion Fisher by accessing the scaled Jacobian matrix of
the learned score estimator network εθ:

Ft(xt, t) = − ∂

∂xt

(
∂

∂xt
log p (xt, t)

)
≈ − ∂

∂xt

(
−εθ(xt, t)

σt

)
=

1

σt

∂εθ(xt, t)

∂xt

(8)

The full diffusion Fisher matrix within DMs cannot be ob-
tained due to dimensional constraints. For instance, the
Stable Diffusion-1.5 model (Rombach et al., 2022) features
a latent dimension of d = 4 × 64 × 64 = 16384, result-
ing in a diffusion Fisher matrix of 16384 × 16384. Fortu-
nately, for applications that only need to access the trace or
multiplication of diffusion Fisher, it is feasible to use the
Vector-Jacobian-product (VJP) to access diffusion Fisher.
For any d-dimensional vector v, the approximation of v left
multiplied by Ft(xt, t) using VJP is as follows:

(VJP) v⊤Ft(xt, t) ≈
1

σt
v⊤ ∂εθ(xt, t)

∂xt

=
1

σt

∂ [⟨εθ(xt, t)|v⟩]
∂xt

(9)

The VJP is a time-consuming process due to its requirement
for gradient calculations within the neural network. In ad-
dition, empirical evidence from synthetic distributions, as
demonstrated in Lu et al. (2022a), shows that the approxi-
mation results from the VJP significantly deviate from the
true underlying diffusion Fisher. To our knowledge, there

Access Methods
Theoretical
Time-cost

Practical
Time-cost (s)

Theoretical
Error Bound

Trace VJP (eq. 15) c1d+ c2d
2 2195.48 ✗

DF-TM (Ours) 2c1d 0.07299% ↓ ✓(Prop. 7)

Operator VJP (eq. 19) c1d+ c2d 0.155 ✗
DF-EA (Ours) 2c1d 0.06359% ↓ ✓(Prop. 8)

Table 1: Comparison of Vector-Jacobian-product (VJP) and our
proposed efficient access methods in terms of per-iteration theoret-
ical time-cost, practical time-cost, and approximation error bound.
The theoretical time cost is based on assumptions of a network
access cost of c1d time and backpropagation on network cost of
c2d time (c2 ≈ 4c1). The practical time-cost is tested using the
SD-v1.5 model over 10k COCO prompts. Here, our VJP baseline
calculates every element of the trace, and discussion on its approx-
imation is deferred to Appendix C.5.

is no theoretical guarantee that the diffusion Fisher can be
accurately accessed through the VJP. Moreover, the VJP
fails to provide any theoretical insight into the diffusion
Fisher.

3. Diffusion Fisher in Outer-Products Span
Accessing diffusion Fisher via the VJP as shown in equa-
tion 9 is straightforward, but it does not take advantage of
any inherent structure of the diffusion Fisher. Though cer-
tain recent research efforts (Lu et al., 2022a; Benton et al.,
2024) demonstrated that the DF can be explicitly expressed
in terms of the score and its covariance matrix. Neverthe-
less, their formulations cannot directly facilitate efficient
access to the diffusion Fisher. In this section, we derive a
novel form for the diffusion Fisher, which is composed of
weighted outer-product sums. We first conduct this under a
simplified scenario, assuming that the initial distribution q0
is a sum of Dirac distributions. Subsequently, we general-
ize this outer-product span form to a more general setting.
Significantly, the outer-product span form of the diffusion
Fisher obtained in both settings does not require any gradi-
ent calculations and depends solely on the initial data and
the noise schedule. Notably, there exist fast methods for
accessing the trace and matrix-vector multiplication of an
outer-product matrix. This advantageous characteristic al-
lows for the development of novel algorithms for efficiently
accessing the diffusion Fisher. We start with a simple setting
where we assume that the initial distribution is character-
ized as a sum of Dirac distributions composed of the set of
samples in the dataset. If we suppose the dataset is denoted
as {yi}Ni=0, then the initial distribution follows

(Dirac Setting) q(x, t)|t=0 =
1

N

N∑
i=0

δ(x− yi),

(10)
where exists a 0 < Dy < ∞ such that ∥yi∥ ≤ Dy holds true
for every i. In this Dirac setting, we derive the following
formulation of diffusion Fisher, which is a weighted outer-
product sum devoid of gradients and composed solely of the
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Figure 1: (a) The training loss of DF-TM for SD-1.5 and SD-
2base. It demonstrates commendable convergence behavior. (b)
The trade-off curve of NLL and Clip score of SD-1.5 and SD-2base
across various guidance scales in [1.5, 2.5, ..., 12.5, 13.5]

initial distribution and the noise schedule.

Proposition 1. Defines vi(xt, t) as
exp
(
− |xt−αtyi|2

2σ2
t

)
∈ R and wi(xt, t) as

vi(xt,t)∑
j vj(xt,t)

∈ R. If q0 takes the form as in
equation equation 10, the diffusion Fisher matrix
of the diffused distribution qt for t ∈ (0, 1] can be
analytically formulated as follows:

Ft(xt, t) =
1

σ2
t

I − α2
t

σ4
t

[∑
i

wiyiy
⊤
i

−

(∑
i

wiyi

)(∑
i

wiyi

)⊤
 (11)

where we have simplified wi(xt, t) to wi, as it does
not lead to any confusion.

We also find that the
∑

i wiyi component in equation 11 can
be effectively approximated by the trained score network in
the form of y-prediction, as demonstrated in the following
proposition.

Proposition 2. Given the diffusion training loss in
equation 4, and if q0 conforms to the form presented
in equation 10, then the optimal ȳθ(xt, t) can accu-
rately estimate

∑
i wiyi.

The General Setting We further extend the diffusion
Fisher formulation in equation 11 to a more general set-
ting, where we only assume that the initial distribution q0 is
a probability measure on Rd with finite second moments.

(General Setting) q0 ∈ P2(Rd), (12)

which means that q0 ∈ P(Rd),
∫
Rd ||x||2q0(x)dx < ∞.

In this general setting, we derive the following form of
diffusion Fisher, which is a weighted outer-product integral,
which resides in a space spanned by an infinite set of outer
products.

Proposition 3. Let us define v(xt, t,y) as

exp
(
− |xt−αty|2

2σ2
t

)
∈ R and w(xt, t,y) as

v(xt,t,y)∫
Rd v(xt,t,y)dq0(y)

∈ R. If q0 takes the form as in
equation 12, the diffusion Fisher matrix of the diffused
distribution qt for t ∈ (0, 1] can be analytically formulated
as follows:

Ft(xt, t)=
1

σ2
t

I − α2
t

σ4
t

[∫
w(y)yy⊤dq0

−
(∫

w(y)ydq0

)(∫
w(y)ydq0

)⊤
]
(13)

where we simply write w(xt, t,y) as w(y), as long as it
does not lead to any confusion.

We further ascertain that the
∫
w(y)ydq0(y) component in

equation 13 can be effectively approximated by the score
network in the form of y-prediction, as demonstrated in the
following proposition.

Proposition 4. Given the diffusion loss in equation 4, and
if q0 conforms to the form in equation 12, then the optimal
ȳθ(xt, t) can accurately estimate

∫
w(y)ydq0(y).

The derivation of the outer-product form of diffusion Fisher
under the general setting is akin to the Dirac case, but in
an integral form. For the remainder of the paper, we will
focus on developing our method based on the Dirac setting
diffusion Fisher. However, the same results can be naturally
extended to the general setting.

4. Diffusion Fisher Trace Matching
The likelihood evaluation of DMs would require access to
diffusion Fisher’s trace. In this section, we introduce a net-
work to learn the trace, thus facilitating effective likelihood
evaluation in DMs.

