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Abstract

We introduce a modular neural message-passing scheme that closely follows the
formal model of relational databases, effectively enabling end-to-end deep learning
directly from database storages. We experiment with several instantiations of the
scheme, including notably the use of cross-attention modules to capture the referen-
tial constraints of the relational model. We address the issues of efficient learning
data representation and loading, salient to the database setting, and compare against
representative models from a number of related fields, demonstrating favorable
initial results.

1 Introduction

While the approaches to mathematical modeling of complex systems, ranging from control theory to
machine learning (ML), evolved in various independent ways, one aspect remained almost universal
— the data representation. Irrespective of the used models, from decision trees to neural networks,
virtually all ML libraries expect input samples in the form of fixed-size numeric tensors, most
often just (feature) vectors. Assuming the data samples as independent points in n-dimensional
spaces is extremely convenient, allowing to build directly upon the elegant foundations of linear
algebra and multi-variate statistics [23]. However, actual real-world data is not stored in numeric
vectors or tensors, but mostly in the interlinked structures of internet pages, knowledge graphs
and, particularly, relational databases. Indeed, while there are numerous data storage formats, the
traditional relational database management systems (RDBMs) arguably dominate the industry, from
medicine and engineering to enterprise application domains [17].

In recent years, we have witnessed deep learning to quickly dominate all perceptual domains, from
vision and speech to language, nevertheless, it remains very rare to encounter neural models on the
classic tabular data with heterogeneous features, where standard statistical models, mainly various
decision tree ensembles [13], still seem to lead the benchmarks [38]. Improving performance of the
neural models, mostly the Transformer architecture [43], on tabular datasets gains increasing amounts
of attention, sometimes quoted as the “last unconquered castle” for deep learning [24]. Nevertheless,
extending from the tabular to the relational data model remains an even bigger challenge.

In this paper, we introduce a blueprint for such an extension, building on the (deep) tabular model de-
sign and insights from relational learning [15], concerned exactly with such relational generalizations
of classic (tabular) statistical models.
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1.1 Related Work

While the body of work on using deep learning with relational databases themselves is extremely
scarce, we discuss also the generally related areas that either use neural models on simpler data
structures, or address relational structures with non-neural models.

Tabular models Tabular (neural) models [1] are concerned with transferring the deep learning
strategies into the (classic) tabular data setting, currently still largely dominated by standard statistical
models, such as gradient-boosted trees [13]. These commonly aim to amend the Transformer
architecture [43] to better fit the complex, often heterogeneous and discrete, attribute structure of
tabular data, and exploit the popular pre-training strategies in the self-supervised regime [10]. Some
notable works include the TabTransformer [21], being one of the first attempts to tackle tabular
data, the TUTA model [47], extending Transformers with concepts from the tree-based models, the
popular TURL [9], exploiting unsupervised pre-training to learn contextualized data representations,
or RPT [40], which uses tuple-to-tuple pre-training to target data preparation tasks. While these
tabular models are sometimes referred to as “relational”, it is only in a loose sense of the word, as
they do not follow the actual relational (database) representation model.

Statistical relational learning Proper learning with actual relational representations has for
decades [6] been the concern of the little-known field of Relational machine learning [8]. It builds
heavily on the formalism of first-order logic (FOL) [14], in which the tabular representation and
the corresponding models are effectively viewed as propositional, while the database representation,
corresponding formally to a subset of FOL, requires relational generalization(s) of such models.
Many such FOL-based methods have been proposed, mostly following the paradigm of Inductive
Logic Programming (ILP) [32], later extended with probabilistic methods under the umbrella of
Statistical Relational Learning (SRL) [15]. The most appropriate SRL works capable of learning
from database representations then follow the paradigm of “lifting” [25], referring exactly to such
generalization of classic statistical models into the relational setting. However, building on the FOL
foundations, the SRL models typically do not scale well and, most importantly, do not offer the latent
representation learning capabilities of deep learning.

