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ABSTRACT

Multi-task learning (MTL) for scene understanding has been actively studied by
exploiting correlation of multiple tasks. This work focuses on improving the per-
formance of the MTL network that infers depth and semantic segmentation maps
from a single image. Specifically, we propose a novel MTL architecture, called
Pseudo-MTL, that introduces pseudo labels for joint learning of monocular depth
estimation and semantic segmentation tasks. The pseudo ground truth depth maps,
generated from pretrained stereo matching methods, are leveraged to supervise
the monocular depth estimation. More importantly, the pseudo depth labels serve
to impose a cross-view consistency on the estimated monocular depth and seg-
mentation maps of two views. This enables for mitigating the mismatch problem
incurred by inconsistent prediction results across two views. A thorough ablation
study validates that the cross-view consistency leads to a substantial performance
gain by ensuring inference-view invariance for the two tasks.

1 INTRODUCTION

Scene understanding has become increasingly popular in both academia and industry as an essen-
tial technology for realizing a variety of vision-based applications such as robotics and autonomous
driving. 3D geometric and semantic information of a scene often serve as a basic building block
for high-level scene understanding tasks. Numerous approaches have been proposed for inferring
a depth map (Garg et al., 2016; Godard et al., 2019) or grouping semantically similar parts (Chen
et al., 2017; Yuan et al., 2019) from a single image. In parallel with such a rapid evolution for
individual tasks, several approaches (Chen et al., 2019; Zhang et al., 2018; Guizilini et al., 2020b;
Liu et al., 2019) have focused on boosting the performance through joint learning of the semantic
segmentation and monocular depth estimation tasks by considering that the two tasks are highly cor-
related. For instance, pixels with the same semantic segmentation labels within an object are likely
to have similar (or smoothly-varying) depth values. An abrupt change of depth values often implies
the boundary of two objects containing different semantic segmentation labels. These properties
have been applied to deep networks to enhance the semantic segmentation and monocular depth
estimation tasks in a synergetic manner.

In (Chen et al., 2019), they proposed a joint learning model that learns semantic-aware represen-
tation to advance the monocular depth estimation with the aid of semantic segmentation. A depth
map is advanced by making use of loss functions designed for the purpose of bonding geometric
and semantic understanding. The method in (Guizilini et al., 2020b) proposed a new architecture
that improves the accuracy of monocular depth estimation through the pixel-adaptive convolution
(Su et al., 2019) using semantic feature maps computed from pre-trained semantic segmentation
networks. Despite the improved monocular depth accuracy over a single monocular depth network,
the performance improvement of the semantic segmentation task by the aid of geometrical repre-
sentation has not been verified (Chen et al., 2019), or even the semantic segmentation network was
fixed with pretrained parameters (Guizilini et al., 2020b).

A generic computational approach for multi-task learning (MTL) was proposed in (Zamir et al.,
2018), which models the structure across twenty six tasks, including 2D, 2.5D, 3D, and semantic
tasks, by finding first and higher-order transfer learning dependencies across them in a latent space
to seamlessly reuse supervision among related tasks and/or solve them in a single network without
increasing the complexity significantly. This was further extended by imposing a cross-task consis-
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tency based on inference-path invariance on a graph of multiple tasks (Zamir et al., 2020). Though
these approaches provide a generic and principled way for leveraging redundancies across multiple
tasks, there may be limitations to improving the performance of individual tasks in that it is difficult
to consider task-specific architectures and loss functions in such unified frameworks. With the same
objective yet with a different methodology, the method in (Liu et al., 2019) proposes a novel MTL
architecture consisting of task-shared and task-specific networks based on task-attention modules,
aiming to learn both generalizable features for multiple tasks and features tailored to each task. They
validated the performance in the joint learning of monocular depth and semantic segmentation.