Log-Likelihood in DMs Log-likelihood is a classic and
significant metric for probabilistic generative models, exten-
sively utilized for comparison between samples or models
(Bengio et al., 2013; Theis et al., 2015). According to Chen
et al. (2018); Song et al. (2021), the log-likelihood of sam-
ples generated by PF-ODE in equation 6 from DMs can be
computed through a connection to continuous normalizing
flows as follows:

∂ log qt(xt, t)

∂t
=−tr

(
∂

∂xt

(
f(t)xt −

1

2
g2(t)∂xt log qt(xt, t)

))
=−tr

((
f(t)I − 1

2
g2(t)

∂2

∂xt
2
log qt(xt, t)

))
=−f(t)d− g2(t)

2
tr (Ft(xt, t))

(14)
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Figure 2: Our DF-TM method facilitates the effective evaluation of the NLL of generated samples with varying seeds. It can be
demonstrated that a lower NLL signifies a region of higher possibility, thereby consistently indicating superior image quality.

where tr(·) denotes the trace of a matrix, which is defined
to be the sum of elements on the diagonal.

Log-Likelihood Evaluation via VJP The current tech-
nique is only capable of conducting backpropagation of
scalar value to the neural network. Therefore, the VJP in
equation 9 cannot directly calculate the trace of the diffu-
sion Fisher. The VJP must iterate through each dimension
to compute the individual elements on the diagonal, and
then sum them up as follows

tr (Ft(xt, t)) ≈
1

σt

d∑
i=1

∂
[〈
εθ(xt, t)

∣∣e(i)〉]
∂xt

. (15)

Evaluating the trace using the VJP method would be ex-
tremely time-consuming due to the curse of dimensional-
ity. If the time-complexity of a single backpropagation is
O(d), then the calculation in equation 15 would have a time-
complexity of O(d2). In practice, as demonstrated in Table
1, evaluating the trace of diffusion Fisher on the SD-v1.5
model would require half an hour, rendering it nearly in-
feasible. Some Monte-Carlo type approximations can be
used to accelerate the NLL evaluation of models, but they
still fall short in per-sample NLL evaluation, see a detailed
discussion in C.5.

Log-Likelihood Evaluation via DF trace matching To
overcome the limitations of the VJP method in evaluating

Methods The relative error of NLL evaluation
t = 1.0 t = 0.8 t = 0.6 t = 0.4 t = 0.2 t = 0.0

VJP (eq. 15) 6.68% 5.79% 10.46% 20.13% 51.14% 70.95%
DF-TM (Ours) 3.41% 4.56% 4.13% 4.28% 5.33% 5.81%

Table 2: Comparison of the VJP method and our DF-TM in
terms of the diffusion Fisher trace evaluation error across different
timesteps. The error is evaluated on the 2-D chessboard data with
the VE schedule.

the trace of the diffusion Fisher, we propose to directly ob-
tain its analytical form and train a network to match it. Note
that the trace of an outer-product of the vector results in the
vector’s norm. Thus, given the diffusion Fisher in Proposi-
tion 1, we can also derive its trace in the form of a weighted
norm sum, as highlighted in the following proposition:

Proposition 5. In the same context as Proposition
1, the trace of the diffusion Fisher matrix for the
diffused distribution qt, where t ∈ (0, 1], is given
by:

tr (Ft(xt, t)) =
d

σ2
t

− α2
t

σ4
t

[∑
i

wi∥yi∥2 −

∥∥∥∥∥∑
i

wiyi

∥∥∥∥∥
2]

(16)

As demonstrated in Proposition 2, the ∥
∑

i wiyi∥2 can be
directly estimated by ∥ȳθ(xt, t)∥2. Therefore, the only
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Figure 3: Comparison between our DF method and the VJP method on adjoint guidance sampling across five objective scores: SAC/AVA
aesthetic score, Pick-Score, clip loss, and Face ID loss. Notably, our DF consistently achieves superior scores with less time expenditure.

unknown element in equation 16 is
∑

i wi∥yi∥2. Conse-
quently, we suggest learning this term using a scalar-valued
network, as per the following training scheme:

Algorithm 1 Training of DF-TM Network

1: Input: data space dimension d, initial network tθ(·, ·) : Rd ×
R 7→ R, noise schedule {αt} and {σt}.

2: repeat
3: x0 ∼ q0 (x0)
4: t ∼ Uniform({1, . . . , T})
5: ε ∼ N (0, I)
6: xt = αtx0 + σtε

7: Take gradient descent on ∇θ

∣∣∣tθ(xt, t)− ∥x0∥2
d

∣∣∣2
8: until converged
9: Output: tθ(·, ·)

The training scheme detailed in Algorithm 1 can in-
deed enable tθ(xt, t) to estimate the weighted norm term
1
d

∑
i wi(xt, t)∥yi∥2. This is substantiated by the conver-

gence analysis Proposition 6, as presented below.

Proposition 6. ∀(xt, t) ∈ Rd × R≥0, the optimal
tθ(xt, t)s trained by the objective in Algorithm 1 are
equal to 1

d

∑
i wi(xt, t)∥yi∥2.

Once we have obtained tθ, we can evaluate the trace of dif-
fusion Fisher efficiently, as illustrated below. This approach
is a straightforward result of equation 16 and Propositions 2
and 6, which we refer to as DF trace matching (DF-TM).

tr (Ft(xt, t)) ≈
d

σ2
t

− α2
t

σ4
t

(
d ∗ tθ(xt, t)− ∥yθ(xt, t)∥2

)
(17)

To estimate the trace using DF-TM in equation 17, we sim-
ply need one access to tθ and εθ. DF-TM enables us to
effectively evaluate the log-likelihood in a gradient-free
manner with linear time complexity. We can further sub-
stantiate the theoretical approximation error bound when
using DF-TM to calculate the trace of the diffusion Fisher,
as illustrated in the Proposition 7.

Proposition 7. Assume the approximation error on
tθ(xt, t) is δ1 and on εθ(xt, t) is δ2, then the ap-
proximation error of the approximated Fisher trace
in equation 17 is at most α2

t

σ4
t
δ1 +

1
σ2
t
δ22 .

Experiments We conduct toy experiments to show the
accuracy and commercial-level experiments to show the
efficiency of our DF-TM method. In toy experiments, as
shown in Table 2, we trained a simple DF-TM network on
2-D chessboard data and then evaluated the relative error of
the trace estimated by VJP and DF-TM. It is shown that our
DF-TM method consistently achieves more accurate trace
estimation of DF compared to the VJP method.

In commercial-level experiments, we trained two DF-TM
networks for the SD-1.5 and SD-2base pipeline on the
Laion2B-en dataset (Schuhmann et al., 2022), which con-
tains 2.32 billion text-image pairs. Our tθ follows the U-net
structure, similar to stable diffusion models, but with an
added MLP head to produce a scalar-valued output. We
utilize the AdamW optimizer (Loshchilov & Hutter, 2019)
with a learning rate of 1e-4. The training is executed across
8 V100 chips with a batch size of 384 and completed after
150K steps. In Figure 1a, we demonstrate that the train-
ing loss of DF-TM nets converges smoothly, indicating the
robustness of the DF-TM training scheme in Algorithm 1.

In Figure 1b, we evaluate the average NLL and Clip score
of samples generated by various SD models, using 10k ran-
domly selected prompts from the COCO dataset (Lin et al.,
2014). A lower NLL suggests more realistic data generation,
while a higher Clip score indicates a better match between
the generated images and the input prompts. The results
imply that the NLL and the Clip score form a trade-off
curve across different guidance scales. This phenomenon,
previously hypothesized in theory (Wu et al., 2024), is now
confirmed in the SD models, thanks to the effective NLL
evaluation via the DF-TM method.

In Figure 2, we display images with varying NLL under the
same prompt with 10 steps on SD-1.5 using DDIM. It’s clear
that images with lower NLL exhibit greater visual realism,
while those with higher NLL often contain deformed ele-
ments (emphasized by the yellow rectangle). Our proposed
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Original

Images
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Figure 4: Visual comparison of DF-EA (Ours) and VJP in the adjoint improvement task on (left) SAC aesthetic score and
(right) Pick-Score. DF-EA consistently generates images with better visual effects and reduced time expenditure.

NLL evaluation method proves to be an effective tool for
automatic sample selection.