Propositionalization From the SRL view, the tabular Transformers address the exact same rep-
resentation expressiveness as the classic tree-based counterparts they aim to surpass. The tabular,
also known as “attribute-value”, data format, is an established ML representation perpetuating the
whole field. While much of the real-world data structures, such as relational databases, do not fit into
this representation, a natural urge arises to transform such structures into the expected format and
proceed with the standard models. This practice, generally referred to as propositionalization [27],
is the traditional method of choice that has dominated the industry [41, 42]. Propositionalization is
essentially a data preprocessing routine where relational substructures get extracted and aggregated
into standard statistical (tabular) attributes, corresponding to various select-join-aggregate (SQL)
routines in the database setting. Building on decades of practice with such workflows, the resulting
(statistical) models typically perform very well, however, their representation learning capabilities are
principally limited, as the preprocessing (denormalization) step necessarily introduces an information
loss.

Neuro-symbolic integration An interesting area on the intersection of both proper relational
(logical) representations and deep learning principles is known as Neural-Symbolic Integration [19].
There is a (small) number of neuro-symbolic frameworks that operate with some (subset of) FOL
representation, effectively covering the relational databases, while marrying the principles of neural
networks through deep integration, such as Neural Theorem Provers [34], Logic Tensor Networks [37],
or Lifted Relational Networks [39]. These methods are, in theory, capable of actual deep learning
from relational databases, however, to the best of our knowledge, none of these methods scales to
real-world database sizes due to the complexity associated with their FOL-based foundations, except
for those that follow some form of the propositionalization scheme under the hood [12].

Deep relational models The closest related work is that of extending standard neural models
towards relational representations. The most prominent models in this category are Graph Neural
Networks [48] designed for end-to-end learning with graph-structured data. There are currently
hundreds of the original GNN [35] model variants, some of which are close in spirit to our proposal,
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particularly some of the hyper-graph [11] and multi-relational [36] extensions towards knowledge-
graph applications [46], nevertheless, the graph-based view within this stream of research is generally
not concerned with the salient features specific to relational databases, particularly the rich inner
structure of the individual records. Apart from a recent vision draft [45], there are only very few works
that address (some of) the database-specific aspects, particularly [7] followed by an (unsuccessful)
pre-training procedure in [30], and the work of [2], which further incorporates automatic feature
engineering and random architecture search to improve its performance.

The most salient contribution of our work is that, apart from proper treatment of the inter-relational
structure, we also incorporate, in the spirit of the tabular models, the intra-relational (attribute)
structure of the relations with the Transformer architecture, embedded end-to-end within the same
general message-passing scheme, and introduce an overall more complete framework for deep
learning with relational databases.

2 Background

2.1 Relational Databases

The principles of relational databases are formally based on the relational model [5], rooted in
first-order (predicate) logic [14], providing a unified declarative specification for managing structured
data, irrespective of the particular software implementation. This abstraction allows to define any
database as a collection of n-ary relations defined over the domains of their respective attributes,
managed by RDBM system to ensure consistency of the data with the integrity constraints of the
logical database schema. The key concepts to be used in this paper are as follows.

Relation (Table): Formally, an n-ary relation R/n is a subset of the Cartesian product defined
over the domains Di of its n attributes Ai: R ⊆ D1 × D2 × · · · × Dn, where Di = Dom(Ai).
Each relation R consists of a heading (signature) R/n, formed by the set of its attributes, and a body,
formed by the particular attribute values, which is commonly viewed as a table TR of the relation R.

Attribute (Column): Attributes AR = {A1, A2, A3, . . . , An} define the terms of a relation R,
corresponding to the columns of the respective table TR. Each attribute is a pair of the attribute’s
name and a type, constraining the domain type(Di) ⊆ dom(Ai) of each attribute. An attribute value
ai is then a specific valid value from the respective type of the attribute Ai.

Tuple (Row): An n−tuple in a relation R/n is a tuple1 of attribute values ti = (a1, a2, . . . , vn),
where aj represents the value of the attribute Aj in R. The relational can thus be defined extensionally
by the unordered set of its tuples: R = {t1, t2, . . . , tm}, corresponding to the rows of the table TR.