In this paper, we propose a novel MTL architecture for monocular depth estimation and semantic
segmentation tasks, called pseudo label-guided multi-task learning (Pseudo-MTL). The proposed ar-
chitecture leverages geometrically- and semantically-guided representations by introducing pseudo
ground truth labels. When a pair of stereo images is given as inputs, our method first generates
pseudo ground truth left and right depth maps by using existing pre-trained stereo matching net-
works (Pang et al., 2017; Chang & Chen, 2018). To prevent inaccurate depth values from being
used, a stereo confidence map (Poggi & Mattoccia, 2016) is used together as auxiliary data that
measures the reliability of the pseudo depth labels. These are leveraged for supervising the monoc-
ular depth network, obtaining substantial performance gain over recent self-supervised monocular
depth estimation approaches (Godard et al., 2017; 2019). More importantly, the pseudo depth la-
bels are particularly useful when imposing a cross-view consistency across left and right images.
The estimated monocular depth and segmentation maps of two views are tied from a geometric per-
spective by minimizing the cross-view consistency loss, alleviating the mismatch problem incurred
by inconsistent prediction across two views significantly. We will verify through an intensive ab-
lation study that the proposed cross-consistency loss leads to a substantial improvement on both
tasks. Experimental results also show that our approach achieves an outstanding performance over
state-of-the-arts. In short, our novel contributions can be summarized as follows.

• We propose a novel MTL approach that jointly performs monocular depth estimation and
semantic segmentation through pseudo depth labels.

• The cross-view consistency loss based on the pseudo depth labels and associated confidence
maps is proposed to enable consistent predictions across two views.

• An intensive ablation study is provided to quantify the contribution of the proposed items
to performance improvement.

2 RELATED WORK

Monocular Depth Estimation While early works for monocular depth estimation are based on
supervised learning, self-supervised learning has attracted increasing interest in recent approaches
(Godard et al., 2017; 2019; Watson et al., 2019) to overcome the lack of ground truth depth labels.
Here, we review works mostly relevant to our method. Godard et al. (Godard et al., 2017; 2019) pro-
posed the deep network that infers a disparity map using the image reconstruction loss and left-right
consistency loss from a pair of stereo images or monocular videos. Chen et al. (Chen et al., 2019) in-
fers both disparity and semantic segmentation maps by enforcing the cross consistency across stereo
images to address the mismatch problem of (Godard et al., 2017). Several approaches have focused
on improving the monocular depth estimation through the aid of segmentation networks, e.g., by
stitching local depth segments from instance segmentation with respect to scale and shift (Wang
et al., 2020) or leveraging pretrained semantic segmentation networks to guide the monocular depth
estimation (Guizilini et al., 2020b).

Semantic Segmentation A deep convolutional encoder-decoder architecture for semantic segmen-
tation proposed in (Badrinarayanan et al., 2017) has been widely used as backbone. The pyramid
pooling module was proposed for leveraging global context through aggregation of different region-
based contexts (Zhao et al., 2017). Some segmentation works attempted to combine different tasks
to improve segmentation performance. Gated-SCNN (Takikawa et al., 2019) refines segmentation
results by fusing semantic-region features and boundary features. FuseNet (Hazirbas et al., 2016)
proposed to fuse features from color and depth images for improving the segmentation performance.

Multi-task learning In (Chen et al., 2019; Takikawa et al., 2019; Zhang et al., 2018), they proposed
to leverage task-specific loss functions to tie up two (or more) tasks within the MTL architecture. For

2



Under review as a conference paper at ICLR 2021

(a) (b)
Figure 1: Network architecture: (a) Pseudo MTL based on the encoder-decoder, (b) To impose the
cross-view consistency, it is applied for left and right images, respectively.

instance, Chen et al. (Chen et al., 2019) attempted to improve a monocular depth accuracy by using
the loss functions that measure the consistency between geometric and semantic predictions. The
generic computational approach for MTL was proposed by leveraging redundancies across multiple
tasks in a latent space in (Zamir et al., 2018; 2020). The task-attention modules were introduced to
extract features for individual tasks in (Misra et al., 2016; Liu et al., 2019; Jha et al., 2020). In this
work, we focus on improving the performance of the MTL architecture for monocular depth esti-
mation and semantic segmentation tasks by using the cross-view consistency loss based on pseudo
labels.

3 PROPOSED METHOD

3.1 OVERVIEW AND ARCHITECTURE DESIGN

Our Pseudo-MTL approach focuses on improving the performance of the monocular depth estima-
tion and semantic segmentation tasks through task-specific losses defined based on the pseudo depth
labels generated by using pre-trained stereo matching networks (Pang et al., 2017). The stereo con-
fidence maps are used together as auxiliary data to compensate for estimation errors in the pseudo
depth labels. These are effective in mitigating undesired artifacts of errors that may exist in the
pseudo depth labels. In our work, we chose the CCNN (Poggi & Mattoccia, 2016) for calculating
the confidence map, but more advanced confidence estimation approaches can also be used.