5. Diffusion Fisher Endpoint Approximation
The adjoint optimization of DMs would require access to the
matrix-vector multiplication of the diffusion Fisher, which
can also be seen as applying diffusion Fisher as a linear op-
erator. In this section, we present a training-free method that
simplifies the complex linear transformation calculations,
thus enabling faster and more accurate adjoint optimization
based on the outer-product form diffusion Fisher.

Adjoint optimization sampling. Guided sampling tech-
niques are extensively utilized in diffusion models to fa-
cilitate controllable generation. Recently, to address the
inflexibility of commonly used classifier-based guidance
(Dhariwal & Nichol, 2021b) and classifier-free guidance
(Ho & Salimans, 2022), a series of adjoint guidance meth-
ods have been explored (Pan et al., 2023a;b).

Consider optimizing a scalar-valued loss function L(·) :
Rd 7→ R, which takes x0 in the data space as input. Adjoint
guidance is implemented by applying gradient descent on
xt in the direction of ∂L(x0(xt))

∂xt
. The essence of adjoint

guidance is to use the gradient at t = 0 and follow the
adjoint ODE (Pollini et al., 2018; Chen et al., 2018) to
compute λt :=

∂L(x0(xt))
∂xt

for t > 0.

dλt

dt
= −λ⊤

t

∂hθ (xt, t)

∂xt
, λ0 =

∂L(x0)

∂x0

(18)

Adjoint ODE via VJP. Regardless of the ODE solver
being used, it is necessary to compute the right-hand side
of equation 18, or equivalently, F (xt, t)

⊤λt. This compu-
tation can be interpreted as applying the diffusion Fisher
matrix as a linear operator to the adjoint state λt, from a
functional analysis perspective (Yosida, 2012). Current prac-
tices utilize the VJP technique to approximate this linear
transformation operation as follows:

F (xt, t)
⊤λt ≈

1

σt

∂εθ (xt, t)

∂xt

⊤
λt

≈ 1

σt

∂ [⟨εθ (xt, t)|λt⟩]
∂xt

(19)

This process involves computationally expensive neural net-
work auto-differentiations, and the approximation errors
introduced by the VJP technique have no theoretical bound.

Adjoint ODE via DF-EA. As previously discussed in
Section 3, the DF inherently doesn’t require gradients, sug-
gesting that we could potentially apply the diffusion Fisher
as a linear operator in a gradient-free manner. The chal-
lenging part in equation 11 is

∑
i wiyiy

⊤
i , which represents

a weighted form of outer-products of data. Based on the
definition of wi, the closest yi to x0 will dominate as t → 0.
This makes it intuitive to replace this sum with a single final
sample outer-product x0x

⊤
0 . It’s also important to note that

the adjoint guidance itself needs to compute x0 at each guid-
ance step, eliminating the need for additional computation
to obtain x0. Given that we utilize the endpoint sample x0,
we refer to this approximation technique as DF Endpoint
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Approximation (EA). The formulation for DF-EA in the
adjoint ODE is as follows:

F (xt, t)
⊤λt

≈

(
1

σ2
t

I − α2
t

σ4
t

(∑
i

wiyiy
⊤
i − ȳθ(xt, t)ȳθ(xt, t)

⊤

))⊤

λt

≈
(

1

σ2
t

I − α2
t

σ4
t

(
x0x

⊤
0 − ȳθ(xt, t)ȳθ(xt, t)

⊤
))⊤

λt

=
1

σ2
t

λt −
α2
t

σ4
t

⟨x0,λt⟩x0 +
α2
t

σ4
t

⟨ȳθ(xt, t),λt⟩ ȳθ(xt, t)

(20)
The DF-EA approximation leads to a scalar-weighted combi-
nation of λt, x0, and ȳθ(xt, t), which importantly, does not
involve any gradients. Additionally, we derive the theoreti-
cal approximation error bound of the DF-EA in Proposition
8. To measure the accuracy of DF-EA as a linear operator,
we opt to use the Hilbert–Schmidt norm (Gohberg et al.,
1990) for measurement, as follows:

Proposition 8. Assume that the approximation error
on εθ(xt, t) is δ2, the approximation error of the DF-
EA linear operator, as referenced in 20, is at most
α2

t

σ3
t

(
2D2

y +
√
dδ2

)
when measured in terms of the

Hilbert–Schmidt norm.

Experiments on DF-EA. As depicted in Figure 3, we
conducted experiments comparing our DF-EA and VJP
methods in adjoint guidance sampling, using five different
scores and two different base models. DF-EA consistently
achieves better scores due to its bounded approximation er-
ror. Furthermore, DF-EA requires less processing time as it
eliminates the need for time-consuming gradient operations.
DF-EA and VJP are compared under the same guidance
scales and schemes across various numbers of steps. Details
regarding the score function can be found in Appendix B.2.

As depicted in Figure 4, our DF-EA consistently generates
samples with higher scores with a reduced time cost com-
pared to VJP. All samples are generated within 50 steps,
with adjoint applied from the 15th to the 35th step. Details
on hyperparameters can be found in Appendix B.2.

6. Numerical OT Verification of DMs
There is an increasing trend towards analyzing the proba-
bility modeling capabilities of DMs by interpreting them
from an optimal transport (OT) perspective (Albergo et al.,
2023; Chen et al., 2024). The foundational concepts of
optimal transport can be found in Appendix A.9. One of
the central questions is whether the map deduced by the
PF-ODE could represent an optimal transport. Khrulkov
et al. (2023) have proven that, given single-Gaussian initial
data and a VE noise schedule, the PF-ODE deduced map is

optimal transport. Zhang et al. (2024a) has demonstrated
that affine initial data suffices for the PF-ODE map to be
optimal transport. However, the OT property of the general
PF-ODE map remains an open question.

In this section, we propose the first numerical OT verifica-
tion experiment for a general PF-ODE deduced map based
on the outer-product form diffusion Fisher we obtained in
section 3. We first derive the following corollary for the OT
property of the PF-ODE deduced map.

Corollary 1. Denote the diffeomorphism deduced by the
PF-ODE in equation 5 as follows

Ts,t : Rn −→ Rn;xs 7−→ xt, ∀t ≥ s > 0. (21)

The diffeomorphism Ts,T is a Monge optimal transport
map if and only if the normalized fundamental matrix for
B(t) ≡ B(t,xt) at s is s.p.d. for every PF-ODE chain
that starts from a xT ∈ Rd. where

B(t,xt) =

[
f(t)− g2(t)

2σ2
t

]
I +

α2
tg

2(t)

2σ4
t

[∑
i

wiyiy
⊤
i

−

(∑
i

wiyi

)(∑
i

wiyi

)⊤
 .

(22)
The definition of the normalized fundamental matrix is
deferred to Appendix A.10.

Note that Ts,t is well-posed, guaranteed by the global ver-
sion of the Picard-Lindelöf theorem (Amann, 2011; Zhang
et al., 2024a). Detailed proofs can be found in Appendix
A.10. We then design the numerical OT verification experi-
ment for a given noise schedule and initial data as shown in
the Algorithm 2. The detailed version of Algorithm 2 can
be found in Appendix B.3.

Algorithm 2 Numerical OT test for PF-ODE map

1: Input: initial data {yi}Ni=1, noise schedule {αt} and {σt},
discretization steps M .