Integrity constraints: Besides the domain constraints Dom(Ai), the most important integrity
constraints are the primary and foreign keys. A primary key PK of a relation R is a minimal
subset of its attributes R[PK] ⊆ AR that uniquely identifies each tuple: ∀t1, t2 ∈ R, (t1[PK] =
t2[PK]) ⇒ (t1 = t2). A foreign key FKR2

in relation R1 then refers to the primary key PK of
another relation R2: ∀t ∈ R1, t[FK] ∈ {t′[PK] | t′ ∈ R2}. This constitutes the inter-relations in
the database, with the RDBMs managing the referential integrity of TR1

[FK] ⊆ TR2
[PK].

2.2 Deep Learning

Deep learning [16] is a popular paradigm characterized by the use of gradient descent to optimize
parameters of nested functions, commonly viewed through their parameterized computation graphs,
referred to as neural networks. The main conceptual idea lies in learning latent representations of the
data, corresponding to the inner layers of the networks, generally constrained to the form of fixed-size
numeric tensors, which restricts from directly applying deep learning to relational databases. While
passing beyond that limitation, we will generalize upon concepts known from two neural architectures
that address two forms or related (simpler) structured representations of sequences and graphs.

1the ordering is instantiated through the naming of the attributes
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Transformers The Transformer [43] is a popular sequence-to-sequence model, relying primarily on
the “attention” mechanism for interrelating the sequence tokens x1, . . . , xn. Each input token xi here
is embedded into a continuous vector representation: E(xi) ∈ Rd, and combined with a “positional
encoding” capturing its positional role: E′(xi) = E(xi) + PosEnc(xi). The attention mechanism
then inter-relates all pairs of the input tokens to update their values as X ′ = softmax

(
Q·KT

√
dk

)
V ,

where Q, K, and V are the “query”, “key”, and “value” matrix projections (roles) of the input
embeddings E′(X). This efficient matrix computation can be further computed in parallel with
separate Q,K, V projection matrices. The updated values X ′ then position-wise pass through two
feed-forward layers: MLP (x′

i) = W2 · ReLU(W1 · x′
i + b1) + b2, followed by layer normalization

to reduce internal covariate shift and residual connections for improved gradient propagation.

Graph Neural Networks Graph Neural Networks [48] (GNNs) are a general class of neural models
aimed at graph-structured data using the concept of (differentiable) message-passing. Given an input
graph G = (V, E), with a set of nodes V and edges E , let h(l)

v ∈ Rd(l)

be the vector representation
(embedding) of node v at layer l. The general concept of GNNs can then be defined through a (i)
message M (l) : Rd(l) × Rd(l) → Rd(l)

m , (ii) aggregation A(l) : {Rd(l)
m } → Rd(l)

m , and (iii) update
U (l) : Rd(l) × Rd(l)

m → Rd(l+1)

functions as:

1. Compute messages for each edge (u, v) ∈ E: m
(l)
u→v = M (l)(h

(l)
u , h

(l)
v )

2. Aggregate the messages for each v ∈ V : M
(l)
v = A(l)

(
{m(l)

u→v : (u, v) ∈ E}
)

3. Update representation of each v ∈ V : h
(l+1)
v = U (l)(h

(l)
v ,M

(l)
v )

The particular choice of the message, aggregation, and update functions then varies across specific
GNN models, which are commonly composed of a predefined number L of such layers, enabling the
message-passing to propagate information across L-neighborhoods within the graph(s). Note that the
attention module of the Transformer follows the same schema (assuming a fully-connected graph).

3 The Blueprint

In this section, we describe our proposed learning data representation and the respective neural
message-passing architecture(s) suitable for end-to-end deep learning from relational databases.

