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ABSTRACT

Link prediction is of key importance in many real-world applications like social
network analysis and recommender systems. To leverage the expressive power for
achieving SOTA performance, many recent works adapt the attention mechanism
to the structured data for link prediction, in which dense or relational attention is
often unaffordable on large-scale structured data. Moreover, in a realistic setting,
the time-evolving topological and feature information can raise more challenging
questions about the efficiency and effectiveness of attention mechanisms. In spite
of the expressive power, we discern that the attention mechanism may not always
be as irreplaceable as expected for temporal graph representation learning, at
least not for temporal link prediction tasks. Formally, we discover that some
deliberately-designed simple positional encoding can enable MLPs to exploit
attributed graph information to achieve SOTA performance than complex graph
transformers. Hence, we propose a simple temporal link prediction model, named
SimpleTLP. In detail, for SimpleTLP, we first propose to adapt Fourier Transform
on temporal graphs for learning informative positional encoding, then we (1)
prove this learning scheme can make positional encoding preserve the temporal
graph topology from the spatial-temporal spectral viewpoint, (2)

, (3) change different initial positional encoding inputs to show robustness,
(4) analyze the theoretical complexity and
, and (5) demonstrate its temporal link prediction out-performance
in a comprehensive way on 13 classic datasets and with 10 algorithms in both
transductive and inductive settings using 3 different sampling strategies. Also,
SimpleTLP obtains the leading performance in the large-scale TGB benchmark
(the newest TGB 2.0).

1 INTRODUCTION

Link prediction is an important research topic in the graph learning community (Kumar et al., [2020),
especially in complex temporal networks (Lu & Zhoul 2010} Martinez et al.,[2017). Learning from
the time-evolving topological structures and time-evolving node and edge features, and determining
whether the link (i.e., edge or interaction between two nodes) exists at a certain timestamp are
challenging but have attracted much research interest like dynamic protein-protein interactions (Tay-
lor et al.l 2009; |Gupta et al.| [2015), recommender systems (Huang et al.| [2005), social network
analysis (Daud et al., 2020), and many more.

Recently, with the success of the attention mechanism (Vaswani et al., 2017), graph transformers
have been proposed for the structured data to obtain the out-performance in many graph applications
for their powerful expressiveness, like GraphGPS (Rampasek et al., 2022) for graph classification,
TokenGT (Kim et al.l |2022)) for node and graph classification, and DyGFormer (Yu et al., |2023)
for link prediction. However, to preserve the long-distance relation into the representation vectors,
graph transformers usually need high time complexity due to the dense attention or relational
attention (Miiller et al., 2023} Min et al.| [2022), i.e., each pair of nodes need to be attended with
O(n?) time complexity, which can even approach O(n?3) in a more complex relational setting (Diao
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& Loynd, 2023)). A detailed theoretical time complexity and empirical running time comparison with
SOTAs can be found in Appendix [E.2]and Appendix [E.3]

The above complexity analysis places the burden on the temporal link prediction task from at least
two aspects (Kazemi et al.l [2020). First, to make the current link prediction, the decision models
need to consider the interaction history, and the corresponding spatial-temporal structure will force
the attention mechanism to become more complex to attend to more interactions. Second, besides
the spatial-temporal structure, the node and edge features also evolve over time, and the prolonged
features also increase the size of neural architectures. Promisingly, some nascent work (Cong et al.,
2023)) proposed to only use Multilayer Perceptrons (MLPs) to accomplish the temporal link prediction.
Although (Cong et al.|[2023) does not reach the superior performance of the graph transformers (Yu
et al.,[2023)), it paves the way for exploring the ability of MLPs in the temporal link prediction task.

In light of the above discussion, an intriguing question emerges: instead of a pre-defined fixed
positional encoding, can we design a learnable positional encoding along with time such that
a simple neural architecture can achieve a similar or even better performance than graph
transformers? Thus, in this paper, we design a simple temporal link prediction model, named
SimpleTLP. In SimpleTLP, we propose two novel techniques: Learnable Positional Encoding
Module (LPE) and Node-Link-Positional Encoder based on Discrete Fourier Transform.

With those proposed techniques, our goal is that even using MLPs can exploit temporal graph
information and achieve competitive performance compared with graph transformers in the temporal
link prediction task. To demonstrate this, we first prove that the proposed positional encoding method
in SimpleTLP can preserve the temporal graph topology from the spatial-temporal spectral viewpoint
and the corresponding theoretical time complexity, as shown in Section[d] Moreover, in Section [5}
we evaluate the empirical performance of SimpleTLP extensively, including (1) the comprehensive
effectiveness comparison with 13 classic datasets, 10 algorithms, 2 learning settings (transductive
and inductive), and 3 sampling strategies, where our SimpleTLP performs the best across the board;
(2) the verification of the role of MLPs and Transformers upon SimpleTLP; (3) the robustness of
SimpleTLP in terms of different initial positional encoding inputs; (4) various parameter analysis and
ablation studies; and (5) the leading performance in the large-scale TGB open benchmark (Gastinger
et al., [2024).

2 PRELIMINARIES

Here, we introduce preliminaries to pave the way for deriving our SimpleTLP in the next section.

Temporal Graph Snapshot. A snapshot of a temporal graph G is a collection of temporal interactions
(i.e., edges) at time t € {1,...,T}, which is defined as G* = {(u, v, t)‘u e Vtv eV (u,v,t) €
E'}. Each event (u,v,t) denotes an interaction between nodes v and v that occurs at time ¢, and the
node and edge sets of G* are denoted as V! and E* respectively. Additionally, for node u € V', we
denote the node features as sf, € RV, and the edge features associated with an event (u,v,t) as

el € R where dy and dy are the dimensions of the node and edge features.

u,v

Temporal Neighbors. The temporal neighborhood of a node w € V* attime ¢ € {1,...,T}, denoted
as N, is the set of all interactions that involve u at time ¢. Formally, N} can be mathematically
expressed as V) = {(u, v, t)|v € V¥; (u,v,t) € E*}.

Time Encoder. A time encoder is a function to obtain the vector representation of time ¢ (Xu
et al., 2020; Wang et al., 2021b}; |Cong et al.,[2023). Let dr be the dimension of the time encoding
vector. We define our time encoding function as fr : RT — R In SimpleTLP, for t € RT,
fr(t) = cos(t - w), where w € RYT with the i entry computed as w; = a~(~1/8 and a, 8 € R
are hyper-parameters. In order to enhance the ability of dr in distinguishing all timestamps, given
that £,,,4, 1S the maximum timestamp being considered, « and 3 should be selected in such a way
that t,,,44 - a~=1/8 5 0asi goes towards d. Moreover, «, 3, and w are fixed during the training
process of SimpleTLP.

Positional Encoding for Graphs. Originated from the transformer (Vaswani et al., [2017), positional
encoding is proposed to add node feature information to support the attention mechanism by indicating
the relative position of a node within the input graph (Dwivedi et al.,|2023)), and the common positional
encoding methods include computing the Laplacian eigenvector or Personalized PageRannk vector
for each node (Rampasek et al., [2022} |Chen et al., [2023). Mathematically, given an n-node (static)
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graph G = (V, E') and its adjacency matrix A € R™*", the normalized Laplacian of G is computed
asL =1, — D"/2AD~!/2 where I, is the n x n identity matrix, and D is the diagonal degree
matrix of G. Let the eigen-decomposition of L be L = UAUT, where A = diag(\1, Ao, ..., \y,) is
a diagonal matrix consisting of L’s eigenvalues and U consists n eigenvectors of L as its columns.
Let u; € R™ be the i" eigenvector of L and its 5™ entry denoted as u; ;. Then, the positional
encoding of node i € V is defined as p; = [u1 4, ..., un,i]T € R™. In practice, the dimension dp of
positional encoding is usually set to be less than n for computational efficiency (Dwivedi & Bresson,
2020), i.e., dp < nand p; = [y, ..., Uqp ;| € R,

Discrete Fourier Transform. To pave the way for learnable positional encoding, we need to first intro-
duce the basics of Discrete Fourier Transform (DFT) (Sundararajan, [2001). In brief, DFT is designed
to convert a finite-length sequence of samples into another sequence in the frequency domain (with the
same length). Formally, given a sequence with length N, {x;}’_,, the DFT operation F({x;}}_,)

converts {x; }§V:1 to the complex-valued sequence {X; };V:1 as X; = Zivzl xpe 2Tk Also,
to re-construct the original sequence {x;},, inverse DFT (IDFT) F~'({X;}}_,) is defined as

N i2n Lk
Xj = g Xpe TN,

3 PROPOSED METHOD: SIMPLETLP

To begin with, we focus on a general research question, i.e., given two nodes u and v, how can
we predict whether the link (interaction or edge) exists between u and v at a certain timestamp t,
effectively and efficiently?

To answer this question, we propose a simple temporal link prediction model named SimpleTLP.
It retrieves the interaction history of two nodes and decides whether the current link exists or
not. Without heavy neural architectures like dense attention (Rampasek et al., 2022)) or relational
attention (Diao & Loynd, |2023)), SimpleTLP only depends on two of our proposed simple yet effective
techniques, i.e., Learnable Positional Encoding Module (LPE) and Node-Link-Positional Encoder,
such that SimpleTLP can preserve the spatial-temporal topology rigorously (as shown in Section )
and outperform attention-based state-of-the-art link prediction methods (as shown in Section [5).
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Figure 1: Overall Framework of SimpleTLP

The overall framework of SimpleTLP is shown in Figure [T] about how to retrieve and learn from
history to make the current decision with two proposed techniques. Next, we will introduce the
details of the proposed techniques, i.e., Learnable Positional Encoding Module in Section [3.1]and
Node-Link-Positional Encoder in Section[3.21

3.1 LEARNABLE POSITIONAL ENCODING (LPE) MODULE

The main idea of Learnable Positional Encoding (LPE) is to leverage historical positional encoding to
determine whether the link exists at the current timestamp. However, learning from the history data
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in an effective and efficient way and only through positional encoding is challenging, because SOTA
methods usually need a complex attention mechanism (Poursafaei et al., 2022} |Yu et al., [2023)).

To this end, we aim to only use positional encoding to carry informative and useful knowledge to
record what had happened in the past (e.g., what interactions occurred and what the node and edge
features looked like around the interaction). Existing simple hand-crafted positional encoding can be
efficient but tend to induce suboptimal performance (Wang et al.l 2021bj |Cong et al., 2023)).

Thus, we propose a “learnable” positional encoding module (LPE), enabling it to reflect complex and
non-linear knowledge. As shown in Figure[T] in our SimpleTLP, LPE estimates (or approximates) the
positional encoding at current time ¢ by applying the Fourier Transform (with learnable parameters)
on the past positional encoding. It is worth noting that obtaining the positional encoding through
LPE: (1) records the complex spatial-temporal information (proved from the spectral viewpoint in
Section[)), (2) and avoids computing the Laplacian eigendecomposition for each timestamp from
scratch, which is computationally expensive (e.g., O(|V'|?) (Chen et al.,[2023) or O(| E|3/?) (Dwivedi
et al.,[2023))

Because of no peeking at the current graph topology structure and features, our LPE is an iterative
updating module. Next, we introduce LPE in two-folds: (1) given the past positional encoding, how
LPE approximates the current positional encoding (that will be used to determine links by Node-Link-
Positional Encoder in Section[3.2), and (2) how to store the approximate positional encoding and
update/optimize it in the future round with current topology structure and features observed.

Approximating current position encoding. First of all, we denote the positional encoding of « to be
learned for time t as p!, € R, Suppose there are L most recent distinct timestamps prior to t, i.e.,

th,...,th (wheret] < --- <t} <t),and we can retrieve the already learned {pi} ey pZL} that is
regarded as a L-length sequence. Additionally, considering computational efficiency, we only retrieve
L most recent timestamps. Then, in this LPE module, we leverage the Discrete Fourier Transform as

a way to capture the temporal dependencies among pf} sy ptuL and derive an estimated positional
encoding of v at time ¢ denoted by pf, € R?7.

To be specific, we start by applying Discrete Fourier Transform (DFT) on the sequence {pz }i:L_ 4 10
-1

obtain the corresponding sequence in the frequency domain. Then, we employ a complex-valued
learnable filter, W ¢;j¢e, € C4r*L to filter out noises of the sequence in the frequency domain, and
finally transform back to the original domain. The process can be mathematically expressed as

_t _ t
{pd JL:1 =F YW iter © F({pd }7L:1)) 6]

Then, we obtain the approximate positional encoding p!, by applying sum-pooling with learnable

weights on {Py/ e
B[ el W o

where W™ € REX1 Note that the approximate positional encoding p, will be sent to the
Node-Link-positional Encoder (in Section. [3.2)) for making predictions for current time ¢.

Storing approximate positional encoding for future retrieval and optimization. Since SimpleTLP
does not peek at the current topology structure and features when making the prediction for now,
i.e., only using approximate positional encoding p’,, we want to clarify how the current approximate
positional encoding get updated and optimized in the next round.

After making the current link predictions at time ¢ (as shown in Section [3.2)), SimpleTLP can then
“peek” (or “reveal”) the ground-truth links at time ¢, such that it can update the approximation p’, into
updated p!, for the future retrieval and predictions.

Then, we need to update the positional encoding of u at £. We sample the most K recent interactions,

including those that occur at time t. Suppose they are indexed as { (@1, u,t1),..., (Ux,u, tx)}
where #; < --- <ty < t. Leveraging the approximate positional encoding from iy, . . ., i, p’, is
derived as

P!, = B, + tanh(W*Dp!, + WERELU(W'q),)) € RY7 3)
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where q!, = Z]K:l[(fT(t =) " | (BL,)"]T € RérHdr, fr is the time encoder, and wi) ¢
Rérx(dp+dr) W2 ¢ gdexdr Wisell) ¢ Rdrxde gre learnable MLP parameters.
At the first time ¢y, we denote the initial positional encoding as the Laplacian of the initial graph

snapshot G0, Formally, let L be the Laplacian of G* and the eigen-decomposition of L be UAU7,
then p? = [y 4, ..., Uap o] € RP, where u; is the i-th eigenvector of L, as defined in Section

3.2 NODE-LINK-POSITIONAL ENCODER

For node u, the Node-Link-Positional Encoder is designed to aggregate its historical node and edge
features with the positional encoding of its recent 1-hop neighbors prior to time ¢, and, eventually,
derive a compact representation associated with u that encodes all the information.