As shown in Figure 1, the proposed Pseudo-MTL network is based on the encoder-decoder archi-
tecture, in which a single encoder takes an image and two decoders predict the monocular depth
and semantic segmentation maps. The encoder network E consists of the convolutional layers of the
VGG network (Simonyan & Zisserman, 2015). Two decoders, Dd for monocular depth estimation
and Ds for monocular depth estimation, are designed symmetrically with the encoder. While two
tasks share the encoder, the task-specific decoder branches are used for each task.

The pseudo depth labels and the segmentation label maps of stereo images are used for supervising
the proposed architecture. The monocular depth and segmentation maps of left and right images are
estimated by passing each image to the proposed architecture, as shown in Figure 1. The cross-view
consistency loss is then imposed on the prediction results of two views. To be specific, the estimated
monocular depth maps of left and right images are warped and tested using the pseudo depth labels
for ensuring inference-view invariance on the monocular depth estimation, and a similar procedure
is also applied to the semantic segmentation.

Using the pseudo depth labels for training the proposed model is advantageous at various aspects.
The pseudo depth labels of stereo images, filtered out by its confidence map, provides a better super-
vision (Choi et al., 2020) than recent self-supervised monocular depth estimation approaches. More
importantly, the cross-view consistency based on the pseudo depth labels mitigates the mismatch
problem by inconsistent prediction results of two views, leading to a substantial performance gain.
Our method aims at advancing the two tasks via task-specific losses based on pseudo ground truth
labels, and existing MTL architectures, e.g. based on task-specific attention modules and adaptive
balancing (Liu et al., 2019; Jha et al., 2020), can be used complementarily with our loss functions.

3.2 LOSS FUNCTIONS

Loss functions are divided into two parts, 1) supervised loss for depth and segmentation networks
and 2) pseudo depth-guided reconstruction loss for cross-view consistency. Note that the supervised
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loss used for monocular depth estimation relies on the pseudo depth labels generated from a pair of
stereo images.

3.2.1 LOSS FOR MONOCULAR DEPTH AND SEMANTIC SEGMENTATION

Depth maps di for i = {l, r}, predicted by the decoder Dd for monocular depth estimation, are used
for measuring the depth regression loss Ld as follows:

Ld =
∑

i={l,r}

Lreg(ci, di, d
pgt
i ), where Lreg(ci, di, d

pgt
i ) =

1

Zi

∑
p∈Φ

ci(p) · |di(p)− dpgt
i (p)|1,

(1)
where ci and dpgt

i indicate the confidence map and pseudo ground truth depth map of left (i = l) or
right (i = r) images, respectively. The loss is normalized with Zi =

∑
p ci(p). Φ represents a set of

all pixels. The confidence map serves to exclude inaccurate depth values of dpgt
i when calculating

the depth regression loss Ld. This can be used in various ways, including the hard thresholding (Cho
et al., 2019; Tonioni et al., 2020) and the soft thresholding (Choi et al., 2020). Among them, the
soft thresholded confidence map (Choi et al., 2020) is shown to be effective in the monocular depth
estimation. Our work chose to threshold the confidence map through the soft-thresholding of (Choi
et al., 2020). We found that the pretrained threshold network already provides satisfactory results,
and thus it was fixed during our network training.

A supervised loss for semantic segmentation is defined with the standard cross-entropy H :

Ls =
∑

i={l,r}

H(si, s
gt
i ), (2)

si and sgt
i denote the segmentation map, predicted by the decoder Ds for semantic segmentation,

and ground truth segmentation map, respectively. The supervised loss for both tasks is defined as
LS = αdLd + αsLs with loss weights αd and αs.