3.1 Data and Learning Representations

Schema detection We aim at direct learning from raw database storage, with as little preprocessing
as possible, while retaining the proper relational model semantics [5]. However, the current RDBMs
do not necessarily preserve all the semantic information required for deep learning. For instance, for
integer-type columns, the information on whether the data contained are of ordinal or nominal nature
is missing and, similarly, string-type columns may either contain actual text, or represent nominal
categories. 2 A distinction must also be made about attributes that form the key constraints, as to
whether they convey actual information or serve merely the referential purpose. To resolve such issues
while avoiding manual data preprocessing, we built a procedure that attempts to determine all such
information from the database, based on a combination of simple heuristics on top of select statistics
of the data. The output from the procedure is an annotated, deep learning-compatible database
schema, which may optionally be (manually) amended if some additional domain knowledge for
the given database is present. This is also useful for correcting databases with invalid designs, e.g.
missing key specification(s). Once the schema is detected with all the attribute domains determined,
we may proceed with their embedding in some standard fashion [1]. Particularly, we choose a simple
embedding (no pre-training) of the detected categorical types while merely expanding the numeric
types into the respective dimensionality.

Multi-relational hypergraphs In order to directly follow the inductive bias of the relational
database model, we consider the learning representation of a database as a two-level multi-relational

2Using the SQL data type, e.g. ‘text’ or ‘varchar’, to differentiate categorical data is not sufficient.
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hypergraph, where each relation R forms n-ary hyperedges corresponding to the n-tuples over its
attributes {ti = (a1, a2, . . . , an)}, and each pair R1, R2 of such relations related through the foreign
key constraints R1[FKR2 ] ⊆ R2[PK] forms another set of hyperedges from the particular tuple pairs
{(t1 ∪ t2) | t1 ∈ R1, t

2 ∈ R2, t
1[FKR2

] = t2[PK]}. We consider generally all the tuple attributes
(a11, . . . , a

1
n ∪ a21, . . . , a

2
m) to form the link, and not just their keys, as these may also be composite,

possibly spanning the whole tuple as a corner case R[PK] = AR, hence the forming of hyperedges
instead of just edges here. Additionally, for each such foreign-key tuple pair (t1, t2), we also consider
the “reverse” hyperedge (t2, t1) to be able to fully propagate learning representations throughout the
database, irrespective of the (ad-hoc) ordering choices of the database designer. We then use the tuple
pairs of (t1, t2) and (t2, t1) to build a bi-directional bi-partite hypergraph, connecting the tuples of
the individual relations R1/n, R2/m, for each foreign key constraint in the database schema.

Data loading For deep learning, we need to establish what constitutes the learning samples (xi, yi)
in the given relational setting. In this paper, we consider the standard (self-)supervised scenario where
a single attribute Aj of a single target relation R forms the output labels yi. Nevertheless, the input
samples xi can no longer be considered as i.i.d. tuples, since they take the form of the multi-relational
hypergraphs defined above. There are generally two cases, either (a) the database contains separate
relational samples where each row ti of the target table TR belongs to a single learning instance
xi, or (b) the database cannot be split into such separate components, with xi possibly spanning
the whole hypergraph structure. To extract the learning samples (xi, yi) in both cases, we follow a
simple breadth-first-search (BFS) procedure, starting from each row ti of the target table TR, and
expanding over all the tables related through the foreign key constraints, in both the referenced and
the referencing directions, while checking for loops. Due to the possible interdependence between
the samples, care must be taken to prevent information leakage about the labels, for which we mask
out all target labels from the target column Aj of TR when processing the samples.3

A salient feature of relational databases is that they can be very large, for which we allow to run the
sample loading natively in-database through recursive SQL (self-)joins,4 with which the data may be
fetched into memory on demand in a lazy fashion. To further make sure that the resulting samples
themselves fit into memory, particularly in the (b) case, we optionally bound the BFS with a depth
limit on the number of joins between the tables. In inductive learning settings, this limit can be set to
correspond to the perimeter of the relational receptive field of the subsequent neural message-passing,
corresponding e.g. to the number of layers in GNN models (Sec. 2), without loss of information.

3.2 Neural Architecture Space

To natively facilitate deep learning on the two-level hypergraph structure of the relational model,
we introduce a general two-level neural message-passing scheme composed of differentiable pa-
rameterized operations defined on the levels of (i) individual attributes (ii) and (sets of) related
tuples. We further divide these operations w.r.t. their input-output characteristics into transforma-
tions: X 1:1→ Y , n-ary combinations (X1, X2, . . . , XN )

N :1→ Y , and generic permutation-invariant
aggregations {X1, X2, . . . , XM} M :1→ Y , where the Xi, Y may refer to either the attributes a or the
tuples t. This can be seen as a generalization of the message-aggregate-update GNN scheme (Sec.2).

