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ABSTRACT

Motif scaffolding in protein design involves generating complete protein structures
while preserving the 3D geometry of designated structural fragments, analogous
to image outpainting in computer vision. Current benchmarks focus on functional
motifs, leaving general geometric preservation capabilities largely untested. We in-
troduce GeomMotif, a systematic benchmark that evaluates arbitrary structural frag-
ment preservation without requiring functional specificity. We construct 57 bench-
mark tasks, each containing one or two motifs with up to 7 continuous fragments, by
sampling from the Protein Data Bank (PDB) to ensure a ground-truth, solvable con-
formation for every problem. The tasks are characterized by comprehensive struc-
tural and physicochemical properties: size, geometric context, secondary structure,
hydrophobicity, charge, and degree of burial. These features enable detailed perfor-
mance analysis beyond simple success rates, revealing model-specific strengths and
limitations. We evaluate models using scRMSD and pLDDT for geometric fidelity
and clustering for structural diversity and novelty. Our results show that sequence-
based and structure-based approaches find different tasks challenging, and that
geometric preservation varies significantly with structural and physicochemical con-
text. GeomMotif provides insights complementary to function-focused benchmarks
and establishes a foundation for improving protein generative models.

1 INTRODUCTION

Deep learning is revolutionizing protein design, enabling the creation of novel enzymes, vaccines,
and protein-based therapeutics. A central task in this field is motif scaffolding, where a new protein
is generated around a specific functional fragment, preserving its precise 3D geometry (Wang et al.,
2022). This process is analogous to ”image outpainting” (Saharia et al., 2022) and is a critical step in
engineering new functional proteins.

However, a critical diagnostic blind spot exists in current evaluation methods. Benchmarks like Mo-
tifBench (Zheng et al., 2025) focus predominantly on known functional sites, such as enzyme active
sites. This conflates two distinct challenges: preserving geometry and satisfying complex functional
constraints. When a model fails, it’s impossible to know whether the cause was a fundamental inability
to handle the geometry or a failure to meet the subtle physicochemical requirements for function.

This conflation creates a critical diagnostic problem because in protein engineering, geometric
precision is a direct prerequisite for biological function. For computationally designed protein binders,
for instance, experimental success rates can plummet from nearly 50% to zero as the backbone RMSD
of the binding motif deviates from its target by just 1.0 Å(Cao et al., 2022). Consequently, geometric
accuracy serves as the primary computational filter used to triage designs before costly wet-lab
validation. Yet, current benchmarks entangle this foundational geometric challenge with complex
functional requirements, making it impossible to distinguish between a model’s failure stemming
from a core inability to preserve structure or from more subtle functional incompatibilities.

To address this gap, we introduce GeomMotif, a benchmark designed to rigorously and exclusively
evaluate the fundamental capability of arbitrary geometric preservation. By sampling structural
fragments from across the Protein Data Bank (PDB) without a bias toward known functions, Ge-
omMotif provides a comprehensive test of a model’s ability to generalize across diverse structural
contexts. This ”protein outpainting” approach establishes a foundational test of generative capabili-
ties: can a model maintain local and long-range geometric relationships between arbitrarily selected
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Figure 1: Representative geometric preservation tasks from the GeomMotif benchmark. The
goal is to generate a scaffold to connect predefined motifs while preserving their 3D geometry.

residues? Success on GeomMotif offers a direct measure of a model’s core generative capacity,
providing insights that are complementary to function-focused benchmarks. Critically, every task in
GeomMotif is guaranteed to be solvable by design, is modality-agnostic to allow fair comparison
between different approaches, and is characterized by a rich set of physicochemical properties to
enable fine-grained performance analysis.

Our main contributions are:

• We introduce GeomMotif, a modality-agnostic benchmark of 57 diverse protein scaffolding tasks
that isolates geometric preservation from functional constraints.

• We adapt established evaluation protocols and the SUN (Successful, Unique, Novel) to provide a
single score reflecting geometric accuracy, structural diversity, and novelty.

• Our evaluation of seven models reveals a significant performance gap, with structure-based models
like Genie2 (39.4% SUN) and RFdiffusion (37.8%) far outperforming sequence-based models
(best at 4.1%).

• We uncover counterintuitive performance patterns, notably that ESM3’s multimodal (sequence
+ structure) mode (1.4% SUN) consistently underperforms its sequence-only counterpart (4.1%),
suggesting structure conditioning can introduce conflicting signals.

• Our analysis reveals clear architectural limitations, demonstrating that sequence-based models
categorically fail on tasks with spatially separated (paired) motifs, while structure-based models
exhibit complex, non-monotonic performance as fragment complexity increases.

We provide the benchmark data at HuggingFace and the complete task construction and evaluation
code at GitHub.

2 RELATED WORK

Computational protein design has evolved from physics-based approaches to modern machine
learning methods, with motif scaffolding emerging as an important benchmark for evaluating
generative models.
Classical Approaches. Rosetta pioneered computational motif scaffolding through physics-based
energy functions and extensive conformational sampling (Kuhlman et al., 2003). The enzyme
design modules introduced by the Baker lab (Rothlisberger et al., 2008; Jiang et al., 2008) enabled
systematic placement of catalytic residues within pre-existing scaffolds, establishing methodologies
for rational enzyme design. Subsequent developments included RosettaDesign (Kuhlman et al., 2003),
enzyme design modules (Richter et al., 2011), and the fold-from-loops approach for epitope grafting
(Correia et al., 2014). While successful for specific applications, these methods face computational
limitations that scale exponentially with design complexity, motivating the transition to machine
learning approaches.
Deep Learning Methods. The paradigm shift toward neural approaches began with Wang et al.
(2022), who first formalized motif scaffolding as a machine learning task. RFdiffusion (Watson
et al., 2023) revolutionized this field by adapting diffusion models from computer vision to protein
structure generation, introducing a benchmark of 25 functional motifs focused on enzymatic active
sites and binding interfaces. This established the standard evaluation protocol: generating backbone
structures, designing sequences with ProteinMPNN (Dauparas et al., 2022), and validating through
structure prediction. Several models have adopted the RFdiffusion benchmark paradigm, including
EvoDiff (Alamdari et al., 2024), DPLM (Wang et al., 2024b), DPLM-2 (Wang et al., 2024c), DiMA
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Figure 2: GeomMotif’s modality-agnostic evaluation pipeline. Generated proteins are assessed for geometric
fidelity (Success), structural diversity (Unique), and novelty, yielding a final SUN score.

(Meshchaninov et al., 2025), and Genie 2 (Lin et al., 2024). FrameFlow (Yim et al., 2024) introduced
SE(3) flow matching for protein backbone generation with reported success on motif scaffolding
tasks. Multi-motif formulations demonstrated by Lin et al. (2024) and Liu et al. (2024) address
scenarios with independently floating functional regions.

MotifBench. MotifBench (Zheng et al., 2025) is a standardized benchmark for functional motif
scaffolding with 30 test cases, derived from the original RFdiffusion dataset. It focuses on enzymatic
active sites and binding interfaces, using a fixed evaluation pipeline based on ProteinMPNN and
ESMFold. While important for specific applications, this focus on functional sites makes it difficult
to determine if a model’s failure stems from an inability to preserve geometry or from not meeting
complex functional requirements. Additionally, some tasks involving complex functional sites may
be inherently unsolvable by current methods. GeomMotif is designed to be complementary to these
efforts. It provides a benchmark that isolates the challenge of general geometric preservation, allow-
ing for a direct assessment of the core structural capabilities required for successful protein design.

3 METHOD

We design GeomMotif to systematically evaluate the geometric preservation capabilities of protein
generation models. Our approach addresses key limitations of existing benchmarks through principled
task selection, comprehensive property characterization, and modality-agnostic evaluation.

3.1 DESIGN PRINCIPLES

GeomMotif is built on four core principles. First, we ensure systematic coverage of protein structure
space through uniform sampling rather than focusing on functional regions. Second, we categorize
tasks by complexity using both the number of motifs (1-2) and total fragments (1-7). Third, we
characterize each task using eight structural and physicochemical properties to enable detailed,
property-driven analysis. Fourth, we guarantee task solvability by extracting fragments from natural
proteins, ensuring at least one valid solution exists.

3.2 TASK CONSTRUCTION

We construct benchmark tasks from monomeric protein structures to ensure structural stability and
avoid conformational ambiguity. Proteins in complexes may adopt different structures in isolation,
potentially leading to evaluation inconsistencies when comparing generated structures against ground
truth conformations.
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Figure 3: Pipeline for GeomMotif benchmark construction. Systematic workflow for constructing the bench-
mark tasks. The process includes filtering high-quality monomeric structures, clustering for non-redundancy,
ensuring foldability, identifying residue neighborhoods, filtering motifs based on structural properties, and
organizing tasks by complexity level. This construction procedure ensures comprehensive coverage of protein
structural space and guarantees the task solvability.

To assemble an initial high-quality dataset and ensure systematic coverage, we filtered the Protein
Data Bank (PDB) according to three key criteria. First, we selected only structures determined by
X-ray crystallography with a resolution of 2.5 Å or better to ensure atomic precision. Second, we
included only biological monomers to avoid the conformational ambiguities that can arise when
proteins are part of a larger complex. Finally, we imposed a length limit of 250 residues to prevent
potential misfolding artifacts, as substructures from larger proteins may require their full context for
proper folding. This rigorous filtering process resulted in an initial dataset of 24,001 structures.

To eliminate redundancy while preserving structural diversity, we apply a two-stage clustering
protocol. First, we cluster sequences at 80% identity with 90% minimum coverage using MMseqs2
(Steinegger & Söding, 2017). Second, we perform structural clustering using complete linkage
hierarchical clustering with TM-score threshold 0.5 and coverage 30%. The rationale behind the
choice of particular threshold values is discussed in App. F.

Figure 4: GeomMotif covers diverse CATH
structural folds. Representation of fundamen-
tal protein architecture types across the bench-
mark shows balanced coverage of major struc-
tural classes: mainly-alpha (α), mainly-beta (β)
and alpha-beta (α/β). For a detailed breakdown
of the CATH architectures, see App. D

To guarantee solvability, we generate ESMFold pre-
dictions for each cluster representative and retain only
structures where the predicted fold aligns with the ex-
perimental structure at RMSD ≤ 1.0 Å. This filtering
ensures all benchmark tasks are inherently solvable by
the evaluation pipeline, addressing a critical limitation
identified in previous benchmarks (Zheng et al., 2025).
This procedure yields 107 unique protein structures
from which we construct a set of candidate structural
motifs. First, we iterate through each residue of ev-
ery protein, treating it as a potential center. A motif is
defined as the set of all residues whose Cα atoms are
within a 13Å radius of this central residue’s Cα atom.
This step yields a large pool of overlapping structural
neighborhoods. We then apply a series of filters to re-
fine this set: (1) we exclude small motifs containing
fewer than 30 residues, (2) reduce local redundancy
by removing neighborhoods which share more than
20% of their residues, and (3) filter out motifs with >25% loop content as determined by DSSP sec-
ondary structure assignment. This process produces 3,772 single-motif candidates. For paired-motif
tasks, we identify motif pairs within the same structure separated by ≥30Å between their centers,
yielding 5,364 paired motifs.

Although the residues forming a motif are spatially close, they are often non-contiguous in the amino
acid sequence. The ’fragment complexity’ of a task is therefore defined by the number of separate,
continuous sequence segments that constitute the motif. To ensure the benchmark assesses model
performance across a spectrum of geometric challenges, we stratify the final selection by fragment
complexity. We curate the benchmark to include an equal number of tasks for each fragment count
(1-7 for single motifs, 3-7 for paired), sampling up to five representatives for each category. This
process yields our final benchmark of 57 tasks: 35 single-motif and 22 paired-motif problems. These
tasks span diverse CATH fold classes, ensuring broad coverage of protein structural space (Fig. 4).
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To minimize memorization and test true generative capabilities, we allow biologically plausible length
variations for variable regions while preserving fixed motif geometry. This forces models to generate
valid structures across diverse length contexts rather than reproducing memorized patterns. Detailed
formulation is provided in App. A.1. The full specification of all the tasks is available in Tab. 4.

To enable a fine-grained analysis of model performance, each constructed task is further defined by a
comprehensive set of structural and physicochemical properties, as detailed in Sec. 3.3.

3.3 PROPERTY CHARACTERIZATION

Each task in GeomMotif is characterized by eight structural and physicochemical properties that
enable fine-grained analysis of model performance:

• Secondary structure composition. We characterize the motif’s secondary structure using three
distinct properties derived from DSSP assignments.
– Helical Content. The proportion of residues in α-helices, 310-helices, π-helices.
– Extended Content. The proportion of residues in β-strands and β-bridges.
– Loop Content. The proportion of residues in loop or bend regions.

• Motif size. the number of residues in the motif, representing the extent of geometric constraints.
• Mean hydrophobicity of motif residues using the Eisenberg scale (Eisenberg et al., 1984), corre-

lating with the tendency of residues to be buried versus exposed.
• Burial ratio, fraction of motif residues with relative solvent accessibility (RSA) < 0.2, indicating

positions with stringent packing constraints.
• Absolute charge density calculated as absolute charge per residue based on standard assignments

(Arg/Lys: +1, Asp/Glu: -1), affecting electrostatic compatibility.
• Structural context we evaluate as a ratio of internal contacts (between motif residues) to external

contacts (between motif and non-motif residues) using a 4.5Å distance threshold.

These properties enable analysis beyond simple success rates, revealing which structural features
contribute to task difficulty for different model architectures. The extended details on the calculation
of the properties is provided in App. B. The detailed breakdown of all the properties for each task is
provided in Tab. 3.

3.4 EVALUATION FRAMEWORK

Our evaluation framework extends established protocols from protein motif scaffolding benchmarks
(Watson et al., 2023; Alamdari et al., 2024; Zheng et al., 2025), adapting them to assess general
geometric preservation capabilities across both structure-based and sequence-based generative models.
The framework captures three fundamental aspects of generative performance: geometric fidelity,
structural diversity, and novelty relative to known proteins (Fig. 2).

The evaluation protocol differs between sequence and structure modalities to accommodate their
distinct outputs. For structure-based models, we follow the established pipeline of generating
backbone structures, designing 8 compatible sequences using ProteinMPNN (Dauparas et al., 2022),
and validating through structure prediction. Sequence-based models bypass the ProteinMPNN step,
as they directly generate sequences that we fold using ESMFold (Lin et al., 2023). The rationale
for these pipeline choices is detailed in the App. E. In both cases, we assess geometric preservation
by computing the backbone scRMSD between motif residues in the predicted structure and their
corresponding positions in the ground truth.

