
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PLANNING IN NATURAL LANGUAGE IMPROVES LLM
SEARCH FOR CODE GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

While scaling training compute has led to remarkable improvements in large lan-
guage models (LLMs), scaling inference compute has not yet yielded analogous
gains. We hypothesize that a core missing component is a lack of diverse LLM out-
puts, leading to inefficient search due to models repeatedly sampling highly similar,
yet incorrect generations. We empirically demonstrate that this lack of diversity can
be mitigated by searching over candidate plans for solving a problem in natural lan-
guage. Based on this insight, we propose PLANSEARCH, a novel search algorithm
which shows strong results across HumanEval+, MBPP+, and LiveCodeBench (a
contamination-free benchmark for competitive coding). PLANSEARCH generates a
diverse set of observations about the problem and uses these observations to con-
struct plans for solving the problem. By searching over plans in natural language
rather than directly over code solutions, PLANSEARCH explores a significantly
more diverse range of potential solutions compared to baseline search methods.
Using PLANSEARCH on top of Claude 3.5 Sonnet achieves a pass@200 of 77.0%
on LiveCodeBench, outperforming both the best pass-rate achieved without any
search (pass@1 = 41.4%) and using standard repeated sampling on top of exist-
ing non-search models (pass@200 = 60.6%). Finally, we show that, across all
models, search algorithms, and benchmarks analyzed, we can accurately predict
performance gains from search as a function of the diversity over generated ideas.

GPT-
4o

-m
ini

GPT-
4o

Dee
pS

ee
k-C

od
er-

V2

So
nn

et-
3.5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Pa
ss

@
k

0.390
0.413 0.414 0.403

0.533

0.606

0.532
0.556

0.649

0.730
0.703

0.770
Pass@k Scores by Method on LiveCodeBench

Repeated Sampling@1
Repeated Sampling@200
PlanSearch@200

Figure 1: Comparison of REPEATED SAMPLING, both pass@1 and pass@k, and our novel method
PLANSEARCH. On every model, our method outperforms baselines by a wide margin, with the best
model-method combination of Claude 3.5 Sonnet / PLANSEARCH achieving performance nearly
double that of the best model without search.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

1 INTRODUCTION

The bitter lesson (Sutton, 2019) famously posits that two forms of scaling trump everything else:
learning and search. While recent advances in large language models (LLMs) have shown that
learning is extremely effective, search has not yet proven its value for LLMs, despite its success with
classical machine learning techniques (Campbell et al., 2002; Silver et al., 2016; 2017; Brown &
Sandholm, 2018; 2019; Bakhtin et al., 2022; FAIR et al., 2022).

Here, we refer to search as any method of spending compute at inference time to improve overall
performance (McLaughlin, 2024). In this work, we focus our efforts on improving LLM search
for code generation, one of the most important current applications of LLMs. We hypothesize
the major bottleneck preventing widespread use of search at inference time for code is a lack of
high-level diversity in model outputs. This lack of diversity is likely in part due to specific post-
training objectives commonly used to train LLMs as chatbots, in which models are oftentimes
optimized to produce a single correct answer (Rafailov et al., 2024; Ouyang et al., 2022). We
empirically demonstrate that this is the case for many open-source language models which have
undergone significant post-training. Specifically, we show that in many cases, despite instruction
tuned models outperforming base models by large margins on a single sample regime (pass@1),
this trend disappears—sometimes even reversing—on a multi-sample regime (pass@k). We refer to
Figure 30 as an example of this phenomenon.

Furthermore, the lack of diversity is particularly harmful for search algorithms. In the most egregious
of cases with little to no diversity, such as greedy decoding, repeated sampling from the model returns
highly similar programs, resulting in minimal gain from additional inference-time compute. This
diversity problem is also not reflected in many public leaderboards (e.g. LMSYS Chatbot Arena
(Chiang et al., 2024), LiveCodeBench (Jain et al., 2024), OpenLLMLeaderboard (Aidar Myrzakhan,
2024)), which often report only the pass rate from a single sample of the model, ignoring an entire
dimension along which to compare models. While the performance of one sample is the primary
metric of relevance for applications such as chatbots, as users typically are sensitive to latency, this
single scalar is insufficient to fully capture the quality of a model when it is allowed to use more
inference-time compute.