Building on the atomicity assumption of the database model [5], we consider the relations’ attributes
a as the minimal necessary processing unit. Every instantiation of the neural blueprint thus starts with
embedding of the individual relation R/n attribute values E(a1), . . . , E(an), resulting into a tuple
of n vectors t(0)i ∈ (Rd1 , . . . ,Rdn) per each original tuple ti from R/n. The attribute embedding
dimensions d1, . . . , dn within and across the relations may generally differ, so as to accommodate the
possibly varying information loads in the tables, but we set them to be the same here for simplicity.
Each such tuple t(0) then undergoes either (i) an attribute combination Ca : (a1, a2, . . . , an)

n:17→ t(1)

that merges the attribute embeddings into a joint tuple embedding t(1) ∈ Rd
t(1) or (ii) transformation

Ta : (a1, . . . , an)
1:17→ (a′1, . . . , a

′
n) = t(1) that keeps the attribute embeddings separate as t(1) ∈

(Rd
a(1) , . . . ,Rd

a(1) ). In either case, the resulting tuple representation t(1) subsequently enters the

3Overlooking this precaution led to some inappropriate accuracy reports in some of the related works.
4Note that the purpose of the joins here is not to preprocess (denormalize) the data into a single (universal)

relation (as in the propositionalization), but merely to explore the primary-foreign key sub-structures.
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Figure 1: The architecture blueprint, instantiated with the self/cross-attention operations.

second level of neural computation where it gets combined with all the tuples related through the
second type of hyperedges (Sec. 3.1). Particularly, each t

(1)
i ∈ R

(1)
1 undergoes a tuple combination

Ct : (t
(1)
i , t

(1)
j )

2:17→ t
(2)
iR2

∈ Rd
t(2) with each t

(1)
j ∈ R

(1)
2 where ti[FKR2

] = tj [PKR2
], resulting

into a set of {t(2)iR2
} representations for each such pair of ti ∈ R1 and the related R2. Each such

set of the combined representations then undergoes a tuple aggregation At : {t(2)iR2
} m:1→ t

(3)
iR2

where

m = |{t(2)iR2
}| to obtain one t

(3)
iR2

representation. Finally, we aggregate all such tuple representations

AtR : {t(3)iRk
} l:1→ t

(4)
i ∈ Rd

t(4) from all the l = |{Rk}| linked relations back into a single final tuple

representation t
(4)
i for each ti ∈ R/n. The same computation is performed simultaneously for all

relations R/n in the database, and the resulting representations may be used as input into subsequent
layers of the same computation blueprint, in the classic spirit of deep learning.

Cross-attention table joins Technically, any differentiable parameterized operations that satisfy the
corresponding input-output interface of the transformation, combination, and aggregation operators
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can be used in their respective places within the blueprint, some of which are presented in our
experiments (Sec. 4.1). Here we just highlight one interesting instantiation with the attention module
we deem particularly suitable due to its (intra-)relational character. Particularly, one may use self-
attention in place of any tuple transformation, in the standard spirit of the tabular Transformers [1]
but, additionally, we may also use the cross-attention operation in place of the tuple combination. We
hypothesize that the cross-attention module used in this place might be able to extract the necessary
latent relational features, as exploited with the successful propositionalization methods (Sec. 1.1),
but in a fully end-to-end fashion through gradient descent. Based on the notable expressiveness of
Transformers [29], the select-join-aggregate operations normally used to construct such relational
features should be well within the hypothesis space of the resulting architecture, in which we assume
the query, key, and value roles of the input tokens to correspond to the foreign-key, primary-key,
and column-value roles of the individual attributes, respectively. This particular instantiation of the
blueprint is depicted in Figure 1. The idea here is that the self-attention (attribute transformation)
firstly transforms the attributes w.r.t. each other within the tables, the cross-attention (tuple combi-
nation) then learns their contextual interactions with attributes from the referenced tuples, and the
attention-sum (tuple aggregation) finally weights all their importances w.r.t. the referencing tuple.

