
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

IS ATTENTION ALL YOU NEED FOR TEMPORAL LINK
PREDICTION? A LIGHTWEIGHT ALTERNATIVE VIA
LEARNABLE POSITIONAL ENCODING AND MLPS

Anonymous authors
Paper under double-blind review

ABSTRACT

Link prediction is of key importance in many real-world applications like social
network analysis and recommender systems. To leverage the expressive power for
achieving SOTA performance, many recent works adapt the attention mechanism
to the structured data for link prediction, in which dense or relational attention is
often unaffordable on large-scale structured data. Moreover, in a realistic setting,
the time-evolving topological and feature information can raise more challenging
questions about the efficiency and effectiveness of attention mechanisms. In spite
of the expressive power, we discern that the attention mechanism may not always
be as irreplaceable as expected for temporal graph representation learning, at
least not for temporal link prediction tasks. Formally, we discover that some
deliberately-designed simple positional encoding can enable MLPs to exploit
attributed graph information to achieve SOTA performance than complex graph
transformers. Hence, we propose a simple temporal link prediction model, named
SimpleTLP. In detail, for SimpleTLP, we first propose to adapt Fourier Transform
on temporal graphs for learning informative positional encoding, then we (1)
prove this learning scheme can make positional encoding preserve the temporal
graph topology from the spatial-temporal spectral viewpoint, (2) verify MLPs can
fully exploit the expressiveness and reach and even surpass Transformers on that
encoding, (3) change different initial positional encoding inputs to show robustness,
(4) analyze the theoretical complexity and obtain less empirical running time than
SOTA baselines, and (5) demonstrate its temporal link prediction out-performance
in a comprehensive way on 13 classic datasets and with 10 algorithms in both
transductive and inductive settings using 3 different sampling strategies. Also,
SimpleTLP obtains the leading performance in the large-scale TGB benchmark
(the newest TGB 2.0).

1 INTRODUCTION

Link prediction is an important research topic in the graph learning community (Kumar et al., 2020),
especially in complex temporal networks (Lu & Zhou, 2010; Martínez et al., 2017). Learning from
the time-evolving topological structures and time-evolving node and edge features, and determining
whether the link (i.e., edge or interaction between two nodes) exists at a certain timestamp are
challenging but have attracted much research interest like dynamic protein-protein interactions (Tay-
lor et al., 2009; Gupta et al., 2015), recommender systems (Huang et al., 2005), social network
analysis (Daud et al., 2020), and many more.

Recently, with the success of the attention mechanism (Vaswani et al., 2017), graph transformers
have been proposed for the structured data to obtain the out-performance in many graph applications
for their powerful expressiveness, like GraphGPS (Rampásek et al., 2022) for graph classification,
TokenGT (Kim et al., 2022) for node and graph classification, and DyGFormer (Yu et al., 2023)
for link prediction. However, to preserve the long-distance relation into the representation vectors,
graph transformers usually need high time complexity due to the dense attention or relational
attention (Müller et al., 2023; Min et al., 2022), i.e., each pair of nodes need to be attended with
O(n2) time complexity, which can even approach O(n3) in a more complex relational setting (Diao

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

& Loynd, 2023). A detailed theoretical time complexity and empirical running time comparison with
SOTAs can be found in Appendix E.2 and Appendix E.3.

The above complexity analysis places the burden on the temporal link prediction task from at least
two aspects (Kazemi et al., 2020). First, to make the current link prediction, the decision models
need to consider the interaction history, and the corresponding spatial-temporal structure will force
the attention mechanism to become more complex to attend to more interactions. Second, besides
the spatial-temporal structure, the node and edge features also evolve over time, and the prolonged
features also increase the size of neural architectures. Promisingly, some nascent work (Cong et al.,
2023) proposed to only use Multilayer Perceptrons (MLPs) to accomplish the temporal link prediction.
Although (Cong et al., 2023) does not reach the superior performance of the graph transformers (Yu
et al., 2023), it paves the way for exploring the ability of MLPs in the temporal link prediction task.

In light of the above discussion, an intriguing question emerges: instead of a pre-defined fixed
positional encoding, can we design a learnable positional encoding along with time such that
a simple neural architecture can achieve a similar or even better performance than graph
transformers? Thus, in this paper, we design a simple temporal link prediction model, named
SimpleTLP. In SimpleTLP, we propose two novel techniques: Learnable Positional Encoding
Module (LPE) and Node-Link-Positional Encoder based on Discrete Fourier Transform.

With those proposed techniques, our goal is that even using MLPs can exploit temporal graph
information and achieve competitive performance compared with graph transformers in the temporal
link prediction task. To demonstrate this, we first prove that the proposed positional encoding method
in SimpleTLP can preserve the temporal graph topology from the spatial-temporal spectral viewpoint
and the corresponding theoretical time complexity, as shown in Section 4. Moreover, in Section 5,
we evaluate the empirical performance of SimpleTLP extensively, including (1) the comprehensive
effectiveness comparison with 13 classic datasets, 10 algorithms, 2 learning settings (transductive
and inductive), and 3 sampling strategies, where our SimpleTLP performs the best across the board;
(2) the verification of the role of MLPs and Transformers upon SimpleTLP; (3) the robustness of
SimpleTLP in terms of different initial positional encoding inputs; (4) various parameter analysis and
ablation studies; and (5) the leading performance in the large-scale TGB open benchmark (Gastinger
et al., 2024).

2 PRELIMINARIES

Here, we introduce preliminaries to pave the way for deriving our SimpleTLP in the next section.

Temporal Graph Snapshot. A snapshot of a temporal graph G is a collection of temporal interactions
(i.e., edges) at time t ∈ {1, . . . , T}, which is defined as Gt = {(u, v, t)

∣∣u ∈ V t; v ∈ V t; (u, v, t) ∈
Et}. Each event (u, v, t) denotes an interaction between nodes u and v that occurs at time t, and the
node and edge sets of Gt are denoted as V t and Et respectively. Additionally, for node u ∈ V t, we
denote the node features as stu ∈ RdN , and the edge features associated with an event (u, v, t) as
etu,v ∈ RdE , where dN and dE are the dimensions of the node and edge features.

Temporal Neighbors. The temporal neighborhood of a node u ∈ V t at time t ∈ {1, . . . , T}, denoted
as N t

u, is the set of all interactions that involve u at time t. Formally, N t
u can be mathematically

expressed as N t
u = {(u, v, t)

∣∣v ∈ V t; (u, v, t) ∈ Et}.
Time Encoder. A time encoder is a function to obtain the vector representation of time t (Xu
et al., 2020; Wang et al., 2021b; Cong et al., 2023). Let dT be the dimension of the time encoding
vector. We define our time encoding function as fT : R+ → RdT . In SimpleTLP, for t ∈ R+,
fT (t) = cos(t · ω), where ω ∈ RdT with the ith entry computed as ωi = α−(i−1)/β , and α, β ∈ R
are hyper-parameters. In order to enhance the ability of dT in distinguishing all timestamps, given
that tmax is the maximum timestamp being considered, α and β should be selected in such a way
that tmax · α−(i−1)/β → 0 as i goes towards dT . Moreover, α, β, and ω are fixed during the training
process of SimpleTLP.

Positional Encoding for Graphs. Originated from the transformer (Vaswani et al., 2017), positional
encoding is proposed to add node feature information to support the attention mechanism by indicating
the relative position of a node within the input graph (Dwivedi et al., 2023), and the common positional
encoding methods include computing the Laplacian eigenvector or Personalized PageRannk vector
for each node (Rampásek et al., 2022; Chen et al., 2023). Mathematically, given an n-node (static)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

graph G = (V,E) and its adjacency matrix A ∈ Rn×n, the normalized Laplacian of G is computed
as L = In −D−1/2AD−1/2, where In is the n× n identity matrix, and D is the diagonal degree
matrix of G. Let the eigen-decomposition of L be L = UΛU⊤, where Λ = diag(λ1, λ2, . . . , λn) is
a diagonal matrix consisting of L’s eigenvalues and U consists n eigenvectors of L as its columns.
Let ui ∈ Rn be the ith eigenvector of L and its jth entry denoted as ui,j . Then, the positional
encoding of node i ∈ V is defined as pi = [u1,i, . . . ,un,i]

⊤ ∈ Rn. In practice, the dimension dP of
positional encoding is usually set to be less than n for computational efficiency (Dwivedi & Bresson,
2020), i.e., dP ≪ n and pi = [u1,i, . . . ,udP ,i]

⊤ ∈ RdP .

Discrete Fourier Transform. To pave the way for learnable positional encoding, we need to first intro-
duce the basics of Discrete Fourier Transform (DFT) (Sundararajan, 2001). In brief, DFT is designed
to convert a finite-length sequence of samples into another sequence in the frequency domain (with the
same length). Formally, given a sequence with length N , {xj}Nj=1, the DFT operation F({xj}Nj=1)

converts {xj}Nj=1 to the complex-valued sequence {Xj}Nj=1 as Xj =
∑N

k=1 xke
−i2π j

N k. Also,
to re-construct the original sequence {xj}Nj=1, inverse DFT (IDFT) F−1({Xj}Nj=1) is defined as

xj =
∑N

k=1 Xke
i2π j

N k.

3 PROPOSED METHOD: SIMPLETLP

To begin with, we focus on a general research question, i.e., given two nodes u and v, how can
we predict whether the link (interaction or edge) exists between u and v at a certain timestamp t,
effectively and efficiently?

To answer this question, we propose a simple temporal link prediction model named SimpleTLP.
It retrieves the interaction history of two nodes and decides whether the current link exists or
not. Without heavy neural architectures like dense attention (Rampásek et al., 2022) or relational
attention (Diao & Loynd, 2023), SimpleTLP only depends on two of our proposed simple yet effective
techniques, i.e., Learnable Positional Encoding Module (LPE) and Node-Link-Positional Encoder,
such that SimpleTLP can preserve the spatial-temporal topology rigorously (as shown in Section 4)
and outperform attention-based state-of-the-art link prediction methods (as shown in Section 5).

Figure 1: Overall Framework of SimpleTLP

The overall framework of SimpleTLP is shown in Figure 1 about how to retrieve and learn from
history to make the current decision with two proposed techniques. Next, we will introduce the
details of the proposed techniques, i.e., Learnable Positional Encoding Module in Section 3.1 and
Node-Link-Positional Encoder in Section 3.2.

3.1 LEARNABLE POSITIONAL ENCODING (LPE) MODULE

The main idea of Learnable Positional Encoding (LPE) is to leverage historical positional encoding to
determine whether the link exists at the current timestamp. However, learning from the history data

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

in an effective and efficient way and only through positional encoding is challenging, because SOTA
methods usually need a complex attention mechanism (Poursafaei et al., 2022; Yu et al., 2023).

To this end, we aim to only use positional encoding to carry informative and useful knowledge to
record what had happened in the past (e.g., what interactions occurred and what the node and edge
features looked like around the interaction). Existing simple hand-crafted positional encoding can be
efficient but tend to induce suboptimal performance (Wang et al., 2021b; Cong et al., 2023).

Thus, we propose a “learnable” positional encoding module (LPE), enabling it to reflect complex and
non-linear knowledge. As shown in Figure 1, in our SimpleTLP, LPE estimates (or approximates) the
positional encoding at current time t by applying the Fourier Transform (with learnable parameters)
on the past positional encoding. It is worth noting that obtaining the positional encoding through
LPE: (1) records the complex spatial-temporal information (proved from the spectral viewpoint in
Section 4), (2) and avoids computing the Laplacian eigendecomposition for each timestamp from
scratch, which is computationally expensive (e.g., O(|V |3) (Chen et al., 2023) or O(|E|3/2) (Dwivedi
et al., 2023))

Because of no peeking at the current graph topology structure and features, our LPE is an iterative
updating module. Next, we introduce LPE in two-folds: (1) given the past positional encoding, how
LPE approximates the current positional encoding (that will be used to determine links by Node-Link-
Positional Encoder in Section 3.2), and (2) how to store the approximate positional encoding and
update/optimize it in the future round with current topology structure and features observed.

Approximating current position encoding. First of all, we denote the positional encoding of u to be
learned for time t as pt

u ∈ RdP . Suppose there are L most recent distinct timestamps prior to t, i.e.,
t′1, . . . , t

′
L (where t′1 < · · · < t′L < t) , and we can retrieve the already learned {pt′1

u , . . . ,p
t′L
u } that is

regarded as a L-length sequence. Additionally, considering computational efficiency, we only retrieve
L most recent timestamps. Then, in this LPE module, we leverage the Discrete Fourier Transform as
a way to capture the temporal dependencies among p

t′1
u , . . . ,p

t′L
u and derive an estimated positional

encoding of u at time t denoted by p̃t
u ∈ RdP .

To be specific, we start by applying Discrete Fourier Transform (DFT) on the sequence {pt′

u}
t′L
t′=t′1

to
obtain the corresponding sequence in the frequency domain. Then, we employ a complex-valued
learnable filter, Wfilter ∈ CdP×L, to filter out noises of the sequence in the frequency domain, and
finally transform back to the original domain. The process can be mathematically expressed as

{p̂t′j
u }Lj=1 = F−1(Wfilter ⊙F({p

t′j
u }Lj=1)) (1)

Then, we obtain the approximate positional encoding p̃t
u by applying sum-pooling with learnable

weights on {p̂t′j
u }Lj=1

p̃t
u =

[
p̂
t′1
u . . . p̂

t′L
u

]
Wsum

P (2)

where Wsum
P ∈ RL×1. Note that the approximate positional encoding p̃t

u will be sent to the
Node-Link-positional Encoder (in Section. 3.2) for making predictions for current time t.

Storing approximate positional encoding for future retrieval and optimization. Since SimpleTLP
does not peek at the current topology structure and features when making the prediction for now,
i.e., only using approximate positional encoding p̃t

u, we want to clarify how the current approximate
positional encoding get updated and optimized in the next round.

After making the current link predictions at time t (as shown in Section 3.2), SimpleTLP can then
“peek” (or “reveal”) the ground-truth links at time t, such that it can update the approximation p̃t

u into
updated pt

u for the future retrieval and predictions.

Then, we need to update the positional encoding of u at t. We sample the most K recent interactions,
including those that occur at time t. Suppose they are indexed as {(ū1, u, t̄1), . . . , (ūK , u, t̄K)}
where t̄1 ≤ · · · ≤ t̄K ≤ t. Leveraging the approximate positional encoding from ū1, . . . , ūK , pt

u is
derived as

pt
u = p̃t

u + tanh(W
(self)
P p̃t

u +W
(2)
P RELU(W

(1)
P q̂t

u)) ∈ RdP (3)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

where q̂t
u =

∑K
j=1[(fT (t − t̄j))

⊤ || (p̃t
ūj
)⊤]⊤ ∈ RdT+dP , fT is the time encoder, and W

(1)
P ∈

RdP×(dP+dT),W
(2)
P ∈ RdP×dP ,W

(self)
P ∈ RdP×dP are learnable MLP parameters.

At the first time t0, we denote the initial positional encoding as the Laplacian of the initial graph
snapshot Gt0 . Formally, let L be the Laplacian of Gt0 and the eigen-decomposition of L be UΛUT ,
then pt0

u = [u1,u, . . . ,udP ,u]
T ∈ RdP , where ui is the i-th eigenvector of L, as defined in Section 2.

3.2 NODE-LINK-POSITIONAL ENCODER

For node u, the Node-Link-Positional Encoder is designed to aggregate its historical node and edge
features with the positional encoding of its recent 1-hop neighbors prior to time t, and, eventually,
derive a compact representation associated with u that encodes all the information.

In general, Node-Link-Positional Encoder works as follows. We first use ht
u,N and ht

u,E to denote the
node and link encoding of recent 1-hop neighbors of node u. Then, we apply MLP transformations
on ht

u,N and ht
u,E to obtain the encoding, denoted by ht

u,N∥E , which represents the combination
of node-link information. For adding positional information, we use ht

u,P to denote the aggregated
positional encoding of recent 1-hop neighbors, and further transform them by MLP layers. Eventually,
ht
u,N∥E and ht

u,P are combined by a 1-layer MLP to derive a temporal representation at time t for u,
denoted by ht

u, which will be sent together with ht
v to the link predictor in Section 3.3 to determine

whether the link exists between nodes u and v at time t.

The detailed computational procedures of the Node-Link-Positional Encoder are explained below.

First, the node encoding of recent 1-hop neighbors of u can be obtained by aggregating features
of nodes that interact with u in the time interval [t − tgap; t], where tgap is a dataset-dependent
hyper-parameter. Mathematically, this process can be described as

ht
u,N = stu + Mean({st

′

u′

∣∣(u′, u, t′) ∈ N t−tgap
u ∪ · · · ∪ N t

u}; t′ ∈ [t− tgap, t]) ∈ RdN (4)

where stu is the input node features, and Mean(·) is the mean pooling operation.

