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Abstract

Offline Reinforcement Learning (RL) promises to enable the adoption of RL in settings where
logged interaction data is abundant but running live experiments is costly or impossible. The
setting where data was gathered with a stochastic exploration policy has been extensively
studied, however; in practice, log data is often generated by a deterministic policy. In this
work, we examine this deterministic offline RL setting from both a theoretical and practical
perspective. We describe the critic identifiability problem from a theoretical standpoint,
arguing that algorithms designed for stochastic exploration are ostensibly unsuited for the
deterministic version of the problem. We elucidate the problem further using a set of
experiments on contextual bandits as well as continuous control problems. We conclude
that, quite surprisingly, the tools for stochastic offline RL are applicable after all. Finally,
we describe a variation of the TD3+BC algorithm that achieves good empirical results.

1 Introduction

In many practical settings where we want to apply Reinforcement Learning, running live experiments is
costly. For example, in recommender systems, running an experiment with a new policy of unknown quality
might lead to a poor user experience and risks losing revenue. Even more starkly, in healthcare, ethical
considerations may completely preclude executing policies with unknown performance. Offline Reinforcement
Learning promises to address this problem by enabling us to learn only from logged data that we already
have, without having to query additional interactions from the environment.

Offline RL algorithms (Fujimoto et al., 2019; Fujimoto & Gu, 2021; Kostrikov et al., 2021; Kumar et al.,
2020; Fu et al., 2022) often work by learning a critic and an actor network, with the critic attempting to
estimate the quality of the actor’s policy and the actor attempting to improve the policy using values learned
by the critic. Under regularity conditions, this process is known to lead to policies with improved returns
(Sutton et al., 1999; Silver et al., 2014). Crucially, in the variants of these methods most commonly used in
practice, the critic depends on both a state and an action. When exploration data comes from a stochastic
policy, there is ample data to train the critic since the sampled actions span the whole action space.

However, wherever the exploration policy is deterministic, by definition we only have one action per state
to learn the critic. This means that we have to depend on non-trivial generalization properties of the critic
network to obtain useful estimates of the policy gradient. In this paper, we conduct an extensive study of
this problem, with the aim of producing an offline Reinforcement Learning agent with good performance on
such deterministic data.

Contributions We make progress on deterministic offline RL in two main ways. First, we describe the
critic identifiability problem from a theoretical standpoint. Second, using a set of continuous control bench-
marks, we show empirically how the problem can be addressed by weight initialization and the dynamics of
neural network optimization alone. Lastly, we conclude by recommending TD3+BC-Phased, a variation of
the TD3+BC algorithm (Fujimoto & Gu, 2021) for performing offline RL from data generated by determin-
istic policies. To aid reproducibility, all our continuous control experiments conform to the recommendations
of Agarwal et al. (2021).
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2 Background

Markov Decision Process We formulate the RL problem using a Markov Decision Process (MDP). An
MDP is a tuple (S,A, r, P, γ, I) where S is the state space, A is the action space, r is a reward function,
P is the MDP’s transition dynamics probability distribution, γ is a discount factor parameter and I is the
distribution over initial states (Puterman, 2014). A policy π is a mapping from states to distributions over
actions, with

∫
a∈A π(a|s) = 1, ∀s ∈ S. For deterministic policies, we abuse notation by treating π as a

function S → A.

Dataset We study the problem of offline RL (Levine et al., 2020) for continuous state and action
spaces. In offline RL, a fixed dataset of data previously gathered in N episodes of length T , DN =
{(si

t, ai
t, ri

t+1, si
t+1, ai

t+1) : t = 1, . . . , T, i = 1, . . . , N} is used for learning. No new data is gathered at
the time of learning1. This is in contrast to online RL in which the agent interacts with an environment,
gathers data, and learns from the data while it is being gathered.

Value Functions and the Return We define the return to be the sum of the future discounted rewards.
The value of a state s under a policy π is defined as the expected return, given that the agent starts in state
s and follows π thereafter:

V π(s) def= Eπ

[
T∑

t=0
γtr(St, At)|St = s

]
.

Similarly, the state-action value function is defined as expected return if an agent starts from state s, takes
action a, and follows policy π thereafter:

Qπ(s, a) def= Eπ

[
T∑

t=0
γtr(St, At)|St = s, At = a

]
.

We skip the subscripts denoting the policy in cases it is clear what policy is meant.