3.2.2 CROSS-VIEW CONSISTENCY LOSS

Minimizing the supervised lossLS for an individual view may often lead to the mismatched problem
in the predicted depth and segmentation maps due to the lack of consistency constraints across two
views. We address this issue by imposing the cross-view consistency across left and right images
with the pseudo depth labels. Figure 2 shows the procedure of computing the cross-view consistency
losses with pseudo depth labels. The cross-view consistency loss for the monocular depth estimation
is defined as follows:

Ld,c = αd,lrLd,lr + αd,lLd,l + αd,rLd,r, (3)

Ld,lr = Lreg

(
cl, dl,G(dr; dpgt

l )
)

+ Lreg

(
cr,G(dl; d

pgt
r ), dr

)
, (4)

Ld,l = Lreg

(
cl, d

pgt
l ,G(dr; dpgt

l )
)

+ Lreg

(
cl, dl,G(dpgt

r ; dpgt
l )

)
, (5)

Ld,r = Lreg

(
cr,G(dl; d

pgt
r ), dpgt

r

)
+ Lreg

(
cr,G(dpgt

l ; dpgt
r ), dr

)
, (6)

where αd,lr, αd,l, and αd,r denote weights for each loss. G(a; b) indicates the result of warping a
with a depth map b into another view. For instance, G(dr; dpgt

l ) returns the depth map warped onto
the left image using dpgt

l . Ld,lr measures the cross-view consistency between two predicted depth
maps dl and dr. Note that the warping function G is applied to dr and dl, respectively. Similar to
the depth regression loss Ld, the confidence map is used together to prevent inaccurate values in
the pseudo depth labels from being used. Ld,l denotes the cross-view consistency for (dpgt

l , dr)
and (dl, dpgt

r ) using the left pseudo label dpgt
l . This implies that when warping dr (or dpgt

r ) into
the left image, the warped result should be similar to dpgt

l (or dl). Ld,r is defined in a similar manner.
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The cross-view consistency can also be applied to semantic segmentation as follows:

Ls,c = αs,lrLs,lr + αs,lLs,l + αs,rLs,r, (7)

Ls,lr = cl · H
(
sl,G(sr; dpgt

l )
)

+ cr · H
(
G(sl; d

pgt
r ), sr

)
, (8)

Ls,l = cl · H
(
sgt
l ,G(sr; dpgt

l )
)

+ cl · H
(
sl,G(sgt

r ; dpgt
l )

)
, (9)

Ls,r = cr · H
(
G(sl; d

pgt
r ), sgt

r

)
+ cr · H

(
G(sgt

l ; dpgt
r ), sr

)
, (10)

where ‘·’ indicates an element-wise multiplication. The confidence maps cl and cr are also used to
compensate for errors in the pseudo depth labels dpgt

l and dpgt
r . Note that for some training datasets

that provide no ground truth segmentation maps, we generate pseudo ground truth segmentation
maps. More details are provided in Section 3.3.

Figure 2: Cross-view consistency loss. Monoc-
ular depth or semantic segmentation maps are
warped using dpgt

l and dpgt
r , and the consistency

losses are measured using equation 3 and equa-
tion 7. Dotted lines mean a warping operator
G(a; b), and solid lines denote the cross-view con-
sistency losses. As summarized in Table 1, either
spgti or sgti is used as supervision for semantic seg-
mentation.

Note that in (Chen et al., 2019), the consistency
for left and right segmentation maps is consid-
ered e.g., by minimizing H (sl,G(sr; dl)). Two
segmentation maps sl and sr are aligned with
the estimated monocular depth map dl. How-
ever, dl is continuously updated during the net-
work training, and thus this may result in inac-
curate alignments at early stage, often leading
to divergences of loss. For these reasons, mini-
mizing the loss H with respect to both monocu-
lar depth and segmentation maps often becomes
very challenging, and the performance gain by
the consistency loss is relatively marginal. Con-
trarily, our approach is more effective in impos-
ing the cross-view consistency in that 1) more
accurate pseudo depth labels, obtained from
stereo matching networks, are used, 2) the con-
fidence map helps to filter out inaccurate depth
values in the pseudo ground truth depth maps.
Furthermore, we extend the cross-view consis-
tency to the monocular depth estimation, which
is infeasible in the recent self-supervised monocular depth estimation approaches (Godard et al.,
2017; 2019; Watson et al., 2019) that rely on the reconstruction loss only. A detailed ablation study
will be provided to validate the effectiveness of the proposed cross-view consistency loss. A total
loss is defined as

L = LS + Ld,c + Ls,c. (11)

3.3 TRAINING DETAILS

Table 1: Supervision used in the KITTI and
Cityscapes datasets.