Then, we derive the link encoding for u by extracting the K most recent interactions involv-
ing u that occur prior to time t, combine the edge features and the time encoding of these in-
teractions, and further apply MLP transformations on these representations. Specifically, sup-
pose the most K recent interactions of u are indexed as {(u1, u, t

′
1), . . . , (uK , u, t′K)}, where

t′1 ≤ · · · ≤ t′K < t. Let Ht
u,E ∈ RK×(dT+dE) be a matrix, whose kth row is defined as

[Ht
u,E]k = [(fT (t − t′k))

⊤ || (etu,u′
k
)⊤] ∈ R1×(dT+dE), where [·||·] denotes concatenation, fT

is the time encoder, and e denotes the edge feature. If u does not involve at least K interactions
before t then Ht

u,E is zero-padded so that the matrix has K rows. We first apply a 1-layer MLP on
the last dimension of Ht

u,E , sum-pool over K rows of Ht
u,E with learnable weights to obtain a vector

of dimension dT + dE , and finalize the encoding with an additional 1-layer MLP transformation as

ht
u,E = W

(2)
link(RELU((Ht

u,EW
(1)
link)

⊤Wsum
link)) ∈ RdT+dE (5)

where W
(1)
link,W

(2)
link ∈ R(dT+dE)×(dT+dE), and Wsum

link ∈ RK×1.

After that, ht
u,N∥E is obtained by a 1-layer MLP transformation as

ht
u,N∥E = WN∥E([(h

t
u,N)⊤ || (ht

u,E)
T])⊤ ∈ RdN (6)

where WN∥E ∈ RdN×(dN+dT+dE).

Next, for historical positional information, we apply sum aggregation over the positional information
from the aforementioned K most recent interactions involving u as

ĥt
u,P =

K∑
j=1

[(fT (t− t′j))
⊤ || (p̃t

uj
)⊤]⊤ ∈ RdT+dP (7)

where fT is the time encoder. Then, ht
u,P is obtained through the neighborhood-aggregated positional

encoding ĥt
u,P and p̃t

u as

ht
u,P = p̃t

u + tanh(W
(self)
P p̃t

u +W
(2)
P RELU(W

(1)
P ĥt

u,P)) ∈ RdP (8)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

where W
(1)
P ∈ RdP×(dP+dT),W

(2)
P ∈ RdP×dP ,W

(self)
P ∈ RdP×dP , and tanh is the hyperbolic

tangent function.

Finally, the temporal representation at time t of u, ht
u, is derived as

ht
u = W[(ht

u,N∥E)
⊤ || (ht

u,P)
⊤]⊤ ∈ RdN (9)

where W ∈ RdN×(dN+dP).

3.3 OPTIMIZATION

With the two embeddings ht
u and ht

v , we can now let SimpleTLP decide whether a link exists between
nodes u and v at time t and train SimpleTLP against the ground truth connections before t.

Link predictor. Given a node pair (u, v) and timestamp t, SimpleTLP’s goal is to predict whether
there is a link between (u, v) at time t. Specifically, the Link Predictor would give the probability
ŷ ∈ (0, 1) of whether u and v interact at time t by

ŷ = sigmoid(W(2)RELU(W(1)[(ht
u)

⊤ || (ht
v)

⊤]⊤)) ∈ (0, 1) (10)

where sigmoid denotes the sigmoid function mapping all real values to the range (0, 1), and W(1) ∈
R(2dN)×dN ,W(2) ∈ RdN×1 are 1-layer MLPs.

Loss functions. To begin with, we point out the necessary components of the objective loss function
for the training process of SimpleTLP, give formal definitions for those components, and derive the
final loss function used in the training process of SimpleTLP.

Suppose there are B positive (i.e., existing edges) samples (u(pos)
1 , v

(pos)
1 , t1), . . . , (u

(pos)
B , v

(pos)
B , tB)

and B negative (i.e., non-existing edges) samples (u(neg)
1 , v

(neg)
1 , t1), . . . , (u

(neg)
B , v

(neg)
B , tB). Thus

the ground truth label for the positive samples should be 1, and 0 for the negative samples. As the link
prediction can be regarded as a binary classification problem, we employ the binary cross-entropy
loss function to obtain the link prediction loss Llp as

Llp =
−1
2B

[(B∑
i=1

log
(
ŷ
u
(pos)
i ,v

(pos)
i

))
+

(B∑
i=1

(1− log
(
ŷ
u
(neg)
i ,v

(neg)
i

))]
(11)

where ŷ
u
(pos)
i ,v

(pos)
i

denotes the predicted probability of a link existing between u
(pos)
i , v

(pos)
i at time

ti, as defined in Eq. 10, and ŷ
u
(neg)
i ,v

(neg)
i

is the predicted probability of a link existing between

u
(neg)
i , v

(neg)
i at time ti. Thus, ideally, ŷ

u
(pos)
i ,v

(pos)
i

should be close to 1, and ŷ
u
(neg)
i ,v

(neg)
i

should be
close to zero.

In addition, we introduce the positional encoding loss Lpe to assess the learned positional encoding,
defined in Eq. 2. Specifically, we would expect p̃ti

u
(pos)
i

be close to p̃ti

v
(pos)
i

, as there is a link between

u
(pos)
i , v

(pos)
i at time ti. Thus, the difference ||p̃ti

u
(pos)
i

− p̃ti

v
(pos)
i

||2 (where || · ||2 denotes the 2-norm

of a real-valued vector) should be small, so that the learned positional encoding correctly reflects
the nature of positional encoding. Moreover, in order to avoid SimpleTLP giving similar positional
encoding to all nodes to minimize the aforementioned 2-norm difference of positive samples, we
add another constraint, i.e., maximizing the difference αneg||p̃ti

u
(neg)
i

− p̃ti

v
(neg)
i

||2, where αneg is a

positive scaling factor. As (u(neg)
1 , v

(neg)
1 , t1), . . . , (u

(neg)
B , v

(neg)
B , tB) are not all negative (i.e., not

connected), we let αneg < 1 to avoid SimpleTLP emphasizing the negativity of these B negative
samples. Therefore, we define the positional encoding loss as

Lpe =
1

B

[(B∑
i=1

||p̃ti

u
(pos)
i

− p̃ti

v
(pos)
i

||2
)
− αneg

(B∑
i=1

||p̃ti

u
(neg)
i

− p̃ti

v
(neg)
i

||2
)]

(12)

Finally, the overall loss function is
L = (1− αpe)Llp + αpeLpe (13)

where αpe ∈ (0, 1) is the weight for Lpe.

The algorithmic training procedures of SimpleTLP can be found in Appendix A.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4 THEORETICAL ANALYSIS

In this section, we first theoretically show that, at time t, the approximated positional encoding p̃t,
defined by Eq. 2, can be a good approximation of the positional encoding of graph snapshot Gt by
establishing a bound for the approximation error.
Theorem 1. Suppose the temporal graph G is “slowly changing” (i.e., the ground truth positional
encoding p0 ≈ · · · ≈ pt−1), then the corresponding approximated positional encoding of SimpleTLP
satisfies

||p̃t
u − p̃t′′

u ||2 ≤ ϵ (14)
where t′′ > t is the future distinct timestamp of t, and ϵ is a bounding term that depends on L, which
is the number of recent graph snapshots utilized in obtaining the approximated positional encoding,
as stated in Eqs. 1 and 2. (Proof in Appendix B)

Briefly, Theorem 1 indicates that when the graph is slowly changing, the positional encoding learned
at the previous timestamp can well preserve the next close future timestamp’s positional encoding.
In other words, as Theorem 1 suggests, the positional encoding function of SimpleTLP can be a
good representation of the positional information of future graph snapshots without leveraging the
information about the future graph topology.

Note that the above statements do not necessarily mean that SimpleTLP does not need to update the
positional encoding in every case. Actually, SimpleTLP indeed updates the positional encoding when
new interaction happens. The role of Theorem 1 is to demonstrate the effectiveness of our positional
encoding in the inductive setting, where the future scenario is usually not given or difficult to observe.

Complexity Analysis. Next, we provide the analysis on SimpleTLP’s computational complexity.
SimpleTLP consists of two main components: LPE Module and Node-Link-Positional Encoder.
In LPE Module, the approximated positional encoding is derived by applying Discrete Fourier
Transform on a L-length sequence of previous positional encoding, so the complexity isO(L log(L)),
achieved by utilizing Fast Fourier Transform. Then, we update the positional encoding by sampling
the K most recent interactions, adding O(K) time. Therefore, for n nodes, LPE Module costs
O(n(L log(L) + K)). For Node-Link-Positional Encoder, for each node we retrieve node-level
information from its neighborhood in the interval [t−tgap; t] and sample its K most recent interactions,
so the complexity isO(n·(tgap+K)), which can be achieved by pre-computing all temporal neighbors
in the range [t− tgap; t] of each node. Thus, the total time complexity is O(n(tgap +K +L log(L)),
which scales linearly with the number of nodes, as L,K, tgap are constants independent of n.

Compared to recent SOTAs, DyGFormer (Yu et al., 2023) and FreeDyG (Tian et al., 2024), Sim-
pleTLP is more efficient as both of these methods employ neighborhood co-occurrence for each node
pair of interaction, making their worst-case complexity scales with the number of edges, |E|, while
SimpleTLP’s complexity scales with n, the number of nodes, and its quite common that n << |E|
, showing SimpleTLP’s advantage in efficiency. Detailed theoretical time complexity comparison
can be found in Appendix E.2, and detailed empirical running time comparison can be found in
Appendix E.3

5 EXPERIMENTS

Here, we put the main results showing the outperformance of SimpleTLP in classic and large-scale
datasets and demonstrating the substitutability of transformers by our lightweight solution. We leave
the effectiveness comparison in more learning and sampling settings in Appendix E.1, running time
comparison with SOTAs in Appendix E.3, LPE ablation studies wrt input node and edge features in
Appendix E.4, analysis of important hyperparameters in Appendix E.5, robustness of SimpleTLP
with different initial positional encoding input in Appendix E.6, and detailed reproducibility in
Appendix F.

5.1 EXPERIMENTAL SETTINGS

Datasets and baselines. We assess the ability of SimpleTLP in performing link prediction with
13 datasets covering various domains and collected by (Poursafaei et al., 2022): Wikipedia, Reddit,
MOOC, LastFM, Enron, Social Evo., UCI, Flights, Can. Parl., US Legis., UN Trade, UN Vote, and

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Contact. Details about the dataset statistics are shown in Appendix D. We compare SimpleTLP with 8
state-of-the-art baselines, including JODIE (Kumar et al., 2019), DyRep (Trivedi et al., 2019), TGAT
(Xu et al., 2020), TGN (Rossi et al., 2020), CAWN (Wang et al., 2021b), TCL (Wang et al., 2021a),
GraphMixer (Cong et al., 2023), DyGFormer (Yu et al., 2023), and FreeDyG (Tian et al., 2024).
Across all 13 datasets, training/validation/testing sets are following the standard library (Yu et al.,
2023) by chronological splits with ratios 70%/15%/15%. The large-scale datasets with pre-defined
splits are publicly available at TGB Benchmark 2.0 (Gastinger et al., 2024)

Evaluation metrics and settings. Following existing works (Xu et al., 2020; Rossi et al., 2020;
Yu et al., 2023) in evaluating models for link prediction, we assess SimpleTLP under two settings:
transductive setting and inductive setting. Under the transductive setting, models will predict the
link occurrence in future timestamps between nodes that had been observed during the training
process, while the inductive setting involves predicting future links between unseen nodes in the
training process. For each setting, we use two evaluation metrics: Average Precision (AP) and Area
Under the Receiver Operating Characteristic Curve (AUC-ROC). In addition, following (Poursafaei
et al., 2022), for more robust evaluation, each baseline is assessed with three negative sampling
strategies (NSS): random, historical, and inductive (Details in Appendix F).

5.2 TEMPORAL LINK PREDICTION PERFORMANCE ON 13 CLASSIC DATASETS

Due to the limited space, we present all baseline methods with respect to AP and AUC-ROC metrics
with random negative sampling strategy here for the transductive setting in Table 1 and the inductive
setting in Table 2. The performance of historical and inductive negative sampling strategies on
both learning settings are placed in Appendix E.1. The first and second results are highlighted with
Red and Blue. For the random negative sampling strategy, in Tables 1 and 2, SimpleTLP achieves
competitive results over 13 datasets and outperforming most of the baselines with average rankings
close to 1 under both settings. Moreover, the second-best results of SimpleTLP closely approach the
corresponding best results by a small gap. Notably, on some datasets, such as UN Trade, UN Vote,
the difference between the second-best and SimpleTLP’s performance is substantial, suggesting that
SimpleTLP makes great improvements over existing methods. Regarding the historical and inductive
sampling strategies, SimpleTLP also attains competitive results, as suggested in Tables 7, 8, 9, and
10, at most cases, SimpleTLP surpasses the second-best by a substantial margin.

Table 1: Performance comparison in the transductive setting with random negative sampling strategy.
Metric Datasets JODIE DyRep TGAT TGN CAWN TCL GraphMixer DyGFormer FreeDyG SimpleTLP

Wikipedia 96.50 ± 0.14 94.86 ± 0.06 96.94 ± 0.06 98.45 ± 0.06 98.76 ± 0.03 96.47 ± 0.16 97.25 ± 0.03 99.03 ± 0.02 99.26 ± 0.01 99.34 ± 0.04
Reddit 98.31 ± 0.14 98.22 ± 0.04 98.52 ± 0.02 98.63 ± 0.06 99.11 ± 0.01 97.53 ± 0.02 97.31 ± 0.01 99.22 ± 0.01 99.48 ± 0.01 99.37 ± 0.04
MOOC 80.23 ± 2.44 81.97 ± 0.49 85.84 ± 0.15 89.15 ± 1.60 80.15 ± 0.25 82.38 ± 0.24 82.78 ± 0.15 87.52 ± 0.49 89.61 ± 0.19 86.94 ± 0.34
LastFM 70.85 ± 2.13 71.92 ± 2.21 73.42 ± 0.21 77.07 ± 3.97 86.99 ± 0.06 67.27 ± 2.16 75.61 ± 0.24 93.00 ± 0.12 92.15 ± 0.16 96.06 ± 0.30
Enron 84.77 ± 0.30 82.38 ± 3.36 71.12 ± 0.97 86.53 ± 1.11 89.56 ± 0.09 79.70 ± 0.71 82.25 ± 0.16 92.47 ± 0.12 92.51 ± 0.05 93.96 ± 0.36

Social Evo. 89.89 ± 0.55 88.87 ± 0.30 93.16 ± 0.17 93.57 ± 0.17 84.96 ± 0.09 93.13 ± 0.16 93.37 ± 0.07 94.73 ± 0.01 94.91 ± 0.01 92.22 ± 0.25
UCI 89.43 ± 1.09 65.14 ± 2.30 79.63 ± 0.70 92.34 ± 1.04 95.18 ± 0.06 89.57 ± 1.63 93.25 ± 0.57 95.79 ± 0.17 96.28 ± 0.11 96.67 ± 0.47

Flights 95.60 ± 1.73 95.29 ± 0.72 94.03 ± 0.18 97.95 ± 0.14 98.51 ± 0.01 91.23 ± 0.02 90.99 ± 0.05 98.91 ± 0.01 98.12 ± 0.19 98.94 ± 0.10
Can. Parl. 69.26 ± 0.31 66.54 ± 2.76 70.73 ± 0.72 70.88 ± 2.34 69.82 ± 2.34 68.67 ± 2.67 77.04 ± 0.46 97.36 ± 0.45 72.22 ± 2.47 98.24 ± 0.11
US Legis. 75.05 ± 1.52 75.34 ± 0.39 68.52 ± 3.16 75.99 ± 0.58 70.58 ± 0.48 69.59 ± 0.48 70.74 ± 1.02 71.11 ± 0.59 69.94 ± 0.59 76.74 ± 0.60
UN Trade 64.94 ± 0.31 63.21 ± 0.93 61.47 ± 0.18 65.03 ± 1.37 65.39 ± 0.12 62.21 ± 0.03 62.61 ± 0.27 66.46 ± 1.29 - 75.84 ± 2.08
UN Vote 63.91 ± 0.81 62.81 ± 0.80 52.21 ± 0.98 65.72 ± 2.17 52.84 ± 0.10 51.90 ± 0.30 52.11 ± 0.16 55.55 ± 0.42 51.99 ± 1.13 73.40 ± 0.03
Contact 95.31 ± 1.33 95.98 ± 0.15 96.28 ± 0.09 96.89 ± 0.56 90.26 ± 0.28 92.44 ± 0.12 91.92 ± 0.03 98.29 ± 0.01 97.99 ± 0.03 98.16 ± 0.09

AP

Avg. Rank 6.77 7.38 7.23 4.08 5.85 8.46 6.77 2.77 3.85 1.85
Wikipedia 96.33 ± 0.07 94.37 ± 0.09 96.67 ± 0.07 98.37 ± 0.07 98.54 ± 0.04 95.84 ± 0.18 96.92 ± 0.03 98.91 ± 0.02 99.41 ± 0.01 99.48 ± 0.03