In general, Node-Link-Positional Encoder works as follows. We first use h!, - and h!, ;, to denote the
node and link encoding of recent 1-hop neighbors of node w. Then, we apply MLP transformations
on h, \; and h!, ; to obtain the encoding, denoted by hiy | &> Which represents the combination
of node-link information. For adding positional information, we use hfl’ p to denote the aggregated
positional encoding of recent 1-hop neighbors, and further transform them by MLP layers. Eventually,
h; N||E and hf% p are combined by a 1-layer MLP to derive a temporal representation at time ¢ for v,

denoted by hf,, which will be sent together with h! to the link predictor in Section to determine
whether the link exists between nodes v and v at time ¢.

The detailed computational procedures of the Node-Link-Positional Encoder are explained below.

First, the node encoding of recent 1-hop neighbors of u can be obtained by aggregating features
of nodes that interact with w in the time interval [t — tgap; t], where Lgap 1s a dataset-dependent
hyper-parameter. Mathematically, this process can be described as

h!, v = st +Mean({sl, |(v/,u,t') € NL7tor U UNE}t € [t —tyap, t]) RN (@)

where s’ is the input node features, and Mean(-) is the mean pooling operation.

Then, we derive the link encoding for u by extracting the K most recent interactions involv-
ing u that occur prior to time ¢, combine the edge features and the time encoding of these in-
teractions, and further apply MLP transformations on these representations. Specifically, sup-

pose the most K recent interactions of w are indexed as {(u1,u,t}),..., (uk,u,t )}, where
ty < - <t <t LetH g € RE*(dr+dr) be a matrix, whose k"' row is defined as
= gl = [(fot — )7 | (el u;)T] € R'*(dr+dr) where [-||-] denotes concatenation

. If u does not involve at least K interactions
before ¢ then HfL, 1 zero-padded so that the matrix has K rows. We first apply a 1-layer MLP on

the last dimension of HZ 1> sum-pool over K rows of HZ 1 with learnable weights to obtain a vector
of dimension dp + dg, and finalize the encoding with an additional 1-layer MLP transformation as
b, = Wi (RELU((H, s W) ) TWii) € Y0 5)

where W(l) W(Q)k c R(dT"l‘dE)X(dT-'rdE)’ and Wium ¢ REX1

link> lin

After that, hz_ N||E is obtained by a 1-layer MLP transformation as
h!, vz = Wae(((hl x) " || (h 5)"])" e R ©)
where Wy g € Rdn x(dn+dr+dE)

Next, for historical positional information, we apply sum aggregation over the positional information
from the aforementioned K most recent interactions involving u as

K
Bp = (et~ )T |1 (BL,) 7] € R+ o

j=1
where fr is the time encoder. Then, hfi’ p 1s obtained through the neighborhood-aggregated positional

ino ht =t
encoding h;, 5 and p,, as

ht

p =D, + tanh(WEDpL + WERELUW WL, 1)) € R (8)
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where W) e Rirx(drtdr) W2 ¢ Rarxde Well) ¢ Rdrxde and tanh is the hyperbolic
tangent function.

Finally, the temporal representation at time ¢ of w, hz, is derived as
hl, = W(h}, x )" |l (b}, p)T]T € R ©)

where W € Rd~ X (dn+dp)

3.3 OPTIMIZATION

With the two embeddings h!, and h’, we can now let SimpleTLP decide whether a link exists between
nodes u and v at time ¢ and train SimpleTLP against the ground truth connections before ¢.

Link predictor. Given a node pair (u,v) and timestamp ¢, SimpleTLP’s goal is to predict whether
there is a link between (u, v) at time ¢. Specifically, the Link Predictor would give the probability
7 € (0,1) of whether u and v interact at time ¢ by

j = sigmoid(WRELUW M ()T || (h})T]7)) € (0, 1) (10)
where sigmoid denotes the sigmoid function mapping all real values to the range (0, 1), and wl e
RZdn)xdn W (2) ¢ RIv*1 are 1-layer MLPs.

Loss functions. To begin with, we point out the necessary components of the objective loss function
for the training process of SimpleTLP, give formal definitions for those components, and derive the
final loss function used in the training process of SimpleTLP.

Suppose there are B positive (i.e., existing edges) samples (ugpos), vgpos), (2D (ugos), vj(gpos), tg)
and B negative (i.e., non-existing edges) samples (u&"eg)7 u§”69>, t)y.., (ugwg), vgwg)7 tz). Thus

the ground truth label for the positive samples should be 1, and O for the negative samples. As the link
prediction can be regarded as a binary classification problem, we employ the binary cross-entropy
loss function to obtain the link prediction loss £, as

B B
1
Lip=155 [(;bg (?)ugpw’vgpos))) + (Z(l —log (?)ugnewyvgneg)))} (1D

i=1
~ . a1 . .. (pos) (pos)

where g, (wos) , (vos) denotes the predicted probability of a link existing between u;” ', v;
t;, as defined in Eq. and §, (neg)  (neq) is the predicted probability of a link existing between

ugneg)7 UEneg)

at time

at time ¢;. Thus, ideally, g)ugpos> L (P09) should be close to 1, and :Qu(‘mg) p(e9) should be
close to zero.

In addition, we introduce the positional encoding loss £, to assess the learned positional encoding,
defined in Eq.[2] Specifically, we would expect ﬁfj?f’”'*) be close to 5?@0-@)7 as there is a link between

ugp 0s) v§” °%) at time t;. Thus, the difference ||f):'(_ms) — 5?@05)

2 (where || - ||2 denotes the 2-norm

of a real-valued vector) should be small, so that the learned positional encoding correctly reflects
the nature of positional encoding. Moreover, in order to avoid SimpleTLP giving similar positional
encoding to all nodes to minimize the aforementioned 2-norm difference of positive samples, we
. . I . ~t; ~t; .
add another constraint, i.e., maximizing the difference | |pu(_mg) — P nea) |2, where aueq is a

positive scaling factor. As (ugneg)7 vgneg), t1)y. s (ug’eg), Ugwg), tp) are not all negative (i.e., not

connected), we let a,q < 1 to avoid SimpleTLP emphasizing the negativity of these B negative
samples. Therefore, we define the positional encoding loss as

B B
1 =ti =ti =ti =ti
‘Cpe = E |:< Z Hpuf:pos) - pvgpos) 2) — Qneg ( Zl HPuEneQ) - pvgneg) ||2 (12)
i=

i=1

Finally, the overall loss function is
L= (1-cpe)Llip+ peLpe (13)
where oy, € (0, 1) is the weight for L.

The algorithmic training procedures of SimpleTLP can be found in Appendix
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4 THEORETICAL ANALYSIS

In this section, we first theoretically show that, at time ¢, the approximated positional encoding p?,
defined by Eq. [2] can be a good approximation of the positional encoding of graph snapshot G* by
establishing a bound for the approximation error.

Theorem 1. Suppose the temporal graph G is “slowly changing” (i.e., the ground truth positional
encoding p° ~ - -- = p'~1), then the corresponding approximated positional encoding of SimpleTLP
satisfies

1Bl = Pull2 <€ (14)
where t' > t is the future distinct timestamp of t, and € is a bounding term that depends on L, which

is the number of recent graph snapshots utilized in obtaining the approximated positional encoding,
as stated in Egs.[l|and[2] (Proof in Appendix|B)

Briefly, Theorem [T]indicates that when the graph is slowly changing, the positional encoding learned
at the previous timestamp can well preserve the next close future timestamp’s positional encoding.
In other words, as Theorem [I] suggests, the positional encoding function of SimpleTLP can be a
good representation of the positional information of future graph snapshots without leveraging the
information about the future graph topology.

Note that the above statements do not necessarily mean that SimpleTLP does not need to update the
positional encoding in every case. Actually, SimpleTLP indeed updates the positional encoding when
new interaction happens. The role of Theorem |I]is to demonstrate the effectiveness of our positional
encoding in the inductive setting, where the future scenario is usually not given or difficult to observe.

Complexity Analysis. Next, we provide the analysis on SimpleTLP’s computational complexity.
SimpleTLP consists of two main components: LPE Module and Node-Link-Positional Encoder.
In LPE Module, the approximated positional encoding is derived by applying Discrete Fourier
Transform on a L-length sequence of previous positional encoding, so the complexity is O(L log(L)),
achieved by utilizing Fast Fourier Transform. Then, we update the positional encoding by sampling
the K most recent interactions, adding O(K) time. Therefore, for n nodes, LPE Module costs
O(n(Llog(L) + K)). For Node-Link-Positional Encoder, for each node we retrieve node-level
information from its neighborhood in the interval [t—t 44,; t] and sample its X' most recent interactions,
so the complexity is O(n-(t4qp+K)), which can be achieved by pre-computing all temporal neighbors
in the range [t — t4qp; t] of each node. Thus, the total time complexity is O(n(tg4qp + K + Llog(L)),
which scales linearly with the number of nodes, as L, K, t44;, are constants independent of 7.

Compared to recent SOTAs, DyGFormer (Yu et al., 2023) and FreeDyG (Tian et al., [2024)), Sim-
pleTLP is more efficient as both of these methods employ neighborhood co-occurrence for each node
pair of interaction, making their worst-case complexity scales with the number of edges, |E|, while
SimpleTLP’s complexity scales with n, the number of nodes, and its quite common that n << |E|
, showing SimpleTLP’s advantage in efficiency. Detailed theoretical time complexity comparison
can be found in Appendix [E.2] and detailed empirical running time comparison can be found in

Appendix

5 EXPERIMENTS

Here, we put the main results showing the outperformance of SimpleTLP in classic and large-scale
datasets and demonstrating the substitutability of transformers by our lightweight solution. We leave
the effectiveness comparison in more learning and sampling settings in Appendix [E.I] running time
comparison with SOTAs in Appendix [E.3] LPE ablation studies wrt input node and edge features in
Appendix analysis of important hyperparameters in Appendix [E.5] robustness of SimpleTLP
with different initial positional encoding input in Appendix [E.6 and detailed reproducibility in

Appendix [F
5.1 EXPERIMENTAL SETTINGS
Datasets and baselines. We assess the ability of SimpleTLP in performing link prediction with

13 datasets covering various domains and collected by (Poursafaei et al., 2022): Wikipedia, Reddit,
MOOC, LastFM, Enron, Social Evo., UCI, Flights, Can. Parl., US Legis., UN Trade, UN Vote, and
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Contact. Details about the dataset statistics are shown in Appendix [D} We compare SimpleTLP with 8
state-of-the-art baselines, including JODIE (Kumar et al.l 2019), DyRep (Trivedi et al.| 2019), TGAT
(Xu et al., 2020), TGN (Rosst et al.,2020), CAWN (Wang et al., [2021b), TCL (Wang et al., 2021a),
GraphMixer (Cong et al., 2023), DyGFormer (Yu et al. [2023)), and FreeDyG (Tian et al., [2024).
Across all 13 datasets, training/validation/testing sets are following the standard library (Yu et al.,
2023)) by chronological splits with ratios 70%/15%/15%. The large-scale datasets with pre-defined
splits are publicly available at TGB Benchmark 2.0 (Gastinger et al.|[2024)

Evaluation metrics and settings. Following existing works (Xu et al.l [2020; Rossi et al., [2020;
Yu et al.,[2023) in evaluating models for link prediction, we assess SimpleTLP under two settings:
transductive setting and inductive setting. Under the transductive setting, models will predict the
link occurrence in future timestamps between nodes that had been observed during the training
process, while the inductive setting involves predicting future links between unseen nodes in the
training process. For each setting, we use two evaluation metrics: Average Precision (AP) and Area
Under the Receiver Operating Characteristic Curve (AUC-ROC). In addition, following (Poursafaei
et al.l [2022), for more robust evaluation, each baseline is assessed with three negative sampling
strategies (NSS): random, historical, and inductive (Details in Appendix [F).

5.2 TEMPORAL LINK PREDICTION PERFORMANCE ON 13 CLASSIC DATASETS

Due to the limited space, we present all baseline methods with respect to AP and AUC-ROC metrics
with random negative sampling strategy here for the transductive setting in Table[T] and the inductive
setting in Table 2] The performance of historical and inductive negative sampling strategies on
both learning settings are placed in Appendix [E.T] The first and second results are highlighted with
Red and Blue. For the random negative sampling strategy, in Tables [T]and 2} SimpleTLP achieves
competitive results over 13 datasets and outperforming most of the baselines with average rankings
close to 1 under both settings. Moreover, the second-best results of SimpleTLP closely approach the
corresponding best results by a small gap. Notably, on some datasets, such as UN Trade, UN Vote,
the difference between the second-best and SimpleTLP’s performance is substantial, suggesting that
SimpleTLP makes great improvements over existing methods. Regarding the historical and inductive
sampling strategies, SimpleTLP also attains competitive results, as suggested in Tables[7} [8] O] and
[TO} at most cases, SimpleTLP surpasses the second-best by a substantial margin.

Table 1: Performance comparison in the fransductive setting with random negative sampling strategy.