A generated protein is considered successful when it meets two criteria: (1) the motif RMSD falls
below 1.0Å, demonstrating faithful geometric preservation, and (2) the predicted structure exhibits
high confidence with average pLDDT ≥ 70, ensuring the overall fold is well-formed. To quantify
diversity among successful designs, we cluster scaffolds using TM-score based hierarchical clustering
with threshold 0.8. The number of resulting clusters reflects the breadth of structural solutions each
model generates. Novelty assessment involves computing the TM-score between successful scaffolds
and the ground truth structures. Scaffolds with TM-score < 0.8 to any PDB structure represent
genuinely novel designs.

To capture the competing objectives in protein design—accuracy, diversity, and novelty—we adopt
the SUN (Successful, Unique, Novel) score (Sriram et al., 2024). The SUN score represents the
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Figure 5: Comparative performance of protein generation models on the GeomMotif benchmark. Perfor-
mance metrics for seven protein generation models measured by the SUN score (Success, Uniqueness, Novelty).
The percentage above each bar indicates overall success rate at preserving motif geometry. Each bar is segmented
to show: proteins that are both novel and unique (dark teal, representing the SUN score), proteins that are novel
but not structurally diverse (medium teal), and proteins that preserve geometry but are not novel (light teal).
Structure-based models (left) substantially outperform sequence-based approaches (right).

proportion of generated samples that simultaneously achieve all three criteria. The Uniqueness and
Novelty components are assessed within the set of successful designs, ensuring that we only measure
the diversity and originality of viable structures.

SUN = P (Successful ∩ Unique ∩ Novel) (1)

This metric provides a stringent assessment of model capabilities, rewarding only those designs that
combine geometric accuracy with structural diversity and originality. By requiring simultaneous
achievement of all criteria, the SUN score naturally balances the competing objectives in protein
design. A detailed discussion of this metric’s interpretation and utility is provided in App. C.

Evaluation proceeds in both fixed-length and variable-length settings to distinguish memorization
from true generalization. The fixed-length evaluation constrains proteins to match ground truth
lengths exactly, establishing a controlled baseline. The variable-length setting permits biologically
reasonable length variations, testing models’ capacity to generate valid structures without strict
dimensional constraints. This dual evaluation reveals whether models genuinely understand protein
geometry or merely reconstruct memorized patterns.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We evaluate seven protein generation models spanning different architectural paradigms: RFdiffusion
(Watson et al., 2023), FrameFlow (Yim et al., 2024), Genie2 (Lin et al., 2024) (structure-based
approaches), ESM3 1.4B (Hayes et al., 2025), DPLM-650M, DPLM-3B (Wang et al., 2024b)
(sequence-based approaches), and a random baseline. For each of the 57 tasks, we generate 100
samples per model and evaluate them. To quantify the uncertainty in our SUN score measurements,
we conduct bootstrap analysis: for each of the 57 tasks, we resample the 100 generated samples with
replacement across 100 bootstrap iterations, calculate the SUN score for each bootstrap sample, and
compute standard deviations across iterations.
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Table 1: Component analysis of the SUN metric across model types and task categories. Detailed breakdown
of the SUN metric into its constituent components (Success, Novelty, Uniqueness) for single and paired motif
tasks. Results demonstrate that while structure-based models maintain high performance across all metrics
for single motifs, performance degrades significantly for paired motifs, with sequence-based models showing
near-zero SUN scores on paired motifs. Bold values indicate best performance per metric category.

Model Successful, % ↑ Novel, % ↑ Unique, % ↑ SUN Score ↑
Single Paired Single Paired Single Paired Single Paired

Genie2 60.1 ± 1.0 32.9 ± 0.4 60.1 ± 1.0 26.6 ± 0.5 59.9 ± 1.0 22.5 ± 0.3 59.9 ± 1.0 18.8 ± 0.4

RFdiffusion 65.1 ± 0.4 43.7 ± 1.0 65.1 ± 0.4 25.0 ± 0.5 62.4 ± 0.4 20.5 ± 0.7 62.4 ± 0.4 13.2 ± 0.4

FrameFlow 30.6 ± 0.4 25.1 ± 0.4 30.6 ± 0.4 19.7 ± 0.3 30.6 ± 0.4 20.2 ± 0.5 30.6 ± 0.4 16.0 ± 0.7

DPLM-3B 19.3 ± 0.7 11.0 ± 0.5 10.2 ± 0.5 0.9 ± 0.2 9.8 ± 0.5 0.6 ± 0.1 4.9 ± 0.4 0.5 ± 0.1

DPLM-650M 15.9 ± 0.4 6.5 ± 0.5 8.7 ± 0.2 0.4 ± 0.1 8.1 ± 0.3 0.3 ± 0.1 4.0 ± 0.2 0.2 ± 0.1

ESM3 (seq) 17.4 ± 0.3 6.5 ± 0.5 11.3 ± 0.5 0.1 ± 0.0 10.1 ± 0.2 0.1 ± 0.0 6.8 ± 0.3 0.1 ± 0.0

ESM3 (seq & struct) 2.0 ± 0.1 0.7 ± 0.2 2.0 ± 0.1 0.0 ± 0.0 2.0 ± 0.1 0.0 ± 0.0 2.0 ± 0.1 0.0 ± 0.0

Random 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

To assess model capabilities beyond potential memorization of PDB structures, we conduct exper-
iments in two settings. In the primary evaluation, task lengths vary from ground truth to test true
generalization (Sec. 4.2). We also include a fixed-length evaluation (App. H), where protein lengths
match ground truth exactly, serving as a controlled baseline to understand model behavior when
length variation is removed as a factor.

4.2 OVERALL PERFORMANCE ACROSS TASK CATEGORIES

Figure 5 presents the performance of evaluated models on the GeomMotif benchmark using the SUN
(Successful, Unique, Novel) metric. The SUN score represents the proportion of generated samples
that simultaneously achieve geometric accuracy, structural diversity, and originality relative to known
proteins.

Structure-based models (Genie2, RFdiffusion, FrameFlow) demonstrate substantially higher SUN
scores compared to sequence-based approaches. Genie2 and RFdiffusion achieve comparable perfor-
mance (39.4% and 37.8% respectively), while FrameFlow achieves 23.3%. Among sequence-based
models, ESM3 in sequence-only mode shows the highest performance at 3.5%, followed by DPLM-
3B (2.7%) and DPLM-650M (2.1%).

Notably, the larger DPLM-3B shows only marginal improvement over DPLM-650M, suggesting
that simple parameter scaling may not address the underlying challenges of sequence-based motif
scaffolding. Surprisingly, ESM3 variant using both sequence and structure modalities achieve
significantly lower scores (1%) compared to the sequence-only model. This counterintuitive result
aligns with performance patterns observed on the RFdiffusion motif scaffolding benchmark reported
in Wang et al. (2024c), where ESM3 in co-generation mode solved fewer tasks with lower average
success rate than in sequence-only mode.

Table 1 decomposes the SUN metric into its constituent components and shows distinct performance
patterns between single and paired motif tasks. For single motif tasks, RFdiffusion achieves the
highest success rate (54.4%, next is Genie2 with 46.5%), but fall short against Genie2 by overall
SUN score (37.8% vs 39.35%). The performance gap widens substantially for paired motif tasks,
where Genie2 demonstrates the best performance (18.8% SUN), though all models show performance
degradation compared to single motif scenarios.

The decomposition reveals that performance differences primarily stem from success rates rather
than novelty or uniqueness metrics. For instance, RFdiffusion maintains comparable high novelty
(45.05%) and uniqueness (41.4%) for successful single motif designs, indicating that when the
model succeeds, it generates diverse and original solutions. However, the dramatic drop in success
rates for paired motifs (43.7% for RFdiffusion) constrains the achievable SUN scores regardless of
downstream novelty and diversity.

Sequence-based models demonstrate uniformly lower performance across all metrics, with paired
motif tasks proving particularly challenging. ESM3 in sequence-only mode achieves the best
sequence-based performance for single motifs (6.8 % SUN) but drops to near-zero for paired motifs
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Table 2: SUN score performance stratified by the number of continuous fragments in motifs (1-7 fragments)
reveals non-monotonic relationships between fragment complexity and model performance. Structure-based
models exhibit different performance patterns compared to sequence-based models, with the latter failing
categorically on paired motifs. Bold values indicate best performance per fragment count category.

Model Number of fragments in single motif Number of fragments in paired motifs
1 2 3 4 5 6 7 3 4 5 6 7

Genie2 76.7 ± 0.5 75.4 ± 1.1 84.4 ± 1.6 38.7 ± 1.3 33.4 ± 2.8 49.9 ± 2.3 56.8 ± 0.7 39.2 ± 1.2 33.0 ± 0.7 15.2 ± 0.7 7.0 ± 0.8 12.9 ± 1.2

RFdiffusion 91.9 ± 0.7 72.8 ± 1.9 83.6 ± 0.8 57.9 ± 2.2 42.0 ± 2.8 53.8 ± 1.1 38.7 ± 0.8 14.8 ± 1.6 22.8 ± 1.3 5.9 ± 0.2 14.8 ± 0.2 8.0 ± 0.4

FrameFlow 61.9 ± 1.8 43.8 ± 1.2 49.9 ± 2.4 19.4 ± 0.8 9.8 ± 0.9 15.3 ± 1.5 12.8 ± 1.0 61.6 ± 1.8 17.1 ± 1.7 11.1 ± 0.9 9.7 ± 1.4 9.4 ± 0.9

DPLM-3B 4.6 ± 0.4 2.7 ± 0.3 2.4 ± 0.4 4.3 ± 0.6 3.4 ± 0.8 7.5 ± 1.0 10.4 ± 0.6 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 2.2 ± 0.4 0.0 ± 0.0

DPLM-650M 5.7 ± 0.7 2.0 ± 0.3 0.9 ± 0.3 1.3 ± 0.4 1.5 ± 0.3 7.7 ± 1.2 7.0 ± 0.6 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 1.0 ± 0.3 0.0 ± 0.0

ESM3 (seq) 12.1 ± 1.0 7.0 ± 0.7 1.0 ± 0.1 3.3 ± 0.7 4.2 ± 0.8 8.0 ± 0.9 12.2 ± 1.0 0.2 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

ESM3 (seq&struct) 7.9 ± 0.5 3.0 ± 0.6 0.3 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 1.1 ± 0.7 1.8 ± 0.7 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

(0.1% SUN). This categorical failure on paired motifs reveals a fundamental limitation in sequence-
based approaches for maintaining geometric relationships between spatially separated regions.

These results show that current structure-based models possess significant advantages for geometric
preservation tasks, and highlight the need for architectural innovations to enable sequence-based mod-
els to capture long-range spatial constraints. The performance patterns validate GeomMotif’s design
as a discriminative benchmark that reveals model-specific capabilities and limitations. These overall
results, however, raise the question: what structural factors drive these performance differences? We
first examine how geometric complexity affects model capabilities.

4.3 IMPACT OF FRAGMENT COMPLEXITY

Fragment complexity analysis reveals fundamental architectural differences in how models handle
geometric constraints (Tab. 2). The relationship between fragment count and performance is non-
monotonic and model-dependent, suggesting that geometric scaffolding involves complex trade-offs
rather than simple difficulty scaling.

Structure-based models demonstrate distinct complexity profiles. RFdiffusion achieves peak
performance on single fragments (91.9% SUN) but maintains strong capabilities through 6 fragments
before declining sharply. Genie2 exhibits a different pattern: high performance on simple (1-3
fragments) and complex (6-7 fragments) motifs, with a notable performance valley at 4-5 fragments.
This suggests that intermediate complexity may create competing constraints that challenge the
model’s optimization landscape. FrameFlow shows the most intuitive pattern—steadily declining
performance as fragment count increases—except for its remarkable success on 3-fragment paired
motifs (61.6% SUN), likely reflecting its specialized training for distributed spatial constraints.

Sequence-based models fail categorically on spatial separation. All sequence-based models
achieve near-zero performance on paired motifs, regardless of fragment complexity. This exposes
a fundamental limitation: linear sequence models cannot encode spatial relationships between
disconnected regions. For single motifs, these models show modest improvements at 7 fragments,
possibly because highly fragmented motifs resemble the masked sequence recovery tasks used in
their pre-training.

The structure modality can impair rather than enhance performance. ESM3’s multimodal
variant consistently underperforms its sequence-only counterpart, with the performance gap widening
as fragment complexity increases. This counterintuitive result suggests that structural conditioning
may introduce conflicting optimization signals, particularly when geometric constraints become more
complex.

These patterns demonstrate that protein scaffolding difficulty is not simply proportional to fragment
count. Instead, different architectures encounter distinct bottlenecks: structure-based models struggle
with global consistency at high complexity, while sequence-based models fundamentally cannot
handle spatial separation. Understanding these limitations is essential for developing next-generation
protein design models.

4.4 PROPERTY-BASED ANALYSIS OF GEOMETRIC PRESERVATION

Beyond fragment complexity, we investigated how specific structural and physicochemical properties
influence model performance using our task characterization. The analysis shows that model success
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rates correlate with several key properties, revealing different performance patterns across various
architectures .
Secondary Structure Composition Effects Secondary structure composition emerges as a domi-
nant factor affecting geometric preservation. For structure-based models, tasks with high α-helical
content consistently yield higher success rates. The SUN scores for Genie2, RFdiffusion and Frame-
Flow on single-motif tasks with >70% helical content are 84.6%, 83.4% and 54.4%, respectively,
compared to 42.9%, 45.2% and 14.0% for tasks with <30% helical content. This disparity is particu-
larly pronounced in small single-motif contexts, where purely helical motifs (>90% helix) achieve
the highest performance (mean SUN score 94.6% for RFdiffusion). Conversely, β-sheet-rich motifs
present significant challenges across all models. Since by design GeomMotif problems contain no
more than 25% of loops, tasks with high sheet content match those with low helical content discussed
above. This pattern aligns with the inherent complexity of β-sheets, which require precise long-range
hydrogen bonding networks spanning residues distant in sequence.