Reddit 98.31 ± 0.05 98.17 ± 0.05 98.47 ± 0.02 98.60 ± 0.06 99.01 ± 0.01 97.42 ± 0.02 97.17 ± 0.02 99.15 ± 0.01 99.50 ± 0.01 99.49 ± 0.03
MOOC 83.81 ± 2.09 85.03 ± 0.58 87.11 ± 0.19 91.21 ± 1.15 80.38 ± 0.26 83.12 ± 0.18 84.01 ± 0.17 87.91 ± 0.58 89.93 ± 0.35 89.28 ± 0.28
LastFM 70.49 ± 1.66 71.16 ± 1.89 71.59 ± 0.18 78.47 ± 2.94 85.92 ± 0.10 64.06 ± 1.16 73.53 ± 0.12 93.05 ± 0.10 93.42 ± 0.15 97.52 ± 0.17
Enron 87.96 ± 0.52 84.89 ± 3.00 68.89 ± 1.10 88.32 ± 0.99 90.45 ± 0.14 75.74 ± 0.72 84.38 ± 0.21 93.33 ± 0.13 94.01 ± 0.11 95.98 ± 0.23

Social Evo. 92.05 ± 0.46 90.76 ± 0.21 94.76 ± 0.16 95.39 ± 0.17 87.34 ± 0.08 94.84 ± 0.17 95.23 ± 0.07 96.30 ± 0.01 96.59 ± 0.04 94.33 ± 0.21
UCI 90.44 ± 0.49 68.77 ± 2.34 78.53 ± 0.74 92.03 ± 1.13 93.87 ± 0.08 87.82 ± 1.36 91.81 ± 0.67 94.49 ± 0.26 95.00 ± 0.21 97.62 ± 0.23

Flights 96.21 ± 1.42 95.95 ± 0.62 94.13 ± 0.17 98.22 ± 0.13 98.45 ± 0.01 91.21 ± 0.02 91.13 ± 0.01 98.93 ± 0.01 98.03 ± 0.17 99.38 ± 0.04
Can. Parl. 78.21 ± 0.23 73.35 ± 3.67 75.69 ± 0.78 76.99 ± 1.80 75.70 ± 3.27 72.46 ± 3.23 83.17 ± 0.53 97.76 ± 0.41 81.09 ± 2.28 98.97 ± 0.06
US Legis. 82.85 ± 1.07 82.28 ± 0.32 75.84 ± 1.99 83.34 ± 0.43 77.16 ± 0.39 76.27 ± 0.63 76.96 ± 0.79 77.90 ± 0.58 77.26 ± 0.50 83.89 ± 0.43
UN Trade 69.62 ± 0.44 67.44 ± 0.83 64.01 ± 0.12 69.10 ± 1.67 68.54 ± 0.18 64.72 ± 0.05 65.52 ± 0.51 70.20 ± 1.44 - 83.17 ± 1.28
UN Vote 68.53 ± 0.95 67.18 ± 1.04 52.83 ± 1.12 69.71 ± 2.65 53.09 ± 0.22 51.88 ± 0.36 52.46 ± 0.27 57.12 ± 0.62 52.79 ± 1.56 79.59 ± 0.02
Contact 96.66 ± 0.89 96.48 ± 0.14 96.95 ± 0.08 97.54 ± 0.35 89.99 ± 0.34 94.15 ± 0.09 93.94 ± 0.02 98.53 ± 0.01 98.39 ± 0.02 98.72 ± 0.06

ROC-AUC

Avg. Rank 6.08 7.31 7.46 3.92 6.0 8.69 7.15 3.0 3.69 1.69

5.3 DEMONSTRATING THE SUBSTITUTABILITY OF TRANSFORMER IN TEMPORAL LINK
PREDICTION TASKS

Here, we empirically show that simple architectures like MLPs can fully harness our learnable
positional encoding to finish temporal link prediction tasks.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Performance Comparison in the inductive setting with random negative sampling strategy.
Metric Datasets JODIE DyRep TGAT TGN CAWN TCL GraphMixer DyGFormer FreeDyG SimpleTLP

Wikipedia 94.82 ± 0.20 92.43 ± 0.37 96.22 ± 0.07 97.83 ± 0.04 98.24 ± 0.03 96.22 ± 0.17 96.65 ± 0.02 98.59 ± 0.03 98.97 ± 0.01 99.15 ± 0.04
Reddit 96.50 ± 0.13 96.09 ± 0.11 97.09 ± 0.04 97.50 ± 0.07 98.62 ± 0.01 94.09 ± 0.07 95.26 ± 0.02 98.84 ± 0.02 98.91 ± 0.01 98.02 ± 0.09
MOOC 79.63 ± 1.92 81.07 ± 0.44 85.50 ± 0.19 89.04 ± 1.17 81.42 ± 0.24 80.60 ± 0.22 81.41 ± 0.21 86.96 ± 0.43 87.75 ± 0.62 88.49 ± 0.24
LastFM 81.61 ± 3.82 83.02 ± 1.48 78.63 ± 0.31 81.45 ± 4.29 89.42 ± 0.07 73.53 ± 1.66 82.11 ± 0.42 94.23 ± 0.09 94.89 ± 0.01 96.25 ± 0.43
Enron 80.72 ± 1.39 74.55 ± 3.95 67.05 ± 1.51 77.94 ± 1.02 86.35 ± 0.51 76.14 ± 0.79 75.88 ± 0.48 89.76 ± 0.34 89.69 ± 0.17 89.17 ± 0.88

Social Evo. 91.96 ± 0.48 90.04 ± 0.47 91.41 ± 0.16 90.77 ± 0.86 79.94 ± 0.18 91.55 ± 0.09 91.86 ± 0.06 93.14 ± 0.04 94.76 ± 0.05 91.71 ± 0.32
UCI 79.86 ± 1.48 57.48 ± 1.87 79.54 ± 0.48 88.12 ± 2.05 92.73 ± 0.06 87.36 ± 2.03 91.19 ± 0.42 94.54 ± 0.12 94.85 ± 0.10 94.60 ± 0.41

Flights 94.74 ± 0.37 92.88 ± 0.73 88.73 ± 0.33 95.03 ± 0.60 97.06 ± 0.02 83.41 ± 0.07 83.03 ± 0.05 97.79 ± 0.02 96.42 ± 0.32 97.43 ± 0.15
Can. Parl. 53.92 ± 0.94 54.02 ± 0.76 55.18 ± 0.79 54.10 ± 0.93 55.80 ± 0.69 54.30 ± 0.66 55.91 ± 0.82 87.74 ± 0.71 52.96 ± 1.05 92.25± 0.24
US Legis. 54.93 ± 2.29 57.28 ± 0.71 51.00 ± 3.11 58.63 ± 0.37 53.17 ± 1.20 52.59 ± 0.97 50.71 ± 0.76 54.28 ± 2.87 53.05 ± 2.59 61.98 ± 1.31
UN Trade 59.65 ± 0.77 57.02 ± 0.69 61.03 ± 0.18 58.31 ± 3.15 65.24 ± 0.21 62.21 ± 0.12 62.17 ± 0.31 64.55 ± 0.62 - 76.80 ± 2.01
UN Vote 56.64 ± 0.96 54.62 ± 2.22 52.24 ± 1.46 58.85 ± 2.51 49.94 ± 0.45 51.60 ± 0.97 50.68 ± 0.44 55.93 ± 0.39 50.51 ± 1.02 75.09 ± 0.34
Contact 94.34 ± 1.45 92.18 ± 0.41 95.87 ± 0.11 93.82 ± 0.99 89.55 ± 0.30 91.11 ± 0.12 90.59 ± 0.05 98.03 ± 0.02 97.66 ± 0.04 97.25 ± 0.07

AP

Avg. Rank 6.38 7.54 7.08 5.31 5.38 7.54 6.92 2.62 4.15 2.08
Wikipedia 94.33 ± 0.27 91.49 ± 0.45 95.90 ± 0.09 97.72 ± 0.03 98.03 ± 0.04 95.57 ± 0.20 96.30 ± 0.04 98.48 ± 0.03 99.01 ± 0.02 99.30 ± 0.03

Reddit 96.52 ± 0.13 96.05 ± 0.12 96.98 ± 0.04 97.39 ± 0.07 98.42 ± 0.02 93.80 ± 0.07 94.97 ± 0.05 98.71 ± 0.01 98.84 ± 0.01 98.49 ± 0.06
MOOC 83.16 ± 1.30 84.03 ± 0.49 86.84 ± 0.17 91.24 ± 0.99 81.86 ± 0.25 81.43 ± 0.19 82.77 ± 0.24 87.62 ± 0.51 87.01 ± 0.74 90.63 ± 0.21
LastFM 81.13 ± 3.39 82.24 ± 1.51 76.99 ± 0.29 82.61 ± 3.15 87.82 ± 0.12 70.84 ± 0.85 80.37 ± 0.18 94.08 ± 0.08 94.32 ± 0.03 97.66 ± 0.21
Enron 81.96 ± 1.34 76.34 ± 4.20 64.63 ± 1.74 78.83 ± 1.11 87.02 ± 0.50 72.33 ± 0.99 76.51 ± 0.71 90.69 ± 0.26 89.51 ± 0.20 92.30 ± 0.57

Social Evo. 93.70 ± 0.29 91.18 ± 0.49 93.41 ± 0.19 93.43 ± 0.59 84.73 ± 0.27 93.71 ± 0.18 94.09 ± 0.07 95.29 ± 0.03 96.41 ± 0.07 94.09 ± 0.24
UCI 78.80 ± 0.94 58.08 ± 1.81 77.64 ± 0.38 86.68 ± 2.29 90.40 ± 0.11 84.49 ± 1.82 89.30 ± 0.57 92.63 ± 0.13 93.01 ± 0.08 95.88 ± 0.17

Flights 95.21 ± 0.32 93.56 ± 0.70 88.64 ± 0.35 95.92 ± 0.43 96.86 ± 0.02 82.48 ± 0.01 82.27 ± 0.06 97.80 ± 0.02 96.05 ± 0.29 98.46 ± 0.07
Can. Parl. 53.81 ± 1.14 55.27 ± 0.49 56.51 ± 0.75 55.86 ± 0.75 58.83 ± 1.13 55.83 ± 1.07 58.32 ± 1.08 89.33 ± 0.48 52.89 ± 1.61 95.06 ± 0.11
US Legis. 58.12 ± 2.35 61.07 ± 0.56 48.27 ± 3.50 62.38 ± 0.48 51.49 ± 1.13 50.43 ± 1.48 47.20 ± 0.89 53.21 ± 3.04 53.01 ± 3.14 66.18 ± 1.19
UN Trade 62.28 ± 0.50 58.82 ± 0.98 62.72 ± 0.12 59.99 ± 3.50 67.05 ± 0.21 63.76 ± 0.07 63.48 ± 0.37 67.25 ± 1.05 - 83.95 ± 1.76
UN Vote 58.13 ± 1.43 55.13 ± 3.46 51.83 ± 1.35 61.23 ± 2.71 48.34 ± 0.76 50.51 ± 1.05 50.04 ± 0.86 56.73 ± 0.69 49.97 ± 1.22 82.01 ± 0.21
Contact 95.37 ± 0.92 91.89 ± 0.38 96.53 ± 0.10 94.84 ± 0.75 89.07 ± 0.34 93.05 ± 0.09 92.83 ± 0.05 98.30 ± 0.02 98.11 ± 0.02 97.99 ± 0.07

ROC-AUC

Avg. Rank 6.38 7.54 7.08 4.92 5.77 7.77 7.08 2.62 4.31 1.54

By performing an ablation study of using Transformers (instead of MLPs) to help SimpleTLP learn
positional encodings, as shown in Table 3, we can discern (1) in most cases (i.e., 9 of 13 datasets),
our vanilla SimpleTLP can outperform, and the gain is not marginal; (2) in a few cases, adding the
attention mechanism on SimpleTLP to replace MLPs can boost the performance to a small extent,
and it is prone to cost more computational memory, like OOM in the Flights dataset.

Table 3: Comparison of replacing MLPs in SimpleTLP with Transformers.
Dataset Method Transductive AP Transductive ROC-AUC Inductive AP Inductive ROC-AUC

Wikipedia SimpleTLP + Transformer 98.50 ± 0.73 98.85 ± 0.50 98.11 ± 0.83 98.49 ± 0.62
SimpleTLP 99.34 ± 0.04 99.48 ± 0.03 99.15 ± 0.04 99.30 ± 0.03

Reddit SimpleTLP + Transformer 98.90 ± 0.10 99.13 ± 0.08 97.75 ± 0.26 98.29 ± 0.16
SimpleTLP 99.37 ± 0.04 99.49 ± 0.03 98.02 ± 0.09 98.49 ± 0.06

MOOC SimpleTLP + Transformer 82.46 ± 3.61 85.38 ± 2.93 82.57 ± 4.24 85.80 ± 3.18
SimpleTLP 86.94 ± 0.34 89.28 ± 0.28 88.49 ± 0.24 90.63 ± 0.21

LastFM SimpleTLP + Transformer 95.50 ± 0.70 97.19 ± 0.50 96.07 ± 0.36 97.62 ± 0.25
SimpleTLP 96.06 ± 0.30 97.52 ± 0.17 96.25 ± 0.43 97.66 ± 0.21

Enron SimpleTLP + Transformer 92.56 ± 0.53 95.02 ± 0.33 86.41 ± 1.15 90.70 ± 0.72
SimpleTLP 93.96 ± 0.36 95.98 ± 0.23 89.17 ± 0.88 92.30 ± 0.57

SocialEvo SimpleTLP + Transformer 90.26 ± 0.69 92.61 ± 0.58 90.75 ± 0.31 93.50 ± 0.30
SimpleTLP 92.22 ± 0.25 94.33 ± 0.21 91.71 ± 0.32 94.09 ± 0.24

UCI SimpleTLP + Transformer 96.06 ± 0.53 97.12 ± 0.41 93.00 ± 1.30 94.59 ± 0.85
SimpleTLP 96.67 ± 0.47 97.62 ± 0.23 94.60 ± 0.41 95.88 ± 0.17

Flights SimpleTLP + Transformer OOM OOM OOM OOM
SimpleTLP 98.94 ± 0.10 99.38 ± 0.04 97.43 ± 0.15 98.46 ± 0.07

Can. Parl. SimpleTLP + Transformer 98.36 ± 0.12 99.01 ± 0.07 92.59 ± 0.32 95.37 ± 0.25
SimpleTLP 98.24 ± 0.11 98.97 ± 0.06 92.25± 0.24 95.06 ± 0.11

US Legis. SimpleTLP + Transformer 76.84 ± 0.61 84.16 ± 0.40 64.07 ± 1.31 68.13 ± 1.78
SimpleTLP 76.74 ± 0.60 83.89 ± 0.43 61.98 ± 1.31 66.18 ± 1.19

UN Trade. SimpleTLP + Transformer 77.45 ± 3.27 83.94 ± 2.23 79.83 ± 3.28 85.95 ± 2.13
SimpleTLP 75.84 ± 2.08 83.17 ± 1.28 76.80 ± 2.01 83.95 ± 1.76

UN Vote SimpleTLP + Transformer 74.65 ± 0.46 80.73 ± 0.40 76.10 ± 0.88 82.89 ± 0.64
SimpleTLP 73.40 ± 0.03 79.59 ± 0.02 75.09 ± 0.34 82.01 ± 0.21

Contact SimpleTLP + Transformer 97.32 ± 0.15 98.12 ± 0.10 96.05 ± 0.41 97.18 ± 0.21
SimpleTLP 98.16 ± 0.09 98.72 ± 0.06 97.25 ± 0.07 97.99 ± 0.07

Based on the above analysis, our design gets verified in-depth: the proposed learnable positional
encoding is effective and friendly to lightweight neural architectures, and even simple MLPs can
fully exploit its expressive power.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

5.4 TEMPORAL LINK PREDICTION PERFORMANCE ON LARGE-SCALE BENCHMARK TGB 2.0

In this section, we assess the scalability of our method by evaluating SimpleTLP on large-scale
temporal graphs from the TGB Benchmark 2.0 (Gastinger et al., 2024) with link prediction task.
Specifically, we report SimpleTLP ’s performance on tgbl-review and tgbl-coin datasets in Table 4,
following the given pre-defined splits and metrics. Moreover, tgbl-review has 352,637 nodes and
4,873,540 edges, while tgbl-coin has 638,486 nodes and 22,809,486 edges.

As shown in Table 4, our method achieves competitive performance, ranking the 2nd place on
tgbl-review 1 and the 3rd place on tgbl-coin 2, according to the worldwide open leaderboard.

Table 4: Test MRR and Validation MRR in the worldwide leaderboard of TGB datasets
tgbl-review tgbl-coin

Rank Method Test MRR Validation MRR Rank Method Test MRR Validation MRR
1 GraphMixer 0.521 ± 0.015 0.428 ± 0.019 1 TNCN 0.762 ± 0.004 0.740 ± 0.002
2 SimpleTLP 0.411 ± 0.011 0.330 ± 0.017 2 DyGFormer 0.752 ± 0.004 0.730 ± 0.002
3 TNCN 0.377 ± 0.010 0.325 ± 0.003 3 SimpleTLP 0.711 ± 0.0185 0.674 ± 0.021
4 TGAT 0.355 ± 0.012 0.324 ± 0.006 4 TGN 0.586 ± 0.037 0.607 ± 0.014
5 TGN 0.349 ± 0.020 0.313 ± 0.012 5 EdgeBank(tw) 0.580 0.492
6 NAT 0.341 ± 0.020 0.302 ± 0.011 6 DyRep 0.452 ± 0.046 0.512 ± 0.014
7 DyGFormer 0.224 ± 0.015 0.219 ± 0.017 7 EdgeBank(unlimited) 0.359 0.315
8 DyRep 0.220 ± 0.030 0.216 ± 0.031
9 CAWN 0.193 ± 0.001 0.200 ± 0.001

10 TCL 0.193 ± 0.009 0.199 ± 0.007
11 EdgeBank(tw) 0.025 0.024
12 EdgeBank(unlimited) 0.023 0.023

To further demonstrate the efficiency of SimpleTLP, we provide runtime comparison between our
method some of the SOTAs, DyGFormer (Yu et al., 2023) and FreeDyG (Tian et al., 2024), on US
Legis and UN Trade datasets in Table 11 in Appendix E.3.