Metric Datasets JODIE DyRep TGAT TGN CAWN TCL GraphMixer DyGFormer  FreeDyG  SimpleTLP
Wikipedia [96.50 £ 0.14 94.86 & 0.06 96.94 +0.06 98.45 £ 0.06 98.76 £ 0.03 96.47 +0.16 97.25 £ 0.03 99.03 £ 0.02 99.26 + 0.01 99.34 + 0.04
Reddit |98.31 £ 0.14 98.22 + 0.04 98.52 +0.02 98.63 £+ 0.06 99.11 +0.01 97.53 +£0.02 97.31 £ 0.01 99.22 4+ 0.01 99.48 + 0.01 99.37 -+ 0.04
MOOC |80.23 +2.44 81.97 £0.49 85.84 4+ 0.15 89.15 + 1.60 80.15 £ 0.25 82.38 & 0.24 82.78 £ 0.15 87.52 £ 0.49 89.61 £ 0.19 86.94 + 0.34
LastFM |70.85 £ 2.13 71.92 £2.21 73.42 4+ 0.21 77.07 £ 3.97 86.99 £ 0.06 67.27 +2.16 75.61 £ 0.24 93.00 £ 0.12 92.15 4+ 0.16 96.06 + 0.30
Enron  |84.77 +0.30 82.38 +£3.36 71.12 £ 0.97 86.53 & 1.11 89.56 £ 0.09 79.70 £ 0.71 82.25 4 0.16 92.47 +0.12 92.51 + 0.05 93.96 + 0.36
Social Evo.|89.89 +0.55 88.87 & 0.30 93.16 +0.17 93.57 £ 0.17 84.96 £ 0.09 93.13 +0.16 93.37 £ 0.07 94.73 £ 0.01 94.91 £+ 0.01 92.22 + 0.25
UCI 89.43 £ 1.09 65.14 £2.30 79.63 +0.70 92.34 + 1.04 95.18 £ 0.06 89.57 & 1.63 93.25 £ 0.57 95.79 £ 0.17 96.28 + 0.11 96.67 + 0.47
Flights |95.60 £ 1.73 95.29 £0.72 94.03 £0.18 97.95 £ 0.14 98.51 £0.01 91.23 £0.02 90.99 £ 0.05 98.91 + 0.01 98.12 £ 0.19 98.94 + 0.10
Can. Parl. [69.26 + 0.31 66.54 £2.76 70.73 £+ 0.72 70.88 4 2.34 69.82 £ 2.34 68.67 £ 2.67 77.04 = 0.46 97.36 + 0.45 72.22 £ 2.47 98.24 £ 0.11
US Legis. |75.05 4+ 1.52 75.34 +0.39 68.52 4+ 3.16 75.99 + 0.58 70.58 4+ 0.48 69.59 4+ 0.48 70.74 + 1.02 71.11 £ 0.59 69.94 + 0.59 76.74 + 0.60
UN Trade |64.94 £ 0.31 63.21 +0.93 61.47 £0.18 65.03 £ 1.37 65.39 4+ 0.12 62.21 £ 0.03 62.61 £ 0.27 66.46 + 1.29 - 75.84 +£2.08
UN Vote [63.91 +0.81 62.81 +0.80 52.21 +0.98 65.72 + 2.17 52.84 +0.10 51.90 + 0.30 52.11 £ 0.16 55.55 +0.42 51.99 + 1.13 73.40 + 0.03
Contact 95.31 4 1.33 95.98 £ 0.15 96.28 £ 0.09 96.89 4 0.56 90.26 £ 0.28 92.44 £ 0.12 91.92 4 0.03 98.29 + 0.01 97.99 £ 0.03 98.16 + 0.09
Avg. Rank 6.77 7.38 7.23 4.08 585 8.46 6.77 2.77 3.85 1.85
Wikipedia [96.33 £ 0.07 94.37 £ 0.09 96.67 +0.07 98.37 £ 0.07 98.54 £ 0.04 95.84 +0.18 96.92 £ 0.03 98.91 £ 0.02 99.41 + 0.01 99.48 + 0.03
Reddit [98.31 +0.05 98.17 £ 0.05 98.47 £+ 0.02 98.60 & 0.06 99.01 +0.01 97.42 +0.02 97.17 £ 0.02 99.15 £+ 0.01 99.50 £ 0.01 99.49 + 0.03
MOOC |83.81 £2.09 85.03 £ 0.58 87.11 +0.19 91.21 + 1.15 80.38 £ 0.26 83.12 +0.18 84.01 £ 0.17 87.91 £ 0.58 89.93 + 0.35 89.28 + 0.28
LastFM |70.49 + 1.66 71.16 + 1.89 71.59 + 0.18 78.47 +2.94 85.92 +0.10 64.06 + 1.16 73.53 +0.12 93.05 + 0.10 93.42 + 0.15 97.52 + 0.17
Enron  [87.96 4+ 0.52 84.89 +3.00 68.89 £ 1.10 88.32 +0.99 90.45 £ 0.14 75.74 £ 0.72 84.38 + 0.21 93.33 £ 0.13 94.01 £ 0.11 95.98 + 0.23
Social Evo. |92.05 £+ 0.46 90.76 £ 0.21 94.76 £+ 0.16 95.39 + 0.17 87.34 £ 0.08 94.84 £ 0.17 95.23 £ 0.07 96.30 £+ 0.01 96.59 + 0.04 94.33 £ 0.21
UCI 90.44 £ 0.49 68.77 +2.34 78.53 £0.74 92.03 £ 1.13 93.87 4 0.08 87.82 + 1.36 91.81 £ 0.67 94.49 £ 0.26 95.00 + 0.21 97.62 £ 0.23
Flights |96.21 £ 1.42 95.95 £0.62 94.13 £0.17 98.22 £0.13 98.45 £ 0.01 91.21 £0.02 91.13 £ 0.01 98.93 + 0.01 98.03 £ 0.17 99.38 + 0.04
Can. Parl. |78.21 +0.23 73.35 £ 3.67 75.69 £ 0.78 76.99 4 1.80 75.70 £ 3.27 72.46 £ 3.23 83.17 £ 0.53 97.76 = 0.41 81.09 £ 2.28 98.97 + 0.06
US Legis. |82.85 4 1.07 82.28 +-0.32 75.84 4+ 1.99 83.34 + 0.43 77.16 + 0.39 76.27 + 0.63 76.96 + 0.79 77.90 4+ 0.58 77.26 + 0.50 83.89 + 0.43

AP

ROC-AUC

UN Trade |69.62 4 0.44 67.44 +0.83 64.01 +0.12 69.10 & 1.67 68.54 +0.18 64.72 +0.05 65.52 +0.51 70.20 + 1.44 - 83.17 £ 1.28
UN Vote |68.53 £0.95 67.18 + 1.04 52.83 4 1.12 69.71 - 2.65 53.09 £ 0.22 51.88 £ 0.36 52.46 + 0.27 57.12 4+ 0.62 52.79 4 1.56 79.59 + 0.02
Contact  [96.66 + 0.89 96.48 4 0.14 96.95 + 0.08 97.54 4 0.35 89.99 + 0.34 94.15 4+ 0.09 93.94 + 0.02 98.53 + 0.01 98.39 + 0.02 98.72 + 0.06

Avg. Rank 6.08 7.31 7.46 3.92 6.0 8.69 7.15 3.0 3.69 1.69

5.3 DEMONSTRATING THE SUBSTITUTABILITY OF TRANSFORMER IN TEMPORAL LINK
PREDICTION TASKS

Here, we empirically show that simple architectures like MLPs can fully harness our learnable
positional encoding to finish temporal link prediction tasks.
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Table 2: Performance Comparison in the inductive setting with random negative sampling strategy.

Metric Datasets JODIE DyRep TGAT TGN CAWN TCL GraphMixer DyGFormer  FreeDyG  SimpleTLP
Wikipedia |94.82 £ 0.20 92.43 £ 0.37 96.22 + 0.07 97.83 £ 0.04 98.24 £ 0.03 96.22 + 0.17 96.65 £ 0.02 98.59 £ 0.03 98.97 + 0.01 99.15 + 0.04
Reddit  [96.50 +0.13 96.09 £ 0.11 97.09 £ 0.04 97.50 & 0.07 98.62 + 0.01 94.09 £ 0.07 95.26 4 0.02 98.84 + 0.02 98.91 + 0.01 98.02 + 0.09
MOOC |79.63 £ 1.92 81.07 £ 0.44 85.50 4 0.19 89.04 + 1.17 81.42 £ 0.24 80.60 0.22 81.41 £ 0.21 86.96 + 0.43 87.75 4 0.62 88.49 + 0.24
LastFM |81.61 + 3.82 83.02 4+ 1.48 78.63 + 0.31 81.45 +4.29 89.42 + 0.07 73.53 + 1.66 82.11 +0.42 94.23 + 0.09 94.89 + 0.01 96.25 + 0.43
Enron  [80.72 4 1.39 74.55 £ 3.95 67.05 £ 1.51 77.94 4+ 1.02 86.35 £ 0.51 76.14 £ 0.79 75.88 4 0.48 89.76 + 0.34 89.69 + 0.17 89.17 + 0.88
Social Evo.|91.96 + 0.48 90.04 £ 0.47 91.41 +0.16 90.77 £+ 0.86 79.94 £ 0.18 91.55 4+ 0.09 91.86 + 0.06 93.14 -+ 0.04 94.76 + 0.05 91.71 + 0.32
UCI 79.86 £ 1.48 57.48 £ 1.87 79.54 £ 0.48 88.12 £2.05 92.73 £ 0.06 87.36 +2.03 91.19 £ 0.42 94.54 £ 0.12 94.85 + 0.10 94.60 + 0.41
Flights |94.74 £ 0.37 92.88 & 0.73 88.73 +0.33 95.03 £ 0.60 97.06 £ 0.02 83.41 4+ 0.07 83.03 £ 0.05 97.79 £ 0.02 96.42 4+ 0.32 97.43 + 0.15
Can. Parl. |53.92 +0.94 54.02 £0.76 55.18 £0.79 54.10 & 0.93 55.80 £ 0.69 54.30 £ 0.66 55.91 +0.82 87.74 + 0.71 52.96 £ 1.05 92.25+ 0.24
US Legis. [54.93 +2.29 57.28 +0.71 51.00 & 3.11 58.63 + 0.37 53.17 4+ 1.20 52.59 4+ 0.97 50.71 4 0.76 54.28 4 2.87 53.05 4+ 2.59 61.98 + 1.31
UN Trade |59.65 £ 0.77 57.02 & 0.69 61.03 £ 0.18 58.31 £ 3.15 65.24 + 0.21 62.21 £0.12 62.17 £ 0.31 64.55 & 0.62 - 76.80 + 2.01
UN Vote |56.64 +0.96 54.62 +2.22 52.24 4+ 1.46 58.85 + 2.51 49.94 + 0.45 51.60 +0.97 50.68 + 0.44 55.93 +0.39 50.51 + 1.02 75.09 + 0.34
Contact |94.34 4 1.45 92.18 £ 0.41 95.87 £ 0.11 93.82 4 0.99 89.55 £ 0.30 91.11 £ 0.12 90.59 4 0.05 98.03 + 0.02 97.66 £ 0.04 97.25 + 0.07
Avg. Rank 6.38 7.54 7.08 531 5.38 7.54 6.92 2.62 4.15 2.08
Wikipedia |94.33 £ 0.27 91.49 £ 0.45 95.90 +0.09 97.72 £ 0.03 98.03 £ 0.04 95.57 +0.20 96.30 £ 0.04 98.48 £ 0.03 99.01 + 0.02 99.30 + 0.03
Reddit  |96.52 £ 0.13 96.05 +0.12 96.98 + 0.04 97.39 + 0.07 98.42 4+ 0.02 93.80 + 0.07 94.97 £ 0.05 98.71 - 0.01 98.84 + 0.01 98.49 + 0.06
MOOC |83.16 + 1.30 84.03 £ 0.49 86.84 £ 0.17 91.24 + 0.99 81.86 + 0.25 81.43 £0.19 82.77 + 0.24 87.62 £ 0.51 87.01 £ 0.74 90.63 + 0.21
LastFM |81.13 +3.39 82.24 4+ 1.51 76.99 + 0.29 82.61 +3.15 87.82 +0.12 70.84 + 0.85 80.37 + 0.18 94.08 4+ 0.08 94.32 + 0.03 97.66 + 0.21
Enron  [81.96 & 1.34 76.34 +4.20 64.63 £ 1.74 78.83 & 1.11 87.02 £ 0.50 72.33 £0.99 76.51 +0.71 90.69 + 0.26 89.51 £ 0.20 92.30 + 0.57
Social Evo. |93.70 +0.29 91.18 £ 0.49 93.41 £ 0.19 93.43 £ 0.59 84.73 +0.27 93.71 £ 0.18 94.09 £+ 0.07 95.29 + 0.03 96.41 £ 0.07 94.09 & 0.24
UCI 78.80 £ 0.94 58.08 + 1.81 77.64 £ 0.38 86.68 £ 2.29 90.40 - 0.11 84.49 + 1.82 89.30 £ 0.57 92.63 £+ 0.13 93.01 + 0.08 95.88 + 0.17
Flights 9521 £0.32 93.56 & 0.70 88.64 +0.35 95.92 + 0.43 96.86 + 0.02 82.48 +0.01 82.27 £ 0.06 97.80 -+ 0.02 96.05 £ 0.29 98.46 + 0.07
Can. Parl. |53.81 + 1.14 5527 £ 0.49 56.51 £0.75 55.86 +0.75 58.83 £ 1.13 55.83 £ 1.07 58.32 4 1.08 89.33 + 0.48 52.80 £ 1.61 95.06 & 0.11
US Legis. [58.12 +2.35 61.07 & 0.56 48.27 4 3.50 62.38 + 0.48 51.49 &+ 1.13 50.43 4 1.48 47.20 + 0.89 53.21 4+ 3.04 53.01 &+ 3.14 66.18 + 1.19
UN Trade |62.28 £ 0.50 58.82 4 0.98 62.72 £ 0.12 59.99 £ 3.50 67.05 & 0.21 63.76 + 0.07 63.48 £ 0.37 67.25 + 1.05 - 83.95 £ 1.76
UN Vote |58.13 4+ 1.43 55.13 +3.46 51.83 + 1.35 61.23 + 2.71 48.34 £ 0.76 50.51 + 1.05 50.04 + 0.86 56.73 + 0.69 49.97 + 1.22 82.01 + 0.21
Contact 95.37 4+ 0.92 91.89 + 0.38 96.53 £ 0.10 94.84 4 0.75 89.07 £ 0.34 93.05 £ 0.09 92.83 4 0.05 98.30 + 0.02 98.11 -+ 0.02 97.99 £ 0.07
Avg. Rank 6.38 7.54 7.08 492 577 177 7.08 2.62 431 1.54

AP

ROC-AUC

By performing an ablation study of using Transformers (instead of MLPs) to help SimpleTLP learn
positional encodings, as shown in TableE[, we can discern (1) in most cases (i.e., 9 of 13 datasets),
our vanilla SimpleTLP can outperform, and the gain is not marginal; (2) in a few cases, adding the
attention mechanism on SimpleTLP to replace MLPs can boost the performance to a small extent,
and it is prone to cost more computational memory, like OOM in the Flights dataset.

Table 3: Comparison of replacing MLPs in SimpleTLP with Transformers.