Task Input KITTI Cityscapes

Seg. Il spgt
l sgt

l
Ir spgt

r spgt
r

Depth Il dpgt
l dpgt

l
Ir dpgt

r dpgt
r

While the pseudo depth labels dpgt
l and dpgt

r , gener-
ated using pretrained stereo matching networks, are
used to supervise the monocular depth estimation
task, the semantic segmentation task requires using
the ground truth segmentation maps. The Cityscapes
dataset provide only the left ground truth segmenta-
tion map sgt

l , and the KITTI dataset does not provide
them. In our work, we hence generated the pseudo
segmentation labels of these images by using seman-
tic segmentation methods (Cheng et al., 2020; Zhu
et al., 2019). Table 1 summarizes the supervisions
used for the two tasks.
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Table 2: Quantitative evaluation of monocular depth estimation on Eigen split of KITTI dataset.
Numbers in bold and underlined represent 1st and 2nd ranking, respectively. The methods used
in evaluation are (Garg et al., 2016), (Zhou et al., 2017), Monodepth (Godard et al., 2017), (Zhan
et al., 2018), (Chen et al., 2019), Monodepth2 (Godard et al., 2019), Uncertainty (Poggi et al., 2020),
DepthHint (Watson et al., 2019), (Guizilini et al., 2020b), and (Choi et al., 2020).

Method cap
(Lower is better) (Higher is better)

Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Garg et al. 0.152 1.226 5.849 0.246 0.784 0.921 0.967
Zhou et al. 0.150 1.124 5.507 0.223 0.806 0.933 0.973
Monodepth 0.138 1.186 5.650 0.234 0.813 0.930 0.969
Zhan et al. 0.135 1.132 5.585 0.229 0.820 0.933 0.971
Chen et al. 80m 0.118 0.905 5.096 0.211 0.839 0.945 0.977
Monodepth2 0.108 0.842 4.891 0.207 0.866 0.949 0.976
Uncertainty 0.107 0.811 4.796 0.200 0.866 0.952 0.978
DepthHint 0.102 0.762 4.602 0.189 0.880 0.960 0.981
Guizilini et al. 0.102 0.698 4.381 0.178 0.896 0.964 0.984
Choi et al. 0.098 0.647 4.253 0.186 0.884 0.960 0.981
Ours 0.097 0.599 4.197 0.184 0.883 0.962 0.982

(a) (b) (c) (d) (e)

Figure 3: Qualitative evaluation of monocular depth estimation on Eigen split of KITTI dataset.
(a) Input image, (b) Monodepth (Godard et al., 2017), (c) Monodepth2 (Godard et al., 2019), (d)
DepthHints (Watson et al., 2019), and (e) Ours.

4 EXPERIMENTAL RESULTS

4.1 DATASETS

We evaluated the performance on two popular datasets, KITTI (Geiger et al., 2012) and Cityscapes
(Cordts et al., 2016). In KITTI, for a fair comparison, we followed the common setup to use 22,600
images for training and the rest for evaluation. The Eigen split data (697 images) (Eigen et al., 2014)
was used for evaluating the monocular depth accuracy. Following existing MTL methods (Chen
et al., 2019), the semantic segmentation accuracy was evaluated with 200 annotated data provided
from KITTI benchmark. Cityscapes provides high resolution images of urban street scenes used for
segmentation and depth estimation. 2,975 and 500 images were used for training and evaluation,
respectively.

4.2 IMPLEMENTATION DETAILS AND EVALUATION METRIC

We first pretrained the monocular depth network E+Dd and semantic segmentation network E+Ds

independently for 30 epochs using the Adam optimizer (Kingma & Ba, 2015) with a learning rate
of 10−4 and momentum of 0.9. We then finetuned the whole network E + Dd + Ds for 20 epochs
using the Adam optimizer with a learning rate of 10−5, reduced to 1/10 every 10 epochs, and a
momentum of 0.9, after initializing it with the pretrained weight parameters of the monocular depth
network E + Dd and semantic segmentation network Ds. During training, we resized KITTI images
to a resolution of [480, 192], and cropped Cityscapes images [2048, 768] to exclude the front part of
the car and resized to a resolution of [256, 96]. The weights for the objective function are set to αd

= 850, αs = 2.5, αd,lr = 0.5, αd,l = 1 ,αd,r = 1, αs,lr = 0.5, αs,l = 1.5, αs,r = 1.5. The performance
evaluation was conducted by following the common practices: 1) mean absolute relative error (Abs
Rel), mean relative squared error (Sq Rel), root mean square error (RMSE), root mean square error
log (RMSE log) and accuracy under threshold δ for monocular depth estimation, 2) intersection
over union (IoU) and mean intersection over union (mIoU) for semantic segmentation. Due to page
limits, some results are provided in appendix. Our code will be publicly available later.
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Figure 4: Qualitative results of semantic segmentation prediction on KITTI dataset.