6 RELATED WORK

Most temporal graph learning methods are designed to learn node temporal representations at a certain
timestamp, and then obtain the link prediction between a pair of nodes (u, v) at time t. They typically
start by concatenating the temporal representations of u, v at time t, and then process the concatenation
with MLP layers to estimate the link occurrence probability. Usually, the temporal representations of
nodes are obtained by aggregating intrinsic node/edge features from recent temporal neighbors and
interactions, which are then processed using more complex architectures. For example, TGN (Rossi
et al., 2020) and JODIE (Kumar et al., 2019) employ the recurrent architecture, TGAT (Xu et al., 2020)
utilizes the self-attention mechanism, DyRep (Trivedi et al., 2019) uses Temporal Point Processes,
and more recently, GraphMixer (Cong et al., 2023) leverages Mixer-MLP layers, while DyGFormer
(Yu et al., 2023) harnesses the power of Transformer and FreeDyG (Tian et al., 2024) utilizes Fourier
Transform to encode neighborhood co-occurrence information. From another aspect, some methods
aggregate information from higher-order graph structures. For example, TGN (Rossi et al., 2020)
and TGAT (Xu et al., 2020) both aggregate information from k-hop neighborhoods, and CAWN
(Wang et al., 2021b) samples random walks and encode them to derive the node representations.
Our SimpleTLP achieves effectiveness with efficiency. First, our SimpleTLP only considers 1-
hop neighborhood for information aggregation and processes representations with simple MLP
transformations. More importantly, SimpleTLP integrates the domain of node and edge features by
integrating evolving positional encoding, which is informative to support task out-performance, and
the acquisition is easy and does not really rely on heavy attention mechanisms.

7 CONCLUSION

In this paper, we propose a simple temporal link prediction model, SimpleTLP, which only relies on
learnable positional encoding and MLPs to achieve out-performance over SOTA graph transformers
in link prediction tasks. In addition to theoretical analysis of the effectiveness and efficiency, we
design comprehensive experiments to demonstrate the empirical performance of SimpleTLP.

1https://tgb.complexdatalab.com/docs/leader_linkprop/#tgbl-review-v2
2https://tgb.complexdatalab.com/docs/leader_linkprop/#tgbl-coin-v2

10

https://tgb.complexdatalab.com/docs/leader_linkprop/#tgbl-review-v2
https://tgb.complexdatalab.com/docs/leader_linkprop/#tgbl-coin-v2

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Jinsong Chen, Kaiyuan Gao, Gaichao Li, and Kun He. Nagphormer: A tokenized graph transformer
for node classification in large graphs. In The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL
https://openreview.net/pdf?id=8KYeilT3Ow.

Weilin Cong, Si Zhang, Jian Kang, Baichuan Yuan, Hao Wu, Xin Zhou, Hanghang Tong, and
Mehrdad Mahdavi. Do we really need complicated model architectures for temporal networks?
In The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https://openreview.net/pdf?
id=ayPPc0SyLv1.

Nur Nasuha Daud, Siti Hafizah Ab Hamid, Muntadher Saadoon, Firdaus Sahran, and Nor Badrul
Anuar. Applications of link prediction in social networks: A review. Journal of Network and
Computer Applications, 166:102716, 2020.

Cameron Diao and Ricky Loynd. Relational attention: Generalizing transformers for graph-structured
tasks. In The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https://openreview.net/pdf?
id=cFuMmbWiN6.

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
CoRR, abs/2012.09699, 2020. URL https://arxiv.org/abs/2012.09699.

Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson. Graph
neural networks with learnable structural and positional representations. In The Tenth Interna-
tional Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022.
OpenReview.net, 2022. URL https://openreview.net/forum?id=wTTjnvGphYj.

Vijay Prakash Dwivedi, Chaitanya K. Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and
Xavier Bresson. Benchmarking graph neural networks. J. Mach. Learn. Res., 24:43:1–43:48, 2023.
URL http://jmlr.org/papers/v24/22-0567.html.

Julia Gastinger, Shenyang Huang, Mikhail Galkin, Erfan Loghmani, Ali Parviz, Farimah Poursafaei,
Jacob Danovitch, Emanuele Rossi, Ioannis Koutis, Heiner Stuckenschmidt, Reihaneh Rabbany,
and Guillaume Rabusseau. TGB 2.0: A benchmark for learning on temporal knowledge graphs and
heterogeneous graphs. CoRR, abs/2406.09639, 2024. doi: 10.48550/ARXIV.2406.09639. URL
https://doi.org/10.48550/arXiv.2406.09639.

Gagan D Gupta, Étienne Coyaud, João Gonçalves, Bahareh A Mojarad, Yi Liu, Qianzhu Wu, Ladan
Gheiratmand, David Comartin, Johnny M Tkach, Sally WT Cheung, et al. A dynamic protein
interaction landscape of the human centrosome-cilium interface. Cell, 163(6):1484–1499, 2015.

Zan Huang, Xin Li, and Hsinchun Chen. Link prediction approach to collaborative filtering. In
Proceedings of the 5th ACM/IEEE-CS joint conference on Digital libraries, pp. 141–142, 2005.

Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay Sethi, Peter Forsyth, and
Pascal Poupart. Representation learning for dynamic graphs: A survey. J. Mach. Learn. Res., 21:
70:1–70:73, 2020. URL http://jmlr.org/papers/v21/19-447.html.

Jinwoo Kim, Dat Nguyen, Seonwoo Min, Sungjun Cho, Moontae Lee, Honglak Lee, and Se-
unghoon Hong. Pure transformers are powerful graph learners. In Sanmi Koyejo, S. Mo-
hamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural
Information Processing Systems 35: Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9,
2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
5d84236751fe6d25dc06db055a3180b0-Abstract-Conference.html.

Ajay Kumar, Shashank Sheshar Singh, Kuldeep Singh, and Bhaskar Biswas. Link prediction
techniques, applications, and performance: A survey. Physica A: Statistical Mechanics and its
Applications, 553:124289, 2020.

11

https://openreview.net/pdf?id=8KYeilT3Ow
https://openreview.net/pdf?id=ayPPc0SyLv1
https://openreview.net/pdf?id=ayPPc0SyLv1
https://openreview.net/pdf?id=cFuMmbWiN6
https://openreview.net/pdf?id=cFuMmbWiN6
https://arxiv.org/abs/2012.09699
https://openreview.net/forum?id=wTTjnvGphYj
http://jmlr.org/papers/v24/22-0567.html
https://doi.org/10.48550/arXiv.2406.09639
http://jmlr.org/papers/v21/19-447.html
http://papers.nips.cc/paper_files/paper/2022/hash/5d84236751fe6d25dc06db055a3180b0-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/5d84236751fe6d25dc06db055a3180b0-Abstract-Conference.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic embedding trajectory in temporal
interaction networks. In Ankur Teredesai, Vipin Kumar, Ying Li, Rómer Rosales, Evimaria Terzi,
and George Karypis (eds.), Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, KDD 2019, Anchorage, AK, USA, August 4-8, 2019,
pp. 1269–1278. ACM, 2019. doi: 10.1145/3292500.3330895. URL https://doi.org/10.
1145/3292500.3330895.

Linyuan Lu and Tao Zhou. Link prediction in complex networks: A survey. CoRR, abs/1010.0725,
2010. URL http://arxiv.org/abs/1010.0725.

Víctor Martínez, Fernando Berzal, and Juan Carlos Cubero Talavera. A survey of link prediction in
complex networks. ACM Comput. Surv., 49(4):69:1–69:33, 2017. doi: 10.1145/3012704. URL
https://doi.org/10.1145/3012704.

Erxue Min, Runfa Chen, Yatao Bian, Tingyang Xu, Kangfei Zhao, Wenbing Huang, Peilin Zhao,
Junzhou Huang, Sophia Ananiadou, and Yu Rong. Transformer for graphs: An overview from
architecture perspective. CoRR, abs/2202.08455, 2022. URL https://arxiv.org/abs/
2202.08455.

Luis Müller, Mikhail Galkin, Christopher Morris, and Ladislav Rampásek. Attending to graph
transformers. CoRR, abs/2302.04181, 2023. doi: 10.48550/ARXIV.2302.04181. URL https:
//doi.org/10.48550/arXiv.2302.04181.

Farimah Poursafaei, Shenyang Huang, Kellin Pelrine, and Reihaneh Rabbany. To-
wards better evaluation for dynamic link prediction. In Sanmi Koyejo, S. Mohamed,
A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Infor-
mation Processing Systems 35: Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December
9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/
hash/d49042a5d49818711c401d34172f9900-Abstract-Datasets_and_
Benchmarks.html.

Ladislav Rampásek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and
Dominique Beaini. Recipe for a general, powerful, scalable graph transformer. In Sanmi
Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances
in Neural Information Processing Systems 35: Annual Conference on Neural Information
Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December
9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
5d4834a159f1547b267a05a4e2b7cf5e-Abstract-Conference.html.

Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti, and Michael M.
Bronstein. Temporal graph networks for deep learning on dynamic graphs. CoRR, abs/2006.10637,
2020. URL https://arxiv.org/abs/2006.10637.

Amauri H. Souza, Diego Mesquita, Samuel Kaski, and Vikas Garg. Provably expressive temporal
graph networks. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh
(eds.), Advances in Neural Information Processing Systems 35: Annual Conference on Neural
Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - De-
cember 9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/
hash/d029c97ee0db162c60f2ebc9cb93387e-Abstract-Conference.html.

Duraisamy Sundararajan. The discrete Fourier transform: theory, algorithms and applications. World
Scientific, 2001.

Ian W Taylor, Rune Linding, David Warde-Farley, Yongmei Liu, Catia Pesquita, Daniel Faria, Shelley
Bull, Tony Pawson, Quaid Morris, and Jeffrey L Wrana. Dynamic modularity in protein interaction
networks predicts breast cancer outcome. Nature biotechnology, 27(2):199–204, 2009.

Yuxing Tian, Yiyan Qi, and Fan Guo. Freedyg: Frequency enhanced continuous-time dynamic
graph model for link prediction. In The Twelfth International Conference on Learning Rep-
resentations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=82Mc5ilInM.

12

https://doi.org/10.1145/3292500.3330895
https://doi.org/10.1145/3292500.3330895
http://arxiv.org/abs/1010.0725
https://doi.org/10.1145/3012704
https://arxiv.org/abs/2202.08455
https://arxiv.org/abs/2202.08455
https://doi.org/10.48550/arXiv.2302.04181
https://doi.org/10.48550/arXiv.2302.04181
http://papers.nips.cc/paper_files/paper/2022/hash/d49042a5d49818711c401d34172f9900-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2022/hash/d49042a5d49818711c401d34172f9900-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2022/hash/d49042a5d49818711c401d34172f9900-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2022/hash/5d4834a159f1547b267a05a4e2b7cf5e-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/5d4834a159f1547b267a05a4e2b7cf5e-Abstract-Conference.html
https://arxiv.org/abs/2006.10637
http://papers.nips.cc/paper_files/paper/2022/hash/d029c97ee0db162c60f2ebc9cb93387e-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/d029c97ee0db162c60f2ebc9cb93387e-Abstract-Conference.html
https://openreview.net/forum?id=82Mc5ilInM

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha. Dyrep: Learning
representations over dynamic graphs. In 7th International Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL https:
//openreview.net/forum?id=HyePrhR5KX.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von
Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett (eds.), Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp.
5998–6008, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

Lu Wang, Xiaofu Chang, Shuang Li, Yunfei Chu, Hui Li, Wei Zhang, Xiaofeng He, Le Song, Jingren
Zhou, and Hongxia Yang. TCL: transformer-based dynamic graph modelling via contrastive
learning. CoRR, abs/2105.07944, 2021a. URL https://arxiv.org/abs/2105.07944.

Yanbang Wang, Yen-Yu Chang, Yunyu Liu, Jure Leskovec, and Pan Li. Inductive representation
learning in temporal networks via causal anonymous walks. In 9th International Conference on
Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net,
2021b. URL https://openreview.net/forum?id=KYPz4YsCPj.

Da Xu, Chuanwei Ruan, Evren Körpeoglu, Sushant Kumar, and Kannan Achan. Inductive repre-
sentation learning on temporal graphs. In 8th International Conference on Learning Represen-
tations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL
https://openreview.net/forum?id=rJeW1yHYwH.

Le Yu, Leilei Sun, Bowen Du, and Weifeng Lv. Towards better dynamic graph learn-
ing: New architecture and unified library. In Alice Oh, Tristan Naumann, Amir
Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances in Neu-
ral Information Processing Systems 36: Annual Conference on Neural Information Pro-
cessing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
d611019afba70d547bd595e8a4158f55-Abstract-Conference.html.

13

https://openreview.net/forum?id=HyePrhR5KX
https://openreview.net/forum?id=HyePrhR5KX
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://arxiv.org/abs/2105.07944
https://openreview.net/forum?id=KYPz4YsCPj
https://openreview.net/forum?id=rJeW1yHYwH
http://papers.nips.cc/paper_files/paper/2023/hash/d611019afba70d547bd595e8a4158f55-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/d611019afba70d547bd595e8a4158f55-Abstract-Conference.html

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A PSEUDO-CODE FOR SIMPLETLP

In this section, we provide the pseudo-code for SimpleTLP. Specifically, Algorithm. 1 summarizes
the computational process of the Node-Link-Positional Encoder, Algorithm. 2 demonstrates the
computation of the objective loss function, and finally, Algorithm. 3 briefly describe the training
procedure of SimpleTLP as a neural architecture.

Algorithm 1 Temporal Representation
Require: node u, time t
Ensure: Temporal Representation for u at t

{p̂t′j
u }Lj=1 ← Eq. 1

p̃t
u ← 1 Eq. 2

ht
u,N ← n Eq. 4

Ht
u,E ← Eq. 5

ht
u,E ← Eq. 5

ht
u,N∥E ← Eq. 6

ĥt
u,P ← Eq. 7

ht
u,P ← Eq. 8

ht
u ← Eq. 9

return ht
u

Algorithm 2 Loss Function
Require: B positive samples, B negative samples
Ensure: L
Llp ← 0
Lpe ← 0
for i ∈ [1, . . . , B] do

ht

u
(pos)
i

← Algorithm. 1(u(pos)
i , t)

ht

v
(pos)
i

← Algorithm. 1(v(pos)i , t)

ht

u
(neg)
i

← Algorithm. 1(u(neg)
i , t)

ht

u
(neg)
i

← Algorithm. 1(v(neg)i , t)

ŷ
(pos)
i ← Eq. 10 with ht

u
(pos)
i

,ht

v
(pos)
i

ŷ
(neg)
i ← Eq. 10 with ht

u
(neg)
i

,ht

v
(neg)
i

Llp ← Llp + log(ŷ
(pos
i) + (1− log(ŷ

(neg)
i))

Lpe ← Lpe + ||p̃ti

u
(pos)
i

− p̃ti

v
(pos)
i

||2 − αneg||p̃ti

u
(neg)
i

− p̃ti

v
(neg)
i

||2
end for
Llp ← −Llp/(2B)
Lpe ← Lpe/B
L ← Eq. 13

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Algorithm 3 Training Pipeline of SimpleTLP
Require: Data-loader over G, number of epochs (# Epochs)
Ensure: Link Predictions

Initialize the PE of the initial snapshot with its Laplacian PE: pt0 ← Laplacian PE of Gt0

for epoch in [1, . . . , # Epochs] do
for (B positive samples, B negative samples) in Data-loader do
L ← Algorithm. 2(B positive samples, B negative samples)
Back-propagate L
for t in [t1, . . . , tB] do

if Finish link prediction at time t (t ∈ [t1, tB]) then
reveal new links and update positional encoding: ∀u,pt

u ← Eq. 3
end if

end for
end for

end for

B PROOF OF THEOREM 1

We start our proof for Eq. 14 by first stating the following Lemma about the eigenvalues of n-node
ring graph, denoted by Rn.

Lemma 1. The real-valued part of Fourier basis is the eigenvector of the Laplacian of the ring graph.
Specifically, for a n-node ring graph Rn, the k−th eigenvector of its Laplacian, L(Rn), is

uring
k =

 cos(2π · 0/n)
cos(2π · 1/n)

. . .
cos(2π · (n− 1))/n

 ∈ Rn (15)

and its corresponding eigenvalue is λring
k = 2− cos(2πk/n).

Lemma. 1 is motivated by Lemma 5.2.1 from the lecture 3. Based on that, we can then extend to
prove our Theorem. 1 as follows.