4 Experiments

We test a few selected instantiations of the proposed blueprint against representative models from
the distinct related work categories (Sec. 1.1) through (standard) supervised data classification tasks
across a range of diverse relational database datasets.

Datasets While RDBMs are some of the most widespread data storages, publicly available relational
database datasets are considerably scarce. Perhaps the most complete resource in this area is the CTU
Prague Relational Learning Repository [31], maintaining dozens of database datasets from various
domains. This repository also covers some of the older ILP5 and SRL6 dataset collections. We
focus on datasets with more than two tables and more than two columns to emphasize the relational
expressiveness of the proposed approach. The selected datasets are of diverse characteristics w.r.t.
their sizes, schema structures, and application domains.

4.1 Models

Related work As a baseline we consider a simple tabular model operating solely on the target
table, i.e. ignoring all the other tables related through the foreign keys. This naive strategy is
particularly useful in revealing whether the given dataset task is indeed relational in nature or not.
From statistical relational learning, we choose the state-of-the-art RDN-boost [33] which, following
the lifting strategy (Sec. 1.1), can (very roughly) be seen as a relational version of the popular
gradient-boosted trees [13]. As a propositionalization method we select the FastProp algorithm
followed by XGBoost [3] – a battle-proof combination as implemented in [42], which leads a number
of the relational dataset scoreboards.7 To cover the neuro-symbolic area, we emulate the popular
CILP++ method [12] similarly by connecting propositionalization with a feed-forward neural network.
We were unable to put any of the few recent deep relational learning proposals (Sec. 2) into operation,
but we attempt to emulate the GNN work of [7] as one of the blueprint ablations.

Blueprint instantiations As the space of all the possible neural architectures within the
blueprint is very large, we present only a few selected instantiations. This means selecting
some particular parameterized differentiable operations in place of the attribute a and tuple t
transformations Ta/t, combinations Ca/t, and aggregations Aa/t. Generally, we consider a
simple space of T = {linear,MLP, self-attention}, C = {linear,MLP, cross-attention}, and
A = {conv-sum, attention-sum, mean}, where “conv-sum” is a classic GNN convolution [26] and
“attention-sum” is a sum weighted by the self-attention coefficients [44], which is natively inside
the attribute-level attention transformation, but we also use it for the generic (permutation-invariant)
tuple aggregation (without PosEnc). For instance, the model from Fig. 1 can be characterized as

5https://www.doc.ic.ac.uk/~shm/Datasets/
6https://starling.utdallas.edu/datasets/
7https://relational.fit.cvut.cz/statistics
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Table 1: Test accuracies of the selected blueprint instantiations (I1, I2, I3) compared to the represen-
tative models from the related areas (Sec. 1.1) over a range of relational databases from [31].

category: Tab. Rel. Prop. NeSy Ours

datasets MLP RDN-b getML CILP I_1 I_2 I_3
PTE N/A 44.94% 100.00% 100.00% 100.00% 83.05% 100.00%
university 81.82% 81.82% 54.55% 81.82% 100.00% 100.00% 100.00%
NCAA 100.00% 47.50% 100.00% 78.75% 67.92% 71.69% 67.92%
cs N/A 63.33% 96.67% 96.67% 100.00% 100.00% 100.00%
UTube N/A 84.15% 98.93% 99.39% 98.16% 98.16% 98.16%
mutagen 87.50% 85.71% 82.86% 92.86% 94.59% 94.59% 94.59%
Dunur N/A 23.17% 97.56% 97.56% 94.54% 94.54% 94.54%
MuskSmall N/A 77.78% 74.07% 66.67% 83.33% 77.77% 50.00%
WebKP N/A 82.51% 83.04% 65.40% 68.57% 51.99% 65.14%
DCG N/A 72.57% 65.17% 61.06% 73.89% 65.92% 79.20%
Pima N/A 32.17% 77.11% 75.65% 58.82% 73.20% 74.50%
CiteSeer N/A 66.16% 47.41% 37.36% 50.15% 51.51% 37.76%
Carcinogen. N/A 53.06% 62.07% 65.31% 64.61% 63.07% 60.00%
Toxicology N/A 63.73% 57.02% 72.55% 61.76% 67.64% 61.76%
Chess 40.91% 34.09% 33.64% 48.86% 50.84% 50.84% 50.84%
Atheroscler. 26.72% 18.10% 22.41% 28.45% 33.76% 32.46% 31.16%