(a) (b) (c) (d) (e) (f)

Figure 5: Qualitative results of monocular depth estimation on the Cityscapes dataset: (a) Input
image, (b) Ground truth, (c) Cross-stitch (Misra et al., 2016), (d) MTAN (Liu et al., 2019), (e)
Dense (Liu et al., 2019), and (f) Ours. Note that ground truth depth maps were obtained using SGM
(Hirschmuller, 2008).

4.3 PERFORMANCE EVALUATION

KITTI In Table 2, we provide objective evaluation results on the KITTI Eigen split (Eigen et al.,
2014). The proposed method produces very competitive results to state-of-the-arts monocular depth
estimation approaches. Qualitative evaluation in Figure 3 verifies that our method yields the results
with sharper boundaries and better object delineation. These validate the effectiveness of the cross-
view consistency based on the pseudo depth labels. In Figure 4, the proposed method produces
satisfactory semantic segmentation results for the Cityscapes dataset, achieving mIoU = 59.93.
Note that mIoU in the MTL approach of (Chen et al., 2019) is 39.13.

Table 3: Multi-task validation results for 7-class
semantic segmentation and depth estimation on
Cityscapes dataset.

Method Segmentation Depth
(Higher is better) (Lower is better)
mIoU IoU Abs Sq

Split (deep) 56.24 88.13 0.644 0.259
Cross-stitch 59.77 89.70 0.610 0.251
Split (wide) 59.71 89.84 0.619 0.254

MTAN 51.08 89.77 0.669 0.250
Dense 60.01 89.81 0.598 0.242
Ours 64.76 91.90 0.542 0.228

Cityscapes In Table 3, we compared re-
sults on the Cityscape dataset with recent
multi-task learning approaches for monocu-
lar depth estimation and semantic segmenta-
tion tasks: ‘Cross-stitch’ (Misra et al., 2016)
and ‘MTAN’ (Liu et al., 2019). ‘Split (deep)’,
‘Split (wide)’, and ‘Dense’ were reproduced
by using author-provided codes in ‘MTAN’
(Liu et al., 2019). Our method achieves
improved quantitative results on both tasks.
Figure 5 exhibits qualitative results on the
Cityscape dataset. As expected, depth and
segmentation maps generated by our method
are capable of preserving object boundaries
and recover details better than the latest MTL
methods (Misra et al., 2016; Liu et al., 2019).

4.4 ABLATION STUDY

We conducted the ablation experiments to validate the effectiveness of the confidence map and cross-
view consistency for the KITTI dataset in Table 4 and the Cityscapes dataset in Table 5. We first
compared the performance with the method (b = di) based on the cross-view consistency using the
estimated monocular depth map, e.g. H (sl,G(sr; dl)), similar to (Chen et al., 2019). Under the
same setting, our method (b = dpgt

i ) tends to achieve higher mIoU than the method (b = di). Ad-
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Table 4: Ablation study of our model on the KITTI dataset. ‘Baseline’ model is our network without
the confidence and cross consistency loss.

Method G(−; b)
Proposed components Depth Seg

(Lower is better) (Higher is better)

ci Ls,lr Ls,l/Ls,r Ld,c
Rel RMSE δ mIoUAbs / Sq raw / log 1.25 1.252 1.253

Baseline b = dpgt
i 0.103 / 0.673 4.500 / 0.194 0.871 0.957 0.980 56.90

Ours

b = di X 0.101 / 0.665 4.510 / 0.191 0.873 0.958 0.981 58.26
b = di X 0.103 / 0.674 4.537 / 0.196 0.869 0.956 0.980 58.44
b = di X X 0.104 / 0.678 4.579 / 0.196 0.867 0.955 0.979 59.00
b = dpgt