Dataset Method Transductive AP | Transductive ROC-AUC | Inductive AP |Inductive ROC-AUC
Wikipedia SimpleTLP + Transformer| 98.50 & 0.73 98.85 £ 0.50 98.11 £ 0.83 98.49 £+ 0.62
SimpleTLP 99.34 + 0.04 99.48 + 0.03 99.15 + 0.04 99.30 + 0.03
Reddit SimpleTI._P + Transformer| 98.90 & 0.10 99.13 £ 0.08 97.75 £ 0.26 98.29 £+ 0.16
SimpleTLP 99.37 + 0.04 99.49 + 0.03 98.02 + 0.09 98.49 + 0.06
MOOC SimpleTLP + Transformer| 82.46 + 3.61 85.38 £2.93 82.57 £4.24 85.80 £ 3.18
SimpleTLP 86.94 + 0.34 89.28 + 0.28 88.49 + 0.24 90.63 + 0.21
LastEM SimpleTLP + Transformer| 95.50 £ 0.70 97.19 £ 0.50 96.07 £ 0.36 97.62 £0.25
) SimpleTLP 96.06 + 0.30 97.52 £ 0.17 96.25 + 0.43 97.66 + 0.21
Enron SimpleTLP + Transformer| 92.56 £ 0.53 95.02 £0.33 86.41 = 1.15 90.70 £ 0.72
SimpleTLP 93.96 + 0.36 95.98 + 0.23 89.17 + 0.88 92.30 + 0.57
SocialEvo SimpleTLP + Transformer| 90.26 £ 0.69 92.61 £+ 0.58 90.75 £ 0.31 93.50 £ 0.30
SimpleTLP 92.22 £+ 0.25 94.33 + 0.21 91.71 £+ 0.32 94.09 + 0.24
ucl SimpleTLP + Transformer| 96.06 &+ 0.53 97.12 £ 0.41 93.00 + 1.30 94.59 £ 0.85
SimpleTLP 96.67 + 0.47 97.62 + 0.23 94.60 + 0.41 95.88 + 0.17

Flights SimpleTLP + Transformer OOM OOM OOM OOM

SimpleTLP 98.94 £ 0.10 99.38 £ 0.04 9743 £0.15 98.46 £ 0.07
Can. Parl SimpleTLP + Transformer| 98.36 + 0.12 99.01 £ 0.07 92.59 + 0.32 95.37 £ 0.25
) ) SimpleTLP 98.24 £0.11 98.97 £ 0.06 92.25+0.24 95.06 £0.11
US Legis SimpleTLP + Transformer| 76.84 + 0.61 84.16 + 0.40 64.07 + 1.31 68.13 + 1.78
) SimpleTLP 76.74 £ 0.60 83.89 +£0.43 61.98 £ 1.31 66.18 £ 1.19
UN Trade SimpleTLP + Transformer| 77.45 + 3.27 83.94 +2.23 79.83 + 3.28 85.95 +2.13
) SimpleTLP 75.84 £2.08 83.17 £ 1.28 76.80 & 2.01 83.95 £ 1.76
UN Vote SimpleTLP + Transformer| 74.65 + 0.46 80.73 £ 0.40 76.10 + 0.88 82.89 + 0.64
SimpleTLP 73.40 £ 0.03 79.59 £ 0.02 75.09 £+ 0.34 82.01 £ 0.21
Contact SimpleTLP + Transformer| 97.32 +0.15 98.12 £ 0.10 96.05 £ 0.41 97.18 £0.21
SimpleTLP 98.16 + 0.09 98.72 £ 0.06 97.25 + 0.07 97.99 + 0.07

Based on the above analysis, our design gets verified in-depth: the proposed learnable positional
encoding is effective and friendly to lightweight neural architectures, and even simple MLPs can
fully exploit its expressive power.
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5.4 TEMPORAL LINK PREDICTION PERFORMANCE ON LARGE-SCALE BENCHMARK TGB 2.0

In this section, we assess the scalability of our method by evaluating SimpleTLP on large-scale
temporal graphs from the TGB Benchmark 2.0 (Gastinger et al., [2024) with link prediction task.
Specifically, we report SimpleTLP ’s performance on tgbl-review and tgbl-coin datasets in Table 4]
following the given pre-defined splits and metrics. Moreover, tgbl-review has 352,637 nodes and
4,873,540 edges, while tgbl-coin has 638,486 nodes and 22,809,486 edges.

As shown in Table [4] our method achieves competitive performance, ranking the 2" place on
tgbl-review F_] and the 3™ place on tghl-coin EL according to the worldwide open leaderboard.

Table 4: Test MRR and Validation MRR in the worldwide leaderboard of TGB datasets

tgbl-review tgbl-coin

Rank Method Test MRR  Validation MRR | Rank Method Test MRR  Validation MRR
1 GraphMixer 0.521 £ 0.015 0.428 +£0.019 1 TNCN 0.762 £ 0.004 0.740 + 0.002
2 SimpleTLP 0.411 £ 0.011 0.330 £ 0.017 | 2 DyGFormer 0.752 £ 0.004  0.730 &+ 0.002
3 TNCN 0.377 £ 0.010 0.325 + 0.003 3 SimpleTLP 0.711 £+ 0.0185 0.674 + 0.021
4 TGAT 0.355 £ 0.012 0.324 £ 0.006 | 4 TGN 0.586 £ 0.037 0.607 +0.014
5 TGN 0.349 +0.020 0.313+0.012 | 5 EdgeBank(tw) 0.580 0.492
6 NAT 0.341 £ 0.020 0.302 £ 0.011 6 DyRep 0.452 £0.046 0.512 +0.014
7 DyGFormer 0.224 £0.015 0.219£0.017 | 7 EdgeBank(unlimited) 0.359 0.315
8 DyRep 0.220 £ 0.030 0.216 £ 0.031
9 CAWN 0.193 £+ 0.001 0.200 + 0.001
10 TCL 0.193 £ 0.009 0.199 + 0.007
11 EdgeBank(tw) 0.025 0.024
12 EdgeBank(unlimited) 0.023 0.023

To further demonstrate the efficiency of SimpleTLP, we provide runtime comparison between our
method some of the SOTAs, DyGFormer (Yu et al.| 2023) and FreeDyG (Tian et al.| 2024)), on US
Legis and UN Trade datasets in Table[TT]in Appendix [E.3|

6 RELATED WORK

Most temporal graph learning methods are designed to learn node temporal representations at a certain
timestamp, and then obtain the link prediction between a pair of nodes (u, v) at time ¢. They typically
start by concatenating the temporal representations of u, v at time ¢, and then process the concatenation
with MLP layers to estimate the link occurrence probability. Usually, the temporal representations of
nodes are obtained by aggregating intrinsic node/edge features from recent temporal neighbors and
interactions, which are then processed using more complex architectures. For example, TGN (Rossi
et al.,2020) and JODIE (Kumar et al.,[2019) employ the recurrent architecture, TGAT (Xu et al.,|2020)
utilizes the self-attention mechanism, DyRep (Trivedi et al.l [2019) uses Temporal Point Processes,
and more recently, GraphMixer (Cong et al., 2023) leverages Mixer-MLP layers, while DyGFormer
(Yu et al., 2023) harnesses the power of Transformer and FreeDyG (Tian et al.,2024) utilizes Fourier
Transform to encode neighborhood co-occurrence information. From another aspect, some methods
aggregate information from higher-order graph structures. For example, TGN (Rossi et al., [2020)
and TGAT (Xu et al.,|2020) both aggregate information from k-hop neighborhoods, and CAWN
(Wang et al.l [2021b) samples random walks and encode them to derive the node representations.
Our SimpleTLP achieves effectiveness with efficiency. First, our SimpleTLP only considers 1-
hop neighborhood for information aggregation and processes representations with simple MLP
transformations. More importantly, SimpleTLP integrates the domain of node and edge features by
integrating evolving positional encoding, which is informative to support task out-performance, and
the acquisition is easy and does not really rely on heavy attention mechanisms.

7 CONCLUSION

In this paper, we propose a simple temporal link prediction model, SimpleTLP, which only relies on
learnable positional encoding and MLPs to achieve out-performance over SOTA graph transformers
in link prediction tasks. In addition to theoretical analysis of the effectiveness and efficiency, we
design comprehensive experiments to demonstrate the empirical performance of SimpleTLP.

"nttps://tgb.complexdatalab.com/docs/leader_linkprop/#tgbl-review-v2
https://tgb.complexdatalab.com/docs/leader_linkprop/#tgbl-coin-v2
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A PSEUDO-CODE FOR SIMPLETLP

In this section, we provide the pseudo-code for SimpleTLP. Specifically, Algorithm. [I|summarizes
the computational process of the Node-Link-Positional Encoder, Algorithm. 2] demonstrates the
computation of the objective loss function, and finally, Algorithm. [3| briefly describe the training
procedure of SimpleTLP as a neural architecture.

Algorithm 1 Temporal Representation

Require: node u, time ¢
Ensure: Temporal Representation for w at ¢
At
{pd }JL:1 — ECL

p, «+ 1Eq.[2
hl \ <—nEq.

H, , Eq.
h!,  « Eq.[3
by vis ¢ Eq.@
EZJD — Eq.
h!, , + Eq.[§

h!, + Eq.[9
return h’,

Algorithm 2 Loss Function

Require: B positive samples, B negative samples
Ensure: £

ﬁlp +~0

Lpe 0

forie[1,...,B]do

u )

(vos) p)

U;

ul({neg)7 £)

Eneg), t)

§17°%) « Eq.|10{with ht ., ht

u5p05)7 'U,EPUS)

ht

p(mea)

yZ(vLeg) <+ Eq.|10|with hZ(_ncg)a

Lip = Lip +1og(§""") + (1 = log ("))
Lpe = Lpe + Hﬁ:gpos) - f)ii(pos)HQ - O‘neg||l~):Zgneg) - ﬁzigneg>||2
end for ' ' ' '
ﬁlp — —,Clp/(2B)
Lpe < Lye/B

L « Eq.|13
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Algorithm 3 Training Pipeline of SimpleTLP

Require: Data-loader over GG, number of epochs (# Epochs)
Ensure: Link Predictions
Initialize the PE of the initial snapshot with its Laplacian PE: p?® < Laplacian PE of G*°
for epochin [1, ..., # Epochs] do
for (B positive samples, B negative samples) in Data-loader do
L + Algorithm. [ B positive samples, B negative samples)
Back-propagate £
for tin[t1,...,tg] do
if Finish link prediction at time ¢ (¢ € [t1, tp]) then
reveal new links and update positional encoding: Vu, p!, + Eq.
end if
end for
end for
end for

B PROOF OF THEOREMI]

We start our proof for Eq. [T4]by first stating the following Lemma about the eigenvalues of n-node
ring graph, denoted by R,,.

Lemma 1. The real-valued part of Fourier basis is the eigenvector of the Laplacian of the ring graph.
Specifically, for a n-node ring graph R,,, the k—th eigenvector of its Laplacian, L(R,,), is

cos(2m - 0/n)

ring __ COS(27T . 1/n)

ul €R" (15)

cos(2m - (n — 1)) /n

and its corresponding eigenvalue is /\ng =2 — cos(27k/n).

Lemma.[1]is motivated by Lemma 5.2.1 from the lecture | Based on that, we can then extend to
prove our Theorem. |I|as follows.

Proof. For short of notation, in the rest of this proof, suppose the positional encoding of snapshots at
L+ 1 distinct timestamps before ¢ are denoted as p°, p!, ..., p”, which are the Laplacian eigenvector
of graph snapshots at tg, ..., ¢z, and p’, and p’. are denoted as p“*' and pZ+2, respectively. Again,
for short of notation, we omit the subscript u in the positional encoding notations. In addition, we

denote L(R,,) as the (un-normalized) Laplacian of a n-node ring graph, R,,.

We start by giving the definition of “slow-changing” network. We suppose that our network is
“slow-changing”, in terms of graph topology, thus, we can assume the eigenvector of the Laplacian
does not vary across timestamps, i.e., plr - = pL , so now we focus on bounding the left-hand

side of Eq.[T4]

*https://www.cs.yale.edu/homes/spielman/561/lect05-15.pdf
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We start by considering the following equation:

aq
ﬁL-l-l _ ﬁL+2 + §L+1 _ ﬁL + ( [p() _ pL 0O 0 ... pLJrl _ pl] )wailterF_l [ o ‘| _
A1
— ( [pl p2 . pL] _ [p2 pS pL+1]
+[p! p? p'] - [p’ p' pt!]
S
+[p°-p~ 0 0 p = p' ) FW e, ™
L&t —1]
_ ( [pl —p2—|—p1—p0 pi_pi+1+pi_pi—1 pL_pL-&-l_'_pL_pL—l}
S
+ [pO - pL 0 0 pL+1 - Pl} )FszlferF
L&t —1]
=([p'—p*+p'—p* p'—p T +p —pi! p’ —p' +pl — p" ] )FWyipe, F™
a1
= [p! P L(RL)FW e, FH |
ar
(16)

The eigen-decomposition of L(Ry) is L(Rz) = FAF ™', where A is a diagonal matrix with the
i—thentriis A", Thus

Ol1‘|

ar

= [pl A pL] FAF_lFWfilteTF_l

aq
ar,

For simplicity, let W 7,3, be a diagonal matrix, thus (AW g,y ) is a diagonal matrix.

[pl pL] L(RL)FWfilterF_l

a;
...] (17)

oL

=[p' ... PLYF(AWj i )F !

Therefore, we obtain

p' ... p’] F(AW fijter ) F 1

Qg
aor

L a1
= [pl PN pL] Z(Awfilter)iF:,i(F:il)T l . ‘|

i=1 ay,

(18)

Thus,
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i
§L+1 _ §L+2 + ﬁL-ﬁ-l _ ﬁL 4 ( [pO _ pL 0O 0 ... pL+1 _ pl] )FWfilterF_1 [ o ]
Q1

L (%1
= [p* Z AWritger)iF. i ()T l ) ]
=1

ar
L
(Z Awleter i Za]p

i=1

— pEtl _pbt2 — gL _pl+l ( [po —pl 0 0 ... plti_ pl] )wailterF_l

(65) ]
A1

L
(Z AWf'ther 7 Zajp

i=1
(19)
Therefore,
L L
||§L+1 - §L+2||2 < ||(Z Aszlter i Za]p ||2 + ||~L+1 L||2
i=1 =1
L L L—1
<NOQ (AW fitger)s) Z%P M2+ [I( Z AW fier)i) (O aip?)ll2 + |IP* = B*7'I2 20)
i=1 i=1 j=0
<.
L L L-1
< (AW rireer) ) Zajp Mz + AW i) [ (L = 1= jagerp’|ls
i=1 Jj=1 i=1 7=0

where the first inequality holds due to the assumption of “slow-changing” network.

For simplicity, we assume o, g, . . . , a1 and the length of positional encoding P*) is normalized,
i.ea1+~-~+at_1 =1

Thus,

1D < (D 1AW firer)il) - (2L — 2) 1)

i=1

Since L < N, thus choosing ¢ small enough and choosing the filter such that ZiL=1 (AW fisger)i < 1
shows that the past positional encoding can be a well approximation of the positional encoding of the
future snapshot.