The number of fragments and their spatial arrangement dramatically influence model performance.
For paired motifs, structures with high helical content in both motifs yield significantly higher success
rates than mixed secondary structure arrangements. When both motifs are purely helical (e.g. tasks
4 5XJ7, 9 6KFQ), Genie2 vastly outperforms other methods and achieves mean SUN scores of
46.5%, compared to 13.0% for paired motifs of mixed secondary structures.
Burial and Contact Ratios The degree of residue burial and internal contact density provides
further insight into model strengths and limitations. Highly buried single motifs (>60% burial)
with low internal-to-external contact ratios (<0.9) prove particularly challenging for all models. For
Genie2 and RFdiffusion, the mean SUN score drops below 30% for such motifs, compared to 80.7%
for exposed motifs with low burial (<50%) and higher contact ratios (>1.5).
Model-Specific Property Sensitivities Different model architectures exhibit distinct sensitivities
to property variations. RFdiffusion demonstrates superior performance on single-fragment tasks with
high helical content (mean SUN score 92.0%) but struggles with multi-fragment β-sheet arrangements
(mean SUN score 40.4% for 4+ fragments with >50% β-sheet content). FrameFlow shows particular
strength on paired motifs with three fragments (average of 61.6% SUN), suggesting optimization
for distributed spatial constraints. Meanwhile, Genie2 exhibits more balanced performance across
property dimensions but shows pronounced weakness on tasks combining high fragment counts with
high β-sheet content and low contact ratios.

These property-performance relationships provide detailed insights for benchmark design and model
development. The consistent difficulty with β-sheet-rich motifs and complex packing environments
across diverse architectures points to systemic, field-wide challenges. This approach, therefore, offers
a diagnostic framework that complements existing benchmarks and can guide targeted improvements
to future protein design models.

5 CONCLUSION

GeomMotif establishes the first systematic benchmark for geometric preservation in protein genera-
tion. It isolates this fundamental capability from the confounding effects of functional constraints.
Our evaluation reveals a clear architectural divide. Structure-based models like Genie2 and RFd-
iffusion achieve strong geometric fidelity, however, they struggle as spatial complexity increases.
Sequence-based approaches fail categorically on spatially separated motifs. This exposes their
inability to encode long-range geometric relationships.

These findings provide actionable insights for model development. Helical motifs consistently
outperform β-sheet arrangements. This pronounced sensitivity suggests specific training strategies
could address these weaknesses. Our comprehensive property characterization reveals that burial
patterns, fragment complexity, and structural context interact in non-obvious ways. These interactions
offer concrete targets for architectural improvements.

GeomMotif demonstrates that geometric preservation varies systematically with structural features.
This provides the diagnostic precision that functional benchmarks cannot. This complementary
perspective is essential as the field advances toward more sophisticated protein design challenges.
The benchmark establishes a foundation for understanding generative capabilities that underpin all
successful protein engineering. This enables targeted improvements that will ultimately enhance both
geometric accuracy and functional success.

9
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REPRODUCIBILITY STATEMENT

We have thoroughly documented our methodology to ensure the reproducibility of the GeomMotif
benchmark’s construction, evaluation, and experimental results. All necessary details are provided in
the main text and expanded upon in the Appendix.

The GeomMotif construction pipeline is detailed in Sec. 3.2,App. A.1 and illustrated in Fig. 3.
We specify our criteria for data filtering, structural quality, redundancy removal, and guaranteed
task solvability. The process uses publicly available tools like MMseqs2 (Steinegger & Söding,
2017), TM-Align (Zhang, 2005) and ESMFold (Lin et al., 2023). Methods for calculating the eight
characterizing properties for each task are also provided (Sec. 3.3 and App. B).

Our modality-agnostic evaluation framework (Sec. 3.4, Fig. 2) unambiguously defines our metrics
for success (motifRMSD, pLDDT), diversity, and novelty. The adapted SUN score is explained in
App. C. The evaluation pipeline uses public tools, including ProteinMPNN (Dauparas et al., 2022).

The baseline comparisons in Sec. 4 are reproducible, using publicly available models. Per-task
performance data for each model is available in Sec. J.

Benchmark data, task construction scripts, and evaluation code are available at our GitHub, and on
HuggingFace.

ETHICS STATEMENT

This research was conducted in adherence with ethical scientific practices. The GeomMotif benchmark
is derived entirely from the Protein Data Bank (PDB), a public and anonymized resource, and our
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We recognize the potential for dual-use applications in protein design. However, our research is
foundational and focuses on creating a benchmark for geometric preservation, not on engineering
proteins with specific biological functions. The intended purpose of GeomMotif is to advance protein
science for beneficial outcomes, such as developing novel therapeutics and biomaterials.

By making our benchmark, code, and evaluation tools publicly available, we aim to foster transparency
and support the responsible and collaborative development of protein generation models.
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A BENCHMARK DESIGN

A.1 LENGTH RANGE DETERMINATION

To establish biologically plausible length ranges for the variable regions in GeomMotif benchmark,
we developed a principled approach based on known structural properties of proteins. For a region of
ground truth length L, we define the allowable length range as follows:

(Lmin, Lmax) =

{
(L,L+max(1, round(0.3L))), if L ≤ 3

(max(L− round(0.3L), 3), L+ round(0.3L)), if L > 3
(2)

where round(·) denotes rounding to the nearest integer.

For the total protein length, given the sum of fixed motif lengths Lmotifs, we calculate:

Ltotal
min = Lmotifs +

∑
i

Li
min (3)

Ltotal
max = min(250,max(LGT

total, Lmotifs +
∑
i

Li
max)) (4)

where Li
min and Li

max are the minimum and maximum lengths for the i-th variable region, and LGT
total

is the ground truth total protein length.

GeomMotif benchmark employs a biologically informed approach to determining length ranges
for variable regions in protein motif scaffolding tasks. We define ranges that allow approximately
±30% flexibility around the ground truth length, reflecting the natural structural variation observed
in homologous proteins while maintaining consistent function. This range corresponds to the typical
expansion and compression possible when a protein segment adopts different secondary structures
(e.g., α-helices vs. β-strands).

For very short regions (≤ 3 residues), we preserve the ground truth length as the minimum to
avoid creating structurally impossible constraints, as these short connections often have limited
conformational flexibility. For prefix and suffix regions, we apply the same principles to ensure
biologically reasonable terminal segments.

The total protein length range is derived from the sum of fixed motif lengths plus the ranges of
the variable regions, with an upper bound of 250 residues to ensure compatibility with models of
moderate context length. This approach ensures that our benchmark presents challenges that are
both structurally reasonable and computationally tractable while maintaining sufficient flexibility to
explore diverse design solutions.

B DETAILED PROPERTY CHARACTERIZATION

B.1 PROPERTY CALCULATION METHODS

The characterization of each motif in GeomMotif involves eight properties calculated using established
biophysical metrics. Below we detail the precise calculation methods:

B.2 STRUCTURAL PROPERTIES

B.2.1 SECONDARY STRUCTURE COMPOSITION

We employ DSSP (Define Secondary Structure of Proteins) to assign secondary structure elements to
each residue. The assignment uses the following classification:

• Helical structures: α-helices (H), 310-helices (G), and π-helices (I)

• Extended conformations: β-strands (E) and β-bridges (B)
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• Loop regions: turns (T), bends (S), and unstructured coil (C)

The proportion of each category is calculated as:

PSS =
NSS

Ntotal
(5)

where NSS is the number of residues with a particular secondary structure type and Ntotal is the total
number of residues in the motif.

B.2.2 MOTIF SIZE

We record both the total residue count in each motif and the number of fragments. Fragment count
ranges from 1 (contiguous) to 7 (highly discontinuous) for single motifs, and 3-7 for paired motifs.

B.2.3 STRUCTURAL CONTEXT RATIO

For each motif, we calculate:

Rcontext =
Ninternal

Nexternal
(6)

where Ninternal is the number of contacts between residues within the motif and Nexternal is the
number of contacts between motif residues and non-motif residues. A contact is defined when any
heavy atoms from two residues are within 4.5Å of each other. This ratio indicates how self-contained
versus context-dependent a motif is.

B.3 PHYSICOCHEMICAL PROPERTIES

B.3.1 HYDROPHOBICITY PROFILE

We use the Eisenberg hydrophobicity scale (Eisenberg et al., 1984) to calculate the mean hydropho-
bicity:

H̄ =
1

N

N∑
i=1

Hi (7)

where Hi is the hydrophobicity value of residue i and N is the number of residues in the motif. The
Eisenberg scale values range from -2.53 (most hydrophilic) to 1.38 (most hydrophobic).

B.3.2 BURIAL RATIO

We calculate relative solvent accessibility (RSA) using DSSP, which computes the accessible surface
area normalized by the maximum possible exposure for each residue type. The burial ratio is:

Rburial =
NRSA<0.2

Ntotal
(8)

where NRSA<0.2 is the number of residues with RSA < 0.2, indicating buried positions.

B.3.3 HYDROPHOBIC CORE CONTENT

We define hydrophobic core residues as those that are both buried (RSA < 0.2) and hydrophobic
(Eisenberg score > 0.5):

Rcore =
Nburied∩hydrophobic

Ntotal
(9)

B.3.4 CHARGE CHARACTERISTICS

We calculate absolute charge density as:

ρcharge =
1

N

N∑
i=1

|qi| (10)

where qi is the charge of residue i (Arg/Lys: +1, Asp/Glu: -1, others: 0).
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B.4 PROPERTY DISTRIBUTION ACROSS THE BENCHMARK

To ensure comprehensive coverage of protein structural space, we analyzed the distribution of
properties across all benchmark tasks:

• Secondary structure composition spans the full range of natural proteins, with helical content
ranging from 0% to 100%, β-sheet content from 0% to 93.3%, and loop content from 0% to
23.3%.

• Motif sizes range from 30 to 75 residues, with fragment counts from 1 to 7, creating a
spectrum of geometric constraint complexity.

• Hydrophobicity values range from -0.57 to 0.68 on the Eisenberg scale, covering both highly
hydrophilic and hydrophobic motifs.

• Burial ratios span from highly exposed (0.30) to deeply buried (0.82) motifs.
• Charge densities range from 0.03 to 0.57, representing varying degrees of electrostatic

complexity.
• Structural context as internal-to-external ratios vary from 0.68 (highly context-dependent)

to 2.90 (highly self-contained).

This diversity enables detailed analysis of how these properties correlate with model performance,
revealing specific strengths and weaknesses of different architectural approaches to protein generation.

Figure 6: The distribution of structural and physicochemical properties in GeomMotif tasks. Histograms
show the frequency distribution of (A) loop ratio, (B) α-helix ratio, (C) β-sheet ratio, (D) motif size as number
of residues, (E) mean hydrophobicity, (F) burial ratio, (G) absolute charge density, and (H) structural context
as internal-to-external contact ratio. The diverse distribution of properties ensures comprehensive coverage of
protein structural space and presents varied geometric preservation challenges.
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Table 3: The properties of protein fragments across different GeomMotif tasks

Number of Motif Task Loop (%) Helix (%) Sheet (%) Motif(s) Mean Burial (%) Abs. Charge Internal to External
Fragments Length Hydrophobicity Density Contact ratio

1 single 1 5OJ8 12.9 87.1 0.0 31 0.10 48.4 0.23 1.86
1 single 2 1TKY 23.3 46.7 30.0 30 0.27 46.7 0.20 1.25
1 single 3 5XJ7 5.9 94.1 0.0 34 0.57 44.1 0.06 2.90
1 single 4 6KFQ 9.7 90.3 0.0 31 0.35 51.6 0.16 1.42
1 single 5 5URP 22.9 77.1 0.0 35 -0.12 31.4 0.31 2.39
2 single 6 5XJ7 10.0 90.0 0.0 30 0.22 33.3 0.23 1.98
2 single 7 5OJ8 7.7 92.3 0.0 39 0.15 43.6 0.13 2.52
2 single 8 1M2G 12.5 68.8 18.8 32 -0.11 59.4 0.31 1.30
2 single 9 5CWP 0.0 100.0 0.0 30 -0.57 40.0 0.57 1.60
2 single 10 6FFV 16.7 83.3 0.0 30 0.35 30.0 0.10 1.85
3 single 11 1Z6N 13.9 86.1 0.0 36 -0.04 44.4 0.22 1.64
3 single 12 3P2W 6.2 78.1 15.6 32 0.22 43.8 0.16 1.38
3 single 13 6KFQ 8.1 91.9 0.0 37 0.35 48.6 0.11 1.47
3 single 14 4BJI 12.5 70.0 17.5 40 0.02 57.5 0.25 1.83
3 single 15 1A2J 5.7 94.3 0.0 35 0.19 51.4 0.23 1.11
3 paired 1 5CWP 6.1 93.9 0.0 66 -0.50 36.4 0.52 2.06
3 paired 2 5CWN 9.5 90.5 0.0 63 -0.30 44.4 0.51 2.00
4 single 16 3PR9 10.0 13.3 76.7 30 0.30 30.0 0.20 1.79
4 single 17 4GVW 13.6 61.4 25.0 44 0.25 52.3 0.16 1.83
4 single 18 4LQ4 16.1 51.6 32.3 31 0.16 54.8 0.26 1.01
4 single 19 1M2G 15.6 34.4 50.0 32 0.06 65.6 0.22 0.95
4 single 20 3L86 19.5 58.5 22.0 41 -0.00 53.7 0.15 1.69
4 paired 3 4K46 19.7 54.5 25.8 66 0.14 40.9 0.26 1.84
4 paired 4 5XJ7 4.2 95.8 0.0 71 0.60 43.7 0.06 2.20
4 paired 5 5OJ8 11.6 88.4 0.0 69 0.04 42.0 0.19 1.97
4 paired 6 2ZE5 8.3 86.7 5.0 60 0.06 48.3 0.23 1.46
4 paired 7 1DEX 8.2 83.6 8.2 61 0.10 57.4 0.20 1.07
5 single 21 1TKY 9.7 29.0 61.3 31 -0.03 61.3 0.26 0.68
5 single 22 6TCS 11.4 0.0 88.6 35 0.16 54.3 0.06 0.98
5 single 23 1SGW 5.7 20.0 74.3 35 0.10 51.4 0.26 1.29
5 single 24 6OU0 6.7 0.0 93.3 30 0.24 53.3 0.23 1.04
5 single 25 4F3H 5.6 38.9 55.6 36 0.10 66.7 0.19 0.95
5 paired 8 1IS1 10.0 71.7 18.3 60 0.08 35.0 0.30 1.49
5 paired 9 6KFQ 4.2 95.8 0.0 71 0.68 45.1 0.03 1.53
5 paired 10 5DN1 16.7 47.0 36.4 66 0.06 53.0 0.26 1.35
5 paired 11 6KFQ 10.7 89.3 0.0 75 0.37 49.3 0.13 1.59
5 paired 12 1HU3 18.5 81.5 0.0 65 -0.04 33.8 0.28 1.63
6 single 26 1GIU 10.5 26.3 63.2 38 0.18 71.1 0.16 0.91
6 single 27 4LQ4 4.3 52.2 43.5 46 0.30 56.5 0.20 1.25
6 single 28 6TCS 9.7 0.0 90.3 31 0.02 67.7 0.16 0.68
6 single 29 2LAO 12.5 37.5 50.0 32 0.11 68.8 0.22 0.88
6 single 30 6TCS 11.4 0.0 88.6 35 -0.03 54.3 0.14 0.80
6 paired 13 4BJI 10.0 85.0 5.0 60 0.10 43.3 0.23 1.54
6 paired 14 5KZL 16.7 83.3 0.0 60 0.09 50.0 0.22 1.21
6 paired 15 4LQ4 6.6 59.0 34.4 61 0.09 44.3 0.30 1.31
6 paired 16 1SGW 8.2 47.5 44.3 61 0.05 52.5 0.28 1.21
6 paired 17 1BOL 8.3 61.7 30.0 60 0.11 46.7 0.22 1.31
7 single 31 1GIU 13.2 15.8 71.1 38 0.44 81.6 0.08 0.78
7 single 32 1GBG 9.5 0.0 90.5 42 0.19 61.9 0.21 1.27
7 single 33 6TCS 8.3 0.0 91.7 36 0.18 61.1 0.11 0.87
7 single 34 6TCS 11.4 0.0 88.6 44 0.05 52.3 0.11 1.32
7 single 35 1A2J 9.4 84.9 5.7 53 0.20 49.1 0.23 1.48
7 paired 18 6W5B 14.5 4.8 80.6 62 -0.21 50.0 0.34 0.96
7 paired 19 1Q0S 13.0 78.3 8.7 69 -0.02 47.8 0.29 1.31
7 paired 20 4GVW 9.2 55.4 35.4 65 0.21 47.7 0.22 1.42
7 paired 21 3OSX 15.4 63.1 21.5 65 0.22 52.3 0.15 1.12
7 paired 22 1Z6N 12.7 70.4 16.9 71 0.01 46.5 0.27 1.53
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C INTERPRETATION AND UTILITY OF THE SUN SCORE