Actor-Critic Algorithms Our focus is on the policy gradient family of algorithms (Sutton et al., 1999),
in which the policy is parameterized. We write πθ(s) to denote a deterministic policy parameterized by
a neural network whose parameters are denoted by θ. The neural network that estimates probabilities of
actions is often referred to as the actor network. In policy gradient algorithms, the goal is to learn the policy
parameters by doing gradient ascent on the following objective function:

J(θ) def= Es0∼I [V πθ (s0)],

where I is the distribution from which the initial state is sampled. The gradient of this objective is then used
to improve a performance measure. Silver et al. (2014) show in their deterministic policy gradient theorem
that:

∇θJ(θ) = Es∼µπθ
[∇aQπθ (s, a)|a=πθ(s)∇θπθ(s)], (1)

where µπθ
is the discounted occupancy measure induced by the deterministic policy πθ(s) and defined as

µπ(s′) =
∫

S
∑T

t=1 γt−1I(s)p(s→ s′, t, π), where p(s→ s′, t, π) is the measure associated with being in state
s′ after t transitions starting in state s and following policy π.

In the actor-critic family of algorithms, an estimate of state-action value function is also learned that directs
the updates of policy parameters. The state-action value function is typically parameterized using a second
neural network, called the critic network, Q̂ϕ, whose parameters are denoted by ϕ. Algorithms like DDPG
(Lillicrap et al., 2015) and TD3 (Fujimoto et al., 2018), work by making two approximations in (1). First,
they replace Qθ by Q̂ϕ. Second, they replace µπθ

with pπθ
, the long-term distribution of being in a state

defined as pπ(s′) =
∫

S
∑T

t=1 I(s)p(s → s′, t, π), which does not factor in the discount. This leads to the
approximate update for the policy gradient

∇θJ(θ) ≈ Es∼pπθ

[
∇aQ̂ϕ(s, a)|a=πθ(s)∇θπθ(s)

]
. (2)

1Our notation assumes episode length T to be the same for all episodes for ease of exposition. The extension to episodes of
varying lengths is straightforward.
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This is often written it in an equivalent form as the gradient of Es∼D[Q̂ϕ(s, πθ(s))] with respect to θ, which
is equal to the right hand side of (2).

TD3+BC Actor Update The TD3+BC algorithm (Fujimoto & Gu, 2021) adds a behavior cloning term
to the TD3 update:

max
θ

E(s,a)∼D

[
λQ̂ϕ(s, πθ(s))−

∥∥πθ(s)− a
∥∥2

2

]
, (3)

where the action a could be multi-dimensional. Equation 3 can be justified as follows. We want to use policy
gradients as per equation 2. However, to minimize learning bias in the deep RL setting, it is important
that the policy we learn stays close to the data, so we can be sure about its performance. Ideally, we
want to encode this by adding a hard constraint saying that a divergence between the learned policy and
the data-generating policy is smaller than ϵ (Schulman et al., 2015; Laroche et al., 2019; Wu et al., 2019;
Jaques et al., 2019; Kumar et al., 2019). For stochastic policies, we could use the KL divergence between
Gaussian distributions with the same covariance proportional to I, and for deterministic policies, we could
use the squared L2-Wasserstein divergence. In either case, we just get the mean squared error back (up to a
multiplicative constant), which brings us back to (3). Instead of using the theory of optimization to find the
Lagrange multiplier λ, Fujimoto & Gu (2021) heuristically propose to set λ using a schedule that has been
shown to work remarkably well in practice:

λ← α
1

|B|
∑

(si,ai)∈B |Q̂ϕ(si, ai)|
, (4)

where B is the mini-batch being used at the current time step, |B| is the number of transitions in the
mini-batch, and α is a tunable parameter.

TD3+BC Critic Update Before closing the Background section, we provide the update rules for the
critic update used by TD3 and TD3+BC algorithms. Both algorithms use an update inspired by double Q-
learning (Hasselt, 2010) to update their critic. This reduces the overestimation bias incurred by the original
Q-learning algorithm. Two state-action value functions (and two sets of parameters, ϕ1 and ϕ2) are learned;
however, both functions use a single target:

y(r, s′, a′)← r + min
i=1,2

Qϕi(s′, a′)

where both parameter sets are learned using regression, by minimizing the following objective function:

L(ϕi,D) def= E(s,a,r,s′,a′)∼D

[
(Qϕi

(s, a)− y(r, s′, a′))2
]

. (5)

Finally, Qϕ1 is always used in the policy learning step. Learning Qϕ2 has no use beyond helping to reduce
the overestimation bias.