"Use hashmaps"

"Use binary
search"

"Use greedy
search"

"Precompute
positions for each

subsequence"

"Return False if
the array is

empty"

"Identify the
longest

subsequence" 

"Bucket each
array into a size

of root n"

. . .Coding Problem

Strategy
Description

PseudocodeStrategy
Description

CodePseudocode

Code

Prompt new solutions with 
"Your idea is wrong"

First-order
observations

Second-order
observations

Stage 1: Generate diverse observations Stage 2: Implement code from observations

Figure 2: An example trajectory of PLANSEARCH, which searches over plans in natural language as a
method of increasing diversity in the search process. PLANSEARCH first generates observations, then
combinatorially samples subsets of these observations to generate the next step in the search process.
To generate the next layer of observations, the combinations derived from the first observations are
used as a stepping stone to generate the next observations, and the process repeats. After generating
both the first and second order observations, PLANSEARCH then generates a natural language
description of a strategy to solve the problem. For additional diversity, the model is prompted to
regenerate its strategy as an additional sample before generating code. See Section 4.3 for additional
discussion.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

In this paper, we explore several directions for improving the diversity of LLMs at inference time.
We hypothesize that the right axis of diversity to search over is the natural language conceptual/idea
space, and we validate our hypothesis across several experiments. First, we show that models can
produce the correct final program when fed correct solution sketches, where these sketches have
been “backtranslated” from passing solution code into sketches in idea space (Section 3.2). Second,
we show that when models are asked to generate their own ideas before implementing them on
LiveCodeBench (IDEASEARCH), their accuracy conditioned on a particular sketch trends towards
either 0% or 100%, suggesting that most of the variance in passing a particular problem is captured
by whether the sketch is correct rather than any other factor. These two experiments suggest a natural
method to improving LLM search for code generation: by searching for the correct idea to implement.

Guided by this principle of maximizing exploration of ideas, we propose PLANSEARCH. In contrast
to many existing search methods that search over individual tokens (Zhang et al., 2024; 2023), lines
of code (Kulal et al., 2019), or even entire programs (Li et al., 2022), PLANSEARCH searches over
possible plans for solving the problem at hand, where a plan is defined as a collection of high
level observations and sketches helpful to solve a particular problem (Figure 2). To generate novel
plans, PLANSEARCH generates a number of observations about the problem, before combining these
observations into a candidate plan for solving the problem. This is done for every possible subset
of the generated observations to maximally encourage exploration in idea space, before the codes
are eventually all translated into a final code solution (Section 4.3). We find that searching over
plans outperforms both standard repeated sampling and directly searching over ideas (IDEASEARCH,
introduced in Section 4.2) in terms of effectively using compute at inference time.

Applying PLANSEARCH on top of Claude 3.5 Sonnet achieves a pass@200 of 77.0% on Live-
CodeBench, outperforming both the best score achieved without search (pass@1 = 41.4%) and
the standard best-of-n sampling score on non-search methods (pass@200 = 60.6%). Furthermore,
consistent with recent findings on the effectiveness of search on top of small models (Chen et al.,
2024; Brown et al., 2024; Bansal et al., 2024; Wu et al., 2024), running PLANSEARCH on top of
a small model (GPT-4o-mini) outperforms larger models not augmented with search after merely
4 attempts. Evaluations of PLANSEARCH across two other coding benchmarks, HumanEval+ and
MBPP+ (Liu et al., 2023), suggest similar improvements.

Finally, we measure the diversity of output code over the idea space of all search methods via
an LLM-as-a-judge procedure (Section 6.1) and show that the resulting diversity score is highly
correlated with the performance gains generated by that search method. This provides further support
for our hypothesis that the effective exploration of plans in idea space is key to LLM search for code
generation (Figure 5).