O

C MORE COMPARISON WITH RELATED WORKS

In this section, we provide comparative discussion and experimental comparison between our
method SimpleTLP and PINT (Souza et al] 2022)), a method for temporal link prediction that
also leverage positional features.

To be more specific, PINT (Souza et al] 2022)) proposes relative positional features that count
the number of temporal walks of a given length between 2 nodes. As stated in PINT (Souza]
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, temporal walks are defined as follows. An (L — 1)-length temporal walk is W =
{(wy,t1), (wa,t2),..., (wp,tr)}, where t1 > to > ...ty and (w;_1, w;, t;) is an interaction in the
given temporal graph. In summary, PINT proposes a relative positional encoding that represents
pair-wise node “distance” (here the “distance” is the number of L-length temporal walks, assuming
L is given). On the other hand, our SimpleTLP learnable positional encodings (LPE) fall into the
category of global positional encodings, which encode the position of the node relative to the global
structure of the graph.

Table 5: Performance comparison between PINT and SimpleTLP in transductive setting and inductive
setting with random negative sampling strategy

Dataset Method Transductive AP | Transductive ROC-AUC | Inductive AP | Inductive ROC-AUC
Enron | . PINT 81.60 £ 0.67 84.50 £ 0.60 67.01 £2.76 70.41 £2.34
SimpleTLP (Ours)| 93.96 + 0.36 95.98 + (.23 89.17 = 0.88 92.30 = 0.57
ucl PINT 95.77 £0.11 94.89 +0.15 94.14 £ 0.05 92.51+0.07
SimpleTLP (Ours)| 96.67 + 0.47 97.62 + 0.23 94.60 = 0.41 95.88 = 0.17

Next, we present the empirical comparision between SimpleTLPand PINT (Souza et al} [2022)) in
Tablef} As shown in the Table B} our SimpleTLP outperforms PINT in all experimental settings
(transductive and inductive). Regarding PINT’s empirical evaluation, we adopt PINT’s official imple-
mentation (via the Github link provided in the (Souza et al][2022)) and use the exact hyperparameters
presented in the PINT paper to reproduce their results on these datasets. Moreover, PINT
[2022) and SimpleTLP use the same data split.

D DATASETS

Table 6: Statistics of the datasets.

Datasets | Domains #Nodes #Links #N&L Feat Bipartite  Duration  Unique Steps Time Granularity
Wikipedia | Social 9227 157474 -& 172 True 1 month 152,757  Unix timestamps
Reddit Social 10,984 672,447 —-& 172  True 1 month 669,065  Unix timestamps
MOOC |Interaction 7,144 411,749 -&4 True 17 months 345,600  Unix timestamps
LastFM |Interaction 1,980 1,293,103 -& - True 1 month 1,283,614 Unix timestamps
Enron Social 184 125,235 -&- False 3 years 22,632  Unix timestamps
Social Evo.| Proximity 74 2,099,519 -&?2 False 8 months 565,932 Unix timestamps
UcCI Social 1,899 59,835 -&- False 196 days 58,911  Unix timestamps
Flights | Transport 13,169 1,927,145 -&1 False 4 months 122 days
Can. Parl. | Politics 734 74,478 -&1 False 14 years 14 years
US Legis. | Politics 225 60,396 -&1 False 12 congresses 12 congresses
UN Trade |[Economics 255 507,497 -&1 False 32 years 32 years
UN Vote | Politics 201 1,035,742 -&1 False 72 years 72 years
Contact |Proximity 692 2,426,279 -&1 False 1 month 8,064 5 minutes

Here, in Table |6] we report a detailed regarding 13 datasets in our empirical assessment, which
includes the domain, number of nodes, number of links, dimension of raw node and edge features.
The statistics of Benchmark TGB 2.0 are available athhttps://tgb.complexdatalab.com/
docs/linkprop/.

E MORE EXPERIMENTAL RESULTS

E.1 EMPIRICAL RESULTS FOR DIFFERENT NEGATIVE SAMPLING STRATEGIES

We provide empirical results for (1) historical NSS for transductive setting in Table [7]and inductive

setting in Table 8] (2) inductive NSS under transductive setting in Table[9]and inductive setting in
Table
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Table 7: Performance comparison in the transductive setting with historical negative sampling
strategy.

Metric Datasets JODIE DyRep TGAT TGN CAWN TCL GraphMixer DyGFormer  FreeDyG SimpleTLP
Wikipedia [83.01 £ 0.66 79.93 £ 0.56 87.38 £ 0.22 86.86 & 0.33 71.21 £ 1.67 89.05 £ 0.39 90.90 £ 0.10 82.23 £2.54 91.59 £ 0.57 99.10 £ 0.51
Reddit |80.03 +0.36 79.83 £ 0.31 79.55 4+ 0.20 81.22 + 0.61 80.82 +£0.45 77.14 +0.16 78.44 + 0.18 81.57 £0.67 85.67 - 1.01 93.25 + 1.13
MOOC |78.94 +1.25 75.60 &+ 1.12 82.19 + 0.62 87.06 + 1.93 74.05 +0.95 77.06 &+ 0.41 77.77 +0.92 85.85 £ 0.66 86.71 +0.81 96.52 + 1.58
LastFM  |74.35 4 3.81 74.92 4 2.46 71.59 £ 0.24 76.87 & 4.64 69.86 + 0.43 59.30 £ 2.31 72.47 £ 0.49 81.57 + 0.48 79.71 £0.51 94.88 + 1.35
Enron [69.85 £2.70 71.19 +2.76 64.07 £ 1.05 73.91 & 1.76 64.73 £ 0.36 70.66 £ 0.39 77.98 + 0.92 75.63 £ 0.73 78.87 + 0.82 95.42 + 0.53
Social Evo. |87.44 & 6.78 93.29 4 0.43 95.01 & 0.44 94.45 £ 0.56 85.53 + 0.38 94.74 & 0.31 94.93 £ 0.31 97.38 + 0.14 97.79 + 0.23 90.19 & 2.01
ucCI 75.24 £5.80 55.10 £ 3.14 68.27 + 1.37 80.43 +£2.12 65.30 + 0.43 80.25 +2.74 84.11 + 1.35 82.17 £ 0.82 86.10 + 1.19 80.76 + 1.88
Flights |66.48 +2.59 67.61 £ 0.99 72.38 £ 0.18 66.70 + 1.64 64.72 4 0.97 70.68 + 0.24 71.47 £ 0.26 66.59 4+ 0.49 66.13 £+ 1.23 82.02 £ 2.39
Can. Parl. |51.79 £ 0.63 63.31 & 1.23 67.13 4 0.84 68.42 £ 3.07 66.53 & 2.77 65.93 + 3.00 74.34 £ 0.87 97.00 4 0.31 72.22 +2.47 75.03 + 1.76
US Legis. [51.71 +5.76 86.88 & 2.25 62.14 £ 6.60 74.00 & 7.57 68.82 + 8.23 80.53 £ 3.95 81.65 + 1.02 85.30 + 3.88 69.94 £ 0.59 62.66 + 3.54
UN Trade |61.39 + 1.83 59.19 £ 1.07 55.74 + 0.91 58.44 £5.51 55.71 +0.38 55.90 £ 1.17 57.05 £ 1.22 64.41 + 1.40 - 80.00 + 1.55
UN Vote |70.02 & 0.81 69.30 + 1.12 52.96 £ 2.14 69.37 - 3.93 51.26 £ 0.04 52.30 4 2.35 51.20 + 1.60 60.84 £ 1.58 50.61 £2.46 61.43 £ 1.07
Contact 9531 £ 2.13 96.39 +0.20 96.05 + 0.52 93.05 + 2.35 84.16 + 0.49 93.86 + 0.21 93.36 + 0.41 97.57 + 0.06 97.32 + 0.48 80.24 + 1.98
Avg. Rank 6.62 6.0 6.31 4.85 8.62 6.62 5.08 3.38 4.23 331
Wikipedia [80.77 £ 0.73 77.74 £ 0.33 82.87 4+ 0.22 82.74 £ 0.32 67.84 £ 0.64 85.76 + 0.46 87.68 - 0.17 78.80 £ 1.95 82.78 £0.30 99.21 + 0.48
Reddit |80.52 +0.32 80.15 £ 0.18 79.33 £ 0.16 81.11 £0.19 80.27 + 0.30 76.49 +0.16 77.80 + 0.12 80.54 +0.29 85.92 + 0.10 96.40 + 0.59
MOOC |82.75 + 0.83 81.06 + 0.94 80.81 4 0.67 88.00 & 1.80 71.57 & 1.07 72.09 & 0.56 76.68 & 1.40 87.04 £ 0.35 88.32 + 0.99 97.69 + 0.94
LastFM |75.22 £+ 2.36 74.65 + 1.98 64.27 £ 0.26 77.97 £ 3.04 67.88 &+ 0.24 47.24 +3.13 64.21 £0.73 78.78 + 0.35 73.53 £0.12 97.66 + 1.96
Enron  |75.39 +2.37 74.69 + 3.55 61.85 + 1.43 77.09 + 2.22 65.10 + 0.34 67.95 + 0.88 75.27 + 1.14 76.55 +0.52 75.74 £ 0.72 95.79 + 0.33
Social Evo.[90.06 & 3.15 93.12 & 0.34 93.08 £ 0.59 94.71 £ 0.53 87.43 £ 0.15 93.44 £ 0.68 94.39 £+ 0.31 97.28 + 0.07 97.42 £ 0.02 93.60 + 2.27
ucCI 78.64 +3.50 57.91 £ 3.12 58.89 & 1.57 77.25 £2.68 57.86 & 0.15 72.25 +3.46 77.54 £2.02 76.97 + 0.24 80.38 £ 0.26 90.59 + 1.60
Flights |68.97 + 1.87 69.43 £ 0.90 72.20 = 0.16 68.39 £ 0.95 66.11 & 0.71 70.57 £ 0.18 70.37 £ 0.23 68.09 + 0.43 67.83 &+ 1.46 92.84 + 1.21
Can. Parl. |62.44 £ 1.11 70.16 £ 1.70 70.86 + 0.94 73.23 + 3.08 72.06 + 3.94 69.95 + 3.70 79.03 + 1.01 97.61 +0.40 77.59 +6.22 87.22 + 1.85
US Legis. |67.47 = 6.40 91.44 + 1.18 73.47 £5.25 83.53 £ 4.53 78.62 £ 7.46 83.97 & 3.71 85.17 £0.70 90.77 £ 1.96 63.49 & 13.04 76.64 + 3.38
UN Trade |68.92 & 1.40 64.36 + 1.40 60.37 £ 0.68 63.93 4 5.41 63.09 +0.74 61.43 4 1.04 63.20 4+ 1.54 73.86 = 1.13 - 87.67 + 1.80
UN Vote |76.84 +1.01 74.72 + 1.43 53.95 £ 3.15 73.40 £ 5.20 51.27 £ 0.33 52.29 £2.39 52.61 + 1.44 6427 £ 1.78 52.76 £2.85 72.92+1.73
Contact |96.35 + 0.92 96.00 + 0.23 95.39 + 0.43 93.76 & 1.29 83.06 + 0.32 93.34 £ 0.19 93.14 + 0.34 97.17 £ 0.05 97.12 £ 0.24 90.99 + 1.80
Avg. Rank 538 5.69 6.92 431 8.54 7.15 5.69 3.69 4.92 2.69

AP

ROC-AUC

Table 8: Performance comparison in the inductive setting with historical negative sampling strategy.