i X 0.100 / 0.661 4.461 / 0.191 0.876 0.959 0.981 58.51
b = dpgt

i X 0.100 / 0.660 4.471 / 0.191 0.876 0.958 0.981 59.16
b = dpgt

i X X 0.101 / 0.668 4.518 / 0.194 0.872 0.958 0.980 59.41
b = dpgt

i X 0.099 / 0.611 4.268 / 0.186 0.882 0.962 0.982 56.59
b = dpgt

i X X 0.096 / 0.612 4.285 / 0.185 0.884 0.962 0.982 58.91
b = dpgt

i X X 0.097 / 0.610 4.282 / 0.183 0.884 0.962 0.983 59.78
b = dpgt

i X X X 0.096 / 0.616 4.287 / 0.184 0.884 0.962 0.982 60.21
b = dpgt

i X X 0.100 / 0.613 4.213 / 0.186 0.878 0.961 0.982 56.79
b = dpgt

i X X X X 0.097 / 0.599 4.197 / 0.184 0.883 0.962 0.982 59.93

Table 5: Ablation study of our model on the Cityscapes dataset. ‘Baseline’ model is our network
without the confidence and cross consistency loss.

Method G(−; b) Proposed components Depth Seg
(Lower is better) (Higher is better)

ci Ls,lr Ls,l/Ls,r Ld,c Abs Sq mIoU Pixel Acc
Baseline b = dpgt

i 0.584 0.246 63.01 91.24

Ours

b = di X 0.573 0.238 63.83 91.53
b = di X 0.586 0.244 64.05 91.54
b = di X X 0.584 0.243 64.15 91.59
b = dpgt

i X 0.572 0.242 63.85 91.30
b = dpgt

i X 0.559 0.237 64.32 91.68
b = dpgt

i X X 0.572 0.242 64.36 91.37
b = dpgt

i X 0.565 0.236 63.17 91.30
b = dpgt

i X X 0.550 0.232 64.49 91.74
b = dpgt

i X X 0.552 0.234 64.56 91.80
b = dpgt

i X X X 0.553 0.235 64.68 91.88
b = dpgt

i X X 0.547 0.228 63.86 91.40
b = dpgt

i X X X X 0.542 0.229 64.76 91.90

ditionally, while the method (b = di) often degenerates the monocular depth accuracy, our method
(b = dpgt

i ) does not suffer from such an issue, achieving the improved monocular depth accuracy.
Such a performance gain become even more apparent for both tasks when using the confidence map.
Note that it is infeasible to leverage the confidence map for the method (b = di) in which the esti-
mated monocular depth map is constantly updated during the network training. When including the
cross-view consistency loss Ld,c for monocular depth estimation, the additional performance gain
was observed, validating its effectiveness on the monocular depth estimation. Though the segmen-
tation accuracy (mIoU) was slightly worsen in some cases, it is relatively marginal. This may be
due to our architecture where the two tasks share the encoder, and more advanced MTL architecture,
e.g. using task-attention modules (Liu et al., 2019), would lead to performance improvement. We
reserve this as future work.

5 CONCLUSION

This paper has presented a new MTL architecture designed for monocular depth estimation and
semantic segmentation tasks. The cross-view consistency loss based on the pseudo depth labels,
generated using pretrained stereo matching methods, was imposed on the prediction results of two
views for resolving the mismatch problem. Intensive ablation study exhibited that it leads to a sub-
stantial performance gain in both tasks, especially achieving the best accuracy in the monocular
depth estimation. Our task-specific losses can be used complementarily together with existing MTL
architectures, e.g. based on task-specific attention modules (Liu et al., 2019). An intelligent com-
bination with these approaches is expected to further improve the performance. Additionally, how
to integrate recent architectures (Chen et al., 2018; Takikawa et al., 2019) designed for semantic
segmentation into the MTL network would be an interesting research direction.
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A APPENDIX

A.1 MORE COMPREHENSIVE EVALUATION RESULTS FOR KITTI

We provide more comprehensive results for KITTI dataset. Figure 6 shows the qualitative evaluation
with existing monocular depth estimation methods on Eigen Split of the KITTI dataset. Figure 7
shows the semantic segmentation prediction results on the KITTI dataset. We also evaluated the
performance with the improved ground truth depth maps made available at (Uhrig et al., 2017)
for the KITTI dataset in Table 6. Our approach is state-of-the-art in monocular depth estimation
compared to existing methods.