The SUN (Successful, Unique, Novel) score is a holistic metric we adapt from generative modeling in
materials science (Sriram et al., 2024). To calculate the score, we first identify all Successful designs—
those that meet the primary geometric and structural constraints. Then, conditioned only on this
successful set, we assess the Uniqueness (structural diversity) and Novelty of the generated solutions.
This conditional approach ensures that diversity and novelty are measured only for viable designs, a
methodological practice consistent with established evaluation protocols in protein generation (Yim
et al., 2024).

Figure 7: Conceptual breakdown of the SUN score components. The SUN score quantifies the proportion of
generated designs that simultaneously satisfy the criteria for being Successful (meeting geometric and structural
constraints), Unique (structurally distinct from other generated designs), and Novel (structurally distinct from
known natural proteins). The final SUN score is represented by the intersection of all three sets.

The SUN score represents the aggregate success rate over many generation attempts and is best
interpreted as a continuous value, analogous to success rates in high-throughput screening or yield in
chemical synthesis. It quantifies the fraction of high-quality candidates a researcher can expect from
a generative model.

Practically, the SUN score provides an upper bound on the experimental success rate, which helps
guide resource allocation in a protein design campaign. For example, a model with a 44% SUN score
may yield one promising candidate for every two or three designs generated, while a 4% SUN score
suggests a researcher would need to screen roughly 25 candidates to find a single one of comparable
quality. This metric is an upper bound because it assesses geometric plausibility—a necessary but
insufficient condition for the ultimate functional success that must be confirmed by wet-lab validation.

The primary utility of the SUN score is providing a single, comprehensive value for high-level model
comparison. For a more granular diagnostic analysis, the metric can be decomposed. By examining
the individual Success, Uniqueness, and Novelty rates, and analyzing how they vary with the
physicochemical properties of the GeomMotif tasks, a much richer picture of model behavior emerges.
This detailed breakdown reveals specific architectural strengths and limitations, enabling informed
model selection for specific design challenges and providing clear targets for future research.
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D DETAILED STRUCTURAL CLASSIFICATION OF BENCHMARK TASKS

To further specify the structural diversity of the GeomMotif benchmark, this section provides a more
granular breakdown of the included protein architectures. Figure 8 visualizes the distribution of tasks
across the CATH hierarchy, extending to the Architecture and Topology Superfamily levels (CATH
levels 2 and 3). This level of detail clarifies the specific types of protein folds represented within each
of the major structural classes (all-alpha, all-beta, and alpha-beta) that are summarized in Fig. 4.

Figure 8: Detailed CATH Classification of GeomMotif Benchmark Tasks. The inner ring displays the
three major CATH classes: all-alpha (α), all-beta (β), and alpha-beta (α/β). The outer rings detail the specific
Architectures and Topologies within each class.

E MODEL CHOICES FOR THE EVALUATION PIPELINE

The construction of a robust and reproducible benchmark relies on a standardized evaluation pipeline.
The choice of external software for inverse and forward folding is a critical decision, as any specific
tool inevitably introduces systemic biases that can affect performance assessment. Acknowledging
this, our selection of ProteinMPNN and ESMFold was a deliberate decision prioritizing methodolog-
ical consistency with community standards, the computational feasibility of a large-scale benchmark,
and reliance on tools with proven practical utility.

For structure-based models that generate a backbone, we use ProteinMPNN to design a corresponding
amino acid sequence. This choice aligns our benchmark with established best practices in the field.
ProteinMPNN is the canonical inverse folding tool used in the evaluation of leading models like
RFdiffusion (Watson et al., 2023), Genie2 (Lin et al., 2024), and FrameFlow (Yim et al., 2024), as well
as in the MotifBench benchmark Zheng et al. (2025). Using the same tool is crucial for methodological
consistency, as it allows for fair comparisons and isolates the performance of the generative models
themselves. Furthermore, the reliability of ProteinMPNN is not just computational as its ability to
design high-fidelity sequences has been confirmed through extensive wet-lab experiments de Haas
et al. (2024); Sumida et al. (2024); Wang et al. (2024a). Finally, from a practical standpoint,
ProteinMPNN is well-suited for our benchmark as it can operate on the Cα-only backbone traces that
some structure-based generators produce.

For the validation step, we predict the structure of designed sequences using ESMFold. This
choice balances predictive accuracy with the significant computational requirements of a large-scale
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benchmark. The GeomMotif evaluation involves folding tens of thousands of sequences, a task
for which the speed of ESMFold is essential. Using a more computationally intensive predictor,
such as AlphaFold2 (Jumper et al., 2021), would make the benchmark prohibitively expensive and
inaccessible for many researchers, whereas ESMFold offers a balance of speed and precision (Hýskova
et al., 2025). Our choice is also consistent with established validation pipelines, e.g. MotifBench
(Zheng et al., 2025) benchmark. While all predictors have inherent biases, and discrepancies can arise
between methods, adhering to a single, widely-adopted standard provides the most stable foundation
for comparing models. Most importantly, a cornerstone of GeomMotif’s design is ensuring every
task is solvable by the evaluation pipeline itself. We guarantee this by pre-filtering our source PDBs,
keeping only structures that ESMFold can accurately fold (RMSD ≤ 1.0 Å). This critical step ensures
our benchmark rigorously tests the generative model’s capabilities, not the limitations of the validation
tool.

F RATIONALE FOR THRESHOLD SELECTION

The construction and evaluation pipelines of GeomMotif rely on several key numerical thresholds.
These values are grounded in established community standards, biophysical principles, and internal
validation to ensure our benchmark is robust and interpretable. This section provides a concise
justification for these choices.

F.1 RMSD THRESHOLD FOR GEOMETRIC FIDELITY (1.0 Å)

A Root Mean Square Deviation (RMSD) threshold of 1.0 Å is used for two purposes: first, to select
solvable tasks during benchmark construction, and second, to define success in geometric preservation
for generated designs. The choice of this value is supported by several lines of evidence:

• Community Standard. RMSD threshold of 1.0 Å aligns with the precision demanded by
other benchmarks in protein design. For instance, MotifBench employs a 1.0 Å threshold to
demand “atomic precision” (Zheng et al., 2025), and the original RFdiffusion benchmark
uses identical criteria as ”stringent filters indicative of experimental success” validated
against experimental outcomes (Watson et al., 2023).

• Biophysical Plausibility. This value reflects the upper limit of natural protein flexibility.
Analyses of identical protein structures from different PDB entries show inherent RMSD
variations up to 1.2 Å, while molecular dynamics simulations indicate that stable regions
maintain an RMSD of approximately 1.0 Å (Kufareva & Abagyan, 2012; Maruyama et al.,
2023). Our threshold thus ensures that benchmark tasks represent geometrically achievable
conformations.

• Guaranteed Solvability. By pre-filtering our initial PDB set to include only structures
that ESMFold predicts with an RMSD ≤ 1.0 Å relative to the experimental ground truth,
we guarantee that every task in GeomMotif has at least one known solution verifiable by
our evaluation pipeline. This addresses a key limitation in prior benchmarks where task
solvability was uncertain.

F.2 TM-SCORE THRESHOLDS FOR STRUCTURAL SIMILARITY (0.5 AND 0.8)

Two distinct TM-score thresholds are employed to assess structural similarity, consistent with
established conventions in structural biology.

• TM-score ≥ 0.5 (for Task Construction). During the construction of the GeomMotif
dataset, a TM-score of 0.5 was used to cluster proteins. This is a widely accepted standard
for determining if two proteins share the same fold, ensuring that our benchmark samples
from a structurally diverse set of protein architectures (Zhang, 2005; Xu & Zhang, 2010).

• TM-score ≤ 0.8 (for Novelty and Uniqueness). In our evaluation pipeline, a more stringent
threshold of 0.8 is used to define both novelty and uniqueness. A TM-score above 0.8
indicates that two proteins are highly likely to belong to the same folding family (Zhang &
Zhang, 2025; Xu & Zhang, 2010; Zheng et al., 2024; He et al., 2023). This cutoff allows
us to distinguish between genuinely new structural variations and minor deviations from
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known or previously generated structures. The robustness of this choice was confirmed
through a sensitivity analysis where varying the threshold between 0.7 and 0.9 did not alter
the relative performance rankings of the evaluated models.

F.3 STRUCTURE PREDICTION CONFIDENCE (PLDDT ≥ 70)

For a generated design to be deemed “Successful”, it must not only preserve the motif geometry
(RMSD < 1.0 Å) but also form a well-structured scaffold, as indicated by a high prediction confidence
score (pLDDT ≥ 70) from ESMFold. This dual criterion ensures that the preserved motif is embedded
within a physically plausible protein structure, filtering out designs that may be disordered or
misfolded. The use of confidence scores as a filter for designability is a standard quality control step
in the field that correlates with experimental success rates (Hermosilla et al., 2024; Hýskova et al.,
2025).

F.4 TASK CONSTRUCTION THRESHOLDS

The thresholds used during the construction of GeomMotif tasks were chosen to balance several
competing design goals: ensuring tasks are sufficiently complex to be challenging, maintaining broad
structural diversity, and keeping them computationally tractable within our framework.

• Motif Definition (13 Å Radius). A 13 Å radius was selected to define the spatial extent of
a motif. This value was determined empirically to provide an optimal trade-off. Smaller
radii (e.g., 10 Å) often captured insufficient structural context, resulting in motifs that were
too simple. Conversely, larger radii tended to encompass a disproportionate fraction of
the total protein (which is capped at 250 residues), limiting the scope for de novo scaffold
generation. The 13 Å radius consistently produced motifs with meaningful tertiary structure
while leaving a substantial portion of the protein to be generated.

• Motif Size Filter (>30 Residues). We excluded motifs containing fewer than 30 residues
to establish a baseline of geometric complexity. Preliminary analysis showed that smaller
motifs were frequently composed of simple surface features or single contiguous fragments.
Setting a minimum size of 30 residues ensures that every task presents a non-trivial challenge,
often involving multiple sequence fragments that must be correctly oriented.

• Paired Motif Separation (≥30 Å). For paired-motif tasks, a minimum distance of 30
Å between motif centers was required. This ensures that the two motifs are spatially
distinct and do not directly interact. This separation forces generative models to construct a
substantial and structurally coherent scaffold to bridge the two fixed regions, directly testing
their ability to handle long-range geometric constraints. The value was chosen to be safely
greater than the sum of two motif radii (13 Å + 13 Å = 26 Å), guaranteeing a clear gap
between them.
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G COMPLETE SPECIFICATION OF ALL BENCHMARK TASKS

Table 4: Comprehensive listing of GeomMotif benchmark tasks. Complete specification of all 57 bench-
mark tasks, including interval notation for each task. The notation follows the RFdiffusion contig format:
p1,m1, p2,m2, ...,mn, pn+1, where pi represents ranges for generated residues and mi represents motif
constraints. Total protein length must fall within the specified range. This rigorous task definition ensures
reproducibility and standardization across model evaluations.