3 Related Work

As far as we are aware, ours is the first work that studies batch Reinforcement Learning in a setting where
the exploration policy is deterministic. The closest related work is literature on batch RL algorithms. The
most significant batch algorithm from the perspective of our work is TD3+BC (Fujimoto & Gu, 2021), which
was already described in the Background section. For a more complete recent overview of batch RL with
stochastic policies, we refer the reader to the work by Fu et al. (2022).

Phased and One-Step Algorithms The idea of separating out critic and actor learning into separate
phases, deployed until approximate convergence, as opposed to learning the actor and the critic simultane-
ously, has been studied by Peng et al. (2019). The concept of doing one loop of policy iteration rather than
many in the context of batch Reinforcement Learning has been studied by Brandfonbrener et al. (2021).
They identify that, the reason why such ‘single iteration’ algorithms can perform better than their ‘multi-
iteration’ equivalents is that they do not require off-policy evaluation, which is extremely unstable and
prone to inaccuracy in the deep RL setting. We draw inspiration from this argument when designing the
TD3+BC-Phased algorithm.
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Additional Regularizers A powerful idea in the batch RL literature is to add additional regularizers to
an online RL algorithm. For example, CQL (Kumar et al., 2020) adds an additional term to the critic loss, so
that the critic is learning an (approximate) lower bound on the true Q function to both prevent overestimation
and constrain the policy to stay near the training data. An extension to this idea is presented by COMBO
(Yu et al., 2021), which uses a model to construct a more accurate lower bound. While our analysis in
section 7 is also based on additional regularization, we address a different problem. Indeed, none of these
prior works addresses the question of what happens if the exploration policy is deterministic, which is the
main focus of our paper.

Critic Generalization Implicit Q-Learning (Kostrikov et al., 2021), like our algorithm, heavily relies on
generalization properties of the function approximator used for the critic. It also separates out the stages
of learning the critic and actor. However, Implicit Q-learning has been designed with stochastic exploration
policies in mind, and, unlike our work, does not consider the problem that the critic might not be identifiable
under deterministic exploration.

Imitation Learning Imitation Learning algorithms ignore the reward signal completely, learning a policy
by performing supervised learning of the demonstration data. In sequential decision-making problems, due
to error compounding, imitation learners suffer from poor performance (Ross & Bagnell, 2010). While
Behavioral Cloning can work well for policies generated by deterministic experts, it is constrained by the
availability of high-quality data. Recently, a new baseline has been proposed (Chen et al., 2021) that uses a
reward signal. Percent Behavioral Cloning performs supervised learning on a subset of data with sufficiently
high returns. However, unlike the batch RL setting which we study, this technique is still fundamentally
limited by the fact that the behavior policy has to solve the same task learned by the agent.

4 Critic Identifiability

In this section, we will describe the problem of critic identifiability. For ease of exposition, we will focus
on contextual bandits, where the ground truth Q function and the reward function are the same and the
episode length is one. However, we argue that the same problem happens for more general MDPs with
episodes longer than one, or with an infinite horizon.

We analyze model-free offline RL algorithms which learn a critic. In continuous control problems, the critic
usually attempts to approximate the Q-function of a policy, which, crucially, depends both on a state and an
action. In offline RL, data typically comes from a stochastic policy with support on the whole action space.
In this case, given adequate state coverage and a smoothness assumption on the Q-function, the critic is
identifiable in the sense that, as the amount of training data approaches infinity, the learned critic becomes
close to the true Q-function. We can formalize this notion using the following definition.
Definition 1 (Identifiability). An MDP problem instance has an identifiable critic if for every ϵ there exists
and exploration policy πE and dataset size n so that for all N ≥ n we have

sup
(s,a)∈S×A

|Q(s, a)− Q̂N (s, a)| ≤ ϵ.

Here, Q̂N denotes a critic trained on a dataset DN of N episodes.

If we assume a stochastic exploration policy, and a Lipschitz smoothness assumption on the critic, identi-
fiability follows directly from standard Rademacher bounds (von Luxburg & Bousquet, 2004) in the sense
that we have limN→∞ sup(s,a)∈S×A |Q(s, a) − Q̂N (s, a)| = 0 with probability one for every non-degenerate
exploration policy. While other regularity assumptions may lead to faster convergence of this limit, in this
work we limit ourselves to the Lipschitz assumption due to the fact that is is relatively straightforward to
ensure in the context of deep learning.