Amean
tR (Aattention-sum

t (Ccross-attention
t (T self-attention

a ))). For the experiments, we select 3 such representative
instances as: I1 = Amean

tR (Aconv-sum
t (C linear

t (T linear
a ))), I2 = Amean

tR (Aattention-sum
t (C linear

t (TMLP
a ))), and

I3 = Amean
tR (Amean

t (Ccross-attention
t (T self-attention

a ))).

Parameterization We set simple default parameters across all the methods. For MLP (linear)
modules in all the models, we use a single hidden layer with half of the input dimensionality. The
input number of relational features in the models based on propositionalization ranges about 200,
depending on the depth of a custom BFS procedure which we implemented to improve the base
feature extraction. The dimensionalities of the embeddings and the attention modules range from 10 to
64, depending on dataset size. We do not use any pre-trained embeddings nor share parameterization
across different attributes or relations, which might be appropriate in many cases. We optimize all
the gradient descent-based models with lr = 0.0001 in a default ADAM setting, and the boosting
methods with the default lr = 0.1 and 100 base estimators. We evaluate all models on a random
80 : 20 train-test split of the data w.r.t. the target table rows.

4.2 Results

Our results with the selected models (Sec. 4.1) are summarized in Tab. 1. We see that most of the
datasets are not accessible to the tabular models (Tab.), as the target table does not contain any
informative attributes, nevertheless, in the few cases where it does, simple tabular models (MLP)
perform very well [24].8 The RDN-boost is a sophisticated SRL (Rel.) method that does capture the
relational dependencies for which it however needs to set up “modes” [33], which we implemented
in a rather straightforward fashion, possibly explaining its generally weaker performance.9 The
getML system [42], on the other hand, performed very well out-of-box in its default setting (Fast-
prop+XGBoost), validating the strength of the propositionalization (Prop.) practice [28]. Similarly,
the neuro-symbolic (NeSy) approach of CILP++ [12] emulated by combining propositionalization
with MLP performed very strongly, too. Finally, our instantiations of the blueprint also showed some
solid performance with close to no tuning across a range of operator configurations, some of which
can be seen as a generalization of the popular graph-convolutional [26] (I1) and graph-attention [44]
(I2) models from graphs to relational databases, close in spirit to the work of [7], and some of which
are better viewed as extending the Transformer [43] (I3) from sequences to relations.

8Their baseline performance can be expected to be improved with the more recent tabular Transformers, such
as TabPFN [20], nevertheless with the same limited scope of applicability.

9A similar, very recent, work in this category that might be more appropriate in this context is JoinBoost [22].
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5 Conclusions

We introduced a general blueprint for deep learning from relational databases, based on a custom
message-passing scheme that respects the relational model of the common RDBMs storages. Our
experiments with a (small) number of instantiations of the proposed concept demonstrate its viability,
favorable properties, and competitive performance w.r.t. existing methods from various fields.

Future work Among open challenges is the ambiguous presentation of the data (Sec. 3.1), depend-
ing on choices of the database schema designer. As a corner case, even effectively non-relational
data are sometimes stored in the database format (Sec. 4), and there is a general lack of large enough
relational datasets to exploit the main benefits of deep representation learning. Nevertheless, in-
corporating self-supervised pre-training, in the spirit of the tabular models (Sec. 1.1), for domain
transfer across different databases seems a promising avenue. However, despite the efficient data
loading techniques introduced (Sec. 3.1), scaling to very large databases may be out of reach of
the explicit message-passing, which might better be approximated with sampling [18] or indirectly
emulated through gradient descent iterations [4] in transductive settings. Last but not least, incorpo-
rating the cross-attention to emulate the (latent) relational features opens interesting possibilities for
interpretability and learning [29], such as initializing the blueprint parameters to emulate the popular
propositionalization schemes.
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