Proof. For short of notation, in the rest of this proof, suppose the positional encoding of snapshots at
L+1 distinct timestamps before t are denoted as p0,p1, . . . ,pL, which are the Laplacian eigenvector
of graph snapshots at t0, . . . , tL, and p̃t

u and p̃t′

u are denoted as p̃L+1 and p̃L+2, respectively. Again,
for short of notation, we omit the subscript u in the positional encoding notations. In addition, we
denote L(Rn) as the (un-normalized) Laplacian of a n-node ring graph, Rn.

We start by giving the definition of “slow-changing” network. We suppose that our network is
“slow-changing”, in terms of graph topology, thus, we can assume the eigenvector of the Laplacian
does not vary across timestamps, i.e., p0 ≈ · · · ≈ pL, so now we focus on bounding the left-hand
side of Eq. 14.

3https://www.cs.yale.edu/homes/spielman/561/lect05-15.pdf

15

https://www.cs.yale.edu/homes/spielman/561/lect05-15.pdf

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

We start by considering the following equation:

p̃L+1 − p̃L+2 + p̃L+1 − p̃L +
([

p0 − pL 0 0 . . . pL+1 − p1
])

FWfilterF
−1

[
α1

. . .
αt−1

]
=

=
([

p1 p2 . . . pL
]
−
[
p2 p3 . . . pL+1

]
+
[
p1 p2 . . . pL

]
−
[
p0 p1 . . . pL−1

]
+
[
p0 − pL 0 0 . . . pL+1 − p1

])
FWfilterF

−1

[
α1

. . .
αt−1

]
=

([
p1 − p2 + p1 − p0 . . . pi − pi+1 + pi − pi−1 . . . pL − pL+1 + pL − pL−1

]
+
[
p0 − pL 0 0 . . . pL+1 − p1

])
FWfilterF

−1

[
α1

. . .
αt−1

]

=
([

p1 − p2 + p1 − pL . . . pi − pi+1 + pi − pi−1 . . . pL − p1 + pL − pL−1
])

FWfilterF
−1

p1

. . .
pL


=

[
p1 . . . pL

]
L(RL)FWfilterF

−1

[
α1

. . .
αL

]
(16)

The eigen-decomposition of L(RL) is L(RL) = FΛF−1, where Λ is a diagonal matrix with the
i−th entri is λring

i . Thus

[
p1 . . . pL

]
L(RL)FWfilterF

−1

[
α1

. . .
αL

]

=
[
p1 . . . pL

]
FΛF−1FWfilterF

−1

[
α1

. . .
αL

]

=
[
p1 . . . pL

]
F(ΛWfilter)F

−1

[
α1

. . .
αL

]
(17)

For simplicity, let Wfilter be a diagonal matrix, thus (ΛWfilter) is a diagonal matrix.

Therefore, we obtain

[
p1 . . . pL

]
F(ΛWfilter)F

−1

[
α1

. . .
αL

]

=
[
p1 . . . pL

] L∑
i=1

(ΛWfilter)iF:,i(F
−1
:,i)

T

[
α1

. . .
αL

] (18)

Thus,

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

p̃L+1 − p̃L+2 + p̃L+1 − p̃L +
([

p0 − pL 0 0 . . . pL+1 − p1
])

FWfilterF
−1

[
α1

. . .
αt−1

]
=

=
[
p1 . . . pL

] L∑
i=1

(ΛWfilter)iF:,i(F
−1
:,i)

T

[
α1

. . .
αL

]

= (

L∑
i=1

(ΛWfilter)i)(

L∑
j=1

αjp
j)

⇒ p̃L+1 − p̃L+2 = p̃L − p̃L+1 −
([

p0 − pL 0 0 . . . pL+1 − p1
])

FWfilterF
−1

[
α1

. . .
αt−1

]

+ (

L∑
i=1

(ΛWfilter)i)(

L∑
j=1

αjp
j)

(19)

Therefore,

||p̃L+1 − p̃L+2||2 ≤ ||(
L∑

i=1

(ΛWfilter)i)(

L∑
j=1

αjp
j)||2 + ||p̃L+1 − p̃L||2

≤ ||(
L∑

i=1

(ΛWfilter)i)(

L∑
j=1

αjp
j)||2 + ||(

L∑
i=1

(ΛWfilter)i)(

L−1∑
j=0

αjp
j)||2 + ||p̃L − p̃L−1||2

≤ . . .

≤ (

L∑
i=1

(ΛWfilter)i)||(
L∑

j=1

αjp
j)||2 + (

L∑
i=1

(ΛWfilter)i)||
L−1∑
j=0

(L− 1− j)αj+1p
j ||2

(20)

where the first inequality holds due to the assumption of “slow-changing” network.

For simplicity, we assume α1, α2, . . . , αt−1 and the length of positional encoding P (t) is normalized,
i.e α1 + · · ·+ αt−1 = 1

Thus,

(20) ≤
(L∑
i=1

|(ΛWfilter)i|
)
· (2L− 2) (21)

Since L≪ N , thus choosing t small enough and choosing the filter such that
∑L

i=1(ΛWfilter)i < 1
shows that the past positional encoding can be a well approximation of the positional encoding of the
future snapshot.

C MORE COMPARISON WITH RELATED WORKS

In this section, we provide comparative discussion and experimental comparison between our
method SimpleTLP and PINT (Souza et al., 2022), a method for temporal link prediction that
also leverage positional features.

To be more specific, PINT (Souza et al., 2022) proposes relative positional features that count
the number of temporal walks of a given length between 2 nodes. As stated in PINT (Souza

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

et al., 2022), temporal walks are defined as follows. An (L − 1)-length temporal walk is W =
{(w1, t1), (w2, t2), . . . , (wL, tL)}, where t1 > t2 > . . . tL and (wi−1, wi, ti) is an interaction in the
given temporal graph. In summary, PINT proposes a relative positional encoding that represents
pair-wise node “distance” (here the “distance” is the number of L-length temporal walks, assuming
L is given). On the other hand, our SimpleTLP learnable positional encodings (LPE) fall into the
category of global positional encodings, which encode the position of the node relative to the global
structure of the graph.

Table 5: Performance comparison between PINT and SimpleTLP in transductive setting and inductive
setting with random negative sampling strategy

Dataset Method Transductive AP Transductive ROC-AUC Inductive AP Inductive ROC-AUC

Enron PINT 81.60 ± 0.67 84.50 ± 0.60 67.01 ± 2.76 70.41 ± 2.34
SimpleTLP (Ours) 93.96 ± 0.36 95.98 ± 0.23 89.17 ± 0.88 92.30 ± 0.57

UCI PINT 95.77 ± 0.11 94.89 ± 0.15 94.14 ± 0.05 92.51 ± 0.07
SimpleTLP (Ours) 96.67 ± 0.47 97.62 ± 0.23 94.60 ± 0.41 95.88 ± 0.17

Next, we present the empirical comparision between SimpleTLPand PINT (Souza et al., 2022) in
Table 5. As shown in the Table 5, our SimpleTLP outperforms PINT in all experimental settings
(transductive and inductive). Regarding PINT’s empirical evaluation, we adopt PINT’s official imple-
mentation (via the Github link provided in the (Souza et al., 2022)) and use the exact hyperparameters
presented in the PINT paper to reproduce their results on these datasets. Moreover, PINT (Souza
et al., 2022) and SimpleTLP use the same data split.

D DATASETS

Table 6: Statistics of the datasets.
Datasets Domains #Nodes #Links #N&L Feat Bipartite Duration Unique Steps Time Granularity

Wikipedia Social 9,227 157,474 – & 172 True 1 month 152,757 Unix timestamps
Reddit Social 10,984 672,447 – & 172 True 1 month 669,065 Unix timestamps
MOOC Interaction 7,144 411,749 – & 4 True 17 months 345,600 Unix timestamps
LastFM Interaction 1,980 1,293,103 – & – True 1 month 1,283,614 Unix timestamps
Enron Social 184 125,235 – & – False 3 years 22,632 Unix timestamps

Social Evo. Proximity 74 2,099,519 – & 2 False 8 months 565,932 Unix timestamps
UCI Social 1,899 59,835 – & – False 196 days 58,911 Unix timestamps

Flights Transport 13,169 1,927,145 – & 1 False 4 months 122 days
Can. Parl. Politics 734 74,478 – & 1 False 14 years 14 years
US Legis. Politics 225 60,396 – & 1 False 12 congresses 12 congresses
UN Trade Economics 255 507,497 – & 1 False 32 years 32 years
UN Vote Politics 201 1,035,742 – & 1 False 72 years 72 years
Contact Proximity 692 2,426,279 – & 1 False 1 month 8,064 5 minutes

Here, in Table 6, we report a detailed regarding 13 datasets in our empirical assessment, which
includes the domain, number of nodes, number of links, dimension of raw node and edge features.
The statistics of Benchmark TGB 2.0 are available at https://tgb.complexdatalab.com/
docs/linkprop/.

E MORE EXPERIMENTAL RESULTS

E.1 EMPIRICAL RESULTS FOR DIFFERENT NEGATIVE SAMPLING STRATEGIES

We provide empirical results for (1) historical NSS for transductive setting in Table 7 and inductive
setting in Table 8, (2) inductive NSS under transductive setting in Table 9 and inductive setting in
Table 10.

18

https://tgb.complexdatalab.com/docs/linkprop/
https://tgb.complexdatalab.com/docs/linkprop/

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 7: Performance comparison in the transductive setting with historical negative sampling
strategy.

Metric Datasets JODIE DyRep TGAT TGN CAWN TCL GraphMixer DyGFormer FreeDyG SimpleTLP
Wikipedia 83.01 ± 0.66 79.93 ± 0.56 87.38 ± 0.22 86.86 ± 0.33 71.21 ± 1.67 89.05 ± 0.39 90.90 ± 0.10 82.23 ± 2.54 91.59 ± 0.57 99.10 ± 0.51

Reddit 80.03 ± 0.36 79.83 ± 0.31 79.55 ± 0.20 81.22 ± 0.61 80.82 ± 0.45 77.14 ± 0.16 78.44 ± 0.18 81.57 ± 0.67 85.67 ± 1.01 93.25 ± 1.13
MOOC 78.94 ± 1.25 75.60 ± 1.12 82.19 ± 0.62 87.06 ± 1.93 74.05 ± 0.95 77.06 ± 0.41 77.77 ± 0.92 85.85 ± 0.66 86.71 ± 0.81 96.52 ± 1.58
LastFM 74.35 ± 3.81 74.92 ± 2.46 71.59 ± 0.24 76.87 ± 4.64 69.86 ± 0.43 59.30 ± 2.31 72.47 ± 0.49 81.57 ± 0.48 79.71 ± 0.51 94.88 ± 1.35
Enron 69.85 ± 2.70 71.19 ± 2.76 64.07 ± 1.05 73.91 ± 1.76 64.73 ± 0.36 70.66 ± 0.39 77.98 ± 0.92 75.63 ± 0.73 78.87 ± 0.82 95.42 ± 0.53

Social Evo. 87.44 ± 6.78 93.29 ± 0.43 95.01 ± 0.44 94.45 ± 0.56 85.53 ± 0.38 94.74 ± 0.31 94.93 ± 0.31 97.38 ± 0.14 97.79 ± 0.23 90.19 ± 2.01
UCI 75.24 ± 5.80 55.10 ± 3.14 68.27 ± 1.37 80.43 ± 2.12 65.30 ± 0.43 80.25 ± 2.74 84.11 ± 1.35 82.17 ± 0.82 86.10 ± 1.19 80.76 ± 1.88

Flights 66.48 ± 2.59 67.61 ± 0.99 72.38 ± 0.18 66.70 ± 1.64 64.72 ± 0.97 70.68 ± 0.24 71.47 ± 0.26 66.59 ± 0.49 66.13 ± 1.23 82.02 ± 2.39
Can. Parl. 51.79 ± 0.63 63.31 ± 1.23 67.13 ± 0.84 68.42 ± 3.07 66.53 ± 2.77 65.93 ± 3.00 74.34 ± 0.87 97.00 ± 0.31 72.22 ± 2.47 75.03 ± 1.76
US Legis. 51.71 ± 5.76 86.88 ± 2.25 62.14 ± 6.60 74.00 ± 7.57 68.82 ± 8.23 80.53 ± 3.95 81.65 ± 1.02 85.30 ± 3.88 69.94 ± 0.59 62.66 ± 3.54
UN Trade 61.39 ± 1.83 59.19 ± 1.07 55.74 ± 0.91 58.44 ± 5.51 55.71 ± 0.38 55.90 ± 1.17 57.05 ± 1.22 64.41 ± 1.40 - 80.00 ± 1.55
UN Vote 70.02 ± 0.81 69.30 ± 1.12 52.96 ± 2.14 69.37 ± 3.93 51.26 ± 0.04 52.30 ± 2.35 51.20 ± 1.60 60.84 ± 1.58 50.61 ± 2.46 61.43 ± 1.07
Contact 95.31 ± 2.13 96.39 ± 0.20 96.05 ± 0.52 93.05 ± 2.35 84.16 ± 0.49 93.86 ± 0.21 93.36 ± 0.41 97.57 ± 0.06 97.32 ± 0.48 80.24 ± 1.98

AP

Avg. Rank 6.62 6.0 6.31 4.85 8.62 6.62 5.08 3.38 4.23 3.31
Wikipedia 80.77 ± 0.73 77.74 ± 0.33 82.87 ± 0.22 82.74 ± 0.32 67.84 ± 0.64 85.76 ± 0.46 87.68 ± 0.17 78.80 ± 1.95 82.78 ± 0.30 99.21 ± 0.48

Reddit 80.52 ± 0.32 80.15 ± 0.18 79.33 ± 0.16 81.11 ± 0.19 80.27 ± 0.30 76.49 ± 0.16 77.80 ± 0.12 80.54 ± 0.29 85.92 ± 0.10 96.40 ± 0.59
MOOC 82.75 ± 0.83 81.06 ± 0.94 80.81 ± 0.67 88.00 ± 1.80 71.57 ± 1.07 72.09 ± 0.56 76.68 ± 1.40 87.04 ± 0.35 88.32 ± 0.99 97.69 ± 0.94
LastFM 75.22 ± 2.36 74.65 ± 1.98 64.27 ± 0.26 77.97 ± 3.04 67.88 ± 0.24 47.24 ± 3.13 64.21 ± 0.73 78.78 ± 0.35 73.53 ± 0.12 97.66 ± 1.96
Enron 75.39 ± 2.37 74.69 ± 3.55 61.85 ± 1.43 77.09 ± 2.22 65.10 ± 0.34 67.95 ± 0.88 75.27 ± 1.14 76.55 ± 0.52 75.74 ± 0.72 95.79 ± 0.33

Social Evo. 90.06 ± 3.15 93.12 ± 0.34 93.08 ± 0.59 94.71 ± 0.53 87.43 ± 0.15 93.44 ± 0.68 94.39 ± 0.31 97.28 ± 0.07 97.42 ± 0.02 93.60 ± 2.27
UCI 78.64 ± 3.50 57.91 ± 3.12 58.89 ± 1.57 77.25 ± 2.68 57.86 ± 0.15 72.25 ± 3.46 77.54 ± 2.02 76.97 ± 0.24 80.38 ± 0.26 90.59 ± 1.60

Flights 68.97 ± 1.87 69.43 ± 0.90 72.20 ± 0.16 68.39 ± 0.95 66.11 ± 0.71 70.57 ± 0.18 70.37 ± 0.23 68.09 ± 0.43 67.83 ± 1.46 92.84 ± 1.21
Can. Parl. 62.44 ± 1.11 70.16 ± 1.70 70.86 ± 0.94 73.23 ± 3.08 72.06 ± 3.94 69.95 ± 3.70 79.03 ± 1.01 97.61 ± 0.40 77.59 ± 6.22 87.22 ± 1.85
US Legis. 67.47 ± 6.40 91.44 ± 1.18 73.47 ± 5.25 83.53 ± 4.53 78.62 ± 7.46 83.97 ± 3.71 85.17 ± 0.70 90.77 ± 1.96 63.49 ± 13.04 76.64 ± 3.38
UN Trade 68.92 ± 1.40 64.36 ± 1.40 60.37 ± 0.68 63.93 ± 5.41 63.09 ± 0.74 61.43 ± 1.04 63.20 ± 1.54 73.86 ± 1.13 - 87.67 ± 1.80
UN Vote 76.84 ± 1.01 74.72 ± 1.43 53.95 ± 3.15 73.40 ± 5.20 51.27 ± 0.33 52.29 ± 2.39 52.61 ± 1.44 64.27 ± 1.78 52.76 ± 2.85 72.92 ± 1.73
Contact 96.35 ± 0.92 96.00 ± 0.23 95.39 ± 0.43 93.76 ± 1.29 83.06 ± 0.32 93.34 ± 0.19 93.14 ± 0.34 97.17 ± 0.05 97.12 ± 0.24 90.99 ± 1.80

ROC-AUC

Avg. Rank 5.38 5.69 6.92 4.31 8.54 7.15 5.69 3.69 4.92 2.69

Table 8: Performance comparison in the inductive setting with historical negative sampling strategy.
Metric Datasets JODIE DyRep TGAT TGN CAWN TCL GraphMixer DyGFormer FreeDyG SimpleTLP