2: Initialize AM = I , xM ∼ N (0, σT I).
3: for i = M,M − 1, · · · , 1 do
4: dt = ti−1 − ti.
5: Calculate Bi by equation 22.
6: Ai−1 = Ai + dt ∗A⊤

i Bi {solve fundamental matrix.}
7: xi−1 = PF-ODE Solver(xi, i)
8: end for
9: Output:A0. {The result fundamental matrix.}

In Table 3, we numerically tested the OT property of the
PF-ODE map under different nose schedules and initial data.
We tested four commonly used noise schedules, VE (Ho
et al., 2020), VP (Song & Ermon, 2019), sub-VP (Song
et al., 2020), and EDM (Karras et al., 2022) on 2-D data.
We first tested when the initial data is single-Gaussian and
affine, we found that the result normalized fundamental
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Initial Data Single-Gaussian Affine Non-affine
Noise Schedule Asym. OT Asym. OT Asym. OT

VE
(Song & Ermon, 2019) 0.00% ✓ 0.00% ✓ 25.28% ✗

VP
(Ho et al., 2020) 0.00% ✓ 0.00% ✓ 23.36% ✗

sub-VP
(Song et al., 2020) 0.00% ✓ 0.00% ✓ 13.84% ✗

EDM
(Karras et al., 2022) 0.00% ✓ 0.00% ✓ 27.09% ✗

Table 3: Comparison of numerical OT verification results of four
commonly used noise schedulers with different initial data.

matrix is p.s.d., which means the PF-ODE map is optimal
transport. These results coincide with the previous proposed
theoretical results in (Khrulkov et al., 2023) and (Zhang
et al., 2024a). We further tested an extremely simple non-
affine case, that is, there are only three initial data points,
(0,0), (0,0.5), and (0.5,0). We showed that all noise sched-
ules result in an obvious asymmetric fundamental matrix,
which means that the PF-ODE map fails to be OT in these
cases. Here, we use the Frobenius norm of the difference
of A and its transpose divided by the Frobenius norm of
A to measure its asymmetric rate. Based on this finding,
we hypothesize that the PF-ODE map can only be OT in
the affine initial data (Single-Gaussian is a special case of
affine data), but fails to be OT in general non-affine data.
Our hypothesis coincides with the statement that the flow
map of a Fokker–Planck equation is not necessarily OT as
proposed in (Lavenant & Santambrogio, 2022). (Note that
PF-ODE is a special class of Fokker–Planck equations)

7. Conclusions
This paper derives an outer-product span formulation of
the diffusion Fisher and introduces two approximation algo-
rithms for different types of access to the diffusion Fisher:
diffusion Fisher trace matching (DF-TM) and diffusion
Fisher endpoint approximation (DF-EA). Both methods are
theoretically guaranteed in terms of approximation error
bounds, and offer improved accuracy and reduced time-
cost compared to the traditional VJP method. We also
designed the numerical OT property verification experi-
ment for the PF-ODE map based on the outer-product
form of DF. This work not only improves the efficiency
of diffusion Fisher access but also widens our understand-
ing of the diffusion models. Please refer to further dis-
cussions in appendix C. The code is available at https:
//github.com/zituitui/DiffusionFisher.
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Appendix
A. Proofs and Formulations
A.1. Proof of Proposition 1

Notice that, in the subsection, we can do an interchange of sum and gradient; this is due to Leibniz’s rule (Osler, 1970) and
the boundness condition we set in equation 10. Before we give the proof of Proposition 1, we would like to establish two
technical lemmas. The first lemma is about the first partial derivative of vi(xt, t) with respect to xt.
Lemma 1.

∂vi(xt, t)

∂xt
=

∂ exp
(
− |xt−αtyi|2

2σ2
t

)
∂xt

= − 1

σ2
t

(xt − αtyi) exp

(
−|xt − αtyi|2

2σ2
t

)
= − 1

σ2
t

(xt − αtyi)vi(xt, t)

(23)

The second lemma is about the Jacobian of
∑

i wi (xt, t)yi w.r.t. xt.
Lemma 2.

∂
∑

i wi (xt, t)yi

∂xt

=
∑
i

yi

(
∂wi (xt, t)

∂xt

)⊤

=
∑
i

yi

(
∂

∂xt

[
vi (xt, t)∑
j vj (xt, t)

])⊤

=
∑
i

yi


∂vi(xt,t)

∂xt
[
∑

k vk (xt, t)]− vi (xt, t)
∂

∂xt

[∑
j vj (xt, t)

]
[
∑

k vk (xt, t)]
2


⊤

=
1

(
∑

k vk)
2

∑
i

yi

− 1

σ2
t

(xt − αtyi) vi
∑
k

vk − vi (xt, t)

(
− 1

σ2
t

)∑
j

(xt − αtyj) vj


⊤

=
1

(
∑

k vk)
2

(
− 1

σ2
t

)∑
i

viyi

(xt − αtyi)
∑
k

vk −
∑
j

(xt − αtyi) vj


⊤

=
1

(
∑

k vk)
2

(
− 1

σ2
t

)∑
i

viyi

−αtyi

∑
k

vk + αt

∑
j

yjvj


⊤

=
αt

σ2
t

∑i viyiy
⊤
i
XXXX(
∑

k vk)

(
∑

k vk)
C2

−
(∑

i viyi∑
k vk

)(∑
i viyi∑
k vk

)⊤


=
αt

σ2
t

∑
i

wiyiy
⊤
i −

(∑
i

wiyi

)(∑
i

wiyi

)⊤


(24)

Now we are ready to give the Proof of Proposition 1

Proof. According to the initial distribution (equation 10) and the diffusion kernel (equation 1), the marginal distribution at
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some time t > 0 would be

p (xt, t) =
1

N

∑
i

(
2πσ2

t

)− d
2 exp

(
−|xt − αtyi|2

2σt2

)
(25)

Thus, the log-density has the following analytical formulation

log p(xt, t) = log

[
1

N

(
2πσ2

t

)− d
2
∑
i

exp

(
−|xt − αtyi|2

2σt2

)]

= log

[∑
i

exp

(
−|xt − αtyi|2

2σ2
t

)]
+ C

= log

[∑
i

vi (xt, t)

]
+ C

(26)

The score can be expressed as follows

∂

∂xt
log p (xt, t) =

∂

∂xt
log

[∑
i

vi (xt, t)

]

=
∂

∂xt
[
∑

i vi (xt, t)]∑
i vi (xt, t)

=
− 1

σ2
t

∑
j (xt − αtyj) vj∑
i vi (xt, t)

= − 1

σ2
t

xt − αt

∑
j

wj (xt, t) yj


(27)

The Fisher information we want can then be calculated by further applying a gradient on the score.

Ft(xt, t) = − ∂

∂xt

(
∂

∂xt
log p (xt, t)

)

= − ∂

∂xt

− 1

σ2
t

xt − αt

∑
j

wj (xt, t) yj


=

1

σ2
t

I − αt

σ2
t

∂
∑

i wi (xt, t)yi

∂xt

=
1

σ2
t

I − α2
t

σ4
t

∑
i

wiyiy
⊤
i −

(∑
i

wiyi

)(∑
i

wiyi

)⊤
 (by Lemma 2)

(28)

This proof is inherently the calculation of the Hessian of a log-convolution of a density, we provide the detailed derivation
here for completeness.

A.2. Proof of Proposition 2

Proof. Given fixed (xt, t), L is a quadratic form of yθ. To obtain the optimal ȳθ, we differentiate L and set this derivative
equal to zero, resulting in the following

14
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0 =
∂L

∂ȳθ(xt, t)
=

∂

∂ȳθ(xt, t)

∑
j

1

N
(2πσ2

t )
− d

2︸ ︷︷ ︸
At

vj(xt, t)λt
α2
t

σ2
t

∥ȳθ(xt, t)− yj∥2

= 2Atλt
α2
t

σ2
t

∑
j

vj(xt, t)(ȳθ(xt, t)− yj), (29)

which yields

ȳ∗
θ(xt, t) =

∑
k

vk(xt, t)∑
j vj(xt, t)

yk =
∑
i

wiyi. (30)

A.3. Proof of Proposition 3

Notice that, in the subsection, we can do an interchange of integral and gradient; this is due to Leibniz’s rule (Osler, 1970)
and the bounded moments condition we set in equation 12. Before we give the proof of Proposition 3, we would like to
establish two technical lemmas. The first lemma is about the first partial derivative of v(xt, t,y) w.r.t. xt.
Lemma 3.

∂v(xt, t,y)

∂xt
=

∂ exp
(
− |xt−αty|2

2σ2
t

)
∂xt

= − 1

σ2
t

(xt − αty) exp

(
−|xt − αty|2

2σ2
t

)
= − 1

σ2
t

(xt − αty)v(xt, t,y)

(31)

Lemma 4.