Single Motifs
Entry Contigs Length

1 5OJ8 16-30,A24-54,109-203 156-250
2 1TKY 12-22,A18-47,124-230 166-250
3 5XJ7 83-153,A119-152,28-52 145-239
4 6KFQ 55-101,A79-109,84-156 170-250
5 5URP 22-42,A33-67,94-174 151-250
6 5XJ7 12-22,A18-26,8-16,A39-59,93-173 143-241
7 5OJ8 3-4,A4-32,11-19,A48-57,107-199 160-250
8 1M2G 29-55,A43-68,57-107,A151-156,65-121 183-250
9 5CWP 127-235,A182-194,4-8,A201-217,8-16 169-250
10 6FFV 15-27,A22-31,21-39,A62-81,79-147 145-243
11 1Z6N 22-40,A32-50,16-30,A74-83,46-86,A150-156,7-13 127-205
12 3P2W 0-1,A1-13,107-199,A167-175,22-42,A208-217,2-3 163-250
13 6KFQ 13-23,A19-27,3-4,A31-39,118-220,A209-227,2-3 173-250
14 4BJI 18-34,A27-52,6-10,A61-70,8-14,A82-85,74-138 146-236
15 1A2J 46-86,A67-79,5-9,A87-96,5-9,A104-115,51-95 142-234
16 3PR9 58-108,A84-93,9-17,A107-111,2-3,A114-122,2-3,A125-130,14-26 115-187
17 4GVW 14-26,A21-23,3-5,A28-31,8-14,A43-62,13-25,A82-98,66-122 148-236
18 4LQ4 41-75,A59-63,10-18,A78-80,7-13,A91-106,8-14,A118-124,61-113 158-250
19 1M2G 43-81,A63-74,27-51,A114-123,4-8,A130-133,13-23,A152-157,64-120 183-250
20 3L86 9-17,A14-29,3-7,A35-37,30-56,A81-98,28-52,A139-142,72-134 183-250
21 1TKY 55-101,A79-81,14-26,A102-108,31-57,A153-156,30-56,A200-208,3-5,A213-220,3-5 167-250
22 6TCS 3-4,A4-11,5-9,A19-25,8-14,A37-39,19-35,A67-79,7-13,A90-93,97-181 174-250
23 1SGW 2-3,A3-11,3-4,A15-24,12-22,A42-44,6-12,A54-58,94-174,A193-200,0-1 152-250
24 6OU0 3-5,A5-13,122-226,A188-191,11-19,A207-211,10-18,A226-230,4-8,A237-243,1-2 181-250
25 4F3H 13-25,A20-26,8-16,A39-46,3-5,A51-54,11-19,A70-82,8-14,A94-97,105-195 184-250
26 1GIU 0-1,A1-5,8-14,A17-24,15-29,A47-53,3-7,A59-66,3-4,A70-76,56-104,A157-159,62-114 185-250
27 4LQ4 1-2,A2-10,11-19,A26-30,83-153,A149-152,5-9,A160-166,3-4,A170-186,8-16,A199-202,6-12 163-250
28 6TCS 90-168,A130-137,5-9,A145-149,8-16,A162-163,12-22,A181-185,2-3,A188-193,8-14,A205-209,16-30 172-250
29 2LAO 63-117,A91-95,13-25,A115-118,1-2,A120-123,24-44,A158-170,6-12,A180-181,1-2,A183-186,36-68 176-250
30 6TCS 12-22,A18-24,8-16,A37-41,16-30,A65-71,2-3,A74-80,6-10,A89-93,8-14,A105-108,87-161 174-250
31 1GIU 0-1,A1-4,29-55,A47-53,3-7,A59-66,3-4,A70-77,1-2,A79-83,48-90,A153-155,1-2,A157-159,62-114 185-250
32 1GBG 50-94,A73-77,9-17,A91-92,9-17,A106-109,6-10,A118-122,6-10,A131-134,8-14,A146-152,2-3,A155-169,31-59 163-250
33 6TCS 89-165,A128-134,8-16,A147-150,6-12,A160-161,12-22,A179-184,3-5,A189-195,5-9,A203-207,12-22,A225-229,3-4 174-250
34 6TCS 3-4,A4-13,3-5,A18-24,9-17,A38-41,17-31,A66-70,3-4,A74-80,5-9,A88-93,8-14,A105-109,86-160 178-250
35 1A2J 40-74,A58-61,3-7,A67-85,1-2,A87-89,1-2,A91-93,7-13,A104-113,5-9,A121-127,2-3,A130-136,36-68 148-231

Paired Motifs
Entry Contigs Length

1 5CWP 10-18,A15-45,20-38,A75-77,73-135,A182-213,11-21 180-250
2 5CWN 5-9,A8-37,6-12,A47-57,21-39,A88-109,69-127 164-250
3 4K46 1-2,A2-7,16-30,A31-64,27-51,A104-110,47-87,A178-196,13-23 170-250
4 5XJ7 0-1,A1-14,33-61,A62-74,3-5,A79-88,21-39,A119-152,28-52 156-229
5 5OJ8 3-4,A4-32,11-19,A48-57,67-125,A154-180,12-22,A198-200,7-13 169-250
6 2ZE5 50-94,A73-82,8-16,A95-114,9-17,A128-144,39-71,A200-212,11-19 177-250
7 1DEX 30-56,A44-58,32-60,A105-120,34-62,A169-188,7-13,A199-208,17-33 181-250
8 1IS1 13-23,A19-21,13-23,A40-51,11-19,A67-84,20-38,A114-130,25-47,A167-176,6-12 148-222
9 6KFQ 3-7,A6-22,11-19,A38-51,41-75,A110-139,27-49,A178-184,17-31,A209-211,13-23 183-250
10 5DN1 5-9,A8-20,20-36,A49-71,40-74,A129-136,6-10,A145-157,16-30,A181-189,36-66 189-250
11 6KFQ 1-2,A2-18,15-29,A41-54,19-35,A82-97,32-60,A144-168,22-42,A201-203,18-34 182-250
12 1HU3 7-13,A11-21,3-5,A26-34,20-36,A63-73,27-49,A112-124,14-26,A145-165,22-40 158-234
13 4BJI 17-31,A25-39,11-19,A55-69,22-40,A101-103,22-40,A135-139,11-21,A156-170,7-13,A181-187,3-5 153-229
14 5KZL 1-2,A2-11,15-27,A33-47,23-43,A81-86,7-13,A97-100,48-90,A170-189,8-14,A201-205,0-1 162-250
15 4LQ4 18-34,A27-33,31-59,A79-99,10-18,A114-123,24-44,A158-164,11-21,A181-186,4-8,A193-202,6-12 165-250
16 1SGW 1-2,A2-10,4-8,A17-25,20-38,A55-66,13-25,A86-96,4-8,A103-114,13-23,A133-140,42-78 158-243
17 1BOL 50-92,A72-91,27-49,A130-139,13-25,A159-171,4-8,A178-183,1-2,A185-190,17-31,A215-219,3-4 175-250
18 6W5B 1-2,A2-19,9-17,A33-38,3-4,A42-45,21-39,A76-79,6-10,A88-104,10-18,A119-127,1-2,A129-132,27-49 140-203
19 1Q0S 37-69,A54-71,19-35,A99-105,23-43,A139-148,13-25,A168-171,10-18,A186-202,3-5,A207-210,6-12,A220-228,9-17 189-250
20 4GVW 0-1,A1-7,4-8,A14-19,17-31,A44-66,10-18,A81-88,4-8,A95-98,51-95,A172-176,1-2,A178-189,3-4 155-232
21 3OSX 15-27,A22-26,21-39,A57-60,6-12,A70-87,7-13,A98-108,17-33,A134-137,8-14,A149-164,10-18,A179-185,3-7 152-228
22 1Z6N 2-3,A3-12,13-25,A32-50,6-10,A59-63,7-13,A74-83,3-7,A89-104,5-9,A112-115,24-44,A150-156,7-13 138-195
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H FIXED-LENGTH EVALUATION

To distinguish between genuine geometric understanding and potential memorization artifacts, we
conduct our evaluation in two complementary settings. The primary variable-length evaluation
presented in the main text Sec. 4 allows biologically reasonable length variations for scaffold regions
while preserving fixed motif geometry. This reflects realistic protein design scenarios where the total
protein length is not predetermined. However, this flexibility introduces a potential confound: models
might fail not due to geometric constraints but due to difficulties in determining appropriate scaffold
lengths.

Our secondary fixed-length evaluation addresses this concern by constraining generated proteins to
match the ground truth length exactly. This controlled setting serves two critical purposes. First, it
provides 100% guaranteed solvability since the target length is known to produce a valid fold. Second,
it isolates geometric preservation capabilities from length prediction, revealing whether models can
solve the scaffolding problem when this additional complexity is removed. Comparing performance
across these two settings helps identify whether model limitations stem from fundamental geometric
reasoning deficits or from the additional challenge of length optimization. Models that perform well
in fixed-length but poorly in variable-length scenarios may benefit from improved length prediction
mechanisms, while consistent poor performance across both settings indicates deeper architectural
limitations in geometric understanding.

Table 5: Fixed-length evaluation. Detailed breakdown of the SUN metric into its constituent components
(Success, Novelty, Uniqueness) for single and paired motif tasks.

Model Successful, % ↑ Novel, % ↑ Unique, % ↑ SUN Score ↑
Single Paired Single Paired Single Paired Single Paired

Genie2 61.6 ± 0.5 36.0 ± 0.6 61.6 ± 0.5 27.8 ± 0.6 61.1 ± 0.5 18.9 ± 0.3 61.1 ± 0.5 17.2 ± 0.3

RFdiffusion 76.4 ± 0.6 54.0 ± 0.4 76.4 ± 0.6 27.2 ± 0.5 70.9 ± 0.5 11.7 ± 0.2 70.9 ± 0.5 7.1 ± 0.2

FrameFlow 33.0 ± 0.7 34.3 ± 0.7 33.0 ± 0.7 22.4 ± 0.8 33.0 ± 0.7 27.1 ± 0.6 33.0 ± 0.7 17.8 ± 0.7

DPLM-3B 46.3 ± 0.6 47.2 ± 0.9 18.9 ± 0.2 0.0 ± 0.0 9.3 ± 0.2 0.0 ± 0.0 6.8 ± 0.1 0.0 ± 0.0

DPLM-650M 40.2 ± 0.3 36.7 ± 0.3 15.3 ± 0.3 0.6 ± 0.1 10.2 ± 0.2 0.5 ± 0.0 5.7 ± 0.1 0.1 ± 0.0

ESM3 (seq) 42.2 ± 0.3 36.5 ± 0.4 16.5 ± 0.4 0.9 ± 0.2 21.9 ± 0.2 0.6 ± 0.1 8.2 ± 0.3 0.5 ± 0.1

ESM3 (seq & struct) 70.2 ± 0.2 68.4 ± 0.4 27.4 ± 0.4 2.7 ± 0.2 42.7 ± 0.1 5.2 ± 0.1 17.1 ± 0.3 1.4 ± 0.1

In the fixed-length experiment, providing the model with the exact ground-truth protein length
simplifies the generative task. This controlled setting reveals distinct behaviors between model
architectures.

The performance of structure-based models shows a commensurate increase in both raw Success
rates and final SUN scores. This parallel improvement indicates that the performance gain is not
simply an artifact of memorization but rather a result of isolating the geometric scaffolding challenge
from the separate complexity of length prediction.

In contrast, sequence-based models exhibit a large increase in their Success rates but only a modest
improvement in their SUN scores. This pattern suggests that while these models are proficient at
completing a sequence within a known length constraint, they struggle to generate novel and diverse
structures, highlighting a limitation in their generalization capabilities.

This setting also reveals the potential of multimodal models. For instance, the ESM3 (seq & struct)
model, which performed poorly in the variable-length experiment, shows a substantial improvement
in its SUN score under fixed-length conditions, increasing from 1.4% to 9.25%. This suggests that
providing accurate structural constraints can significantly enhance the performance of models that
leverage both sequence and structure information.
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I BENCHMARKING TIME EVALUATION

To evaluate the computational requirements of running GeomMotif depending on model type, we run
the evaluation pipeline 5 times to calculate standard deviations. The results of the evaluation using 8
NVIDIA A100 GPUs are reported in Tab. 6.

Table 6: Computational requirements by model type.

Model Type Total Time (hours) ProteinMPNN scRMSD calc. pLDDT calc. Parsing

Sequence-based 0.77 ± 0.01 - - 0.64 ± 0.01 0.12 ± 0.01

Structure-based 6.03 ± 0.01 0.64 ± 0.01 4.93 ± 0.01 - 0.44 ± 0.01

Structure-based model evaluation requires approximately 8× longer than sequence-based models due
to the additional ProteinMPNN sequence design step, which necessitates 8 sequences per generated
structure followed by ESMFold prediction for each. Novelty and diversity calculations are identical
for both model types and require negligible additional time (under 10 minutes total). We will include
comprehensive computational requirements and runtime analysis in the revised appendix to facilitate
benchmark reproduction.
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J MODEL-SPECIFIC PERFORMANCE ACROSS ALL TASKS

Table 7: Model-specific performance on single-motif tasks. Detailed SUN scores for each model across
all benchmark tasks, organized by fragment complexity (1-7 fragments). Values represent the percentage
of successful, unique, and novel protein structures generated per 100 attempts. This granular performance
breakdown reveals task-specific strengths and weaknesses of different architectural approaches.

#Frags Entry Genie2 RFdiffusion FrameFlow DPLM-3B DPLM-650M ESM3 (seq) ESM3 (seq & struct)
1 1 5OJ8 100.0 ± 0.0 98.0 ± 0.0 80.0 ± 6.9 11.0 ± 0.0 11.0 ± 0.0 18.2 ± 0.2 39.2 ± 4.5

2 1TKY 4.4 ± 1.4 80.6 ± 2.2 22.0 ± 2.8 3.8 ± 0.3 11.5 ± 1.7 27.7 ± 2.6 1.6 ± 0.8

3 5XJ7 100.0 ± 0.0 99.0 ± 0.0 86.0 ± 1.9 1.6 ± 1.4 4.1 ± 0.8 4.9 ± 0.5 0.0 ± 0.0

4 6KFQ 94.2 ± 1.9 99.4 ± 0.5 62.8 ± 3.4 3.3 ± 0.7 1.7 ± 0.7 9.2 ± 1.6 0.0 ± 0.0

5 5URP 81.0 ± 4.9 83.4 ± 3.8 55.2 ± 3.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

2 6 5XJ7 85.8 ± 2.4 91.6 ± 1.5 38.8 ± 2.5 0.6 ± 0.5 0.0 ± 0.0 30.5 ± 1.2 3.2 ± 2.0

7 5OJ8 99.2 ± 0.4 93.8 ± 0.7 92.0 ± 2.8 5.6 ± 0.3 7.7 ± 0.6 5.7 ± 1.4 0.0 ± 0.0

8 1M2G 56.8 ± 2.6 41.8 ± 8.0 4.6 ± 1.4 0.0 ± 0.0 0.0 ± 0.0 3.1 ± 0.6 0.0 ± 0.0

9 5CWP 97.4 ± 0.5 96.6 ± 1.0 65.4 ± 3.6 8.0 ± 2.1 2.2 ± 1.8 0.0 ± 0.0 10.6 ± 3.1

10 6FFV 40.2 ± 3.1 40.2 ± 4.5 9.4 ± 0.8 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

3 11 1Z6N 92.2 ± 1.7 61.3 ± 1.3 55.0 ± 6.2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

12 3P2W 71.2 ± 4.2 84.0 ± 5.2 53.8 ± 4.8 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