Metric Datasets JODIE DyRep TGAT TGN CAWN TCL GraphMixer DyGFormer FreeDyG ~ SimpleTLP
Wikipedia [68.69 £ 0.39 62.18 & 1.27 84.17 £ 0.22 81.76 £ 0.32 67.27 £ 1.63 82.20 + 2.18 87.60 + 0.30 71.42 £4.43 82.78 £0.30 98.45 + 0.88
Reddit |62.34 £ 0.54 61.60 + 0.72 63.47 £+ 0.36 64.85 + 0.85 63.67 + 0.41 60.83 +0.25 64.50 £ 0.26 65.37 + 0.60 66.02 + 0.41 85.74 + 2.46
MOOC |63.22 + 1.55 62.93 + 1.24 76.73 +0.29 77.07 + 3.41 74.68 £ 0.68 74.27 & 0.53 74.00 + 0.97 80.82 + 0.30 81.63 + 0.33 95.17 + 2.78
LastFM  [70.39 +4.31 71.45 £ 1.76 76.27 £ 0.25 66.65 + 6.11 71.33 4+ 0.47 65.78 & 0.65 76.42 £ 0.22 76.35 £ 0.52 77.28 + 0.21 92.96 + 1.08
Enron  [65.86 4+ 3.71 62.08 +2.27 61.40 £ 1.31 62.91 4+ 1.16 60.70 + 0.36 67.11 £ 0.62 72.37 4+ 1.37 67.07 +0.62 73.01 -+ 0.88 89.37 + 1.01
Social Evo.|88.51 + 0.87 88.72 & 1.10 93.97 4 0.54 90.66 + 1.62 79.83 £ 0.38 94.10 + 0.31 94.01 + 0.47 96.82 + 0.16 96.69 & 0.14 85.13 + 1.05
UcCI 63.11 £ 2.27 52.47 +2.06 70.52 +0.93 70.78 + 0.78 64.54 4+ 0.47 76.71 + 1.00 81.66 + 0.49 72.13 + 1.87 82.35 + 0.39 75.97 + 1.13
Flights |61.01 £ 1.65 62.83 & 1.31 64.72 + 0.36 59.31 + 1.43 56.82 £ 0.57 64.50 4+ 0.25 65.28 + 0.24 57.11 £0.21 56.72 4+ 1.30 71.54 +2.12
Can. Parl. |52.60 + 0.88 52.28 + 0.31 56.72 4 0.47 54.42 +0.77 57.14 £ 0.07 55.71 £ 0.74 55.84 4+ 0.73 87.40 + 0.85 52.15 + 0.84 68.91 + 1.63
US Legis. |52.94 £2.11 62.10 + 1.41 51.83 +3.95 61.18 = 1.10 55.56 £ 1.71 53.87 £ 1.41 52.03 £ 1.02 56.31 4 3.46 53.63 4 4.38 49.51 £ 1.09
UN Trade |55.46 & 1.19 55.49 4+ 0.84 55.28 +0.71 52.80 £ 3.19 55.00 & 0.38 55.76 + 1.03 54.94 + 0.97 53.20 & 1.07 - 79.09 + 1.86
UN Vote |61.04 £ 1.30 60.22 & 1.78 53.05 + 3.10 63.74 + 3.00 47.98 £ 0.84 54.19 4 2.17 48.09 + 0.43 52.63 £ 1.26 50.23 + 1.65 61.89 + 1.28
Contact  [90.42 4 2.34 89.22 + 0.66 94.15 + 0.45 88.13 4 1.50 74.20 + 0.80 90.44 £ 0.17 89.91 4 0.36 93.56 + 0.52 93.26 £ 1.42 79.08 & 2.24
Avg. Rank 6.85 6.85 531 5.85 7.54 5.23 492 4.38 477 3.31
Wikipedia [61.86 £ 0.53 57.54 £ 1.09 78.38 £ 0.20 75.75 £ 0.29 62.04 £0.65 79.79 £ 0.96 82.87 + 0.21 68.33 £ 2.82 82.08 + 0.32 98.59 + 0.82
Reddit |61.69 £ 0.39 60.45 + 0.37 64.43 +0.27 64.55 £ 0.50 64.94 +0.21 61.43 +0.26 64.27 £ 0.13 64.81 +0.25 66.79 + 0.31 92.04 + 1.87
MOOC |64.48 + 1.64 64.23 +1.29 74.08 4 0.27 77.69 + 3.55 71.68 + 0.94 69.82 + 0.32 72.53 + 0.84 80.77 + 0.63 81.52 + 0.37 96.85 + 1.59
LastFM | 68.44 +3.26 68.79 + 1.08 69.89 4+ 0.28 66.99 +5.62 67.69 + 0.24 55.88 & 1.85 70.07 + 0.20 70.73 £ 0.37 72.63 + 0.16 96.34 + 1.68
Enron  [65.32 4+ 3.57 61.50 +2.50 57.84 £ 2.18 62.68 4+ 1.09 62.25 + 0.40 64.06 + 1.02 68.20 4 1.62 65.78 + 0.42 70.09 -+ 0.65 92.14 + 0.70
Social Evo.|88.53 + 0.55 87.93 & 1.05 91.87 +0.72 92.10 + 1.22 83.54 £ 0.24 93.28 4+ 0.60 93.62 + 0.35 96.91 -+ 0.09 96.94 + 0.17 90.08 + 2.91
UcCI 60.24 + 1.94 51.25 +2.37 62.32 + 1.18 62.69 + 0.90 56.39 4 0.10 70.46 + 1.94 75.98 + 0.84 65.55 &+ 1.01 76.01 + 0.75 84.63 + 1.23
Flights |60.72 £ 1.29 61.99 & 1.39 63.38 + 0.26 59.66 + 1.04 56.58 & 0.44 63.48 + 0.23 63.30 £+ 0.19 56.05 £ 0.21 55.20 - 1.16 85.60 + 1.47
Can. Parl. |51.62 + 1.00 52.38 + 0.46 58.30 £ 0.61 55.64 4+ 0.54 60.11 +0.48 57.30 = 1.03 56.68 4 1.20 88.68 + 0.74 51.20 = 1.99 80.73 + 1.09
US Legis. |58.12 £2.94 67.94 + 0.98 49.99 + 4.88 64.87 + 1.65 54.41 £+ 1.31 52.12 £2.13 49.28 £ 0.86 56.57 4 3.22 53.75 +5.92 55.74 £ 1.53
UN Trade |58.73 £ 1.19 57.90 4+ 1.33 59.74 £ 0.59 55.61 + 3.54 60.95 4+ 0.80 61.12 + 0.97 59.88 + 1.17 58.46 & 1.65 - 86.26 + 1.78
UN Vote |65.16 & 1.28 63.98 & 2.12 51.73 £ 4.12 68.59 £ 3.11 48.01 £ 1.77 54.66 & 2.11 45.49 4 0.42 53.85 £ 2.02 48.98 £2.44 72.98 + 1.22
Contact [90.80 4 1.18 88.88 + 0.68 93.76 & 0.41 88.84 4 1.39 74.79 + 0.37 90.37 £ 0.16 90.04 & 0.29 94.14 + 0.26 94.27 £ 0.77 88.69 + 2.24
Avg. Rank 6.54 7.46 5.77 5.92 7.08 5.54 523 4.38 4.62 2.46

AP

ROC-AUC
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Table 9: Performance comparison in the transductive setting with inductive negative sampling

strategy.

Metric

Datasets

JODIE

DyRep

TGAT

TGN

CAWN

TCL

GraphMixer

DyGFormer

FreeDyG

SimpleTLP

AP

Wikipedia
Reddit
MOOC
LastFM
Enron

Social Evo.

ucCI
Flights
Can. Parl.
US Legis.
UN Trade
UN Vote
Contact

75.65 £0.79
86.98 + 0.16
65.23 £2.19
62.67 +4.49
68.96 + 0.98
89.82 +4.11
65.99 £ 1.40
69.07 £+ 4.02
48.42 £ 0.66
50.27 +£5.13
60.42 £ 1.48
67.79 + 1.46
93.43 £ 1.78

70.21 £ 1.58
86.30 £+ 0.26
61.66 + 0.95
64.41 £2.70
67.79 = 1.53
93.28 +0.48
54.79 £ 1.76
70.57 £ 1.82
58.61 £ 0.86
83.44 + 1.16
60.19 + 1.24
67.53 £ 1.98
94.18 £ 0.10

87.00 £ 0.16
89.59 +0.24
75.95 £ 0.64
71.13 £0.17
63.94 £ 1.36
94.84 +0.44
68.67 £+ 0.84
75.48 + 0.26
68.82 + 1.21
61.91 £5.82
60.61 £+ 1.24
52.89 + 1.61
94.35 £ 0.48

85.62 £0.44
88.10 +0.24
77.50 +2.91
65.95 +5.98
70.89 +2.72
95.13 + 0.56
70.94 +0.71
71.09 +£2.72
65.34 +2.87
67.57 £ 6.47
61.04 + 6.01
67.63 + 2.67
90.18 +3.28

74.06 £ 2.62
91.67 + 0.24
73.51 £0.94
67.48 £0.77
75.15 £0.58
88.324+0.27
64.61 £ 0.48
69.18 £ 1.52
67.75 £ 1.00
65.81 £8.52
62.54 + 0.67
52.194+0.34
89.31+0.27

86.76 = 0.72
87.45+0.29
74.65 + 0.54
5821+ 0.89
71.29 +0.32
94.90 + 0.36
76.01 = 1.11
74.62 £ 0.18
65.85+ 1.75
78.15 £3.34
61.06 + 1.74
50.62 £+ 0.82
91.35+0.21

88.59 +0.17
8526+ 0.11
74.27 £0.92
68.12 +0.33
75.01 £0.79
94.72 £0.33
80.10 + 0.51
74.87 £0.21
69.48 +0.63
79.63 £0.84
60.15 £ 1.29
51.60 +0.73
90.87 £ 0.35

7829 +5.38
91.11 £ 0.40
81.24 +0.69
73.97 £ 0.50
77.41 +0.89
97.68 + 0.10
7225+ 1.71
7092 £ 1.78
95.44 + 0.57
81.25 + 3.62
55.79 £ 1.02
51.91 £0.84
94.75 + 0.28

90.05 + 0.79
90.74 £ 0.17
83.01 + 0.87
72.19 £0.24
77.81 + 0.65
97.57 £0.15
82.35 £0.73
65.56 £ 1.10
59.83 £5.15
51.64 +5.36
51.14 £ 1.56
94.89 + 0.89

98.66 + 0.94
98.15 + 0.48
97.49 + 0.99
93.92 + 1.10
98.98 + 0.53
90.53 + 1.88
74.08 + 1.84
80.75 + 1.51
73.79 £ 1.26
57.67 £3.10
80.96 + 1.12
59.42 +3.73
80.15 + 1.48

Avg. Rank

7.69

723

5.08

5.38

6.46

5.69

5.38

3.92

4.85

331

ROC-AUC

Wikipedia
Reddit
MOOC
LastFM
Enron

Social Evo.

ucCI
Flights
Can. Parl.
US Legis.
UN Trade
UN Vote
Contact

70.96 £0.78
83.51+0.15
66.63 £ 2.30
61.32 +£3.49
70.92 + 1.05
90.01 £3.19
64.14 £ 1.26
69.99 +3.10
52.88 +0.80
59.05 +5.52
66.82 £ 1.27
73.73 £ 1.61
94.47 £ 1.08

67.36 £ 0.96
82.90 +0.31
63.26 + 1.01
62.15 +£2.12
68.73 + 1.34
93.07 £ 0.38
54.25+2.01
7113+ 1.55
63.53 + 0.65
89.44 + 0.71
65.60 + 1.28
72.80 + 2.16
94.23 £ 0.18

81.93 +£0.22
87.134+0.20
73.18 £0.33
63.99 +0.21
60.45 £2.12
92.94 £ 0.61
60.80 + 1.01
73.47 +0.18
7247 £ 1.18
71.62 £5.42
66.13 £0.78
53.04 +£2.58
94.10 £ 0.41

80.97 +0.31
84.56 +0.24
77.44 +2.86
65.46 +4.27
71.34 £2.46
95.24 £ 0.56
64.11 + 1.04
71.63 £ 1.72
69.57 +2.81
78.12 + 4.46
66.37 +5.39
72.69 £3.72
91.64 = 1.72

70.95 £0.95
88.04 + 0.29
70.32 +1.43
67.92 +£0.44
75.17 £ 0.50
89.93 +0.15
58.06 £+ 0.26
69.70 £ 0.75
72.93 +1.78
76.45 £7.02
71.73 £ 0.74
5275+ 0.90
87.68 + 0.24

82.19 £ 0.48
84.67 +0.29
70.36 +0.37
46.93 +2.59
67.64 £ 0.86
93.44 £0.72
70.05 + 1.86
72.54 £ 0.19
69.47 +2.12
82.54 £3.91
67.80 + 1.21
52.02 £+ 1.64
91.23+£0.19

84.28 + 0.30
8221 4+0.13
72.45 £0.72
60.22 +0.32
71.53 £0.85
94.22 +£0.32
74.59 £0.74
7221 £0.21
70.52 £0.94
84.22 +0.91
66.53 £ 1.22
51.89 +0.74
90.96 £ 0.27

75.09 £ 3.70
86.23 £ 0.51
80.76 + 0.76
69.25 +0.36
74.07 £ 0.64
97.51 + 0.06
65.96 + 1.18
69.53 + 1.17
96.70 + 0.59
87.96 + 1.80
62.56 + 1.51
53.37+1.26
95.01 + 0.15

8274+ 0.32
84.38 +0.21
78.47 £0.94
72.30 + 0.59
77.27 + 0.61
98.47 £ 0.02
75.39 + 0.57
64.04 +£0.55
65.58 £5.71
60.71 £9.72
51.95 £2.14
95.41 £ 0.49

98.78 + 0.91
98.51 + 0.40
98.31 + 0.59
97.08 + 1.47
95.79 + 0.33
93.73 £2.22
84.09 + 1.61
92.32 + 1.51
85.80 + 1.51
70.81 +£3.72
87.92 + 1.61
70.70 + 3.58
90.68 + 1.59

Avg. Rank

6.92

7.0

585

523

6.23

5.92

5.69

423

5.15

2.77

Table 10: Performance comparison in the inductive setting with inductive negative sampling strategy.

Metric| Datasets

JODIE

DyRep

TGAT

TGN

CAWN

TCL

GraphMixer

DyGFormer

FreeDyG

SimpleTLP

ind

us

Wikipedia
Reddit
MOOC
LastFM
Enron
Social Evo.
UCI
Flights
Can. Parl.

UN Trade
UN Vote
Contact

68.70 = 0.39
62.32 + 0.54
63.22 + 1.55
70.39 +4.31
65.86 +3.71
88.51 +£0.87
63.16 +2.27
61.01 + 1.66
52.58 +0.86
Legis. [52.94 £2.11
5543 +1.20
61.17 £ 1.33
90.43 +2.33

62.19 = 1.28
61.58 +£0.72
62,92 + 1.24
71.45+£1.75
62.08 +2.27
88.72 £ 1.10
52.47 +2.09
62.83 + 1.31
5224 +£0.28
62.10 + 1.41
5542 +0.87
60.29 = 1.79
89.22 & 0.65

84.17+£0.22
63.40 £ 0.36
76.72 £ 0.30
76.28 £ 0.25
61.40 + 1.30
93.97 +0.54
70.49 +0.93
64.72 +£0.37
56.46 £+ 0.50
51.83 +£3.95
55.58 +0.68
53.08 £+ 3.10
94.14 + 0.45

81.77+0.32
64.84 4 0.84
77.07 £ 3.40
69.46 + 4.65
62.90 £ 1.16
90.65 + 1.62
70.73 +0.79
59.32 4+ 1.45
54.18 £0.73
61.18 + 1.10
52.80 +3.24
63.71 +2.97
88.12 4 1.50

67.24 +1.63
63.65 + 0.41
74.69 + 0.68
71.33 +£0.47
60.72 +0.36
79.83 +0.39
64.54 4+ 0.47
56.82 4 0.56
57.06 £ 0.08
55.56 + 1.71
54.97 +0.38
48.01 £0.82
74.19 + 0.81

8220+ 2.18
60.81 4 0.26
74.28 +£0.53
65.78 £ 0.65
67.11 4 0.62
94.10 £ 0.32
76.65 &+ 0.99
64.50 +0.25
55.46 +0.69
53.87 + 1.41
55.66 + 0.98
54.13 £ 2.16
90.43 4+ 0.17

87.60 £ 0.29
64.49 +0.25
73.99 +£0.97
76.424+0.22
7237+ 1.38
94.01 4+ 0.47
81.64 + 0.49
65.29 + 0.24
55.76 + 0.65
52.03 £+ 1.02
54.88 + 1.01
48.10 £ 0.40
89.91 4+ 0.36

71.42+4.43
65.35 + 0.60
80.82 £ 0.30
76.35+0.52
67.07 + 0.62
96.82 + 0.17
72.13 + 1.86
57.11+£0.20
87.22 + 0.82
56.31 +3.46
52.56 + 1.70
52.61 +1.25
93.55 + 0.52

87.54 £0.26
64.98 +0.20
81.41 + 0.31
77.01 + 0.43
72.85 1+ 0.81
96.91 + 0.12
82.06 + 0.58
56.70 + 1.17
52.33 +£0.87
53.63 +4.38

50.21 + 1.74
93.26 + 1.41

98.45 + 0.88
85.76 + 2.46
95.17 + 2.78
92.96 + 1.08
89.36 + 1.01
85.13 £ 1.05
7597+ 1.13
69.14 + 1.19
69.59 + 1.45
49.51 &+ 1.09
79.12 + 1.84
61.88 + 1.27
79.09 + 1.25

Avg. Rank

6.85

7.08

523

577

7.54

523

4.92

4.46

4.62

3.31

ind

uUs

Wikipedia
Reddit
MOOC
LastFM
Enron

Social Evo.