∂
∫
Rd w(xt, t,y)ydq0(y)

∂xt

=

∫
Rd

y

(
∂w (xt, t,y)

∂xt

)⊤

dq0(y)

=

∫
Rd

y

(
∂

∂xt

[
v(xt, t,y)∫

Rd v(xt, t,y′)dq0(y′)

])⊤

dq0(y)

=

∫
Rd

y

{
∂vi(xt,t)

∂xt

[∫
Rd v(xt, t,y

′)dq0(y′)
]
− v (xt, t,y)

∂
∂xt

[∫
Rd v(xt, t,y

′)dq0(y′)
][∫

Rd v(xt, t,y′′)dq0(y′′)
]2

}⊤

dq0(y)

=
1[∫

v(y′′)dq0(y′′)
]2 ∫ y

{
− (xt − αty) v(y)

σ2
t

∫
v(y′)dq0(y′)− v(y)

(
− 1

σ2
t

)∫ (
xt − αty

′) v(y′)dq0(y′)

}⊤

dq0(y)

=
1[∫

v(y′′)dq0(y′′)
]2 (− 1

σ2
t

)∫
v(y)y

{
(xt − αty)

∫
v(y′)dq0(y′)−

∫ (
xt − αty

′) v(y′)dy′
}⊤

dq0(y)

=
1[∫

v(y′′)dq0(y′′)
]2 (− 1

σ2
t

)∫
v(y)y

{
−αty

∫
v(y′)dq0(y′) + αt

∫
v(y′)y′dy′

}⊤

dq0(y)

=
αt

σ2
t

∫ v(y)yy⊤dq0(y′)
hhhhhhh
[∫

v(y′)dq0(y′)
]

[∫
v(y′′)dq0(y′′)

]
C2

−
( ∫

v(y)ydq0(y)∫
v(y′′)dq0(y′′)

)(∫
v(y′)y′dq0(y′)∫
v(y′′)dq0(y′′)

)⊤


=
αt

σ2
t

[∫
w(y)yy⊤dq0(y)−

(∫
w(y)ydq0(y)

)(∫
w(y)ydq0(y)

)⊤
]

(32)

Proof. According to the initial distribution (equation 12) and the diffusion kernel (equation 1), the marginal distribution at
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some time t > 0 would be

p (xt, t) =

∫
Rd

(
2πσ2

t

)− d
2 exp

(
−|xt − αty|2

2σt2

)
dq0(y) (33)

Thus the log-density has the following analytical formulation

log qt(xt, t) = log

[∫
Rd

(
2πσ2

t

)− d
2 exp

(
−|xt − αty|2

2σt2

)
dq0(y)

]

= log

[∫
Rd

exp

(
−|xt − αty|2

2σt2

)
dq0(y)

]
+ C

= log

[∫
Rd

v (xt, t,y) dq0(y)
]
+ C

(34)

The score can be expressed as follows

∂

∂xt
log p (xt, t) =

∂

∂xt
log

[∫
Rd

v (xt, t,y) dq0(y)
]

=
∂

∂xt

[∫
Rd v (xt, t,y) dq0(y)

]∫
Rd v (xt, t,y) dq0(y)

=

∫
Rd

∂
∂xt

[v (xt, t,y)] dq0(y)∫
Rd v (xt, t,y) dq0(y)

(by xx and Leibniz integral rule)

=
− 1

σ2
t

∫
Rd(xt − αty)v (xt, t,y) dq0(y)∫

Rd v (xt, t,y) dq0(y)

= − 1

σ2
t

[
xt − αt

∫
Rd

w(xt, t,y)ydq0(y)
]

(35)

The Fisher information we want can then be calculated by further applying a gradient on the score.

Ft(xt, t) = − ∂

∂xt

(
∂

∂xt
log p (xt, t)

)
= − ∂

∂xt

{
− 1

σ2
t

[
xt − αt

∫
Rd

w(xt, t,y)ydq0(y)
]}

=
1

σ2
t

I − αt

σ2
t

∂
∫
Rd w(xt, t,y)ydq0(y)

∂xt

=
1

σ2
t

I − α2
t

σ4
t

[∫
wiyy

⊤dq0(y)−
(∫

wiydq0(y)
)(∫

wiydq0(y)
)⊤
]

(by Lemma 4)

(36)

This proof is also inherently the calculation of the Hessian of a log-convolution of a density, we provide the detailed
derivation here for completeness.

A.4. Proof of Proposition 4

Proof. Given fixed (xt, t), L is a quadratic form of yθ. To obtain the optimal ȳθ, we differentiate L and set this derivative
equal to zero, resulting in the following
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0 =
∂L

∂ȳθ(xt, t)
=

∂

∂ȳθ(xt, t)

∫
Rd

1

N
(2πσ2

t )
− d

2︸ ︷︷ ︸
At

v(xt, t,y)λt
α2
t

σ2
t

∥ȳθ(xt, t)− y∥2dq0(y)

= 2Atλt
α2
t

σ2
t

∫
Rd

v(xt, t,y)(ȳθ(xt, t)− y)dq0(y), (37)

which yields

ȳ∗
θ(xt, t) =

∫
Rd

v(xt, t,y
′)∫

Rd v(xt, t,y′′)dq0(y′′)
y′dq0(y′) =

∫
Rd

w(xt, t,y
′)y′dq0(y′). (38)

A.5. Proof of Proposition 5

Lemma 5. Given a vector v ∈ Rd, the trace of the outer-product matrix of this vector is precisely equal to the square of its
2-norm. This can be shown as follows:

tr
(
vvT

)
=

d∑
i=1

(
vvT

)
i,i

=

d∑
i=1

vi ∗ vi = ∥v∥2 (39)

Proof. Then we can start to give the derivation of Proposition 5

tr (Ft(xt, t)) = tr

 1

σ2
t

I − α2
t

σ4
t

∑
i

wiyiy
⊤
i −

(∑
i

wiyi

)(∑
i

wiyi

)⊤


=
1

σ2
t

tr (I)− α2
t

σ4
t

∑
i

witr
(
yiy

⊤
i

)
− tr

(∑
i

wiyi

)(∑
i

wiyi

)⊤


=
d

σ2
t

− α2
t

σ4
t

∑
i

wi∥yi∥2 −

∥∥∥∥∥∑
i

wiyi

∥∥∥∥∥
2


(40)

A.6. Proof of Proposition 6

Proof. The objective in Algorithm 1 obviously equals to:

argmin
tθ

Ex0∼q0(x0),xt∼N (α(t)x0,σ2(t)I

∣∣∣∣∣tθ(xt, t)−
∥x0∥2

d

∣∣∣∣∣
2

. (41)

By expressing the expectation of Equation equation 41 in the form of a marginal distribution, we can transform the objective
as follows:

argmin
tθ

∑
i

1

N
(2πσ2

t )
− d

2

∣∣∣∣∣tθ(xt, t)−
∥yi∥2

d

∣∣∣∣∣
2

(42)
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The optimal t∗θ must satisfy the condition that the gradient of the loss equals 0. Therefore, we have:

0 = ∇t∗θ(xt,t)

∑
i

1

N
(2πσ2

t )
− d

2︸ ︷︷ ︸
At

vi(xt, t)

∣∣∣∣∣∥yi∥2

d
− t∗θ(xt, t)

∣∣∣∣∣
2


=
∑
i

Atvi(xt, t)(t
∗
θ(xt, t)−

∥yi∥2

d
)

= At

∑
j

vj(xt, t)t
∗
θ(xt, t)−At

∑
i

vi(xt, t)
∥yi∥2

d
,

Thus

t∗θ(xt, t) =
At

∑
i vi(xt, t)

∥yi∥2

d

At

∑
j vj(xt, t)

=
∑
i

vi(xt, t)∑
j vj(xt, t)

∥yi∥2

d

=
1

d

∑
i

wi(xt, t)∥yi∥2

(43)

We have successfully completed the proof that the optimal tθ(xt, t), as trained by Algorithm 1, is equivalent to
1
d

∑
i wi(xt, t)∥yi∥2.