13 6KFQ 83.0 ± 2.3 84.3 ± 1.2 18.8 ± 2.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

14 4BJI 87.0 ± 2.7 94.0 ± 2.1 66.6 ± 6.2 10.4 ± 1.4 4.8 ± 1.8 5.0 ± 3.3 2.0 ± 0.0

15 1A2J 95.4 ± 2.7 96.0 ± 3.0 67.0 ± 8.7 1.8 ± 0.7 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

4 16 3PR9 17.4 ± 2.7 69.2 ± 2.5 36.0 ± 2.3 14.7 ± 4.6 4.2 ± 1.6 7.8 ± 2.8 0.0 ± 0.0

17 4GVW 38.6 ± 4.3 44.0 ± 2.1 5.4 ± 2.4 0.0 ± 0.0 0.0 ± 0.0 1.8 ± 1.6 0.0 ± 0.0

18 4LQ4 59.2 ± 3.9 80.0 ± 2.3 33.0 ± 3.8 5.0 ± 2.2 4.0 ± 1.8 5.8 ± 1.9 0.0 ± 0.0

19 1M2G 14.0 ± 3.0 26.0 ± 4.2 3.6 ± 1.4 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

20 3L86 66.2 ± 4.9 63.8 ± 5.9 20.2 ± 5.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

5 21 1TKY 1.2 ± 0.4 2.8 ± 0.7 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

22 6TCS 39.2 ± 2.5 48.8 ± 6.0 13.6 ± 0.8 11.0 ± 2.1 6.8 ± 1.9 9.0 ± 1.7 0.0 ± 0.0

23 1SGW 22.8 ± 4.0 57.0 ± 4.3 8.8 ± 2.7 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

24 6OU0 34.0 ± 3.3 39.2 ± 2.8 7.2 ± 3.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

25 4F3H 61.0 ± 4.6 61.6 ± 3.6 15.2 ± 1.7 2.5 ± 1.3 0.7 ± 0.2 7.5 ± 1.5 0.0 ± 0.0

6 26 1GIU 40.0 ± 2.1 83.2 ± 2.2 11.8 ± 2.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

27 4LQ4 79.8 ± 2.0 77.4 ± 2.5 38.4 ± 4.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 1.0 ± 0.9

28 6TCS 61.0 ± 4.9 50.0 ± 6.2 12.6 ± 1.0 3.8 ± 2.2 1.2 ± 1.2 5.3 ± 1.0 0.0 ± 0.0

29 2LAO 4.8 ± 2.9 7.8 ± 3.4 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

30 6TCS 59.8 ± 3.2 56.0 ± 2.6 12.8 ± 3.7 34.2 ± 3.1 38.4 ± 5.6 31.7 ± 3.1 7.6 ± 1.9

7 31 1GIU 23.4 ± 5.4 37.8 ± 5.9 9.6 ± 3.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

32 1GBG 67.4 ± 3.8 33.2 ± 3.3 21.8 ± 2.6 3.5 ± 1.9 1.2 ± 0.7 4.8 ± 2.2 0.0 ± 0.0

33 6TCS 70.6 ± 2.7 49.7 ± 2.4 21.2 ± 3.4 18.6 ± 3.7 5.3 ± 1.7 17.1 ± 4.3 0.6 ± 0.5

34 6TCS 72.8 ± 4.9 16.4 ± 4.3 7.2 ± 2.5 31.2 ± 4.9 21.9 ± 5.3 29.5 ± 4.1 9.6 ± 1.2

35 1A2J 51.3 ± 3.5 49.4 ± 5.2 7.0 ± 1.4 0.8 ± 0.7 3.5 ± 0.5 4.2 ± 1.9 0.0 ± 0.0
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Table 8: Model-specific performance on paired-motif tasks. Detailed SUN scores for each model across
all benchmark tasks, organized by fragment complexity (3-7 fragments). Values represent the percentage of
successful, unique, and novel protein structures generated per 100 attempts.

#Frags Entry Genie2 RFdiffusion FrameFlow DPLM-3B DPLM-650M ESM3 (seq) ESM3 (seq & struct)
3 1 5CWP 6.8 ± 1.9 13.0 ± 1.7 52.9 ± 4.4 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

2 5CWN 75.1 ± 1.8 19.7 ± 1.7 70.5 ± 3.0 0.0 ± 0.0 0.0 ± 0.0 1.4 ± 1.4 0.0 ± 0.0

4 3 4K46 21.4 ± 2.2 22.2 ± 2.3 15.8 ± 3.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

4 5XJ7 56.9 ± 1.0 30.3 ± 1.1 22.0 ± 3.9 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

5 5OJ8 0.0 ± 0.0 5.4 ± 1.2 24.9 ± 3.9 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

6 2ZE5 50.6 ± 5.6 33.3 ± 2.2 16.6 ± 4.2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

7 1DEX 34.1 ± 7.0 20.4 ± 3.2 5.4 ± 2.7 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

5 8 1IS1 0.0 ± 0.0 0.8 ± 0.7 11.6 ± 2.9 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

9 6KFQ 36.3 ± 0.8 9.6 ± 2.8 20.2 ± 1.7 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

10 5DN1 17.2 ± 3.2 16.5 ± 1.5 20.5 ± 1.7 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

11 6KFQ 26.1 ± 2.2 4.2 ± 0.5 11.0 ± 2.3 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

12 1HU3 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

6 13 4BJI 0.0 ± 0.0 3.6 ± 1.4 1.2 ± 1.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

14 5KZL 9.8 ± 2.1 17.1 ± 2.7 21.6 ± 2.7 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

15 4LQ4 0.0 ± 0.0 7.8 ± 0.9 1.6 ± 1.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

16 1SGW 2.4 ± 0.5 29.2 ± 3.2 16.2 ± 2.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

17 1BOL 24.6 ± 2.9 15.1 ± 3.3 9.8 ± 1.5 11.4 ± 1.8 4.0 ± 1.3 0.0 ± 0.0 0.0 ± 0.0

7 18 6W5B 6.9 ± 1.8 9.9 ± 1.0 11.8 ± 2.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

19 1Q0S 17.8 ± 2.4 12.5 ± 1.1 8.7 ± 1.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

20 4GVW 21.0 ± 2.5 15.1 ± 1.5 19.2 ± 3.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

21 3OSX 5.9 ± 1.1 5.2 ± 1.4 2.4 ± 1.4 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

22 1Z6N 4.0 ± 1.1 0.0 ± 0.0 4.6 ± 1.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
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Table 9: Task-level metrics for RFdiffusion across all experiments.

#Frags Entry Experiment Successful, % ↑ Novel, % ↑ Unique, % ↑ SUN Score ↑
3 1 5CWP paired 84.8 ± 2.79 27.0 ± 6.03 48.9 ± 1.61 15.6 ± 3.5

2 5CWN paired 83.0 ± 3.58 40.6 ± 0.80 38.3 ± 1.65 18.7 ± 0.4

4 3 4K46 paired 25.8 ± 2.14 25.8 ± 2.14 22.6 ± 1.87 22.6 ± 1.9

4 5XJ7 paired 79.0 ± 2.45 79.0 ± 2.45 31.4 ± 0.97 31.4 ± 1.0

5 5OJ8 paired 20.8 ± 3.12 6.8 ± 2.32 13.0 ± 1.95 4.2 ± 1.4

6 2ZE5 paired 41.8 ± 2.48 41.8 ± 2.48 38.5 ± 2.29 38.5 ± 2.3

7 1DEX paired 21.2 ± 4.26 21.2 ± 4.26 15.7 ± 3.15 15.7 ± 3.1

5 10 5DN1 paired 57.8 ± 4.26 44.6 ± 4.54 22.0 ± 1.62 17.0 ± 1.7

11 6KFQ paired 84.4 ± 3.44 8.8 ± 0.98 42.2 ± 1.72 4.4 ± 0.5

12 1HU3 paired 0.0 ± 0.00 0.0 ± 0.00 0.0 ± 0.00 0.0 ± 0.0

8 1IS1 paired 13.6 ± 3.72 0.6 ± 0.49 13.6 ± 3.72 0.6 ± 0.5

9 6KFQ paired 94.0 ± 2.00 28.8 ± 2.79 32.5 ± 0.69 10.0 ± 1.0

6 13 4BJI paired 2.6 ± 1.20 2.6 ± 1.20 2.6 ± 1.20 2.6 ± 1.2

14 5KZL paired 54.2 ± 5.27 45.4 ± 5.61 19.5 ± 1.90 16.3 ± 2.0

15 4LQ4 paired 8.2 ± 3.49 8.2 ± 3.49 7.3 ± 3.10 7.3 ± 3.1

16 1SGW paired 38.2 ± 4.31 38.2 ± 4.31 29.4 ± 3.31 29.4 ± 3.3

17 1BOL paired 14.0 ± 3.69 14.0 ± 3.69 13.2 ± 3.47 13.2 ± 3.5

7 18 6W5B paired 30.4 ± 5.54 29.2 ± 5.91 9.8 ± 1.79 9.4 ± 1.9

19 1Q0S paired 39.0 ± 7.40 39.0 ± 7.40 14.5 ± 2.75 14.5 ± 2.7

20 4GVW paired 42.6 ± 3.83 42.6 ± 3.83 14.2 ± 1.28 14.2 ± 1.3

21 3OSX paired 22.4 ± 5.16 10.0 ± 3.90 10.2 ± 2.35 4.5 ± 1.8

22 1Z6N paired 87.8 ± 2.48 0.0 ± 0.00 0.0 ± 0.00 0.0 ± 0.0

1 1 5OJ8 single 100.0 ± 0.00 100.0 ± 0.00 98.0 ± 0.00 98.0 ± 0.0

2 1TKY single 79.4 ± 3.38 79.4 ± 3.38 79.4 ± 3.38 79.4 ± 3.4

3 5XJ7 single 100.0 ± 0.00 100.0 ± 0.00 99.0 ± 0.00 99.0 ± 0.0

4 6KFQ single 97.8 ± 0.75 97.8 ± 0.75 97.8 ± 0.75 97.8 ± 0.7

5 5URP single 82.2 ± 3.54 82.2 ± 3.54 82.2 ± 3.54 82.2 ± 3.5

2 10 6FFV single 34.8 ± 4.17 34.8 ± 4.17 34.8 ± 4.17 34.8 ± 4.2

6 5XJ7 single 93.0 ± 2.10 93.0 ± 2.10 93.0 ± 2.10 93.0 ± 2.1

7 5OJ8 single 98.0 ± 0.89 98.0 ± 0.89 93.1 ± 0.85 93.1 ± 0.8

8 1M2G single 41.6 ± 5.50 41.6 ± 5.50 41.6 ± 5.50 41.6 ± 5.5

9 5CWP single 99.0 ± 0.63 99.0 ± 0.63 97.0 ± 0.62 97.0 ± 0.6

3 11 1Z6N single 77.8 ± 4.92 77.8 ± 4.92 63.5 ± 4.01 63.5 ± 4.0

12 3P2W single 87.0 ± 1.67 87.0 ± 1.67 83.0 ± 1.60 83.0 ± 1.6

13 6KFQ single 93.8 ± 2.04 93.8 ± 2.04 86.7 ± 1.89 86.7 ± 1.9

14 4BJI single 96.0 ± 2.19 96.0 ± 2.19 95.0 ± 2.17 95.0 ± 2.2

15 1A2J single 96.4 ± 1.85 96.4 ± 1.85 96.4 ± 1.85 96.4 ± 1.9

4 16 3PR9 single 70.8 ± 3.97 70.8 ± 3.97 70.8 ± 3.97 70.8 ± 4.0

17 4GVW single 62.8 ± 2.93 62.8 ± 2.93 42.8 ± 1.99 42.8 ± 2.0

18 4LQ4 single 91.4 ± 0.80 91.4 ± 0.80 79.5 ± 0.70 79.5 ± 0.7

19 1M2G single 24.8 ± 3.06 24.8 ± 3.06 24.8 ± 3.06 24.8 ± 3.1

20 3L86 single 64.0 ± 2.37 64.0 ± 2.37 62.1 ± 2.30 62.1 ± 2.3

5 21 1TKY single 1.6 ± 0.80 1.6 ± 0.80 1.6 ± 0.80 1.6 ± 0.8

22 6TCS single 47.8 ± 4.87 47.8 ± 4.87 47.8 ± 4.87 47.8 ± 4.9

23 1SGW single 52.2 ± 1.94 52.2 ± 1.94 52.2 ± 1.94 52.2 ± 1.9

24 6OU0 single 41.4 ± 4.27 41.4 ± 4.27 41.4 ± 4.27 41.4 ± 4.3

25 4F3H single 71.0 ± 1.10 71.0 ± 1.10 65.7 ± 1.01 65.7 ± 1.0

6 26 1GIU single 82.4 ± 2.33 82.4 ± 2.33 82.4 ± 2.33 82.4 ± 2.3

27 4LQ4 single 78.8 ± 3.71 78.8 ± 3.71 77.8 ± 3.66 77.8 ± 3.7

28 6TCS single 50.4 ± 3.88 50.4 ± 3.88 50.4 ± 3.88 50.4 ± 3.9

29 2LAO single 7.4 ± 3.01 7.4 ± 3.01 7.4 ± 3.01 7.4 ± 3.0

30 6TCS single 54.4 ± 4.22 54.4 ± 4.22 54.4 ± 4.22 54.4 ± 4.2

7 31 1GIU single 38.2 ± 8.28 38.2 ± 8.28 38.2 ± 8.28 38.2 ± 8.3

32 1GBG single 37.8 ± 4.35 37.8 ± 4.35 32.5 ± 3.75 32.5 ± 3.7

33 6TCS single 54.2 ± 4.66 54.2 ± 4.66 53.2 ± 4.58 53.2 ± 4.6

34 6TCS single 14.4 ± 3.38 14.4 ± 3.38 14.4 ± 3.38 14.4 ± 3.4

35 1A2J single 60.4 ± 2.65 60.4 ± 2.65 50.7 ± 2.23 50.7 ± 2.2
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Table 10: Entry-level metrics for Genie2 across all experiments.