UCI

Flights

Can. Parl.

UN Trade
UN Vote
Contact

61.87 £0.53
61.69 + 0.39
64.48 + 1.64
68.44 +3.26
65.32 £ 3.57
88.53 +0.55
60.27 £ 1.94
60.72 £+ 1.29
51.61 £0.98
Legis. [58.12 £2.94
5871 £1.20
65.29 + 1.30
90.80 + 1.18

57.54 £ 1.09
60.44 +0.37
64.22 +1.29
68.79 + 1.08
61.50 + 2.50
87.93 £ 1.05
51.26 +2.40
61.99 + 1.39
5235+ 0.52
67.94 + 0.98
57.87 £ 1.36
64.10 +2.10
88.87 £ 0.67

78.38 £0.20
64.39 +0.27
74.07 £0.27
69.89 +0.28
57.83 £2.18
91.88 +£0.72
6229 + 1.17
63.40 +0.26
58.15+0.62
49.99 +4.88
59.98 +£0.59
5178 £ 4.14
93.76 + 0.40

7576 £0.29
64.55 £+ 0.50
77.68 £ 3.55
66.99 + 5.61
62.68 & 1.09
92.10 + 1.22
62.66 +0.91
59.66 & 1.05
5543 +0.42
64.87 + 1.65 54.41 £ 1.31
55.62 +3.59
68.58 + 3.08
88.85 4+ 1.39

62.02 +0.65
64.91 £ 0.21
71.69 & 0.94
67.68 - 0.24
62.27 4 0.40
83.54 +£0.24
56.39 +0.11
56.58 +0.44
60.01 £ 0.47

60.88 +0.79
48.04 £ 1.76
74.79 +0.38

79.79 £ 0.96
61.36 +0.26
69.83 +0.32
55.88 +1.85
64.05 4+ 1.02
93.28 £ 0.60
70.42 4+ 1.93
63.49 £ 0.23
56.88 +0.93
52.124+2.13
61.01 + 0.93
54.65 +2.20
90.37 £ 0.16

82.88 £ 0.21
64.27 +0.13
72.52+0.84
70.07 £+ 0.20
68.19 + 1.63
93.62 +0.35
75.97 + 0.85
63.324+0.19
56.63 &+ 1.09
49.28 +0.86
59.71 £ 1.17
45.57+£0.41
90.04 £ 0.29

68.33 +£2.82
64.80 +0.25
80.77 £ 0.63
70.73 £ 0.37
65.79 4+ 0.42
96.91 + 0.09
65.58 & 1.00
56.05 +0.22
88.51 +0.73
56.57 +3.22
57.28 + 3.06
53.87 +£2.01
94.14 £ 0.26

83.17 £0.31
64.51 +0.19
75.81 +0.69
71.42 +0.33
68.79 + 0.91
96.79 + 0.17
73.41 +£0.88
55.18 & 1.04
51.374+2.23
53.75+5.92
48.93 £2.53
94.27 + 0.76

98.59 + 0.82
92.05 + 1.87
96.85 + 1.59
96.34 + 1.68
92.14 + 0.70
90.08 +3.91
84.63 + 1.22
83.87 + 1.30
81.26 + 3.92
55.74 £ 1.53
86.28 + 1.76
72.98 +1.22
88.69 £+ 3.25

Avg. Rank

6.54

7.38

5.69

571

7.0

554

531

4.23

5.08

2.46
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E.2 THEORETICAL TIME COMPLEXITY COMPARISON WITH SOTAS

Now, we give an in-depth analysis of the complexity of DyGFormer and FreeDyG as follows.

Suppose we are given F query links: {(u;,v;,t;)},. As we move to new timestamps, new
connections and new nodes will emerge, resulting in the changes in some nodes’ neighborhoods;
then, both SimpleTLP and DyGFormer need to update historical neighbors for some nodes. (Note
that for a node, both SimpleTLP and DyGFormer consider its historical neighbors, so both methods
would need to perform an update if its neighborhood changes).

For each link (u;, v;,t;), DyGFormer and FreeDyG first need to obtain the neighbor co-occurrence
information of the node pair (u;, v;) as follows. Suppose u; has p historical neighbors, a1, . . ., ay,
and v; has ¢ historical neighbors, b1, .. ., by, then the neighbor co-occurrence scheme of DyGFormer
and FreeDyG requires counting (1) the number of times a1, .. ., a, are involved in interactions with
v; before time ¢; and (2) the number of times b1, . .., b, are involved in interactions with u; before
time ¢;. In other words, for an arbitrary link (u;, v;, ¢;), the neighbor co-occurrence framework of
DyGFormer and FreeDyG makes the computation of u; depend on v;’s information, as they have to
count how many times historical neighbors of u; are also v;’s historical neighbors, and vice versa.
Thus, in order to make predictions for the aforementioned query links, DyGFormer and FreeDyG
require at least O(E) complexity.

On the other hand, for SimpleTLP, we first consider the unique nodes among u1, ..., ug,v1,...,VE.
Suppose there are n unique nodes, and let us denote them as ¢y, . .., c,, then we could compute
their temporal representation as stated in Eq.[9] Moreover, in the process of obtaining the necessary
components for Eq. [0} for any node ¢;, we only use ¢;’s related information (most recent temporal
neighbors / links and its previous positional encoding). Thus, it takes SimpleTLP O(n) time to
compute the representation for these n nodes. To predict an arbitrary link (u;, v;,t;), we simply
retrieve the representation for u;, v; that we just computed and apply Eq.

In summary, DyGFormer and FreeDyG have O(FE) since they process a node pair (u, v)-related
information, while SimpleTLP’s complexity linearly scales with the number of nodes.

E.3 EMPIRICAL RUNTIME COMPARISON WITH SOTAS

We present the runtime comparison between SimpleTLP and DyGFormer (Yu et al.| 2023),
FreeDyG (Tian et al.| 2024])), recent SOTA methods, on US Legis and UN Trade datasets, in Ta-
ble [T1] As shown in Table [T1] our running time is lower than SOTAs in terms of convergence
time.

Table 11: Comparison in runtime (in seconds) and number of training epochs of SimpleTLP and
DyGFormer across 5 runs on US Legis and UN Trade.

Dataset Method Total time for 5 runs (in seconds) Number of training epochs
SimpleTLP [287.19, 257.18, 251.49, 248.92 , 305.09] [21,18,17,17, 21]
US Legis | DyGFormer| [1251.97, 1697.56, 1112.50, 756.80, 1092.77] [27, 37, 24, 16, 23]
FreeDyG [1019.91, 871.21, 1061.15, 1070.41, 868.03] [17,13, 18, 18, 13]
UN Trade SimpleTLP | [2922.14 ,2857.13 , 2450.84 , 2593.40, 2740.26] [21, 21, 18, 18, 19]
DyGFormer |[12847.83,21167.01, 20380.42, 9901.51, 39374.45] [33, 55, 53, 25, 95]
FreeDyG - -

E.4 EMPIRICAL RESULTS FOR ABLATION STUDY

Next, we conduct an ablation study to examine the ability of the learnable positional encoding in the
link prediction task.

Specifically, we consider the following cases: (1) only leveraging LPE to make predictions (i.e.,
we omit node/edge features and only employ positional encoding learned by LPE to obtain link
predictions); (2) omitting LPE module (i.e., only relying on node and link features).

First, we provide the performance comparison between SimpleTLP and only using LPE module
(denoted as “Only LPE”) to obtain link predictions under transductive and inductive settings with
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random negative sampling strategy. As shown in Table[I2] on most datasets, the performance obtained
by only leveraging LPE is already competitive, which suggests the positional encoding is informative
enough to support downstream tasks. Also, we can observe that LPE positional encodings can
collaborate well with node and edge features to boost performance.

Table 12: Comparison between only LPE and SimpleTLP with random negative sampling strategy.

Transductive setting Inductive setting
Dataset AP ROC-AUC AP ROC-AUC
SimpleTLP ~ Only LPE | SimpleTLP  Only LPE | SimpleTLP  Only LPE | SimpleTLP  Only LPE
Wikipedia [99.34 &+ 0.04 99.07 + 0.03{99.48 £ 0.03 99.42 £ 0.03]99.15 £ 0.04 98.77 & 0.05|99.30 £ 0.03 98.99+ 0.03
Reddit  99.37 4 0.04 98.67 £ 0.0799.49 + 0.03 99.13 4 0.05|98.02 £ 0.09 95.44 4+ 0.29|98.49 £ 0.06 96.71+0.16
MOOC |86.94 + 0.34 81.55 +0.53|89.28 4 0.28 83.04 £ 0.44 (88.49 + 0.24 80.04 & 0.40|90.63 £ 0.21 81.70+ 0.39
Lastfm |96.06 £ 0.30 92.84 + 0.54|97.52 4 0.17 94.43 £ 0.38|96.25 + 0.43 94.27 4 0.36|97.66 £ 0.21 96.22+ 0.22
Enron |93.96 & 0.36 93.82 + 0.44|95.98 4= 0.23 95.95 = 0.31|89.17 + 0.88 89.15 +1.32{92.30 £ 0.57 92.33 +0.79
Social Evo. |92.22 + 0.25 91.56 4= 0.79|94.33 £ 0.21 93.76 + 0.63|91.71 & 0.32 90.42+ 1.68 |94.09 + 0.24 93.28+ 0.97
UcCI 96.67 £ 0.47 96.83 = 0.19|97.62 £ 0.23 97.89 + 0.10|94.60 & 0.41 94.60 £ 0.46(95.88 + 0.17 96.17 +0.22
Flights 98.94 £ 0.10 99.10 + 0.03|99.38 4- 0.04 99.43 £ 0.06 [97.43 + 0.15 97.81 4-0.25 |98.46 £ 0.07 98.62 +-0.11
Can. Parl. {98.24 £0.11 98.41 4 0.06|98.97 £ 0.06 99.03 + 0.03 | 92.25+ 0.24 92.13 £ 0.24|95.06 + 0.11 95.09 +0.07
US Legis. {76.74 £ 0.60 77.36 4= 0.26|83.89 £ 0.43 84.36 + 0.20|61.98 &= 1.31 63.47 +0.63 [66.18 + 1.19 66.75+ 0.57
UN Trade |75.84 £2.08 78.46 + 0.97 |83.17 = 1.28 77.81 & 1.78|76.80 = 2.01 84.85+ 0.89 [83.95 + 1.76 84.89+ 1.39
UN Vote [73.40 & 0.03 70.99 = 0.11|79.59 + 0.02 76.67 £ 0.09|75.09 + 0.34 70.01+ 0.69 |82.01 £+ 0.21 77.36 £0.51
Contact 98.16 & 0.09 97.73 + 0.04|98.72 £ 0.06 98.40 £ 0.03|97.25 £ 0.07 96.38+ 0.09 |97.99 £ 0.07 97.37+ 0.07

Second, we present the comparison between SimpleTLP and only using node/edge features, i.e., omit-
ting the LPE module from SimpleTLP (denoted as “W/o LPE”). As shown in Table[I3] SimpleTLP
performs the best on all datasets, further suggesting that performance would be negatively affected
without employing LPE.

Table 13: Comparison between not using LPE and SimpleTLP with random negative sampling
strategy.

Transductive setting Inductive setting
Dataset AP ROC-AUC AP ROC-AUC
SimpleTLP ~ W/0 LPE | SimpleTLP  W/oLPE | SimpleTLP  W/oLPE | SimpleTLP  W/o LPE
Wikipedia [99.34 £ 0.04 96.52 £ 0.06(99.48 £ 0.03 96.15 + 0.08[99.15 £ 0.04 96.11 & 0.09|99.30 £ 0.03 95.64 £ 0.11
Reddit |99.37 £ 0.04 97.07 & 0.08|99.49 + 0.03 96.96 + 0.07|98.02 + 0.09 95.10 + 0.06 |98.49 £ 0.06 95.02 + 0.06
MOOC [86.94 + 0.34 81.89 +0.32/89.28 & 0.28 83.24 + 0.29|88.49 £ 0.24 80.65 & 0.28(90.63 + 0.21 82.19 & 0.26
LastFM  96.06 4= 0.30 74.63 £ 0.41|97.52 & 0.17 73.48 4 0.40|96.25 + 0.43 82.08 & 0.46|97.66 + 0.21 80.74 £ 0.37
Enron |93.96 £ 0.36 82.49 + 0.85]95.98 + 0.23 84.18 - 0.53|89.17 & 0.88 76.14 £ 0.82|92.30 £ 0.57 76.63 £ 0.65
Social Evo. |92.22 4 0.25 91.17 £ 0.21|94.33 £ 0.21 93.30 £ 0.17|91.71 £ 0.32 89.38 - 0.30|94.09 & 0.24 91.85 - 0.24
UCI 96.67 + 0.47 91.79 + 4.08|97.62 + 0.23 90.51 + 3.45|94.60 & 0.41 89.58 +3.41|95.88 + 0.17 87.88 &+ 3.10
Flights |98.94 + 0.10 90.91 £ 0.02|99.38 & 0.04 91.03 + 0.01|97.43 £ 0.15 82.72 4+ 0.05|98.46 + 0.07 82.05 & 0.04
Can. Parl. [98.24 4 0.11 67.19 £ 1.39|98.97 £ 0.06 76.51 & 1.37|92.25 £ 0.24 52.47 £ 0.88]95.06 + 0.11 50.99 £ 1.72
US Legis. [76.74 + 0.60 60.98 + 5.43|83.89 & 0.43 65.76 +=7.15|61.98 £+ 1.31 52.59 £ 2.13/66.18 + 1.19 53.75 £ 1.07
UN Trade |75.84 & 2.08 62.04 & 0.72|83.17 = 1.28 65.91 £ 0.62|76.80 £ 2.01 61.84 + 0.53|83.95 + 1.76 63.54 & 0.54
UN Vote |73.40 £ 0.03 52.29 + 0.44|79.59 + 0.02 52.55 £+ 0.61|75.09 & 0.34 50.74 + 0.8282.01 £ 0.21 49.39 +0.75
Contact |98.16 & 0.09 91.39 + 0.05|98.72 £ 0.06 93.57 & 0.04]97.25 + 0.07 89.71 & 0.05[97.99 + 0.07 92.24 + 0.05

Combining the results from Tables @] and@ we discern that (1) in most cases, the full design of
SimpleTLP is the best and removing any component can lead to suboptimal results, (2) in a few
cases, only using LPE can also perform competitively, which suggests that the Learnable Positional
Encoding module in our SimpleTLP is relatively dominating than input node and edge features.