A.7. Proof of Proposition 7

The approximation error of the estimated trace equation 17 will be its difference from the true Fisher information trace
equation 16. We use consecutive Cauchy–Schwarz and triangle inequality to get the bound of the approximation error:

∣∣∣∣∣∣ dσ2
t

− α2
t

σ4
t

∑
i

wi∥yi∥2 −

∥∥∥∥∥∑
i

wiyi

∥∥∥∥∥
2
−

{
d

[
1

σ2
t

− α2
t

σ4
t

(
tθ(xt, t)−

∥∥∥∥xt − σtεθ(xt, t)

αt

∥∥∥∥2
)]}∣∣∣∣∣∣

=
α2
t

σ4
t

∣∣∣∣∣∣
∑
i

wi∥yi∥2 −

∥∥∥∥∥∑
i

wiyi

∥∥∥∥∥
2

−

(
tθ(xt, t)−

∥∥∥∥xt − σtεθ(xt, t)

αt

∥∥∥∥2
)∣∣∣∣∣∣

≤α2
t

σ4
t

[∣∣∣∣∣∑
i

wi∥yi∥2 − tθ(xt, t)

∣∣∣∣∣+
∣∣∣∣∣
∥∥∥∥∥∑

i

wiyi −
xt − σtεθ(xt, t)

αt

∥∥∥∥∥
∣∣∣∣∣
]

≤α2
t

σ4
t

[
δ1 +

σ2
t

α2
t

δ22

]
=
α2
t

σ4
t

δ1 +
1

σ2
t

δ22

(44)
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A.8. Proof of Proposition 8

∥∥∥∥∥∥ 1

σt
I − α2

t

σ3
t

∑
i

wiyiy
⊤
i −

(∑
i

wiyi

)(∑
i

wiyi

)⊤
−

(
1

σt
I − α2

t

σ3
t

(
x0x

⊤
0 − ȳθ(xt, t)ȳθ(xt, t)

⊤))∥∥∥∥∥∥
HS

=

∥∥∥∥∥∥−α2
t

σ3
t

∑
i

wiyiy
⊤
i −

(∑
i

wiyi

)(∑
i

wiyi

)⊤
−

(
−α2

t

σ3
t

(
x0x

⊤
0 − ȳθ(xt, t)ȳθ(xt, t)

⊤))∥∥∥∥∥∥
HS

≤α2
t

σ3
t

∥∥∥∥∥∑
i

wiyiy
⊤
i − x0x

⊤
0

∥∥∥∥∥
HS

+
α2
t

σ3
t

∥∥∥∥∥∥
(∑

i

wiyi

)(∑
i

wiyi

)⊤

− ȳθ(xt, t)ȳθ(xt, t)
⊤

∥∥∥∥∥∥
HS

=
α2
t

σ3
t

∑
i

wi

∥∥yiy
⊤
i − x0x

⊤
0

∥∥
HS

+
α2
t

σ3
t

∥∥∥∥∥∥
(∑

i

wiyi

)(∑
i

wiyi

)⊤

− ȳθ(xt, t)ȳθ(xt, t)
⊤

∥∥∥∥∥∥
HS

≤α2
t

σ3
t

∑
i

wi max
i

∥∥yiy
⊤
i − x0x

⊤
0

∥∥
HS

+
α2
t

σ3
t

∑
j

∣∣∣∣∣∑
i

wiyi[j]− ȳθ(xt, t)[j]

∣∣∣∣∣
∥∥∥∥∥∑

i

wiyi − ȳθ(xt, t)

∥∥∥∥∥
≤α2

t

σ3
t

(
2D2

y +
√
dδ2

)

(45)

A.9. Preliminaries on Optimal Transport

The optimal transport is the general problem of moving one distribution of mass to another as efficiently as possible. The
optimal transport problem can be formulated in two primary ways, namely the Monge formulation (Monge, 1781) and the
Kantorovich formulation (Kantorovich, 1960). Suppose there are two probability measures µ and ν on (Rn,B), and a cost
function c : Rn × Rn → [0,+∞]. The Monge problem is

(MP) inf
T

{∫
c(x,T(x)) dµ(x) : T#µ = ν

}
. (46)

The measure T#µ is defined through T#µ(A) = µ(T−1(A)) for every A ∈ B and is called the pushforward of µ through T.

It is evident that the Monge Problem (MP) transports the entire mass from a particular point, denoted as x, to a single point
T(x). In contrast, Kantorovich provided a more general formulation, referred to as the Kantorovich problem:

(KP) inf
γ

{∫
Rn×Rn

cdγ : γ ∈ Π(µ, ν)

}
, (47)

where Π(µ, ν) is the set of transport plans, i.e.,

Π(µ, ν) = {γ ∈ P(Rn × Rn) : (πx)#γ = µ, (πy)#γ = ν} , (48)

where πx and πy are the two projections of Rn × Rn onto Rn. For measures absolutely continuous with respect to the
Lebesgue measure, these two problems are equivalent (Villani et al., 2009). However, when the measures are discrete, they
are entirely distinct as the constraint of the Monge Problem may never be fulfilled.

A.10. Proof of Corollary 1

To prove the Corollary 1, we first introduce two theorems to transform the problem of whether the PF-ODE mapping is a
Monge map into the task of deciding the convexity of the potential function of Ts,T .

Theorem 1. (Santambrogio, 2015, Theorem 1.48) Suppose that µ is a probability measure on (Rn,B) such that∫
|x|2dµ(x) < ∞ and that u : Rn → R ∪ {+∞} is convex and differentiable µ-a.e. Set T = ∇u and suppose∫
|T(x)|2dµ(x) < ∞. Then T is optimal for the transport cost c(x, y) = 1

2 |x − y|2 between the measures µ and
ν = T#µ.
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Theorem 2. The Brenier’s Theorem. (Santambrogio, 2015, Theorem 1.22) (Brenier, 1987; 1991) Let µ, v be
probabilities over Rd and c(x, y) = 1

2 |x−y|2. Suppose
∫
|x|2 dx,

∫
|y|2 dy < +∞, which implies min(KP) < +∞

and suppose that µ gives no mass to (d− 1) surfaces of class C2. Then there exists, uniquely, an optimal transport
map T from µ to v, and it is of the form T = ∇u for a convex function u.

To ensure the existence of the potential function, we need to leverage the following

Theorem 3. The Poincaré’s Theorem. (Lang, 2012, Theorem 4.1 of Chapter V, §4) Let U be an open ball in Rn and
let ω be a differential form of degree ≥ 1 on U such that dω = 0. Then there exists a differential form ϕ on U such
that dϕ = ω.

Remark 1. The conclusion remains valid when the open ball U is substituted with the entirety of Rn

For s > 0, it is clear that dqT (xT )
dqs(xs)

is non-singular, and therefore, it satisfies the requirements of Brenier’s Theorem 2, leading
to the existence of a unique optimal transport map. According to Theorem 1, if we can establish that the potential function
of Ts,T is convex, then the PF-ODE mapping will indeed be a Monge map. Notice that the existence of the potential map is
guaranteed by Poincaré’s Theorem 3.

We can now convert the condition of the potential function of Ts,T being convex into the condition that its Jacobian,
∂Ts,T (xs)

∂xs
, is positive semi-definite, as per the following theorem in convex analysis.

Theorem 4. (Rockafellar, 2015, Theorem 4.5) Let f be a twice continuously differentiable real-valued function on an
open convex set C in Rn. Then f is convex on C if and only if its Hessian matrix

Qx = (qij(x)) , qij(x) =
∂2f

∂ξi∂ξj
(ξ1, . . . , ξn) (49)

is positive semi-definite for every x ∈ C.