However, identifiability is no longer a given when the exploration policy is deterministic. To see an illustration
why, recall that the critic typically has an architecture similar to the one illustrated in Figure 1a. Now, for
deterministic policies, the action can be completely determined from the state. As shown in Figure 1b, this
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(a) Typical critic architecture.

π(s)

s

layers Q(s, a)

a

(b) Critic does not depend on action.

Figure 1: An illustration of the critic identifiability problem.

means that a critic trained using a MSE loss can simply learn a copy of the policy and use it whenever the
Q function depends on the action. Crucially, if this happens, the action input to the network is completely
ignored. This means that policy gradients obtained using that critic are useless, since the gradient of the
critic with respect to the action input is zero. More broadly, since the MSE loss function is computed on the
training set where we only have one action per state, the learned critic will, without further assumptions,
achieve arbitrary values for actions other than the one taken by the exploration policy.

The central finding of this work is that, quite surprisingly, the inductive bias arising from using critics
represented by ReLU networks and learned using the Adam algorithm (Kingma & Ba, 2014)
is enough to provide adequate generalization and useful policy gradients. In other words, despite
the fact that the MSE loss does not distinguish a critic network that provides useful policy gradients from
one that exhibits the pathology shown in Figure 1b, the optimizer always converges to a network with useful
policy gradients. We examine this phenomenon empirically in the next section.

5 Experiments on a Contextual Bandit

In order to provide a fuller picture of the critic identifiability problem, we studied it empirically for contextual
bandits. Figure 2a shows the reward function of the contextual bandit, which is also the ground truth Q
function. We chose a quadratic function because all smooth functions are approximately locally quadratic.
We generated a training set using a policy tracing a re-scaled sine wave, visible in the figure as a black curve,
and evaluated on an evenly distributed grid of 100 states.

We then used this training set to learn the critic shown in Figure 2b, using a ReLU network and the Adam
optimizer (see appendix A for the learning learning rate and other technical details). Surprisingly, despite
the training set being confined to the policy, the generalization ability of the ReLU network combined with
the optimizer turned out to be outstanding, recovering the shape of the function even in points far away
from the policy that generated the data. We repeated this experiment multiple times and the results were
always qualitatively the same. Each time, we obtained good generalization, which implies good-quality policy
gradients in the neighborhood of the exploration policy.

We found this result perplexing and wanted to further investigate whether the critic identifiability problem
can become an issue in practice. To shed light on this, we ran another experiment. We learned another critic
function, keeping the same network architecture and optimizer settings, but forcing the weights multiplying
the action to be zero at every optimization step. Figure 2c shows the result. By design, the obtained
critic function does not depend on the action and produces completely useless policy gradients. However,
it achieves the same loss of 0.001 on the training set as the network shown in Figure 2b. This confirms in
practice the problem identified in the previous section: it is possible to minimize the MSE loss well while
still having a critic useless for policy updates.

Given the current limited understanding of the generalization of neural networks, it is hard to speculate why
exactly the combined effect of the network architecture, weight initialization and the optimizer always end up
preferring weights giving rise to the good behavior in 2b above the pathological one shown in 2c. However,
if we treat the number of required optimization steps required to learn the critic as a measure of simplicity
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Figure 2: Experiments with critic identifiability. Training data comes only from the policy π(s).

Algorithm 1 The TD3+BC-Phased Algorithm
Learn π̂E by minimizing

∑
(s,a)∈Dn

∥a− πθ(s)∥ wrt. θ

Learn Q̂ by minimizing equation 5
Learn π by minimizing equation 3

of the learned function, it turns out that the good critics are indeed simpler, requiring approximately half
the number of optimization steps to train.

6 TD3+BC-Phased Algorithm

While the discussion in the previous section suggests that we could use unmodified TD3+BC, it turns
out that the setting of deterministic exploration policy allows us to make one further simplification to the
algorithm.

Similarly to most other actor-critic methods, TD3+BC learns the critic and the actor simultaneously. Specif-
ically, the critic learns the Q-function of the actor policy and the actor learns a policy that maximizes the
current critic estimate. Together, this process represents an incremental version of policy iteration. However,
if the exploration policy is deterministic, it is reasonable to instead confine ourselves to a single step of policy
iteration, where the critic learns the value of the exploration policy and the actor improves on just this value.
This simplification is possible because, for deterministic policies, we by definition do not have the data about
values of actions other than the one chosen by the exploration policy, making the evaluation of other policies
tricky. On the other hand, of course one could also argue that we could instead rely on critic generalization
to facilitate multiple steps of policy improvement.