E.5 EMPIRICAL RESULTS FOR PARAMETER ANALYSIS

E.5.1 PARAMETER ANALYSIS FOR %44

Here, we examine how varying the values of ¢4, affects the performance of SimpleTLP under both
transductive and inductive settings with random negative sampling.

We conduct the parameter analysis on two datasets: Enron and UN Vote, and adjusting t,,, to
different values: {10, 50,1000, 2000}. Due to the page limit, we report the results in Table|14|for
transductive and Table[T5|for inductive setting, respectively. The best results are emphasized with
bold. Firstly, it worth noting that the ratio #Links / (Unique Steps) of UN Vote is much larger than
that of Enron, since UN Vote has significantly more links and fewer number of unique steps than
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Table 14: AP and ROC-AUC with various values of ¢4, under transductive setting and random

negative sampling.

Dataset Metric tgap = 10 tgap = 50 Lgap = 1000 t44, = 2000
Enron AP 93.77+0.28 93.82+0.11 9396 +£0.36 93.70+0.43
ROC-AUC | 95.83 +£0.14 95.86+0.07 9598 +0.23 95.83 £0.21

UN Vote AP 73.40 +0.03 7338 +0.07 73.39+0.08 73.28 £0.33
ROC-AUC | 79.59 +0.02 79.54 +£0.08 79.57 £0.06 79.53+0.22

Table 15: AP and ROC-AUC with various values of ¢4, under inductive setting and random negative

sampling.
Dataset Metric Lgap = 10 Lgap = 50 Lgap = 1000  tg44, = 2000
Enron AP 88.43 +0.52 88.76 £0.62 89.17 +0.88 88.41 +0.21
ROC-AUC | 91.83 £0.37 92.02+0.37 92.30+0.57 91.86+0.24
Un Vote AP 75.09 034 75.01 029 7492 +0.48 74.73 +0.44
ROC-AUC | 82.01 +£0.21 79.54 £0.08 81.854+0.32 81.77 £0.16

Enron, as stated in Table [f] implying UN Vote is much denser that Enron. From Tables [14]and [T3]
we can see that the best performance on UN Vote is derived from t4,, = 10, which is the smallest
value, while the best result on Enron is obtained by a much larger value of ¢4,,,, which is 1000. These
findings indicate that a small ¢4, value functions effectively for dense graphs, whereas a larger ¢,
value is suited for sparse graphs. The detailed configurations are reported in Table 22| further suggest
this finding, as the ¢4, values associated with the sparse dataset (Wikipedia, Reddit, MOOC, LastFM,
Enron, Social Evo., UCI) mostly are in the range of [1000, 2000], while the ¢, values employed for
Can. Parl., US Legis., UN Trade, UN Vote, and Contact are only less than or equal to 10.

We report the results for the parameter analysis regarding how the performance change with different
values of .4, Tables[14]and[T3]

E.5.2 PARAMETER ANALYSIS FOR K

Next, we conduct parameter analysis for the neighborhood size, K, with random negative sampling,
and report the results under transductive and inductive settings in Table[I6|and Table[T7] respectively.

Table 16: AP and ROC-AUC with various values of K under transductive setting and random negative
sampling.

Dataset Metric K=5 K =20 K =50 K =100
Enron AP 93.32 +0.25 93.96 -0.36 93.53+0.51 93.22+0.38
ROC-AUC | 9550 +0.16 9598 +0.23 95.71 £0.31 9548 +0.19
UN Vote AP 72.08 £0.73 73.404+0.03 73.49+0.10 73.31+0.13
ROC-AUC | 7892+ 033 79.594+£0.02 79.69 +0.10 79.58 4+ 0.08

According to the tables, we can discern that: (1) in a few cases, increasing K can slightly increase the
performance, but it is prone to cost more computational complexity; (2) in most cases, increasing K
does not add much to the performance, which suggests that close neighbors have already had enough
information to support downstream tasks.
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Table 17: AP and ROC-AUC with various values of K under inductive setting and random negative

sampling.
Dataset Metric K=5 K =20 K =50 K =100
Enron AP 890.72 £ 0.50 94.60 --0.41 88.99 +1.04 88.29 + 0.58
ROC-AUC | 92.65 +0.33 9588 +£0.17 92.11 £0.65 91.64 +0.36
UN Vote AP 7776 =049 75.09 +034 75.10+£0.34 73.924+0.75
ROC-AUC | 83.73 +0.23 8395 +1.76 81.96+0.25 80.94 +0.82

Table 18: AP and ROC-AUC with various values of L under transductive setting and inductive setting
with random negative sampling.

Dataset Transductive AP | Transductive ROC-AUC | Inductive AP |Inductive ROC-AUC
L =20 98.24 +0.11 98.97 £+ 0.06 92.25 +0.24 95.06 & 0.11
Can. Parl L =501 98.26 & 0.06 98.94 £+ 0.03 92.15 £ 0.34 95.11 £ 0.17
’ L =100| 98.11 £0.21 98.85 £ 0.11 92.16 + 0.98 95.25 £ 0.56
L =200 97.04 £0.22 98.37 £ 0.09 91.96 4+ 0.59 95.19 £ 0.38
I

Table 19: AP and ROC-AUC with various values of o, under transductive setting and inductive
setting with random negative sampling.

Dataset Transductive AP | Transductive ROC-AUC |Inductive AP | Inductive ROC-AUC
Qpeg = 0.05| 98.26 +0.13 98.98 £+ 0.05 92.24 £+ 0.09 95.09 £ 0.11
Opeg = 0.1 | 98.28 £0.09 98.98 £ 0.05 92.35 £0.21 95.09 £ 0.09

Can. Parl| apeg = 0.3 | 98.24 +£0.11 98.97 £+ 0.06 92.25 +£0.24 95.06 £ 0.11
Oneg = 0.5 | 9828 £0.13 98.97 +0.05 91.48 +0.23 94.75 £ 0.16
Opeg = 0.95| 9824 +0.18 98.95 £+ 0.09 91.09 £ 0.49 94.53 £ 0.32

Table 20: AP and ROC-AUC with various values of oy, under transductive setting and inductive
setting with random negative sampling.

Dataset Transductive AP | Transductive ROC-AUC | Inductive AP | Inductive ROC-AUC
ape = 0.05 92.81 £0.82 95.32 £ 0.38 86.49 + 1.52 90.91 £ 0.61
Enron | &pe = 0.3 | 93.96 £0.36 95.98 £ 0.23 89.17 £ 0.88 92.30 £ 0.57
ope = 0.5 | 93.94+0.10 95.90 £ 0.06 88.92 +0.39 92.12 £0.22
ape = 0.95| 94.00 £ 0.28 95.92 +£0.17 88.67 +0.34 91.91 £0.30
9
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E.6 DIFFERENT POSITIONAL ENCODING INITIALIZATION

Table 21: Comparison in Positional Encoding initialization with Laplacian and Random Walk
Positional Encoding under transductive and inductive settings with random negative sampling.
Dataset | Positional Encoding | Transductive AP | Transductive ROC-AUC | Inductive AP | Inductive ROC-AUC

Random Walk PE | 93.79 £ 0.67 95.88 +0.40 89.11 £ 0.83 92.43 £0.64
Laplacian PE 93.96 £+ 0.36 95.98 £ 0.23 89.17 £ 0.88 92.30 + 0.57

Enron

In this section, we demonstrate that SimpleTLP can be equipped with different positional encoding
method, other than Laplacian PE. Specifically, our work aims to introduce a general framework on
how to approximate positional encodings at a current time solely based on information from previous
timestamps to outperform in temporal link prediction task, and we do not want to constraint the type
of positional encodings. In Table we provide the comparison between initializing the positional
encodings at initial timestamp with Laplacian PE and Random Walk PE (Dwivedi et al.,[2022)) under
two settings, transductive and inductive, with random negative sampling.

Based on Table[21] we can discern that (1) SimpleTLP can handle different positional encodings and
perform robustly; (2) different positional encodings bring slightly different performances and finding
a powerful positional encoding is a promising future direction to trigger more interesting works.

F REPRODUCIBILITY

F.1 DIFFERENT NEGATIVE SAMPLING STRATEGIES (NSS)

In brief, random NSS samples possible node pairs uniformly at random, historical NSS samples
negative edges from the edges occurring in past timestamps but are absent in the present time, and
inductive NSS samples edges that are unseen during the training time. We refer readers to (Poursafaei
et al.| 2022) for more details regarding these three sampling strategies.

Configuration and implementation details. Following the training procedure of (Yu et al., [2023)),
SimpleTLP is trained with a maximum of 200 epochs, and we employ early stopping with patience 10
during the training process. We leverage the Adam optimizer with learning rate of 0.0001. For a more
detailed description of the model’s implementation, computational resources, and configurations of
hyper-parameters over all 13 datasets, we refer readers to Appendix [F.2]

Across Table[I] Table[2] Table[7} Table[8] Table[d] and Table[I0] the model with the best performance,
in terms of metric scores AP and AUC-ROC, on the validation set will be selected for testing. We
run SimpleTLP 5 times with different random seeds from O to 4 and report the average metric score.
Results from all other baselines are also obtained in the same manner (Yu et al., [2023)).

F.2 MODEL CONFIGURATIONS, HYPER-PARAMETERS, AND COMPUTING RESOURCES
We first report the configuration and hyper-parameters that are unchanged for all 13 datasets:

e Dimension of time encoding: dr = 100.

* Dimension of node encoding: dy = 172.

* Dimension of edge encoding: dg = 172.

* Dimension of positional encoding: dp = 172 (only for Social Evo., dp = 72).
* Hyper-parameters for time encoding function: o = 10, 8 = 10.

* Weight of negative samples in positional encoding loss: g = 0.3.

» Weight of positional encoding loss in objective loss function of SimpleTLP «), = 0.5.

The experiments are coded by Python and are performed on a Linux machine with a single NVIDIA
Tesla V100 32GB GPU. The code will be released upon paper’s publication.

Next, for reproducibility, we present detailed hyper-parameters across 13 datasets in Table 22]

25



Under review as a conference paper at ICLR 2025

Table 22: Configurations of the number of recent snapshots for computing LPE, time window for
node features, recent interactions for edge features, and batch size over 13 datasets

Dataset L tgap K Batchsize
Wikipedia | 100 1000 15 128
Reddit 100 1000 20 200
MOOC 100 2000 30 128
Lastfm 100 1000 30 128
Enron 100 1000 20 64
Social Evo. | 100 1000 20 128
UCI 200 500 30 100
Flights 100 1000 30 128
Can. Parl. 20 2 10 64
US Legis. 50 2 10 200
UN Trade | 200 6 30 200
UN Vote 100 10 20 128
Contact 200 10 20 128

F.3 RUNNING SIMPLETLP ON CONTINUOUS TIME DYNAMIC GRAPHS

The definition of discrete time and continuous time dynamic graphs can be referred to the survey
paper (Kazemi et al., 2020), where

* Continuous Time Dynamic Graph (CTDG) is represented as ((ve,vs),t1), ((v1,v2),t2),
..., as shown in its Example 2;

* Discrete Time Dynamic Graph (DTDG) is represented as a set of G1, Go, ..., G, where
Gy = (W4, Ey) is the graph at snapshot ¢, V; is the set of nodes in Gy, and E; is the set of
edges in G;.

In this viewpoint, our method is designed for discrete time. However, we can see a clear transformation
between CTDG and DTDG: if we aggregate edges that happen at the same timestamp ¢ into a set,
then it is the graph snapshot G;. This is not invented by us, a similar example can be seen in Example
3 of the survey paper (Kazemi et al., 2020).

Because the introduction and theoretical derivation on the snapshot level are much easier to understand
by people, and using “a set of continuous-time edges” every time when we do theoretical derivation
and illustration can be wordy and hurt the presentation. Since graph snapshot and relevant concepts
are already existing in the community and cover the meaning, then we choose to follow them.

Then, in this section, we elaborate how SimpleTLP can be evaluated on Continuous Time Dynamic
Graphs. Firstly, we explain the data batching procedure for Continuous Time Dynamic Graphs as
follows. Suppose we are given a CTDG with T interactions, G = {u;, v;, ti}l‘T:p where t; < ...ip
and (u;,v;, t;) denotes the link occurrence between w;, v; at time ¢;. Let the batch size be B, then a
data batch would be B consecutive interactions from {u;, v;,t; }2_,. Specifically, suppose T = B- K
(for some K), then our 1st data batch would be the first B link occurrences of G {u;, v;,t;}2 . The
2nd data batch would be the next B consecutive interactions, {u;, v;, ti}ffB 41> and so on. In this
way, now we obtain K data batches. Moreover, as a batch is a stream of B events, so we can regard a
data batch as a mini temporal graph with B link occurrences. This data batching technique is also
employed by other baselines.

Next, we explain the evaluation process of SimpleTLP. Consider an arbitrary data batch
{u;,v;,7; }f:l. If this is the first data batch, then we first extract all links occurrence (without

the timestamps), {u;, v; }]73:1 , transform this to a static graph, and obtain the Laplacian eigenvectors
of this graph to initialize the positional encoding for each node. If a node of G does not belong to this
graph then we initialize the positional encoding of that node with a zero vector. Here, let the "initial"
positional encoding for node u as pl. As we advance to the 2nd data batch, we first compute the
approximated positional encoding for all nodes, p?, as stated in Eq. based on p!. In this way,
following Eq. we can iteratively compute the approximate positional encoding for the k-th batch,
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p”, based on the sequence of previous L positional encodings, p* =%, ..., p*~!, corresponding to

previous L data batches.

For our current data batch (suppose this is the k-th batch), {u;,v;, 7; }le, we now describe how
to obtain the link predictions. For each query (u;,v;,7;), we obtain h;’J N||E @S defined in Eq. @

T
uj,N||E?
representation at time 7; for u;, hZJJ Similarly, we obtain the temporal representation for v;, th
Finally, following Eq. we obtain the link prediction for (u;, v;, 7;) using hZJJ , hzjj

and h;JJ p» as stated in Eq.8 using By, . Finally, we combine h hZJ] p to obtain the temporal

In summary, we ideally would want to obtain the positional encoding of a node u, p!, € R%? for
every temporal graph snapshot. However, for training efficiency, our implementation computes the
positional encoding for the graph corresponding to a data batch.
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