Wikipedia 68.69 ± 0.39 62.18 ± 1.27 84.17 ± 0.22 81.76 ± 0.32 67.27 ± 1.63 82.20 ± 2.18 87.60 ± 0.30 71.42 ± 4.43 82.78 ±0.30 98.45 ± 0.88
Reddit 62.34 ± 0.54 61.60 ± 0.72 63.47 ± 0.36 64.85 ± 0.85 63.67 ± 0.41 60.83 ± 0.25 64.50 ± 0.26 65.37 ± 0.60 66.02 ± 0.41 85.74 ± 2.46
MOOC 63.22 ± 1.55 62.93 ± 1.24 76.73 ± 0.29 77.07 ± 3.41 74.68 ± 0.68 74.27 ± 0.53 74.00 ± 0.97 80.82 ± 0.30 81.63 ± 0.33 95.17 ± 2.78
LastFM 70.39 ± 4.31 71.45 ± 1.76 76.27 ± 0.25 66.65 ± 6.11 71.33 ± 0.47 65.78 ± 0.65 76.42 ± 0.22 76.35 ± 0.52 77.28 ± 0.21 92.96 ± 1.08
Enron 65.86 ± 3.71 62.08 ± 2.27 61.40 ± 1.31 62.91 ± 1.16 60.70 ± 0.36 67.11 ± 0.62 72.37 ± 1.37 67.07 ± 0.62 73.01 ± 0.88 89.37 ± 1.01

Social Evo. 88.51 ± 0.87 88.72 ± 1.10 93.97 ± 0.54 90.66 ± 1.62 79.83 ± 0.38 94.10 ± 0.31 94.01 ± 0.47 96.82 ± 0.16 96.69 ± 0.14 85.13 ± 1.05
UCI 63.11 ± 2.27 52.47 ± 2.06 70.52 ± 0.93 70.78 ± 0.78 64.54 ± 0.47 76.71 ± 1.00 81.66 ± 0.49 72.13 ± 1.87 82.35 ± 0.39 75.97 ± 1.13

Flights 61.01 ± 1.65 62.83 ± 1.31 64.72 ± 0.36 59.31 ± 1.43 56.82 ± 0.57 64.50 ± 0.25 65.28 ± 0.24 57.11 ± 0.21 56.72 ± 1.30 71.54 ± 2.12
Can. Parl. 52.60 ± 0.88 52.28 ± 0.31 56.72 ± 0.47 54.42 ± 0.77 57.14 ± 0.07 55.71 ± 0.74 55.84 ± 0.73 87.40 ± 0.85 52.15 ± 0.84 68.91 ± 1.63
US Legis. 52.94 ± 2.11 62.10 ± 1.41 51.83 ± 3.95 61.18 ± 1.10 55.56 ± 1.71 53.87 ± 1.41 52.03 ± 1.02 56.31 ± 3.46 53.63 ± 4.38 49.51 ± 1.09
UN Trade 55.46 ± 1.19 55.49 ± 0.84 55.28 ± 0.71 52.80 ± 3.19 55.00 ± 0.38 55.76 ± 1.03 54.94 ± 0.97 53.20 ± 1.07 - 79.09 ± 1.86
UN Vote 61.04 ± 1.30 60.22 ± 1.78 53.05 ± 3.10 63.74 ± 3.00 47.98 ± 0.84 54.19 ± 2.17 48.09 ± 0.43 52.63 ± 1.26 50.23 ± 1.65 61.89 ± 1.28
Contact 90.42 ± 2.34 89.22 ± 0.66 94.15 ± 0.45 88.13 ± 1.50 74.20 ± 0.80 90.44 ± 0.17 89.91 ± 0.36 93.56 ± 0.52 93.26 ± 1.42 79.08 ± 2.24

AP

Avg. Rank 6.85 6.85 5.31 5.85 7.54 5.23 4.92 4.38 4.77 3.31
Wikipedia 61.86 ± 0.53 57.54 ± 1.09 78.38 ± 0.20 75.75 ± 0.29 62.04 ± 0.65 79.79 ± 0.96 82.87 ± 0.21 68.33 ± 2.82 82.08 ± 0.32 98.59 ± 0.82

Reddit 61.69 ± 0.39 60.45 ± 0.37 64.43 ± 0.27 64.55 ± 0.50 64.94 ± 0.21 61.43 ± 0.26 64.27 ± 0.13 64.81 ± 0.25 66.79 ± 0.31 92.04 ± 1.87
MOOC 64.48 ± 1.64 64.23 ± 1.29 74.08 ± 0.27 77.69 ± 3.55 71.68 ± 0.94 69.82 ± 0.32 72.53 ± 0.84 80.77 ± 0.63 81.52 ± 0.37 96.85 ± 1.59
LastFM 68.44 ± 3.26 68.79 ± 1.08 69.89 ± 0.28 66.99 ± 5.62 67.69 ± 0.24 55.88 ± 1.85 70.07 ± 0.20 70.73 ± 0.37 72.63 ± 0.16 96.34 ± 1.68
Enron 65.32 ± 3.57 61.50 ± 2.50 57.84 ± 2.18 62.68 ± 1.09 62.25 ± 0.40 64.06 ± 1.02 68.20 ± 1.62 65.78 ± 0.42 70.09 ± 0.65 92.14 ± 0.70

Social Evo. 88.53 ± 0.55 87.93 ± 1.05 91.87 ± 0.72 92.10 ± 1.22 83.54 ± 0.24 93.28 ± 0.60 93.62 ± 0.35 96.91 ± 0.09 96.94 ± 0.17 90.08 ± 2.91
UCI 60.24 ± 1.94 51.25 ± 2.37 62.32 ± 1.18 62.69 ± 0.90 56.39 ± 0.10 70.46 ± 1.94 75.98 ± 0.84 65.55 ± 1.01 76.01 ± 0.75 84.63 ± 1.23

Flights 60.72 ± 1.29 61.99 ± 1.39 63.38 ± 0.26 59.66 ± 1.04 56.58 ± 0.44 63.48 ± 0.23 63.30 ± 0.19 56.05 ± 0.21 55.20 ± 1.16 85.60 ± 1.47
Can. Parl. 51.62 ± 1.00 52.38 ± 0.46 58.30 ± 0.61 55.64 ± 0.54 60.11 ± 0.48 57.30 ± 1.03 56.68 ± 1.20 88.68 ± 0.74 51.20 ± 1.99 80.73 ± 1.09
US Legis. 58.12 ± 2.94 67.94 ± 0.98 49.99 ± 4.88 64.87 ± 1.65 54.41 ± 1.31 52.12 ± 2.13 49.28 ± 0.86 56.57 ± 3.22 53.75 ± 5.92 55.74 ± 1.53
UN Trade 58.73 ± 1.19 57.90 ± 1.33 59.74 ± 0.59 55.61 ± 3.54 60.95 ± 0.80 61.12 ± 0.97 59.88 ± 1.17 58.46 ± 1.65 - 86.26 ± 1.78
UN Vote 65.16 ± 1.28 63.98 ± 2.12 51.73 ± 4.12 68.59 ± 3.11 48.01 ± 1.77 54.66 ± 2.11 45.49 ± 0.42 53.85 ± 2.02 48.98 ± 2.44 72.98 ± 1.22
Contact 90.80 ± 1.18 88.88 ± 0.68 93.76 ± 0.41 88.84 ± 1.39 74.79 ± 0.37 90.37 ± 0.16 90.04 ± 0.29 94.14 ± 0.26 94.27 ± 0.77 88.69 ± 2.24

ROC-AUC

Avg. Rank 6.54 7.46 5.77 5.92 7.08 5.54 5.23 4.38 4.62 2.46

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 9: Performance comparison in the transductive setting with inductive negative sampling
strategy.

Metric Datasets JODIE DyRep TGAT TGN CAWN TCL GraphMixer DyGFormer FreeDyG SimpleTLP
Wikipedia 75.65 ± 0.79 70.21 ± 1.58 87.00 ± 0.16 85.62 ± 0.44 74.06 ± 2.62 86.76 ± 0.72 88.59 ± 0.17 78.29 ± 5.38 90.05 ± 0.79 98.66 ± 0.94

Reddit 86.98 ± 0.16 86.30 ± 0.26 89.59 ± 0.24 88.10 ± 0.24 91.67 ± 0.24 87.45 ± 0.29 85.26 ± 0.11 91.11 ± 0.40 90.74 ± 0.17 98.15 ± 0.48
MOOC 65.23 ± 2.19 61.66 ± 0.95 75.95 ± 0.64 77.50 ± 2.91 73.51 ± 0.94 74.65 ± 0.54 74.27 ± 0.92 81.24 ± 0.69 83.01 ± 0.87 97.49 ± 0.99
LastFM 62.67 ± 4.49 64.41 ± 2.70 71.13 ± 0.17 65.95 ± 5.98 67.48 ± 0.77 58.21 ± 0.89 68.12 ± 0.33 73.97 ± 0.50 72.19 ± 0.24 93.92 ± 1.10
Enron 68.96 ± 0.98 67.79 ± 1.53 63.94 ± 1.36 70.89 ± 2.72 75.15 ± 0.58 71.29 ± 0.32 75.01 ± 0.79 77.41 ± 0.89 77.81 ± 0.65 98.98 ± 0.53

Social Evo. 89.82 ± 4.11 93.28 ± 0.48 94.84 ± 0.44 95.13 ± 0.56 88.32 ± 0.27 94.90 ± 0.36 94.72 ± 0.33 97.68 ± 0.10 97.57 ± 0.15 90.53 ± 1.88
UCI 65.99 ± 1.40 54.79 ± 1.76 68.67 ± 0.84 70.94 ± 0.71 64.61 ± 0.48 76.01 ± 1.11 80.10 ± 0.51 72.25 ± 1.71 82.35 ± 0.73 74.08 ± 1.84

Flights 69.07 ± 4.02 70.57 ± 1.82 75.48 ± 0.26 71.09 ± 2.72 69.18 ± 1.52 74.62 ± 0.18 74.87 ± 0.21 70.92 ± 1.78 65.56 ± 1.10 80.75 ± 1.51
Can. Parl. 48.42 ± 0.66 58.61 ± 0.86 68.82 ± 1.21 65.34 ± 2.87 67.75 ± 1.00 65.85 ± 1.75 69.48 ± 0.63 95.44 ± 0.57 59.83 ± 5.15 73.79 ± 1.26
US Legis. 50.27 ± 5.13 83.44 ± 1.16 61.91 ± 5.82 67.57 ± 6.47 65.81 ± 8.52 78.15 ± 3.34 79.63 ± 0.84 81.25 ± 3.62 51.64 ± 5.36 57.67 ± 3.10
UN Trade 60.42 ± 1.48 60.19 ± 1.24 60.61 ± 1.24 61.04 ± 6.01 62.54 ± 0.67 61.06 ± 1.74 60.15 ± 1.29 55.79 ± 1.02 - 80.96 ± 1.12
UN Vote 67.79 ± 1.46 67.53 ± 1.98 52.89 ± 1.61 67.63 ± 2.67 52.19 ± 0.34 50.62 ± 0.82 51.60 ± 0.73 51.91 ± 0.84 51.14 ± 1.56 59.42 ± 3.73
Contact 93.43 ± 1.78 94.18 ± 0.10 94.35 ± 0.48 90.18 ± 3.28 89.31 ± 0.27 91.35 ± 0.21 90.87 ± 0.35 94.75 ± 0.28 94.89 ± 0.89 80.15 ± 1.48

AP

Avg. Rank 7.69 7.23 5.08 5.38 6.46 5.69 5.38 3.92 4.85 3.31
Wikipedia 70.96 ± 0.78 67.36 ± 0.96 81.93 ± 0.22 80.97 ± 0.31 70.95 ± 0.95 82.19 ± 0.48 84.28 ± 0.30 75.09 ± 3.70 82.74 ± 0.32 98.78 ± 0.91

Reddit 83.51 ± 0.15 82.90 ± 0.31 87.13 ± 0.20 84.56 ± 0.24 88.04 ± 0.29 84.67 ± 0.29 82.21 ± 0.13 86.23 ± 0.51 84.38 ± 0.21 98.51 ± 0.40
MOOC 66.63 ± 2.30 63.26 ± 1.01 73.18 ± 0.33 77.44 ± 2.86 70.32 ± 1.43 70.36 ± 0.37 72.45 ± 0.72 80.76 ± 0.76 78.47 ± 0.94 98.31 ± 0.59
LastFM 61.32 ± 3.49 62.15 ± 2.12 63.99 ± 0.21 65.46 ± 4.27 67.92 ± 0.44 46.93 ± 2.59 60.22 ± 0.32 69.25 ± 0.36 72.30 ± 0.59 97.08 ± 1.47
Enron 70.92 ± 1.05 68.73 ± 1.34 60.45 ± 2.12 71.34 ± 2.46 75.17 ± 0.50 67.64 ± 0.86 71.53 ± 0.85 74.07 ± 0.64 77.27 ± 0.61 95.79 ± 0.33

Social Evo. 90.01 ± 3.19 93.07 ± 0.38 92.94 ± 0.61 95.24 ± 0.56 89.93 ± 0.15 93.44 ± 0.72 94.22 ± 0.32 97.51 ± 0.06 98.47 ± 0.02 93.73 ± 2.22
UCI 64.14 ± 1.26 54.25 ± 2.01 60.80 ± 1.01 64.11 ± 1.04 58.06 ± 0.26 70.05 ± 1.86 74.59 ± 0.74 65.96 ± 1.18 75.39 ± 0.57 84.09 ± 1.61

Flights 69.99 ± 3.10 71.13 ± 1.55 73.47 ± 0.18 71.63 ± 1.72 69.70 ± 0.75 72.54 ± 0.19 72.21 ± 0.21 69.53 ± 1.17 64.04 ± 0.55 92.32 ± 1.51
Can. Parl. 52.88 ± 0.80 63.53 ± 0.65 72.47 ± 1.18 69.57 ± 2.81 72.93 ± 1.78 69.47 ± 2.12 70.52 ± 0.94 96.70 ± 0.59 65.58 ± 5.71 85.80 ± 1.51
US Legis. 59.05 ± 5.52 89.44 ± 0.71 71.62 ± 5.42 78.12 ± 4.46 76.45 ± 7.02 82.54 ± 3.91 84.22 ± 0.91 87.96 ± 1.80 60.71 ± 9.72 70.81 ± 3.72
UN Trade 66.82 ± 1.27 65.60 ± 1.28 66.13 ± 0.78 66.37 ± 5.39 71.73 ± 0.74 67.80 ± 1.21 66.53 ± 1.22 62.56 ± 1.51 - 87.92 ± 1.61
UN Vote 73.73 ± 1.61 72.80 ± 2.16 53.04 ± 2.58 72.69 ± 3.72 52.75 ± 0.90 52.02 ± 1.64 51.89 ± 0.74 53.37 ± 1.26 51.95 ± 2.14 70.70 ± 3.58
Contact 94.47 ± 1.08 94.23 ± 0.18 94.10 ± 0.41 91.64 ± 1.72 87.68 ± 0.24 91.23 ± 0.19 90.96 ± 0.27 95.01 ± 0.15 95.41 ± 0.49 90.68 ± 1.59

ROC-AUC

Avg. Rank 6.92 7.0 5.85 5.23 6.23 5.92 5.69 4.23 5.15 2.77

Table 10: Performance comparison in the inductive setting with inductive negative sampling strategy.
Metric Datasets JODIE DyRep TGAT TGN CAWN TCL GraphMixer DyGFormer FreeDyG SimpleTLP

Wikipedia 68.70 ± 0.39 62.19 ± 1.28 84.17 ± 0.22 81.77 ± 0.32 67.24 ± 1.63 82.20 ± 2.18 87.60 ± 0.29 71.42 ± 4.43 87.54 ± 0.26 98.45 ± 0.88
Reddit 62.32 ± 0.54 61.58 ± 0.72 63.40 ± 0.36 64.84 ± 0.84 63.65 ± 0.41 60.81 ± 0.26 64.49 ± 0.25 65.35 ± 0.60 64.98 ± 0.20 85.76 ± 2.46
MOOC 63.22 ± 1.55 62.92 ± 1.24 76.72 ± 0.30 77.07 ± 3.40 74.69 ± 0.68 74.28 ± 0.53 73.99 ± 0.97 80.82 ± 0.30 81.41 ± 0.31 95.17 ± 2.78
LastFM 70.39 ± 4.31 71.45 ± 1.75 76.28 ± 0.25 69.46 ± 4.65 71.33 ± 0.47 65.78 ± 0.65 76.42 ± 0.22 76.35 ± 0.52 77.01 ± 0.43 92.96 ± 1.08
Enron 65.86 ± 3.71 62.08 ± 2.27 61.40 ± 1.30 62.90 ± 1.16 60.72 ± 0.36 67.11 ± 0.62 72.37 ± 1.38 67.07 ± 0.62 72.85 ± 0.81 89.36 ± 1.01