If we denote that

A(t) =
∂Tt,T (xt)

∂xt

(50)

obviously, A(T ) = I is p.s.d., our goal is to answer when A(t) is p.s.d.. We try to answer this to set up a connection
between A(t) and A(T ) = I . We can derive that:

dA(t)

dt
= lim

ϵ→0+

A(t+ ϵ)−A(t)

ϵ

= lim
ϵ→0+

A(t+ ϵ)−A(t+ ϵ)∇xt

[
xt + ϵ

(
f(t)xt − g2(t)

2 ∇xt
logt qt(xt)

)
+O(ϵ2)

]
ϵ

= lim
ϵ→0+

ϵf(t)A(t+ ϵ) + g2(t)
2 ϵA(t+ ϵ)∇xt

logt qt(xt) +O(ϵ2)

ϵ

=f(t)A(t) +
g2(t)

2
A(t)∇xt logt qt(xt)

=f(t)A(t)− g2(t)

2
A(t)

{
1

σ2
t

I − α2
t

σ4
t

[∫
w(y)yy⊤dq0(y)−

(∫
w(y)ydq0(y)

)(∫
w(y)ydq0(y)

)⊤
]}

=A(t)


[
f(t)− g2(t)

2σ2
t

]
I +

α2
t g

2(t)

2σ4
t

∑
i

wiyiy
⊤
i −

(∑
i

wiyi

)(∑
i

wiyi

)⊤
︸ ︷︷ ︸

B(t)

(51)

20



Efficiently Access Diffusion Fisher: Within the Outer Product Span Space

Notice that the above ODE starts from T .

According to the Solution Matrices theory (Masuyama, 2016)1, let us denote the C(t) is the normalized fundamental matrix
at T for B(T ), which implies C(t) is the solution to the following ODE:

C ′(t) = C(t)B(t),C(T ) = I, (flow from T to t) (52)

Then we can deduce that
∂Tt,T (xt)

∂xt
= A(t)

= C(t)A(T )

= C(t)I

= C(t)

(53)

Thus, the diffeomorphism Ts,T is a Monge optimal transport map if and only if C(s) is semi-positive definite. Note that the
above requirement needs to be satisfied for every PF-ODE chain xt, t ∈ [T, t].

B. Experiments Details
B.1. Evaluation of NLL

For toy experiments, we follow the experiment design in Lu et al. (2022a) and adopt the same network architecture for the
score network and our DF-TM network. We calculate the true diffusion Fisher with 5,000 data samples from the cheeseboard
distribution.

For commercial-level experiments, we employ the explicit Euler method to compute the NLL, excluding the final step near
t = 0, for reasons discussed in Appendix C.1. We evaluate the NLL across 10 steps throughout the timeline of the PF-ODE.
The DF-TM network we trained uses the float-point16 data type.

Network architectures In terms of network architecture, we employ an SD Unet structure with an additional MLP head.
However, we believe that a lighter network could potentially be sufficient for DF-TM.

Training cost of DF-TM For training the DF-TM network, we approximately spend 24 hours using 8 Tesla V100 chips.
Given the size of the Laion2B-en dataset (which contains 2.32 billion images), this is quite an efficient speed. Additionally,
the convergence behavior of the training loss is robust, as illustrated in Figure 1a. We also hypothesize that our network
design has redundancy, suggesting that we could further reduce costs by opting for lighter networks. We will provide more
details about training costs in our revised manuscript.

B.2. Adjoint Guidance Sampling

For Figure 3, we examined varying numbers of adjoint guidance, ranging from 0 to 20, under a full inference number of 50.
The adjoint guidance scale was grid-searched by the VJP method. For experiments on Pick-Score, we use NVIDIA V100
chips, and the rest experiments use Tesla V100 chips.

Base method for DF-EA Several variants of adjoint-optimization algorithms exist, such as AdjointDPM (Pan et al.,
2023a), AdjointDES (Blasingame & Liu, 2024), and SAG (Pan et al., 2023b). However, while these algorithms differ in
their design of solvers for the adjoint ODE, they all utilize VJP when accessing the diffusion Fisher. We selected SAG as
our base method due to its state-of-the-art performance. We believe that replacing VJP with DF-EA could also enhance the
performance of algorithms like AdjointDPM and AdjointDES.

The Design of Score functions

• Aesthetic Score (SAC/AVA/Pick-Score)
1The Definition 6.2 in https://math.mit.edu/˜jorloff/suppnotes/suppnotes03/ls6.pdf suffice the result here.
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For the aesthetic score predictor faes : Rd 7→ R, the adjoint optimization target is simply faes itself.

L(x0) := faes(x0) (54)

• Clip Loss

Following the implementation of (Pan et al., 2023a), we use the features from the CLIP image encoder as our feature
vector. The loss function is L2-norm between the Gram matrix of the style image and the Gram matrix of the estimated
clean image.

L(x0) :=
∥∥clip(x0)clip(x0)

⊤ − clip(xref )clip(xref )
⊤∥∥ (55)

• FaceID Loss

Following the implementation of (Pan et al., 2023b), we use ArcFace to extract the target features of reference faces to
represent face IDs and compute the l2 Euclidean distance between the extracted ID features of the estimated clean
image and the reference face image as the loss function.

L(x0) := ∥ArcFace(x0)− ArcFace(xref )∥ (56)

Hyperparameters For the hyperparameters in adjoint-guided sampling, we ensure a fair comparison between the VJP
and DF-EA methods. For most hyperparameters, we directly adopt the settings from previous works (Pan et al., 2023b)
for both the baseline VJP method and our DF-EA method. For the guidance scale, we tune the value for the VJP method
and use the same value for our DF-EA method. The DF-EA method does not introduce additional hyperparameters, and
for mutual hyperparameters, our DF-EA method uses the exact same values as the VJP method. We adopt this strategy
because our DF-EA method solely improves the approximation of the diffusion Fisher linear operator, without altering the
adjoint sampling mechanism. Therefore, the suitable hyperparameters should remain unchanged, and we simply use the
same parameters from the VJP method for our DF-EA method. For all experiments, we set the number of sampling steps to
T = 50. Adjoint guidance is applied starting from steps ranging from 15 to 35 and ending at step 35, with one guidance per
step. Thus the only parameter we tune is the guidance strength. We determine this value for the VJP method via a grid
search from 0.1 to 0.5 with a step size of 0.1 and find that the optimal guidance strength for VJP is 0.2. We then use this
value for our DF-EA method. Notice that, we apply a normalization to the guidance gradient for both VJP and DF-EA
methods, making our optimal guidance strength consistent across different scores. The tuning is conducted on 1k COCO
prompts, and the computational budget for tuning is 4 * 5 * 3 GPU hours (4 tasks * 5 grids * 3 hours per single test) on
Tesla V100 chips.

B.3. Numerical OT Experiments

The detailed algorithm The detailed version of the Algorithm 2 is presented in Algorithm 3. We use all the data points
in the initial dataset to calculate every quantum we need in the sampling trajectory to validate the condition discussed in
Corollary 1.

Initial data In Table 3, we adopt numerical verification of OT on 2-D synthesized data. For the single-Gaussian case,
we fix the one mode central in (0.5,0.5) and test at s = 0.1; For the affine data case, we set three data points as (0.2,-0.4),
(0.2,0.0), and (0.2,0.9), and test at s = 0.0; For the non-affine data case, we set three data points as (0.0,0.5), (0.0,0.0), and
(0.5,0.0), and test at s = 0.0.

The definition of Asymmetric rate In Table 3, we need the asymmetry rate I to point out that the PF-ODE map in very
simple non-affine data cannot be OT. Let A be an n× n matrix. The asymmetry rate I is defined as:

I =

∥∥A−AT
∥∥
F√

2∥A∥F

where ∥M∥F =
√∑n

i=1

∑n
j=1 m

2
ij is the Frobenius norm of the matrix M . The denominator

√
2∥A∥F is used to normalize

the index to the range of [0, 1]. The asymmetry rate of the non-affine data in Table 3 has significantly deviated from zero.
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Algorithm 3 Detailed numerical OT test for PF-ODE map

1: Input: initial data {yj}Nj=1, noise schedule {α(t)} and {σ(t)}, discretization steps M .
2: Initialize AM = I , xM ∼ N (0, σT I).
3: for i = M,M − 1, · · · , 1 do
4: αi = α(ti), σi = σ(ti)
5: dt = ti−1 − ti.
6: fi =

d logαi

dt .