Ultimately, given the current understanding of actor-critic algorithms, the question of whether it makes
sense to perform more than one step of policy iteration can only be answered empirically. We did just that,
by comparing two algorithms: regular TD3+BC and our modification, which we call TD3+BC-Phased.
TD3+BC-Phased is described in Algorithm 1 and proceeds in three stages. First, the exploration policy is
distilled from data using behavioral cloning. Second, a critic is learned to evaluate this policy. Finally, an
actor network is trained to maximize the value of the critic. This staged algorithm is simpler than vanilla
TD3+BC because the critic does not depend on the actor.

Results in Figure 3 show that the phased version of the algorithm has better performance, on both expert and
medium datasets. We therefore chose this version as a basis for our later experiments with regularization,
described in Section 8.
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(b) Expert datasets
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(c) Medium and expert datasets

Figure 3: Comparison of vanilla TD3+BC and the phased version. Performance profiles were computes using
5 seeds in each of 3 environments (MuJoCo Walker, Hopper and HalfCheetah).

7 Ensuring Critic Identifiability with Lipschitz Regularization

In order to mitigate the critic identifiability problem, we propose to constrain the critic Q̂ to be Lipschitz-
continuous with constant L. In this section we will show theoretically that, for bandit problems and under
reasonable technical assumptions, this allows us to obtain useful policy gradients in the region near the
manifold covered by the deterministic exploration policy, addressing the problem of critic non-identifiability.
We begin by introducing the definition of the data manifold.

M def= {(s, πE(s)) : s ∈ S}

Here, πE is the deterministic exploration policy. We first introduce a Lemma showing that, as the amount
of training data approaches infinity, the critic function Q̂ restricted to M approaches the true Q-function.
In the Lemma below, we assume that the critic belongs to the function class H, which contains Lipschitz
functions that satisfy technical regularity conditions (see appendix B for a definition). In this section, we
adopt the notation that the critic Q̂N was trained on a dataset of size N .
Lemma 1. Assume that both the true Q-function and the critic Q̂N are in function class H and that the
MSE critic training error is zero in the sense that

∑N
i=1

(
Q(si, πE(si))− Q̂N (si, πE(si))

)2
= 0 for all states

si in the dataset. Assume that the distribution of training data satisfies p(s) > 0 for all states s ∈ S. Then,
with probability one, for all (s, a) ∈M, we have

lim
N→∞

|Q(s, a)− Q̂N (s, a)| = 0.

The proof of the Lemma uses standard Rademacher tools for Lipschitz functions (von Luxburg & Bousquet,
2004; Mohri et al., 2018) and is given in appendix B.

While the result above certifies the quality of function fit on the manifold itself, in order to reason about
the quality of the policy gradient, we need to have a result that can be extended to nearby points. We first
define the neighborhood.

Mη
def=

{
(s, a) : ∃(s′, a′) ∈M.

∥∥∥∥[
s′

a′

]
−

[
s
a

]∥∥∥∥ ≤ η

}
Herre, we use the notation

[
s
a

]
to denote a concatenation of vectors s and a. We now introduce a Lemma

which talks about the quality of fit in the neighborhood.
Lemma 2. Under assumptions of Lemma 1, for state-action pairs (s, a) ∈Mη, with probability one we have

lim
N→∞

|Q(s, a)− Q̂N (s, a)| ≤ 2ηL.
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The proof of the Lemma can be found in appendix B. Lemma 2 quantifies the quality of fit near the data
manifold. In order to have a fit guarantee that covers the entire state-action space, we now introduce a
coverage assumption on the exploration policy.
Definition 2. A policy πE(s) achieves η-coverage if Mη ⊇ S ×A.

For example, consider the case when S = [0, 1] and A = [−1, 1]. Consider the policy πE(s) = sin
(

2πs
p

)
. If

we set η = p, we indeed have that πE has η-coverage. Moreover, we can construct policies with η-coverage
for arbitrarily small η by setting the period of the exploration policy to be equally small.

We now introduce the following corollary, which follows immediately from Lemma 2 and the definition of
η-coverage.
Corollary 1. For an exploration policy which achieves η-coverage, we have

lim
N→∞

|Q(s, a)− Q̂N (s, a)| ≤ 2ηL

for every state-action pair in S ×A.