2 RELATED WORK

We reiterate that search as defined in the context of our paper refers to any method which expends
inference-time compute to improve performance. We further specify planning as any form of high
level observation or abstract thought that assists a model in generating a final solution. Our work
builds off a long history of work in scaling search and planning. For information on relevant work in
classical AI, general search, and filtering, see Appendix Q.

Regarding searching over plans in natural language, several approaches have proposed generalizing
chain-of-thought (Wei et al., 2022) reasoning into a search-like process, such as Tree of Thoughts
(Yao et al., 2023a) and Reasoning via Planning (Hao et al., 2023b). However, prior methods have
largely demonstrated effectiveness on somewhat contrived problems designed to highlight the power
of search, such as the game of 24, or classic planning benchmarks such as Blocksworld (McDermott,
2000), where both benchmarks are easier to solve by explicitly considering many options, and where
the ‘steps’ over which to search over are fairly obvious. By contrast, most real-world planning is used
to assist in domains that are complex enough to benefit from, but not require, the additional exploration
of plans. We demonstrate that PLANSEARCH, which plans in natural language, outperforms baseline
search methods in one such domain: code generation. Moreover, our analysis reveals the underlying
reason that such search is effective: it increases the diversity of the generated ideas, allowing
more efficient search relative to other methods which repeatedly submit highly similar, incorrect
solutions. This is consistent with prior work suggesting the importance of diversity in natural
language generation (Hashimoto et al., 2019; Zhang et al., 2021). Other directions for search include

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

decomposing programs down into smaller parts before solving each one individually (Zelikman et al.,
2023; Zhou et al., 2023; Gao et al., 2023).

PLANSEARCH is also distinct from other methods which explicitly train a model to search or on
reasoning traces sampled from the model (Zelikman et al., 2022; Zhang & Parkes, 2023; Zelikman
et al., 2024; OpenAI, 2024) in that PLANSEARCH induces diversity at inference-time and converts
an LLM API not designed for search into one that is capable of showing strong gains from search.
Separately, there is a large family of work in the agent space, in which outputs from terminal
commands or other tools are fed back into the model before the agent is queried for the next step
(Shinn et al., 2023; Yao et al., 2023b; Schick et al., 2023; Chen et al., 2022b).

3 MOTIVATION

Coding is a powerful area in which search should excel. While search in other domains requires both
generating many solutions and selecting the correct solution amongst all the resulting generations,
coding often only requires the former, as any valid piece of code can be tested via code execution
against given test cases. This allows code search algorithms to sidestep many of the issues that plague
search algorithms for more open-ended domains (e.g. generating poetry) due to difficulty in selecting
correct solutions out of all the generated solutions.

101 102 103

Average Solution Token Length

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Pa
ss

@
k

Effects of Backtranslation on Performance
Pass@1
Baseline Pass@1
Pass@5
Baseline Pass@5

(a) Performance of GPT-4o-mini on LiveCodeBench
when provided with backtranslated solutions of vary-
ing lengths. The baselines plot performance without
backtranslated solutions. Providing the model with a
compressed solution in natural language, even as short
as 10 tokens, significantly increases performance.

0.0 0.2 0.4 0.6 0.8 1.0
Solve Rate

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
Fr

eq
ue

nc
y

Distribution of Solve Rates Conditioned on Idea
Per Problem
Per Idea

(b) We plot the distribution of solve rates conditioned
on being given a solution sketch and without. When
conditioning on a given sketch, we notice that down-
stream solve rates polarize towards either 0% or 100%.
Most of the variance in performance is predicted by
whether a given idea is correct or not.

Figure 3: Backtranslation shows the promise of providing good sketches, and conditioning on idea
shows the presence of a solution sketch polarizes performance.