#Frags Entry Experiment Success Rate Novel Success (%) Unique Clusters SUN Score
3 1 5CWP paired 4.2 ± 2.1 4.2 ± 2.1 4.2 ± 2.1 4.2 ± 2.1

2 5CWN paired 91.6 ± 1.6 91.6 ± 1.6 74.3 ± 1.3 74.3 ± 1.3

4 3 4K46 paired 23.8 ± 2.1 23.8 ± 2.1 23.8 ± 2.1 23.8 ± 2.1

4 5XJ7 paired 90.8 ± 2.5 90.8 ± 2.5 56.5 ± 1.5 56.5 ± 1.5

5 5OJ8 paired 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

6 2ZE5 paired 53.0 ± 5.4 53.0 ± 5.4 49.1 ± 5.0 49.1 ± 5.0

7 1DEX paired 30.0 ± 5.2 30.0 ± 5.2 28.3 ± 4.9 28.3 ± 4.9

5 10 5DN1 paired 19.0 ± 2.8 19.0 ± 2.8 16.1 ± 2.3 16.1 ± 2.3

11 6KFQ paired 90.2 ± 1.7 42.6 ± 2.2 55.5 ± 1.1 26.2 ± 1.3

12 1HU3 paired 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

8 1IS1 paired 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

9 6KFQ paired 97.0 ± 0.9 97.0 ± 0.9 37.4 ± 0.3 37.4 ± 0.3

6 13 4BJI paired 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

14 5KZL paired 14.8 ± 5.5 14.8 ± 5.5 10.9 ± 4.0 10.9 ± 4.0

15 4LQ4 paired 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

16 1SGW paired 2.4 ± 1.0 2.4 ± 1.0 2.4 ± 1.0 2.4 ± 1.0

17 1BOL paired 22.2 ± 4.0 22.2 ± 4.0 22.2 ± 4.0 22.2 ± 4.0

7 18 6W5B paired 12.2 ± 3.9 12.2 ± 3.9 8.1 ± 2.6 8.1 ± 2.6

19 1Q0S paired 21.8 ± 6.1 21.8 ± 6.1 18.2 ± 5.0 18.2 ± 5.0

20 4GVW paired 40.0 ± 6.4 39.6 ± 6.6 22.4 ± 3.6 22.2 ± 3.7

21 3OSX paired 13.2 ± 1.7 13.2 ± 1.7 7.2 ± 0.9 7.2 ± 0.9

22 1Z6N paired 88.6 ± 3.3 7.2 ± 1.6 49.2 ± 1.8 4.0 ± 0.9

1 1 5OJ8 single 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0

2 1TKY single 4.8 ± 1.9 4.8 ± 1.9 4.8 ± 1.9 4.8 ± 1.9

3 5XJ7 single 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0

4 6KFQ single 92.8 ± 2.0 92.8 ± 2.0 92.8 ± 2.0 92.8 ± 2.0

5 5URP single 81.6 ± 3.5 81.6 ± 3.5 81.6 ± 3.5 81.6 ± 3.5

2 10 6FFV single 41.8 ± 2.9 41.8 ± 2.9 41.8 ± 2.9 41.8 ± 2.9

6 5XJ7 single 87.6 ± 1.6 87.6 ± 1.6 87.6 ± 1.6 87.6 ± 1.6

7 5OJ8 single 99.0 ± 0.6 99.0 ± 0.6 99.0 ± 0.6 99.0 ± 0.6

8 1M2G single 54.8 ± 2.5 54.8 ± 2.5 54.8 ± 2.5 54.8 ± 2.5

9 5CWP single 97.0 ± 1.1 97.0 ± 1.1 97.0 ± 1.1 97.0 ± 1.1

3 11 1Z6N single 89.4 ± 0.5 89.4 ± 0.5 89.4 ± 0.5 89.4 ± 0.5

12 3P2W single 73.6 ± 0.5 73.6 ± 0.5 73.6 ± 0.5 73.6 ± 0.5

13 6KFQ single 83.8 ± 2.0 83.8 ± 2.0 83.8 ± 2.0 83.8 ± 2.0

14 4BJI single 91.2 ± 3.5 91.2 ± 3.5 90.2 ± 3.5 90.2 ± 3.5

15 1A2J single 94.0 ± 2.4 94.0 ± 2.4 94.0 ± 2.4 94.0 ± 2.4

4 16 3PR9 single 12.6 ± 3.3 12.6 ± 3.3 12.6 ± 3.3 12.6 ± 3.3

17 4GVW single 35.2 ± 5.4 35.2 ± 5.4 35.2 ± 5.4 35.2 ± 5.4

18 4LQ4 single 63.4 ± 5.3 63.4 ± 5.3 63.4 ± 5.3 63.4 ± 5.3

19 1M2G single 7.2 ± 2.4 7.2 ± 2.4 7.2 ± 2.4 7.2 ± 2.4

20 3L86 single 59.8 ± 2.6 59.8 ± 2.6 59.8 ± 2.6 59.8 ± 2.6

5 21 1TKY single 1.0 ± 0.9 1.0 ± 0.9 1.0 ± 0.9 1.0 ± 0.9

22 6TCS single 45.6 ± 3.4 45.6 ± 3.4 45.6 ± 3.4 45.6 ± 3.4

23 1SGW single 21.4 ± 3.1 21.4 ± 3.1 21.4 ± 3.1 21.4 ± 3.1

24 6OU0 single 37.8 ± 4.4 37.8 ± 4.4 37.8 ± 4.4 37.8 ± 4.4

25 4F3H single 56.8 ± 3.4 56.8 ± 3.4 56.8 ± 3.4 56.8 ± 3.4

6 26 1GIU single 40.6 ± 5.0 40.6 ± 5.0 40.6 ± 5.0 40.6 ± 5.0

27 4LQ4 single 86.2 ± 3.1 86.2 ± 3.1 85.2 ± 3.0 85.2 ± 3.0

28 6TCS single 57.4 ± 2.1 57.4 ± 2.1 57.4 ± 2.1 57.4 ± 2.1

29 2LAO single 7.4 ± 1.5 7.4 ± 1.5 7.4 ± 1.5 7.4 ± 1.5

30 6TCS single 56.2 ± 2.7 56.2 ± 2.7 56.2 ± 2.7 56.2 ± 2.7

7 31 1GIU single 24.8 ± 5.1 24.8 ± 5.1 24.8 ± 5.1 24.8 ± 5.1

32 1GBG single 66.6 ± 3.8 66.6 ± 3.8 66.6 ± 3.8 66.6 ± 3.8

33 6TCS single 66.0 ± 2.8 66.0 ± 2.8 66.0 ± 2.8 66.0 ± 2.8

34 6TCS single 74.4 ± 4.6 74.4 ± 4.6 74.4 ± 4.6 74.4 ± 4.6

35 1A2J single 56.6 ± 3.4 56.6 ± 3.4 55.6 ± 3.3 55.6 ± 3.3
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Table 11: Entry-level metrics for FrameFlow across all experiments.

#Frags Entry Experiment Success Rate Novel Success (%) Unique Clusters SUN Score
3 1 5CWP paired 55.4 ± 1.9 55.4 ± 1.9 51.4 ± 1.7 51.4 ± 1.7

2 5CWN paired 82.6 ± 3.0 80.6 ± 3.2 77.2 ± 2.8 75.4 ± 3.0

4 3 4K46 paired 13.8 ± 3.9 13.8 ± 3.9 13.8 ± 3.9 13.8 ± 3.9

4 5XJ7 paired 24.2 ± 3.4 24.2 ± 3.4 24.2 ± 3.4 24.2 ± 3.4

5 5OJ8 paired 49.0 ± 4.3 35.0 ± 5.8 36.4 ± 3.2 26.0 ± 4.3

6 2ZE5 paired 14.8 ± 3.1 14.8 ± 3.1 14.8 ± 3.1 14.8 ± 3.1

7 1DEX paired 5.2 ± 2.7 5.2 ± 2.7 5.2 ± 2.7 5.2 ± 2.7

5 10 5DN1 paired 38.6 ± 3.1 24.0 ± 2.2 27.2 ± 2.2 16.9 ± 1.5

11 6KFQ paired 40.6 ± 4.8 20.2 ± 2.7 25.6 ± 3.1 12.8 ± 1.7

12 1HU3 paired 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

8 1IS1 paired 13.2 ± 1.5 11.2 ± 1.2 13.2 ± 1.5 11.2 ± 1.2

9 6KFQ paired 55.8 ± 2.8 34.6 ± 5.3 33.1 ± 1.7 20.5 ± 3.2

6 13 4BJI paired 0.6 ± 0.8 0.6 ± 0.8 0.6 ± 0.8 0.6 ± 0.8

14 5KZL paired 44.0 ± 3.8 32.6 ± 4.3 30.8 ± 2.7 22.8 ± 3.0

15 4LQ4 paired 0.6 ± 0.8 0.6 ± 0.8 0.6 ± 0.8 0.6 ± 0.8

16 1SGW paired 13.4 ± 4.9 13.4 ± 4.9 13.4 ± 4.9 13.4 ± 4.9

17 1BOL paired 10.8 ± 2.5 10.8 ± 2.5 10.8 ± 2.5 10.8 ± 2.5

7 18 6W5B paired 27.4 ± 3.6 25.6 ± 3.9 11.6 ± 1.5 10.8 ± 1.7

19 1Q0S paired 11.2 ± 2.7 11.2 ± 2.7 10.0 ± 2.4 10.0 ± 2.4

20 4GVW paired 28.2 ± 4.0 27.0 ± 4.3 18.8 ± 2.6 18.0 ± 2.9

21 3OSX paired 2.2 ± 0.7 2.2 ± 0.7 2.2 ± 0.7 2.2 ± 0.7

22 1Z6N paired 38.4 ± 1.0 4.8 ± 2.6 38.4 ± 1.0 4.8 ± 2.6

1 1 5OJ8 single 85.2 ± 2.2 85.2 ± 2.2 85.2 ± 2.2 85.2 ± 2.2

2 1TKY single 19.4 ± 4.1 19.4 ± 4.1 19.4 ± 4.1 19.4 ± 4.1

3 5XJ7 single 85.0 ± 2.6 85.0 ± 2.6 85.0 ± 2.6 85.0 ± 2.6

4 6KFQ single 60.8 ± 4.1 60.8 ± 4.1 60.8 ± 4.1 60.8 ± 4.1

5 5URP single 56.2 ± 5.0 56.2 ± 5.0 56.2 ± 5.0 56.2 ± 5.0

2 10 6FFV single 10.0 ± 2.2 10.0 ± 2.2 10.0 ± 2.2 10.0 ± 2.2

6 5XJ7 single 41.8 ± 5.9 41.8 ± 5.9 41.8 ± 5.9 41.8 ± 5.9

7 5OJ8 single 91.8 ± 2.4 91.8 ± 2.4 91.8 ± 2.4 91.8 ± 2.4

8 1M2G single 4.2 ± 2.1 4.2 ± 2.1 4.2 ± 2.1 4.2 ± 2.1

9 5CWP single 67.6 ± 1.7 67.6 ± 1.7 67.6 ± 1.7 67.6 ± 1.7

3 11 1Z6N single 58.4 ± 6.4 58.4 ± 6.4 58.4 ± 6.4 58.4 ± 6.4

12 3P2W single 55.4 ± 3.8 55.4 ± 3.8 55.4 ± 3.8 55.4 ± 3.8

13 6KFQ single 19.8 ± 2.5 19.8 ± 2.5 19.8 ± 2.5 19.8 ± 2.5

14 4BJI single 57.6 ± 2.3 57.6 ± 2.3 57.6 ± 2.3 57.6 ± 2.3

15 1A2J single 66.6 ± 2.6 66.6 ± 2.6 66.6 ± 2.6 66.6 ± 2.6

4 16 3PR9 single 43.0 ± 3.2 43.0 ± 3.2 43.0 ± 3.2 43.0 ± 3.2

17 4GVW single 8.2 ± 2.5 8.2 ± 2.5 8.2 ± 2.5 8.2 ± 2.5

18 4LQ4 single 31.6 ± 2.0 31.6 ± 2.0 31.6 ± 2.0 31.6 ± 2.0

19 1M2G single 1.6 ± 0.5 1.6 ± 0.5 1.6 ± 0.5 1.6 ± 0.5

20 3L86 single 20.8 ± 4.7 20.8 ± 4.7 20.8 ± 4.7 20.8 ± 4.7

5 21 1TKY single 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

22 6TCS single 13.8 ± 5.8 13.8 ± 5.8 13.8 ± 5.8 13.8 ± 5.8

23 1SGW single 10.2 ± 3.4 10.2 ± 3.4 10.2 ± 3.4 10.2 ± 3.4

24 6OU0 single 6.0 ± 1.8 6.0 ± 1.8 6.0 ± 1.8 6.0 ± 1.8

25 4F3H single 14.2 ± 3.8 14.2 ± 3.8 14.2 ± 3.8 14.2 ± 3.8

6 26 1GIU single 12.6 ± 2.2 12.6 ± 2.2 12.6 ± 2.2 12.6 ± 2.2

27 4LQ4 single 44.4 ± 2.3 44.4 ± 2.3 44.4 ± 2.3 44.4 ± 2.3

28 6TCS single 9.6 ± 1.9 9.6 ± 1.9 9.6 ± 1.9 9.6 ± 1.9

29 2LAO single 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

30 6TCS single 13.8 ± 2.7 13.8 ± 2.7 13.8 ± 2.7 13.8 ± 2.7

7 31 1GIU single 12.2 ± 2.1 12.2 ± 2.1 12.2 ± 2.1 12.2 ± 2.1

32 1GBG single 17.0 ± 4.7 17.0 ± 4.7 17.0 ± 4.7 17.0 ± 4.7

33 6TCS single 22.2 ± 2.8 22.2 ± 2.8 22.2 ± 2.8 22.2 ± 2.8

34 6TCS single 5.2 ± 2.3 5.2 ± 2.3 5.2 ± 2.3 5.2 ± 2.3

35 1A2J single 9.0 ± 2.8 9.0 ± 2.8 9.0 ± 2.8 9.0 ± 2.8
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Table 12: Entry-level metrics for DPLM-3B across all experiments.