7: gi =

√
dσ2

i

dt − 2 d logαi

dt σ2
i .

8: for j = 1, · · · , N do
9: calculate vj via vj = exp

(
− |xi−αiyj |2

2σ2
i

)
10: end for
11: for j = 1, · · · , N do
12: calculate wj via wj =

vj∑
k vk

.
13: end for
14: Bi =

[
fi − g2

i

2σ2
i

]
I +

α2
i g

2
i

2σ4
i

[∑
j wjyjy

⊤
j −

(∑
j wjyj

)(∑
j wjyj

)⊤]
.

15: Ai−1 = Ai + dt ∗A⊤
i Bi {solve fundamental matrix}

16: si =
xi−

∑
j wjyj

σ2
i

17: xi−1 = xi +
[
fixi − 1

2g
2
i si
]
∗ dt

18: end for
19: Output:A0.

B.4. Pretrained Models

All of the pretrained models used in our research are open-sourced and available online as follows:

• stable-diffusion-v1-5

https://huggingface.co/runwayml/stable-diffusion-v1-5

• stable-diffusion-2-base

https://huggingface.co/stabilityai/stable-diffusion-2-base

• SAC-aesthetic score predictor

https://github.com/christophschuhmann/improved-aesthetic-predictor/blob/main/
sac%2Blogos%2Bava1-l14-linearMSE.pth

• AVA-aesthetic score predictor

https://github.com/christophschuhmann/improved-aesthetic-predictor/blob/main/
ava%2Blogos-l14-linearMSE.pth

• ArcFace ID loss

https://github.com/TreB1eN/InsightFace_Pytorch

• Clip loss

https://huggingface.co/openai/clip-vit-large-patch14

• Pick-Score

https://github.com/yuvalkirstain/PickScore
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C. Discussions
C.1. Singularity of Fisher information at t = 0

Previous studies (Yang et al., 2023; Zhang et al., 2024b) have shown that the diffusion model, particularly when learned
in ϵ-prediction, can encounter a singularity issue at t = 0. Our DF in equation 11 reaffirms this issue, as this formulation
becomes ill-formed at t = 0 due to division by zero (σ0). Consequently, our formulation does not describe the behavior at
t = 0. The deep theoretical exploration of the singularity problem remains an open question in the diffusion model field.
However, as it is not the primary focus of this paper, we will not discuss the DF at t = 0.

C.2. Statistical Caliber of Negative Log-Likelihood

When dealing with high-dimensional data such as images, direct likelihood comparisons may encounter scaling issues due
to the dimensionality. In this study, unless explicitly indicated otherwise, we adopt the approach of (Zheng et al., 2023) and
typically use Negative Log-Likelihood (NLL) to refer to Bits Per Dimension (BPD).

BPD = Ex0∼q0

[
− logP0 (x0)

d log 2

]
(57)

C.3. The ODE Solvers

To compute the numerical solutions for the PF-ODE in equation 5, the likelihood ODE in equation 14, and the adjoint ODE
in equation 18, we require ODE solvers. In our paper’s experiments, we consistently use the explicit Euler method (referred
to as DDIM when applied to PF-ODE). However, it’s important to note that our approach is not dependent on a specific
ODE solver. We can also utilize alternatives like fast ODE solvers (Lu et al., 2022b;c; Liu et al., 2022) or exact inversion
ODE solvers (Wallace et al., 2023; Zhang et al., 2023).

C.4. The relation of our outer-product form DF to Covariance in DMs

We note that there is a series of studies aiming to learn the covariance of the reverse diffusion Stochastic Differential
Equation (SDE) (Bao et al., 2022b;a). In Bayesian statistics, Fisher information is defined as the covariance of the score.
These studies derive their formulation by analyzing the covariance of the score and obtaining the Fisher information in
terms of the score. However, our DF is derived directly from the marginal distribution and is composed solely of the initial
distribution and noise schedule. Furthermore, our application is unique; we are the first to replace the use of VJP with DF,
while the focus of these studies is to enhance the performance of Diffusion Models (DMs) with analytical covariance.

A very similar form of the Fisher information is proposed in Lemma 5 of (Benton et al., 2024). The difference is that our
Proposition 3 presents the specific form of Fisher information in terms of data distribution, which is not included in Lemma
5 of (Benton et al., 2024). This distinction is crucial as it facilitates the derivation of our new algorithms. Also, we adopt the
currently more commonly used αt, σt notation to represent the noise schedule. Instead, (Benton et al., 2024) αt ≡ e−2t. We
gave out this detailed formulation to avoid unnecessary misunderstandings in the development of the subsequent training
scheme.

C.5. Comparison of DF-TM to Hutchinson trace estimator

We notice that the naive trace calculation of the VJP method can be accelerated by the Hutchinson trace estimator. We
have not conducted experiments using the Hutchinson estimator, as it is a Monte-Carlo type estimation, unlike the direct
evaluation methods like the full-VJP baseline and our DF-TM. Furthermore, the VJP method, with the help of the Hutchinson
method and its variants, is still considerably more expensive than our method, and its applicability is also more restricted.

• The Hutchinson method is much more costly:

To attain a relative error less than ϵ with a probability of 1− δ, the Hutchinson method requires 2(1− 8
3 ϵ) log

1
δ

ϵ2 samples
(Skorski, 2021). Assuming that the goal is to obtain an estimation with a relative error of less than 10% with a
probability exceeding 90%, a minimum of 351 NFEs is required. This equates to 1 or 2 minutes on SD-v1.5 for a
single trace estimation. For a complete NLL estimation of an image with 20 steps, this would take 20 minutes, which is
entirely impractical in any business context. In contrast, our DF-TM only requires 1 NFE for a single trace estimation,
needing merely 10 seconds for the full NLL estimation of an image.
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• The application of the Hutchinson method is more restricted:
Due to its Monte-Carlo characteristics, the Hutchinson method is more appropriate for contributing to the computation
of certain training objectives, as in (Lu et al., 2022a), where the unbiased property is sufficient, and large variance
may be absorbed into network training. However, the Hutchinson method may encounter difficulties with accurate
per-sample trace estimation. Our method can accommodate both scenarios, including per-sample computation.

There are already attempts to use the Hutchinson method to expedite the VJP of trace estimation in diffusion models (Lu
et al., 2022a). Nonetheless, due to Hutchinson’s limitations, these practices are restricted to relatively small DMs (CIFAR-10
at most). We will add discussions on the Hutchinson method in our revision.

C.6. Discussions on the theoretical bound of DF-EA

We notice that the error bound in Proposition 8 does not vanish as the training error decreases. From the rigorous theoretical
perspective, considering the error bounds in Propositions 7 and 8, the DF-EA method is less valid than the DF-TM method,
as we currently cannot establish vanishing bounds for it. However, from an empirical perspective, our DF-EA outperforms
the naive VJP method in terms of score improvement across various tasks and pretrained models, as demonstrated in Figure
4. Thus, the DF-EA approximation proves to be valid in a practical sense. The replacement

∑
i yiy

⊤
i ≈ x0x

⊤
0 originates

from the observation that wi is a weighting of the summation equal to 1, and as t approaches 0, the wi closest to x0 will
dominate due to the diffusion kernel. Therefore, this approximation is intuitively reasonable near t = 0, which is precisely
where we apply adjoint guidance.

C.7. Limitations

This paper does not explore the integration of DF into accelerated ODE solvers (Lu et al., 2022b), or exact inversion ODE
samplers (Wang et al., 2024a). This paper is constrained in the scope of DMs, but similar second-order information may
also exist in flow-matching generative models (Lipman et al., 2022; Zhu et al., 2024a) or variational inference models (Zhu
et al., 2024b; Wang et al., 2024b). Our technique may also have downstream applications in automated driving (Tu et al.,
2025b), touch-generation (Tu et al., 2025a), domain-transfer (Feng et al., 2024b;a), language generation (Fu et al., 2025),
and missing data imputation (Chen et al., 2024). The DF may also contribute to a more effective inference method, like
L-BFGS, which we did not explore.
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