Social Evo. 88.51 ± 0.87 88.72 ± 1.10 93.97 ± 0.54 90.65 ± 1.62 79.83 ± 0.39 94.10 ± 0.32 94.01 ± 0.47 96.82 ± 0.17 96.91 ± 0.12 85.13 ± 1.05
UCI 63.16 ± 2.27 52.47 ± 2.09 70.49 ± 0.93 70.73 ± 0.79 64.54 ± 0.47 76.65 ± 0.99 81.64 ± 0.49 72.13 ± 1.86 82.06 ± 0.58 75.97 ± 1.13

Flights 61.01 ± 1.66 62.83 ± 1.31 64.72 ± 0.37 59.32 ± 1.45 56.82 ± 0.56 64.50 ± 0.25 65.29 ± 0.24 57.11 ± 0.20 56.70 ± 1.17 69.14 ± 1.19
Can. Parl. 52.58 ± 0.86 52.24 ± 0.28 56.46 ± 0.50 54.18 ± 0.73 57.06 ± 0.08 55.46 ± 0.69 55.76 ± 0.65 87.22 ± 0.82 52.33 ± 0.87 69.59 ± 1.45
US Legis. 52.94 ± 2.11 62.10 ± 1.41 51.83 ± 3.95 61.18 ± 1.10 55.56 ± 1.71 53.87 ± 1.41 52.03 ± 1.02 56.31 ± 3.46 53.63 ± 4.38 49.51 ± 1.09
UN Trade 55.43 ± 1.20 55.42 ± 0.87 55.58 ± 0.68 52.80 ± 3.24 54.97 ± 0.38 55.66 ± 0.98 54.88 ± 1.01 52.56 ± 1.70 - 79.12 ± 1.84
UN Vote 61.17 ± 1.33 60.29 ± 1.79 53.08 ± 3.10 63.71 ± 2.97 48.01 ± 0.82 54.13 ± 2.16 48.10 ± 0.40 52.61 ± 1.25 50.21 ± 1.74 61.88 ± 1.27
Contact 90.43 ± 2.33 89.22 ± 0.65 94.14 ± 0.45 88.12 ± 1.50 74.19 ± 0.81 90.43 ± 0.17 89.91 ± 0.36 93.55 ± 0.52 93.26 ± 1.41 79.09 ± 1.25

ind

Avg. Rank 6.85 7.08 5.23 5.77 7.54 5.23 4.92 4.46 4.62 3.31
Wikipedia 61.87 ± 0.53 57.54 ± 1.09 78.38 ± 0.20 75.76 ± 0.29 62.02 ± 0.65 79.79 ± 0.96 82.88 ± 0.21 68.33 ± 2.82 83.17 ± 0.31 98.59 ± 0.82

Reddit 61.69 ± 0.39 60.44 ± 0.37 64.39 ± 0.27 64.55 ± 0.50 64.91 ± 0.21 61.36 ± 0.26 64.27 ± 0.13 64.80 ± 0.25 64.51 ± 0.19 92.05 ± 1.87
MOOC 64.48 ± 1.64 64.22 ± 1.29 74.07 ± 0.27 77.68 ± 3.55 71.69 ± 0.94 69.83 ± 0.32 72.52 ± 0.84 80.77 ± 0.63 75.81 ± 0.69 96.85 ± 1.59
LastFM 68.44 ± 3.26 68.79 ± 1.08 69.89 ± 0.28 66.99 ± 5.61 67.68 ± 0.24 55.88 ± 1.85 70.07 ± 0.20 70.73 ± 0.37 71.42 ± 0.33 96.34 ± 1.68
Enron 65.32 ± 3.57 61.50 ± 2.50 57.83 ± 2.18 62.68 ± 1.09 62.27 ± 0.40 64.05 ± 1.02 68.19 ± 1.63 65.79 ± 0.42 68.79 ± 0.91 92.14 ± 0.70

Social Evo. 88.53 ± 0.55 87.93 ± 1.05 91.88 ± 0.72 92.10 ± 1.22 83.54 ± 0.24 93.28 ± 0.60 93.62 ± 0.35 96.91 ± 0.09 96.79 ± 0.17 90.08 ± 3.91
UCI 60.27 ± 1.94 51.26 ± 2.40 62.29 ± 1.17 62.66 ± 0.91 56.39 ± 0.11 70.42 ± 1.93 75.97 ± 0.85 65.58 ± 1.00 73.41 ± 0.88 84.63 ± 1.22

Flights 60.72 ± 1.29 61.99 ± 1.39 63.40 ± 0.26 59.66 ± 1.05 56.58 ± 0.44 63.49 ± 0.23 63.32 ± 0.19 56.05 ± 0.22 55.18 ± 1.04 83.87 ± 1.30
Can. Parl. 51.61 ± 0.98 52.35 ± 0.52 58.15 ± 0.62 55.43 ± 0.42 60.01 ± 0.47 56.88 ± 0.93 56.63 ± 1.09 88.51 ± 0.73 51.37 ± 2.23 81.26 ± 3.92
US Legis. 58.12 ± 2.94 67.94 ± 0.98 49.99 ± 4.88 64.87 ± 1.65 54.41 ± 1.31 52.12 ± 2.13 49.28 ± 0.86 56.57 ± 3.22 53.75 ± 5.92 55.74 ± 1.53
UN Trade 58.71 ± 1.20 57.87 ± 1.36 59.98 ± 0.59 55.62 ± 3.59 60.88 ± 0.79 61.01 ± 0.93 59.71 ± 1.17 57.28 ± 3.06 - 86.28 ± 1.76
UN Vote 65.29 ± 1.30 64.10 ± 2.10 51.78 ± 4.14 68.58 ± 3.08 48.04 ± 1.76 54.65 ± 2.20 45.57 ± 0.41 53.87 ± 2.01 48.93 ± 2.53 72.98 ± 1.22
Contact 90.80 ± 1.18 88.87 ± 0.67 93.76 ± 0.40 88.85 ± 1.39 74.79 ± 0.38 90.37 ± 0.16 90.04 ± 0.29 94.14 ± 0.26 94.27 ± 0.76 88.69 ± 3.25

ind

Avg. Rank 6.54 7.38 5.69 5.77 7.0 5.54 5.31 4.23 5.08 2.46

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

E.2 THEORETICAL TIME COMPLEXITY COMPARISON WITH SOTAS

Now, we give an in-depth analysis of the complexity of DyGFormer and FreeDyG as follows.

Suppose we are given E query links: {(ui, vi, ti)}Ei=1. As we move to new timestamps, new
connections and new nodes will emerge, resulting in the changes in some nodes’ neighborhoods;
then, both SimpleTLP and DyGFormer need to update historical neighbors for some nodes. (Note
that for a node, both SimpleTLP and DyGFormer consider its historical neighbors, so both methods
would need to perform an update if its neighborhood changes).

For each link (ui, vi, ti), DyGFormer and FreeDyG first need to obtain the neighbor co-occurrence
information of the node pair (ui, vi) as follows. Suppose ui has p historical neighbors, a1, . . . , ap,
and vi has q historical neighbors, b1, . . . , bq , then the neighbor co-occurrence scheme of DyGFormer
and FreeDyG requires counting (1) the number of times a1, . . . , ap are involved in interactions with
vi before time ti and (2) the number of times b1, . . . , bq are involved in interactions with ui before
time ti. In other words, for an arbitrary link (ui, vi, ti), the neighbor co-occurrence framework of
DyGFormer and FreeDyG makes the computation of ui depend on vi’s information, as they have to
count how many times historical neighbors of ui are also vi’s historical neighbors, and vice versa.
Thus, in order to make predictions for the aforementioned query links, DyGFormer and FreeDyG
require at least O(E) complexity.

On the other hand, for SimpleTLP, we first consider the unique nodes among u1, . . . , uE , v1, . . . , vE .
Suppose there are n unique nodes, and let us denote them as c1, . . . , cn, then we could compute
their temporal representation as stated in Eq. 9. Moreover, in the process of obtaining the necessary
components for Eq. 9, for any node ci, we only use ci’s related information (most recent temporal
neighbors / links and its previous positional encoding). Thus, it takes SimpleTLP O(n) time to
compute the representation for these n nodes. To predict an arbitrary link (ui, vi, ti), we simply
retrieve the representation for ui, vi that we just computed and apply Eq. 10

In summary, DyGFormer and FreeDyG have O(E) since they process a node pair (u, v)-related
information, while SimpleTLP’s complexity linearly scales with the number of nodes.

E.3 EMPIRICAL RUNTIME COMPARISON WITH SOTAS

We present the runtime comparison between SimpleTLP and DyGFormer (Yu et al., 2023),
FreeDyG (Tian et al., 2024), recent SOTA methods, on US Legis and UN Trade datasets, in Ta-
ble 11. As shown in Table 11, our running time is lower than SOTAs in terms of convergence
time.

Table 11: Comparison in runtime (in seconds) and number of training epochs of SimpleTLP and
DyGFormer across 5 runs on US Legis and UN Trade.

Dataset Method Total time for 5 runs (in seconds) Number of training epochs

US Legis
SimpleTLP [287.19, 257.18, 251.49, 248.92 , 305.09] [21, 18, 17, 17, 21]
DyGFormer [1251.97, 1697.56, 1112.50, 756.80, 1092.77] [27, 37, 24, 16, 23]

FreeDyG [1019.91, 871.21, 1061.15, 1070.41, 868.03] [17, 13, 18, 18, 13]

UN Trade SimpleTLP [2922.14 ,2857.13 , 2450.84 , 2593.40, 2740.26] [21, 21, 18, 18, 19]
DyGFormer [12847.83, 21167.01, 20380.42, 9901.51, 39374.45] [33, 55, 53, 25, 95]

FreeDyG - -

E.4 EMPIRICAL RESULTS FOR ABLATION STUDY

Next, we conduct an ablation study to examine the ability of the learnable positional encoding in the
link prediction task.

Specifically, we consider the following cases: (1) only leveraging LPE to make predictions (i.e.,
we omit node/edge features and only employ positional encoding learned by LPE to obtain link
predictions); (2) omitting LPE module (i.e., only relying on node and link features).

First, we provide the performance comparison between SimpleTLP and only using LPE module
(denoted as “Only LPE”) to obtain link predictions under transductive and inductive settings with

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

random negative sampling strategy. As shown in Table 12, on most datasets, the performance obtained
by only leveraging LPE is already competitive, which suggests the positional encoding is informative
enough to support downstream tasks. Also, we can observe that LPE positional encodings can
collaborate well with node and edge features to boost performance.

Table 12: Comparison between only LPE and SimpleTLP with random negative sampling strategy.
Transductive setting Inductive setting

AP ROC-AUC AP ROC-AUCDataset
SimpleTLP Only LPE SimpleTLP Only LPE SimpleTLP Only LPE SimpleTLP Only LPE

Wikipedia 99.34 ± 0.04 99.07 ± 0.03 99.48 ± 0.03 99.42 ± 0.03 99.15 ± 0.04 98.77 ± 0.05 99.30 ± 0.03 98.99± 0.03
Reddit 99.37 ± 0.04 98.67 ± 0.07 99.49 ± 0.03 99.13 ± 0.05 98.02 ± 0.09 95.44 ± 0.29 98.49 ± 0.06 96.71±0.16
MOOC 86.94 ± 0.34 81.55 ± 0.53 89.28 ± 0.28 83.04 ± 0.44 88.49 ± 0.24 80.04 ± 0.40 90.63 ± 0.21 81.70± 0.39
Lastfm 96.06 ± 0.30 92.84 ± 0.54 97.52 ± 0.17 94.43 ± 0.38 96.25 ± 0.43 94.27 ± 0.36 97.66 ± 0.21 96.22± 0.22
Enron 93.96 ± 0.36 93.82 ± 0.44 95.98 ± 0.23 95.95 ± 0.31 89.17 ± 0.88 89.15 ±1.32 92.30 ± 0.57 92.33 ±0.79

Social Evo. 92.22 ± 0.25 91.56 ± 0.79 94.33 ± 0.21 93.76 ± 0.63 91.71 ± 0.32 90.42± 1.68 94.09 ± 0.24 93.28± 0.97
UCI 96.67 ± 0.47 96.83 ± 0.19 97.62 ± 0.23 97.89 ± 0.10 94.60 ± 0.41 94.60 ± 0.46 95.88 ± 0.17 96.17 ±0.22

Flights 98.94 ± 0.10 99.10 ± 0.03 99.38 ± 0.04 99.43 ± 0.06 97.43 ± 0.15 97.81 ±0.25 98.46 ± 0.07 98.62 ±0.11
Can. Parl. 98.24 ± 0.11 98.41 ± 0.06 98.97 ± 0.06 99.03 ± 0.03 92.25± 0.24 92.13 ± 0.24 95.06 ± 0.11 95.09 ±0.07
US Legis. 76.74 ± 0.60 77.36 ± 0.26 83.89 ± 0.43 84.36 ± 0.20 61.98 ± 1.31 63.47 ±0.63 66.18 ± 1.19 66.75± 0.57
UN Trade 75.84 ± 2.08 78.46 ± 0.97 83.17 ± 1.28 77.81 ± 1.78 76.80 ± 2.01 84.85± 0.89 83.95 ± 1.76 84.89± 1.39
UN Vote 73.40 ± 0.03 70.99 ± 0.11 79.59 ± 0.02 76.67 ± 0.09 75.09 ± 0.34 70.01± 0.69 82.01 ± 0.21 77.36 ±0.51
Contact 98.16 ± 0.09 97.73 ± 0.04 98.72 ± 0.06 98.40 ± 0.03 97.25 ± 0.07 96.38± 0.09 97.99 ± 0.07 97.37± 0.07

Second, we present the comparison between SimpleTLP and only using node/edge features, i.e., omit-
ting the LPE module from SimpleTLP (denoted as “W/o LPE”). As shown in Table 13, SimpleTLP
performs the best on all datasets, further suggesting that performance would be negatively affected
without employing LPE.

Table 13: Comparison between not using LPE and SimpleTLP with random negative sampling
strategy.

Transductive setting Inductive setting
AP ROC-AUC AP ROC-AUCDataset

SimpleTLP W/o LPE SimpleTLP W/o LPE SimpleTLP W/o LPE SimpleTLP W/o LPE
Wikipedia 99.34 ± 0.04 96.52 ± 0.06 99.48 ± 0.03 96.15 ± 0.08 99.15 ± 0.04 96.11 ± 0.09 99.30 ± 0.03 95.64 ± 0.11

Reddit 99.37 ± 0.04 97.07 ± 0.08 99.49 ± 0.03 96.96 ± 0.07 98.02 ± 0.09 95.10 ± 0.06 98.49 ± 0.06 95.02 ± 0.06
MOOC 86.94 ± 0.34 81.89 ± 0.32 89.28 ± 0.28 83.24 ± 0.29 88.49 ± 0.24 80.65 ± 0.28 90.63 ± 0.21 82.19 ± 0.26
LastFM 96.06 ± 0.30 74.63 ± 0.41 97.52 ± 0.17 73.48 ± 0.40 96.25 ± 0.43 82.08 ± 0.46 97.66 ± 0.21 80.74 ± 0.37
Enron 93.96 ± 0.36 82.49 ± 0.85 95.98 ± 0.23 84.18 ± 0.53 89.17 ± 0.88 76.14 ± 0.82 92.30 ± 0.57 76.63 ± 0.65

Social Evo. 92.22 ± 0.25 91.17 ± 0.21 94.33 ± 0.21 93.30 ± 0.17 91.71 ± 0.32 89.38 ± 0.30 94.09 ± 0.24 91.85 ± 0.24
UCI 96.67 ± 0.47 91.79 ± 4.08 97.62 ± 0.23 90.51 ± 3.45 94.60 ± 0.41 89.58 ± 3.41 95.88 ± 0.17 87.88 ± 3.10

Flights 98.94 ± 0.10 90.91 ± 0.02 99.38 ± 0.04 91.03 ± 0.01 97.43 ± 0.15 82.72 ± 0.05 98.46 ± 0.07 82.05 ± 0.04
Can. Parl. 98.24 ± 0.11 67.19 ± 1.39 98.97 ± 0.06 76.51 ± 1.37 92.25 ± 0.24 52.47 ± 0.88 95.06 ± 0.11 50.99 ± 1.72
US Legis. 76.74 ± 0.60 60.98 ± 5.43 83.89 ± 0.43 65.76 ± 7.15 61.98 ± 1.31 52.59 ± 2.13 66.18 ± 1.19 53.75 ± 1.07
UN Trade 75.84 ± 2.08 62.04 ± 0.72 83.17 ± 1.28 65.91 ± 0.62 76.80 ± 2.01 61.84 ± 0.53 83.95 ± 1.76 63.54 ± 0.54
UN Vote 73.40 ± 0.03 52.29 ± 0.44 79.59 ± 0.02 52.55 ± 0.61 75.09 ± 0.34 50.74 ± 0.82 82.01 ± 0.21 49.39 ± 0.75
Contact 98.16 ± 0.09 91.39 ± 0.05 98.72 ± 0.06 93.57 ± 0.04 97.25 ± 0.07 89.71 ± 0.05 97.99 ± 0.07 92.24 ± 0.05

Combining the results from Tables 12 and 13, we discern that (1) in most cases, the full design of
SimpleTLP is the best and removing any component can lead to suboptimal results, (2) in a few
cases, only using LPE can also perform competitively, which suggests that the Learnable Positional
Encoding module in our SimpleTLP is relatively dominating than input node and edge features.