3.1 DEFINING THE SEARCH SPACE

Perhaps the most important question for eliciting strong search capacities is determining which space
to search over, as finding the proper layer of abstraction is critical to progress in the field. Prior
approaches have varied, with many people searching over individual tokens (Zhang et al., 2024;
2023), lines of code (Kulal et al., 2019), or even entire programs (Li et al., 2022). We hypothesize that
the key factor is obtaining the correct solution sketch, which we define as a description of the correct
program in natural language space. Intuitively, conducting the reasoning process in natural language
space allows us to effectively harness the training process of LLMs, which have observed many
human reasoning traces in both pre- and post-training. Prior work (Wei et al., 2022) has observed
strong positive effects from being allowed to conduct such reasoning in natural language, making it a
natural place to search over. We describe two experiments providing evidence for this hypothesis by
testing on the LiveCodeBench benchmark using GPT-4o-mini as our model.

3.2 BACKTRANSLATION

To investigate the hypothesis whether the idea space, instantiated as solution sketches, is the right area
of exploration, a natural question is whether LLMs can correctly implement a correct code solution

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

given a correct sketch. Inspired by approaches to backtranslation in machine learning (Sennrich
et al., 2016; Pham et al., 2021; Edunov et al., 2018), we experiment with “backtranslating” passing
code solutions back into idea space. First, we generate code solutions using GPT-4o to generate
1000 attempts to solve the problem and filter out problems without any passing solutions. As we
also do not have a dataset of correct solution sketches associated with each solution, we generate
a candidate correct idea via backtranslation. We do this by feeding an LLM both the problem and
code solution and asking the LLM to convert said solution into a natural language description of the
solution. Additionally, we vary the detail of the backtranslated idea via instructions to the LLM in
the prompt (e.g. ‘in w words’). A full description of the prompts can be found in Appendix M.1,
alongside several example backtranslated solutions of various lengths.

We observe that prompting a model with a backtranslated idea significantly improves accuracy,
increasing with the length of the translated idea (Figure 3a), which suggests that having a correct
sketch is sufficient to produce the correct final solution with relatively high accuracy, even only after
10 tokens of backtranslated solution. This suggests that the correct direction of search is to explore
through idea space to maximize the chance of arriving at a correct idea.

3.3 CONDITIONING ON IDEA QUALITY

In a follow-up experiment, we prompt an LLM to generate its own sketches to solve LiveCodeBench
problems instead of providing it with golden ones via backtranslation. First, we generate 5 ideas per
problem using IDEASEARCH, defined in Section 4.2. For each idea, we then sample 25 candidate
solutions and measure their pass rate. For this experiment, we filter out any problem that GPT-4o-mini
solves with either a 100% or a 0% solve rate, since such problems are either too easy or too hard
for the model and would not be informative for this experiment. We end with 75 problems and 375
sketches.

To test our hypothesis that generating a correct sketch is a critical factor for solving problems, we
compare the distribution of solve rates for generating correct code solutions conditioned on a given
sketch to the distribution over solve rates given a sketch drawn at random, i.e., just the distribution
over solve rates. While verifying whether a sketch is correct or incorrect is difficult without access
to external labels, a key insight is that if generating the correct idea is a critical factor in solving
the problem, then conditioning on a particular sketch should polarize the distribution of solve rates
towards {0, 1}. If the model is given a correct sketch, it should consistently generate correct solutions,
while if given a bad sketch, it should consistently generate incorrect solutions.

Our results confirm this to be the case. Figure 3b shows the distribution of solve rates across
problems, both unconditionally (in red) and conditioned on each sketch (in blue). We notice that
when grouping by sketches, the solve rates indeed become polarized towards {0, 1}. This result has
important implications for improving code generation, suggesting that a large portion of variance
in performance can be explained by whether the model is able to generate a correct idea or not.
Therefore, a natural path for improvement is to focus on the sketch generation step and search for
correct sketches and observations in idea space before generating solution code.

4 METHODS

We provide a description of the various methods of search we explore in our work. If additional
background on competitive programming and related notation is desired, we provide more (optional)
information in Appendix P.