The Corollary implies that a critic is identifiable as per Definition 1 if we can set the exploration policy such
that η becomes arbitrarily small. This requirement is natural in the sense that, lacking stochastic actions
we need another mechanism to ensure that the dataset tells us enough about the true Q function.

Finally, we proceed to quantify the error made estimating the gradients. Unfortunately, Lipschitz continuity
is not enough to ensure that closeness of functions implies the closeness of gradients. To have that property,
we need additional assumptions. Specifically, we choose to assume that both Q and Q̂N are band-limited
functions (see appendix B for an exact definition). We stress that this assumption is true of many physical
systems since the presence of very high frequencies in Q indicates a lack of stability.
Proposition 1. Assume that the exploration policy achieves η-coverage, that both the true Q-function and
the critic Q̂N are in function class H and that the MSE critic training error is zero. Assume that the
distribution of training data satisfies p(s) > 0 for all states s ∈ S and that Q and Q̂N can be extended to
W -bandlimited functions. For state-action pairs (s, a) ∈ S ×A, we have

lim
N→∞

∥∇aQ(s, a)−∇aQ̂N (s, a)∥1 ≤ 8πWηLdA,

where we denoted the dimensionality of the action space with dA.

Again, the proof is found in appendix B. Proposition 1 is important because it quantifies the amount of error
in our estimates of policy gradient, which is what the TD3 algorithm is based on. In the next section, we
proceed to examine the effects of imposing such Lipschitz regularization in practice.

8 Assessing the Practical Effectiveness of Lipschitz Regularization

In the past section, we addressed the problem of critic identifiability theoretically, identifying assumptions
under which we can guarantee recovery of accurate policy gradients even if the exploration policy is deter-
ministic. In practice, the crucial assumption enabling us to claim generalization over the action space was
Lipschitz continuity. In this section, we attempt to draw empirical insights from this theoretical argument.
Specifically, we investigate the effect of Lipschitz regularization on the performance of the phased version of
the TD3+BC algorithm.

In order to make our critic smoother, we add a gradient penalty term to the critic loss. This is in-
spired by the literature on the Wasserstein GAN (Gulrajani et al., 2017). In practice, we add the term
β

(
1

dS
∥∇sQ̂(s, a)∥2 + 1

dA
∥∇aQ̂(s, a)∥2

)
to the critic loss, where β is a small constant tuned as a hyperpa-

rameter. This serves to prevent the critic from having steep gradients. While a gradient penalty term does
not strictly guarantee the critic to a Lipschitz function, it is currently a state of the art technique achieving
Lipschitz regularization.
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(a) Medium datasets
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(b) Expert datasets
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(c) Medium and expert datasets

Figure 4: Comparison of TD3+BC-Phased with and without gradient penalty (GP). Performance profiles
were computes using 5 seeds in each of 3 environments (MuJoCo Walker, Hopper and HalfCheetah).

We performed an experiment to assess how adding such regularization influences the performance of the
batch RL algorithm. Results are shown in Figure 4. The experiment shows that adding Lipschitz regular-
ization does not affect performance in a statistically significant way on the medium datasets, while causing a
slight performance degradation on the expert datasets. The overarching conclusion is that batch RL practi-
tioners now have a choice. Using TD3+BC-Phased, achieves good empirical performance, but is potentially
susceptible to the critic identifiability issue. On the other hand, using the version with Lipschitz regulariza-
tion means we will not be susceptible2 to critic identifiability issues, but involves paying a price in terms of
performance.

9 Conclusion

We have identified the critic identifiability problem, which arises when batch RL technology meant for data
coming from stochastic policies is used with exploration policies that are deterministic. We also propose a
solution based on Lipschitz regularization, which works for practical MuJoCo control problems and addresses
the critic identifiability problem while causing only a small loss of performance relative to applying the vanilla
TD3+BC-Phased algorithm.

Broader Impact Statement

The social risks of deploying batch RL with deterministic exploration are similar to these of batch RL
in general. Because our work is generic and tests on industry-standard benchmarks, it does not carry a
significant risk of immediate harm. While RL can certainly be used for nefarious purposes, we believe those
risks to be out-weighted by the possibilities of positive impact that arises from making existing control
systems more efficient by using offline data. Our work does carry a small additional risk of over-reliance on
the theoretical results, in settings where our assumptions are not met. We tried to mitigate these risks by
spelling out the assumptions explicitly.
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