E.5 EMPIRICAL RESULTS FOR PARAMETER ANALYSIS

E.5.1 PARAMETER ANALYSIS FOR tgap

Here, we examine how varying the values of tgap affects the performance of SimpleTLP under both
transductive and inductive settings with random negative sampling.

We conduct the parameter analysis on two datasets: Enron and UN Vote, and adjusting tgap to
different values: {10, 50, 1000, 2000}. Due to the page limit, we report the results in Table 14 for
transductive and Table 15 for inductive setting, respectively. The best results are emphasized with
bold. Firstly, it worth noting that the ratio #Links / (Unique Steps) of UN Vote is much larger than
that of Enron, since UN Vote has significantly more links and fewer number of unique steps than

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 14: AP and ROC-AUC with various values of tgap under transductive setting and random
negative sampling.

Dataset Metric tgap = 10 tgap = 50 tgap = 1000 tgap = 2000

Enron AP 93.77 ± 0.28 93.82 ± 0.11 93.96 ± 0.36 93.70 ± 0.43
ROC-AUC 95.83 ± 0.14 95.86 ± 0.07 95.98 ± 0.23 95.83 ± 0.21

UN Vote AP 73.40 ± 0.03 73.38 ± 0.07 73.39 ± 0.08 73.28 ± 0.33
ROC-AUC 79.59 ± 0.02 79.54 ± 0.08 79.57 ± 0.06 79.53 ± 0.22

Table 15: AP and ROC-AUC with various values of tgap under inductive setting and random negative
sampling.

Dataset Metric tgap = 10 tgap = 50 tgap = 1000 tgap = 2000

Enron AP 88.43 ± 0.52 88.76 ± 0.62 89.17 ± 0.88 88.41 ± 0.21
ROC-AUC 91.83 ± 0.37 92.02 ± 0.37 92.30 ± 0.57 91.86 ± 0.24

Un Vote AP 75.09 ± 0.34 75.01 ± 0.29 74.92 ± 0.48 74.73 ± 0.44
ROC-AUC 82.01 ± 0.21 79.54 ± 0.08 81.85 ± 0.32 81.77 ± 0.16

Enron, as stated in Table 6, implying UN Vote is much denser that Enron. From Tables 14 and 15,
we can see that the best performance on UN Vote is derived from tgap = 10, which is the smallest
value, while the best result on Enron is obtained by a much larger value of tgap, which is 1000. These
findings indicate that a small tgap value functions effectively for dense graphs, whereas a larger tgap
value is suited for sparse graphs. The detailed configurations are reported in Table 22 further suggest
this finding, as the tgap values associated with the sparse dataset (Wikipedia, Reddit, MOOC, LastFM,
Enron, Social Evo., UCI) mostly are in the range of [1000, 2000], while the tgap values employed for
Can. Parl., US Legis., UN Trade, UN Vote, and Contact are only less than or equal to 10.

We report the results for the parameter analysis regarding how the performance change with different
values of tgap Tables 14 and 15.

E.5.2 PARAMETER ANALYSIS FOR K

Next, we conduct parameter analysis for the neighborhood size, K, with random negative sampling,
and report the results under transductive and inductive settings in Table 16 and Table 17, respectively.

Table 16: AP and ROC-AUC with various values of K under transductive setting and random negative
sampling.

Dataset Metric K = 5 K = 20 K = 50 K = 100

Enron AP 93.32 ± 0.25 93.96 ± 0.36 93.53 ± 0.51 93.22 ± 0.38
ROC-AUC 95.50 ± 0.16 95.98 ± 0.23 95.71 ± 0.31 95.48 ± 0.19

UN Vote AP 72.08 ± 0.73 73.40 ± 0.03 73.49 ± 0.10 73.31 ± 0.13
ROC-AUC 78.92 ± 0.33 79.59 ± 0.02 79.69 ± 0.10 79.58 ± 0.08

According to the tables, we can discern that: (1) in a few cases, increasing K can slightly increase the
performance, but it is prone to cost more computational complexity; (2) in most cases, increasing K
does not add much to the performance, which suggests that close neighbors have already had enough
information to support downstream tasks.

E.5.3 PARAMETER ANALYSIS FOR L

Here, we report the parameter analysis for L as follows on Can. Parl. dataset in Table .

From Table 18, we can observe that our proposed SimpleTLP just relies on looking back a few
historical information to make the correct information, as L increases, the performance can be

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 17: AP and ROC-AUC with various values of K under inductive setting and random negative
sampling.

Dataset Metric K = 5 K = 20 K = 50 K = 100

Enron AP 89.72 ± 0.50 94.60 ± 0.41 88.99 ± 1.04 88.29 ± 0.58
ROC-AUC 92.65 ± 0.33 95.88 ± 0.17 92.11 ± 0.65 91.64 ± 0.36

UN Vote AP 77.76 ± 0.49 75.09 ± 0.34 75.10 ± 0.34 73.92 ± 0.75
ROC-AUC 83.73 ± 0.23 83.95 ± 1.76 81.96 ± 0.25 80.94 ± 0.82

Table 18: AP and ROC-AUC with various values of L under transductive setting and inductive setting
with random negative sampling.

Dataset Transductive AP Transductive ROC-AUC Inductive AP Inductive ROC-AUC

Can. Parl

L = 20 98.24 ± 0.11 98.97 ± 0.06 92.25 ± 0.24 95.06 ± 0.11
L = 50 98.26 ± 0.06 98.94 ± 0.03 92.15 ± 0.34 95.11 ± 0.17
L = 100 98.11 ± 0.21 98.85 ± 0.11 92.16 ± 0.98 95.25 ± 0.56
L = 200 97.04 ± 0.22 98.37 ± 0.09 91.96 ± 0.59 95.19 ± 0.38

downgraded, and the best performance exists between 20 and 50, which discovery demonstrates that
the near past history plays a more important role in the current decision making than the long past
history.

E.5.4 PARAMETER ANALYSIS FOR αneg

We present the parameter analysis for αneg on Can. Parl. dataset in Table 19.

Table 19: AP and ROC-AUC with various values of αneg under transductive setting and inductive
setting with random negative sampling.

Dataset Transductive AP Transductive ROC-AUC Inductive AP Inductive ROC-AUC

Can. Parl

αneg = 0.05 98.26 ± 0.13 98.98 ± 0.05 92.24 ± 0.09 95.09 ± 0.11
αneg = 0.1 98.28 ± 0.09 98.98 ± 0.05 92.35 ± 0.21 95.09 ± 0.09
αneg = 0.3 98.24 ± 0.11 98.97 ± 0.06 92.25 ± 0.24 95.06 ± 0.11
αneg = 0.5 98.28 ± 0.13 98.97 ± 0.05 91.48 ± 0.23 94.75 ± 0.16
αneg = 0.95 98.24 ± 0.18 98.95 ± 0.09 91.09 ± 0.49 94.53 ± 0.32

In general, Table 19 shows (1) our proposed method SimpleTLP is robust towards different choices
of αneg, and (2) usually a smaller weight of negative pairs can help the model concentrate more on
the positive pairs and boost the performance.

E.5.5 PARAMETER ANALYSIS FOR αpe

We present the parameter analysis for αneg on Enron dataset in Table 20.

Table 20: AP and ROC-AUC with various values of αpe under transductive setting and inductive
setting with random negative sampling.

Dataset Transductive AP Transductive ROC-AUC Inductive AP Inductive ROC-AUC

Enron

αpe = 0.05 92.81 ± 0.82 95.32 ± 0.38 86.49 ± 1.52 90.91 ± 0.61
αpe = 0.3 93.96 ± 0.36 95.98 ± 0.23 89.17 ± 0.88 92.30 ± 0.57
αpe = 0.5 93.94 ± 0.10 95.90 ± 0.06 88.92 ± 0.39 92.12 ± 0.22
αpe = 0.95 94.00 ± 0.28 95.92 ± 0.17 88.67 ± 0.34 91.91 ± 0.30

αneg stands for the weight of the loss function of learnable positional encoding. As shown in the
Table 20, we can observe that (1) our SimpleTLP is robust towards different choices of αpe, and (2) a
considerable weight, e.g., 0.5, is optimal, too large or too small weight can induce suboptimal results.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

E.6 DIFFERENT POSITIONAL ENCODING INITIALIZATION

Table 21: Comparison in Positional Encoding initialization with Laplacian and Random Walk
Positional Encoding under transductive and inductive settings with random negative sampling.

Dataset Positional Encoding Transductive AP Transductive ROC-AUC Inductive AP Inductive ROC-AUC

Enron Random Walk PE 93.79 ± 0.67 95.88 ± 0.40 89.11 ± 0.83 92.43 ± 0.64
Laplacian PE 93.96 ± 0.36 95.98 ± 0.23 89.17 ± 0.88 92.30 ± 0.57

In this section, we demonstrate that SimpleTLP can be equipped with different positional encoding
method, other than Laplacian PE. Specifically, our work aims to introduce a general framework on
how to approximate positional encodings at a current time solely based on information from previous
timestamps to outperform in temporal link prediction task, and we do not want to constraint the type
of positional encodings. In Table 21, we provide the comparison between initializing the positional
encodings at initial timestamp with Laplacian PE and Random Walk PE (Dwivedi et al., 2022) under
two settings, transductive and inductive, with random negative sampling.

Based on Table 21, we can discern that (1) SimpleTLP can handle different positional encodings and
perform robustly; (2) different positional encodings bring slightly different performances and finding
a powerful positional encoding is a promising future direction to trigger more interesting works.

F REPRODUCIBILITY

F.1 DIFFERENT NEGATIVE SAMPLING STRATEGIES (NSS)

In brief, random NSS samples possible node pairs uniformly at random, historical NSS samples
negative edges from the edges occurring in past timestamps but are absent in the present time, and
inductive NSS samples edges that are unseen during the training time. We refer readers to (Poursafaei
et al., 2022) for more details regarding these three sampling strategies.

Configuration and implementation details. Following the training procedure of (Yu et al., 2023),
SimpleTLP is trained with a maximum of 200 epochs, and we employ early stopping with patience 10
during the training process. We leverage the Adam optimizer with learning rate of 0.0001. For a more
detailed description of the model’s implementation, computational resources, and configurations of
hyper-parameters over all 13 datasets, we refer readers to Appendix F.2, F.3.

Across Table 1, Table 2, Table 7, Table 8, Table 9, and Table 10, the model with the best performance,
in terms of metric scores AP and AUC-ROC, on the validation set will be selected for testing. We
run SimpleTLP 5 times with different random seeds from 0 to 4 and report the average metric score.
Results from all other baselines are also obtained in the same manner (Yu et al., 2023).

F.2 MODEL CONFIGURATIONS, HYPER-PARAMETERS, AND COMPUTING RESOURCES

We first report the configuration and hyper-parameters that are unchanged for all 13 datasets:

• Dimension of time encoding: dT = 100.
• Dimension of node encoding: dN = 172.
• Dimension of edge encoding: dE = 172.
• Dimension of positional encoding: dP = 172 (only for Social Evo., dP = 72).
• Hyper-parameters for time encoding function: α = 10, β = 10.
• Weight of negative samples in positional encoding loss: αneg = 0.3.
• Weight of positional encoding loss in objective loss function of SimpleTLP αpe = 0.5.

The experiments are coded by Python and are performed on a Linux machine with a single NVIDIA
Tesla V100 32GB GPU. The code will be released upon paper’s publication.

Next, for reproducibility, we present detailed hyper-parameters across 13 datasets in Table 22.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 22: Configurations of the number of recent snapshots for computing LPE, time window for
node features, recent interactions for edge features, and batch size over 13 datasets

Dataset L tgap K Batch size
Wikipedia 100 1000 15 128

Reddit 100 1000 20 200
MOOC 100 2000 30 128
Lastfm 100 1000 30 128
Enron 100 1000 20 64

Social Evo. 100 1000 20 128
UCI 200 500 30 100

Flights 100 1000 30 128
Can. Parl. 20 2 10 64
US Legis. 50 2 10 200
UN Trade 200 6 30 200
UN Vote 100 10 20 128
Contact 200 10 20 128

F.3 RUNNING SIMPLETLP ON CONTINUOUS TIME DYNAMIC GRAPHS

The definition of discrete time and continuous time dynamic graphs can be referred to the survey
paper (Kazemi et al., 2020), where

• Continuous Time Dynamic Graph (CTDG) is represented as ((v2, v5), t1), ((v1, v2), t2),
. . . , as shown in its Example 2;

• Discrete Time Dynamic Graph (DTDG) is represented as a set of G1, G2, . . . , GT , where
Gt = (Vt, Et) is the graph at snapshot t, Vt is the set of nodes in Gt, and Et is the set of
edges in Gt.

In this viewpoint, our method is designed for discrete time. However, we can see a clear transformation
between CTDG and DTDG: if we aggregate edges that happen at the same timestamp t into a set,
then it is the graph snapshot Gt. This is not invented by us, a similar example can be seen in Example
3 of the survey paper (Kazemi et al., 2020).

Because the introduction and theoretical derivation on the snapshot level are much easier to understand
by people, and using “a set of continuous-time edges” every time when we do theoretical derivation
and illustration can be wordy and hurt the presentation. Since graph snapshot and relevant concepts
are already existing in the community and cover the meaning, then we choose to follow them.

Then, in this section, we elaborate how SimpleTLP can be evaluated on Continuous Time Dynamic
Graphs. Firstly, we explain the data batching procedure for Continuous Time Dynamic Graphs as
follows. Suppose we are given a CTDG with T interactions, G = {ui, vi, ti}Ti=1, where t1 ≤ . . . tT
and (ui, vi, ti) denotes the link occurrence between ui, vi at time ti. Let the batch size be B, then a
data batch would be B consecutive interactions from {ui, vi, ti}Ti=1. Specifically, suppose T = B ·K
(for some K), then our 1st data batch would be the first B link occurrences of G: {ui, vi, ti}Bi=1. The
2nd data batch would be the next B consecutive interactions, {ui, vi, ti}2Bi=B+1, and so on. In this
way, now we obtain K data batches. Moreover, as a batch is a stream of B events, so we can regard a
data batch as a mini temporal graph with B link occurrences. This data batching technique is also
employed by other baselines.

Next, we explain the evaluation process of SimpleTLP. Consider an arbitrary data batch
{uj , vj , τj}Bj=1. If this is the first data batch, then we first extract all links occurrence (without
the timestamps), {uj , vj}Bj=1, transform this to a static graph, and obtain the Laplacian eigenvectors
of this graph to initialize the positional encoding for each node. If a node of G does not belong to this
graph then we initialize the positional encoding of that node with a zero vector. Here, let the "initial"
positional encoding for node u as p1

u. As we advance to the 2nd data batch, we first compute the
approximated positional encoding for all nodes, p̃2

. , as stated in Eq. 1, 2, based on p1
. . In this way,

following Eq. 1, 2, we can iteratively compute the approximate positional encoding for the k-th batch,

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

p̃k
. , based on the sequence of previous L positional encodings, pk−L

. , . . . ,pk−1
. , corresponding to

previous L data batches.

For our current data batch (suppose this is the k-th batch), {uj , vj , τj}Bj=1, we now describe how
to obtain the link predictions. For each query (uj , vj , τj), we obtain h

τj
uj ,N ||E , as defined in Eq. 6,

and h
τj
uj ,P

, as stated in Eq. 8, using p̃k
uj

. Finally, we combine hτj
uj ,N ||E ,h

τj
uj ,P

to obtain the temporal
representation at time τj for uj , hτj

uj . Similarly, we obtain the temporal representation for vj , hτj
vj .

Finally, following Eq. 10, we obtain the link prediction for (uj , vj , τj) using h
τj
uj ,h

τj
vj .

In summary, we ideally would want to obtain the positional encoding of a node u, pt
u ∈ RdP for

every temporal graph snapshot. However, for training efficiency, our implementation computes the
positional encoding for the graph corresponding to a data batch.

27

	Introduction
	Preliminaries
	Proposed Method: SimpleTLP
	Learnable Positional Encoding (LPE) Module
	Node-Link-Positional Encoder
	Optimization

	Theoretical Analysis
	Experiments
	Experimental Settings
	Temporal Link Prediction Performance on 13 Classic Datasets
	Demonstrating the Substitutability of Transformer in Temporal Link Prediction Tasks
	Temporal Link Prediction Performance on Large-Scale Benchmark TGB 2.0

	Related Work
	Conclusion
	Pseudo-code for SimpleTLP
	Proof of Theorem 1
	More comparison with related works
	Datasets
	More experimental results
	Empirical results for different negative sampling strategies
	Theoretical time complexity comparison with SOTAs
	Empirical runtime comparison with SOTAs
	Empirical results for ablation study
	Empirical results for parameter analysis
	Parameter Analysis for tgap
	Parameter analysis for K
	Parameter analysis for L
	Parameter analysis for neg
	Parameter analysis for pe

	Different positional encoding initialization

	Reproducibility
	Different Negative Sampling Strategies (NSS)
	Model Configurations, Hyper-parameters, and Computing Resources
	Running SimpleTLP on Continuous Time Dynamic Graphs