4.1 REPEATED SAMPLING

We consider the basic prompting approach as a baseline, in which we use few-shot prompting by
providing the LLM with a number of problem-solution pairs before asking it to solve the desired
question (Brown et al., 2020). A full example of the prompt is given in Appendix M.2. In code
generation, the most common variant of search utilized is repeated sampling, where models are
repeatedly sampled from until they generate an output that passes the test or the maximum number of
samples is reached. Refer to the Related Work for more information (Section Q.2).

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4.2 IDEASEARCH

A natural extension of the REPEATED SAMPLING approach discussed in Section 4.1 is to avoid
prompting the LLM for the solution code immediately. This can be viewed as an application of the
commonly used “chain-of-thought” prompting to programming problems (Wei et al., 2022), although
we find that IdeaSearch shows non-negligible performance boosts over standard “chain-of-thought”
prompting (see Appendix E).

In IDEASEARCH, the LLM is given the problem P and is asked to output a natural language solution
S of the problem. Then, a separate instance of the LLM is given P and S, and tasked to follow
the proposed solution S to solve the problem P . The purpose of IDEASEARCH is to isolate the
effectiveness of having the correct “idea/sketch” for solving the problem. Empirically, we find that
explicitly forcing the search algorithm to articulate an idea for solving the problem increases diversity.
See Appendix M.3 for detailed prompts.

4.3 PLANSEARCH

While both REPEATED SAMPLING and IDEASEARCH are successful and lead to improvement in
the results on benchmark results, we observe that in many of the cases, prompting multiple times
(pass@k) (even at high temperatures) will only lead to small, narrow changes in the output code that
change minor aspects but fail to improve upon pitfalls in idea.

Ablations for many of the choices in the subsequent description of PLANSEARCH can be found in
Appendix H.

4.3.1 PROMPTING FOR OBSERVATIONS

Starting from the problem statement P , we prompt an LLM for “observations”/hints to the problem.

We denote these observations as O1
i , where, i ∈ {1, . . . , n1} due to the fact that they are first-order

observations. Typically, n1 is on the order of 3 to 6. The exact number depends on the LLM output.
To use these observations to inspire future idea generation, we create all subsets with size at most
S = 2 of s1 =

{
O1

1, . . . , O
1
n1

}
. Each of these subsets is a combination of observations, and for

clarity we denote each subset as C1
i , i ∈ {1, . . . , l1}, where l1 = 1 + n1 +

(
n1

2

)
.

4.3.2 DERIVING NEW OBSERVATIONS

The set of all observations can be thus defined as a directed tree with depth 1, where the root
node is P , and an edge exists for each C1

i pointing from P to C1
i . We then repeat this procedure

from Section 4.3.1 on each leaf node C1
i to generate a set of second order observations, s2i =

{O2
i,1, . . . , O

2
i,ni,2

}. To obtain second order observations, we prompt the model with both the original
problem P and all observations contained in C1

i , framed as primitive observations that are necessary
in order to solve P . The LLM is then prompted to use/merge the observations found in C1

i in order
to derive new ones.

The same procedure as Section 4.3.1 is used to create all subsets C2
i,j , for all i ∈ {1, . . . , l1}. This

process may be arbitrarily repeated, but we truncate the tree at depth L = 2 for computational
constraints.

Note that there is no assumption any of the observations generated are correct. In fact, it is critical to
note that many of them may be incorrect. The observations merely serve to elicit the model to search
over a more diverse set of ideas.

4.3.3 OBSERVATIONS TO CODE

After the observations have been made, they must be implemented as ideas before being translated
into code. For each leaf node, we prompt the model with all observations, along with the original
problem P , in order to generate a natural language solution to the problem P . To add more diversity,
for each generated idea, we generate an additional idea by supposing the idea is wrong, and asking an
LLM to give criticisms/feedback, thus increasing our proposed ideas by a factor of 2.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

These natural language solutions are then translated into pseudocode, which are subsequently trans-
lated into actual Python code. We take a more granular approach to reduce the translation error (which
may cause the model to revert to its original mode, disregarding the reasoned-through observations).
We provide all prompts for all sections in Appendix M.4.