#Frags Entry Experiment Success Rate Novel Success (%) Unique Clusters SUN Score
3 1 5CWP paired 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

2 5CWN paired 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

4 3 4K46 paired 38.6 ± 2.6 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

4 5XJ7 paired 23.6 ± 2.8 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

5 5OJ8 paired 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

6 2ZE5 paired 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

7 1DEX paired 1.0 ± 0.9 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

5 10 5DN1 paired 29.0 ± 4.9 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

11 6KFQ paired 0.6 ± 0.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

12 1HU3 paired 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

8 1IS1 paired 1.6 ± 0.8 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

9 6KFQ paired 66.0 ± 3.9 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

6 13 4BJI paired 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

14 5KZL paired 4.4 ± 1.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

15 4LQ4 paired 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

16 1SGW paired 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

17 1BOL paired 22.4 ± 1.9 19.8 ± 1.5 12.3 ± 1.0 10.9 ± 0.8

7 18 6W5B paired 53.6 ± 4.2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

19 1Q0S paired 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

20 4GVW paired 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

21 3OSX paired 2.6 ± 2.2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

22 1Z6N paired 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

1 1 5OJ8 single 100.0 ± 0.0 100.0 ± 0.0 11.0 ± 0.0 11.0 ± 0.0

2 1TKY single 100.0 ± 0.0 29.0 ± 6.9 14.3 ± 0.0 4.1 ± 1.0

3 5XJ7 single 70.8 ± 3.2 1.8 ± 1.7 70.8 ± 3.2 1.8 ± 1.7

4 6KFQ single 37.6 ± 6.6 6.0 ± 0.6 18.8 ± 3.3 3.0 ± 0.3

5 5URP single 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

2 10 6FFV single 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

6 5XJ7 single 2.4 ± 1.4 0.4 ± 0.5 2.4 ± 1.4 0.4 ± 0.5

7 5OJ8 single 45.0 ± 4.0 43.2 ± 4.0 6.3 ± 0.6 6.0 ± 0.6

8 1M2G single 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

9 5CWP single 3.8 ± 2.7 3.8 ± 2.7 3.8 ± 2.7 3.8 ± 2.7

3 11 1Z6N single 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

12 3P2W single 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

13 6KFQ single 17.2 ± 4.7 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

14 4BJI single 29.2 ± 2.8 14.8 ± 1.5 20.1 ± 1.9 10.2 ± 1.0

15 1A2J single 1.6 ± 0.8 1.0 ± 0.6 1.6 ± 0.8 1.0 ± 0.6

4 16 3PR9 single 77.2 ± 3.5 27.6 ± 2.3 42.6 ± 1.9 15.2 ± 1.3

17 4GVW single 3.8 ± 1.9 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

18 4LQ4 single 29.8 ± 3.5 7.0 ± 1.7 24.8 ± 2.9 5.8 ± 1.4

19 1M2G single 2.2 ± 1.2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

20 3L86 single 3.0 ± 0.6 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

5 21 1TKY single 0.6 ± 0.8 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

22 6TCS single 11.0 ± 2.0 11.0 ± 2.0 11.0 ± 2.0 11.0 ± 2.0

23 1SGW single 0.8 ± 0.7 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

24 6OU0 single 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

25 4F3H single 7.0 ± 0.9 3.6 ± 1.6 4.7 ± 0.6 2.4 ± 1.1

6 26 1GIU single 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

27 4LQ4 single 4.6 ± 2.4 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

28 6TCS single 3.4 ± 2.4 3.4 ± 2.4 3.4 ± 2.4 3.4 ± 2.4

29 2LAO single 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

30 6TCS single 47.2 ± 2.4 47.2 ± 2.4 36.7 ± 1.9 36.7 ± 1.9

7 31 1GIU single 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

32 1GBG single 22.4 ± 3.0 6.0 ± 2.3 14.9 ± 2.0 4.0 ± 1.5

33 6TCS single 18.4 ± 4.1 18.4 ± 4.1 18.4 ± 4.1 18.4 ± 4.1

34 6TCS single 33.6 ± 5.1 32.6 ± 4.4 29.6 ± 4.5 28.8 ± 3.9

35 1A2J single 1.4 ± 1.0 1.4 ± 1.0 1.4 ± 1.0 1.4 ± 1.0

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Table 13: Entry-level metrics for DPLM-650M across all experiments.

#Frags Entry Experiment Success Rate Novel Success (%) Unique Clusters SUN Score
3 1 5CWP paired 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

2 5CWN paired 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

4 3 4K46 paired 27.6 ± 3.6 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

4 5XJ7 paired 7.4 ± 1.9 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

5 5OJ8 paired 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

6 2ZE5 paired 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

7 1DEX paired 2.0 ± 1.4 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

5 10 5DN1 paired 7.4 ± 2.7 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

11 6KFQ paired 8.6 ± 1.6 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

12 1HU3 paired 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

8 1IS1 paired 1.2 ± 1.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

9 6KFQ paired 26.6 ± 3.8 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

6 13 4BJI paired 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

14 5KZL paired 8.0 ± 3.7 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

15 4LQ4 paired 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

16 1SGW paired 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

17 1BOL paired 11.8 ± 3.1 8.0 ± 2.1 7.4 ± 2.0 5.0 ± 1.3

7 18 6W5B paired 45.0 ± 5.7 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

19 1Q0S paired 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

20 4GVW paired 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

21 3OSX paired 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

22 1Z6N paired 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

1 1 5OJ8 single 100.0 ± 0.0 100.0 ± 0.0 11.0 ± 0.0 11.0 ± 0.0

2 1TKY single 100.0 ± 0.0 37.4 ± 1.5 32.4 ± 0.0 12.1 ± 0.5

3 5XJ7 single 85.0 ± 5.3 7.2 ± 2.8 56.7 ± 3.6 4.8 ± 1.9

4 6KFQ single 34.2 ± 5.0 3.4 ± 0.5 22.8 ± 3.3 2.3 ± 0.3

5 5URP single 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

2 10 6FFV single 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

6 5XJ7 single 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

7 5OJ8 single 30.4 ± 6.3 30.4 ± 6.3 7.9 ± 1.6 7.9 ± 1.6

8 1M2G single 6.0 ± 3.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

9 5CWP single 1.2 ± 0.7 1.2 ± 0.7 1.2 ± 0.7 1.2 ± 0.7

3 11 1Z6N single 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

12 3P2W single 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

13 6KFQ single 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

14 4BJI single 21.8 ± 4.3 6.6 ± 2.2 13.6 ± 2.7 4.1 ± 1.4

15 1A2J single 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

4 16 3PR9 single 11.4 ± 3.1 3.6 ± 1.9 9.1 ± 2.5 2.9 ± 1.5

17 4GVW single 4.6 ± 2.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

18 4LQ4 single 11.6 ± 2.8 2.8 ± 1.2 11.6 ± 2.8 2.8 ± 1.2

19 1M2G single 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

20 3L86 single 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

5 21 1TKY single 0.4 ± 0.8 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

22 6TCS single 8.2 ± 1.2 8.2 ± 1.2 7.2 ± 1.0 7.2 ± 1.0

23 1SGW single 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

24 6OU0 single 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

25 4F3H single 7.2 ± 2.8 2.4 ± 1.4 3.6 ± 1.4 1.2 ± 0.7

6 26 1GIU single 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

27 4LQ4 single 3.0 ± 2.3 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

28 6TCS single 0.8 ± 0.7 0.8 ± 0.7 0.8 ± 0.7 0.8 ± 0.7

29 2LAO single 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

30 6TCS single 51.4 ± 2.9 51.4 ± 2.9 40.3 ± 2.3 40.3 ± 2.3

7 31 1GIU single 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

32 1GBG single 10.4 ± 4.3 0.2 ± 0.4 10.4 ± 4.3 0.2 ± 0.4

33 6TCS single 7.8 ± 2.9 7.8 ± 2.9 5.2 ± 2.0 5.2 ± 2.0

34 6TCS single 30.0 ± 3.3 27.4 ± 3.7 25.7 ± 2.8 23.5 ± 3.1

35 1A2J single 6.8 ± 1.2 5.4 ± 1.6 4.5 ± 0.8 3.6 ± 1.1
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Table 14: Entry-level metrics for ESM3 (seq & struct) across all experiments.

#Frags Entry Experiment Success Rate Novel Success (%) Unique Clusters SUN Score
3 1 5CWP paired 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

2 5CWN paired 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

4 3 4K46 paired 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

4 5XJ7 paired 5.8 ± 1.7 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

5 5OJ8 paired 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

6 2ZE5 paired 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

7 1DEX paired 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

5 10 5DN1 paired 10.0 ± 2.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

11 6KFQ paired 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

12 1HU3 paired 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

8 1IS1 paired 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

9 6KFQ paired 0.6 ± 0.8 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

6 13 4BJI paired 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

14 5KZL paired 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

15 4LQ4 paired 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

16 1SGW paired 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

17 1BOL paired 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

7 18 6W5B paired 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

19 1Q0S paired 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

20 4GVW paired 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

21 3OSX paired 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

22 1Z6N paired 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

1 1 5OJ8 single 35.8 ± 3.3 35.8 ± 3.3 35.8 ± 3.3 35.8 ± 3.3

2 1TKY single 2.0 ± 1.3 2.0 ± 1.3 2.0 ± 1.3 2.0 ± 1.3

3 5XJ7 single 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

4 6KFQ single 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

5 5URP single 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

2 10 6FFV single 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

6 5XJ7 single 3.4 ± 2.2 3.4 ± 2.2 3.4 ± 2.2 3.4 ± 2.2

7 5OJ8 single 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

8 1M2G single 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

9 5CWP single 12.8 ± 2.4 12.8 ± 2.4 12.8 ± 2.4 12.8 ± 2.4

3 11 1Z6N single 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

12 3P2W single 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

13 6KFQ single 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

14 4BJI single 2.2 ± 1.2 2.2 ± 1.2 2.2 ± 1.2 2.2 ± 1.2

15 1A2J single 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

4 16 3PR9 single 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

17 4GVW single 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

18 4LQ4 single 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

19 1M2G single 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

20 3L86 single 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

5 21 1TKY single 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

22 6TCS single 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

23 1SGW single 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

24 6OU0 single 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

25 4F3H single 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

6 26 1GIU single 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

27 4LQ4 single 1.0 ± 1.1 1.0 ± 1.1 1.0 ± 1.1 1.0 ± 1.1

28 6TCS single 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

29 2LAO single 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

30 6TCS single 9.4 ± 2.6 9.4 ± 2.6 9.4 ± 2.6 9.4 ± 2.6

7 31 1GIU single 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

32 1GBG single 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

33 6TCS single 0.6 ± 0.8 0.6 ± 0.8 0.6 ± 0.8 0.6 ± 0.8

34 6TCS single 9.4 ± 3.4 9.4 ± 3.4 9.4 ± 3.4 9.4 ± 3.4

35 1A2J single 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
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Table 15: Entry-level metrics for ESM3 (seq) across all experiments.

#Frags Entry Experiment Success Rate Novel Success (%) Unique Clusters SUN Score
3 1 5CWP paired 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

2 5CWN paired 1.4 ± 1.2 1.4 ± 1.2 1.4 ± 1.2 1.4 ± 1.2

4 3 4K46 paired 39.8 ± 5.6 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

4 5XJ7 paired 16.6 ± 3.7 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

5 5OJ8 paired 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

6 2ZE5 paired 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

7 1DEX paired 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

5 10 5DN1 paired 38.8 ± 3.2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

11 6KFQ paired 4.0 ± 0.9 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

12 1HU3 paired 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

8 1IS1 paired 2.2 ± 1.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

9 6KFQ paired 14.8 ± 3.7 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

6 13 4BJI paired 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

14 5KZL paired 2.8 ± 1.2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

15 4LQ4 paired 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

16 1SGW paired 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

17 1BOL paired 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

7 18 6W5B paired 29.8 ± 3.3 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

19 1Q0S paired 1.6 ± 1.4 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

20 4GVW paired 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

21 3OSX paired 7.0 ± 2.3 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

22 1Z6N paired 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

1 1 5OJ8 single 100.0 ± 0.0 95.2 ± 1.7 18.8 ± 0.0 17.9 ± 0.3

2 1TKY single 30.6 ± 2.0 30.6 ± 2.0 26.5 ± 1.7 26.5 ± 1.7

3 5XJ7 single 91.2 ± 4.8 14.8 ± 3.4 32.6 ± 1.7 5.3 ± 1.2

4 6KFQ single 18.4 ± 3.9 16.6 ± 3.4 11.5 ± 2.5 10.4 ± 2.1

5 5URP single 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

2 10 6FFV single 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

6 5XJ7 single 64.4 ± 3.0 52.4 ± 3.0 37.7 ± 1.8 30.6 ± 1.8

7 5OJ8 single 7.6 ± 0.8 7.6 ± 0.8 3.8 ± 0.4 3.8 ± 0.4

8 1M2G single 10.0 ± 1.4 3.6 ± 1.4 7.5 ± 1.1 2.7 ± 1.0

9 5CWP single 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

3 11 1Z6N single 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

12 3P2W single 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

13 6KFQ single 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

14 4BJI single 4.0 ± 2.2 4.0 ± 2.2 4.0 ± 2.2 4.0 ± 2.2

15 1A2J single 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

4 16 3PR9 single 69.6 ± 3.3 8.4 ± 1.9 55.7 ± 2.6 6.7 ± 1.5

17 4GVW single 1.2 ± 1.5 1.2 ± 1.5 1.2 ± 1.5 1.2 ± 1.5

18 4LQ4 single 18.6 ± 4.4 6.6 ± 1.2 13.9 ± 3.3 5.0 ± 0.9

19 1M2G single 7.6 ± 2.7 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

20 3L86 single 0.2 ± 0.4 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

5 21 1TKY single 2.6 ± 0.8 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

22 6TCS single 11.8 ± 2.9 11.8 ± 2.9 11.8 ± 2.9 11.8 ± 2.9

23 1SGW single 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

24 6OU0 single 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

25 4F3H single 21.2 ± 1.8 13.6 ± 1.9 10.6 ± 0.9 6.8 ± 0.9

6 26 1GIU single 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

27 4LQ4 single 2.4 ± 1.4 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

28 6TCS single 7.8 ± 3.0 7.8 ± 3.0 6.7 ± 2.6 6.7 ± 2.6

29 2LAO single 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

30 6TCS single 48.0 ± 5.1 48.0 ± 5.1 33.7 ± 3.6 33.7 ± 3.6

7 31 1GIU single 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

32 1GBG single 34.4 ± 2.4 9.8 ± 1.2 21.5 ± 1.5 6.1 ± 0.7

33 6TCS single 19.8 ± 5.4 19.8 ± 5.4 18.8 ± 5.1 18.8 ± 5.1

34 6TCS single 32.6 ± 4.3 32.6 ± 4.3 28.8 ± 3.8 28.8 ± 3.8

35 1A2J single 5.0 ± 1.9 4.2 ± 1.5 5.0 ± 1.9 4.2 ± 1.5
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