(a) (b) (c) (d) (e)

Figure 6: Qualitative evaluation of monocular depth estimation on KITTI dataset. (a) Input image,
(b) Monodepth (Godard et al., 2017), (c) Monodepth2 (Godard et al., 2019), (d) DepthHints (Watson
et al., 2019), and (e) Ours.

Table 6: Quantitative results of monocular depth estimation using the improved ground truth depth
maps made available at (Uhrig et al., 2017) for the KITTI dataset. Numbers in bold and underlined
represent 1st and 2nd ranking, respectively. The methods used in evaluation are EPC++ (Luo et al.,
2020), Monodepth2 (Godard et al., 2019), Uncertainty (Poggi et al., 2020), Packnet-SfM (Guizilini
et al., 2020a), UnRectDepthNet (Kumar et al., 2020), and Choi et al. (Choi et al., 2020).

Method
Lower is better Higher is better

Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

EPC++ 0.120 0.789 4.755 0.177 0.856 0.961 0.987
Monodepth2 0.090 0.545 3.942 0.137 0.914 0.981 0.994
Uncertainty (Boot+Log) 0.085 0.511 3.777 0.137 0.913 0.980 0.994
Uncertainty (Boot+Self) 0.085 0.510 3.792 0.135 0.914 0.981 0.994
Uncertainty (Snap+Log) 0.084 0.529 3.833 0.138 0.914 0.980 0.994
Uncertainty (Snap+Self) 0.086 0.532 3.858 0.138 0.912 0.980 0.994
Packnet-SfM 0.078 0.420 3.485 0.121 0.931 0.986 0.978
UnRectDepthNet 0.081 0.414 3.412 0.117 0.926 0.987 0.996
Choi et al. 0.078 0.357 3.203 0.120 0.930 0.987 0.996
Ours 0.076 0.322 3.094 0.117 0.933 0.988 0.997

Figure 7: Qualitative results of semantic segmentation prediction on the KITTI dataset.
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A.2 MORE COMPREHENSIVE EVALUATION RESULTS FOR CITYSCAPES

We provide more comprehensive results for the Cityscapes dataset. Figure 8 and 9 show the qualita-
tive evaluation results with existing MTL methods (Misra et al., 2016; Liu et al., 2019) for monocular
depth estimation and semantic segmentation on the Cityscapes dataset. These results also support
the effectiveness of our method.

(a) (b) (c) (d) (e) (f)

Figure 8: Qualitative results of monocular depth estimation on the Cityscapes dataset: (a) Input im-
age, (b) Ground truth depth map obtained using SGM (Hirschmüller, 2008), (c) Cross-stitch (Misra
et al., 2016), (d) MTAN (Liu et al., 2019), (e) Dense (Liu et al., 2019), and (f) Ours.

(a) (b) (c) (d) (e) (f)

Figure 9: Qualitative results of semantic segmentation results on the Cityscapes dataset: (a) Input
image, (b) Ground truth segmentation map, (c) MTAN (Liu et al., 2019), (d) Cross-stitch (Misra
et al., 2016), (e) Dense (Liu et al., 2019), and (f) Ours.

A.3 QUALITATIVE EVALUATION FOR ABLATION STUDY

Figure 10 and 11 and shows the qualitative evaluation for ablation study on the KITTI and Cityscape
datasets, respectively. It was found that our final results are much improved compared to those of
the ‘Baseline’ model, validating the effectiveness of the confidence map and cross-view consistency
loss.
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(a) (b) (c)

(d) (e) (f) (g)

Figure 10: Qualitative evaluation for ablation study on the KITTI dataset: (a) Depth input images,
(b) Depth map with ‘Baseline’ model, (c) Our final depth map, (d) Segmentation input images,
(e) Ground truth segmentation map , (f) Segmentation map with ‘Baseline’ model, (g) Our final
segmentation result. ‘Baseline’ model is our network without the confidence and cross consistency
loss.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 11: Qualitative evaluation for ablation study on the Cityscape dataset: (a) Depth input im-
ages, (b) Ground truth depth map, (c) Depth map with ‘Baseline’ model, (d) Our final depth map,
(e) Segmentation input images, (f) Ground truth segmentation map, (g) Segmentation map with
‘Baseline’ model, (h) Our final segmentation result. ‘Baseline’ model is our network without the
confidence and cross consistency loss.
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