5 EXPERIMENTAL RESULTS

Model Eval Pass@1 Pass@200 IS@200 (ours) PS@200 (ours)
GPT-4o-mini LCB 39.0 53.3 59.4 64.9
GPT-4o LCB 41.3 60.6 70.4 73.0
DeepSeek-Coder-V2 LCB 41.4 53.2 65.9 70.3
Claude-Sonnet-3.5 LCB 40.3 55.6 70.2 77.0
GPT-4o-mini HE+ 83.7 95.0 97.5 98.2
GPT-4o HE+ 86.4 98.2 97.6 99.5
DeepSeek-Coder-V2 HE+ 82.8 91.4 97.2 99.3
Claude-Sonnet-3.5 HE+ 81.6 88.9 95.6 98.5
GPT-4o-mini M+ 73.5 83.8 87.3 91.0
GPT-4o M+ 77.2 87.4 89.3 92.2
DeepSeek-Coder-V2 M+ 76.3 81.9 89.1 92.6
Claude-Sonnet-3.5 M+ 77.1 83.0 87.8 93.7

o1-mini (search model) LCB 69.5 90.8 91.2 91.3

Table 1: LCB, HE+, M+ short for LiveCodeBench, HumanEval+, and MBPP+, respectively. IS short
for IDEASEARCH and PS short for PLANSEARCH. We find that PLANSEARCH and IDEASEARCH
improve upon search baselines across all models, with PLANSEARCH achieving the best results
across all models and benchmarks considered. Notably, using PLANSEARCH on top of Claude
3.5 Sonnet (Anthropic, 2024) has a pass@200 of 77.0 on LiveCodeBench, which is nearly double
the performance of the top model without using search (41.4). PLANSEARCH also outperforms
basic pass@200 on o1-mini for LiveCodeBench, though since o1-mini already uses inference-time
compute, the gap is much smaller than compared to non-search models. The full pass@k curves are
included in Appendix A.

5.1 DATASETS

We evaluate our search methods on three benchmarks: MBPP+, HumanEval+ (Liu et al., 2023), and
LiveCodeBench (Jain et al., 2024). MBPP (Austin et al., 2021) and HumanEval (Chen et al., 2021)
are some of the most widely used code benchmarks in the field. However, since both benchmarks
provide only a few test cases, Liu et al. (2023) updates both benchmarks with additional test cases that
increase the benchmarks’ robustness to reward hacking. LiveCodeBench is a benchmark for coding
that consists of competitive programming problems which typically require advanced reasoning
capabilities. Given the reality that coding data is often highly upsampled during pre-training (OpenAI
et al., 2024; Dubey et al., 2024), LiveCodeBench differentiates itself from other benchmarks by
taking care to segregate problems by date to avoid data contamination concerns. For this paper,
we use only the subset of problems between May 2024 and September 2024 to avoid possibilities
of contamination. We choose May 2024 as the cutoff date to ensure that our results with our best
performing model (Claude 3.5 Sonnet) are not due to contamination, because Claude 3.5 Sonnet has
a knowledge cutoff of April 2024. To ensure fair comparison, we use the same cutoff for all models
evaluated, even though the precise cutoff dates for other models may vary slightly from May 2024.

5.2 EXPERIMENT DETAILS

For all search algorithms, we require that all output code be in the correct format specified, and we
mark a solution as incorrect if it does not follow the intended formatting. The extracted code is then
run through all tests of the program and marked as correct if and only if it passes all tests.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

1 10
0.3

0.4

0.5

0.6

0.7
Pa

ss
@

k

GPT-4o-mini

1 10
0.3

0.4

0.5

0.6

0.7

GPT-4o

1 10
k

0.3

0.4

0.5

0.6

0.7

Pa
ss

@
k

DeepSeek-Coder-V2

1 10
k

0.3

0.4

0.5

0.6

0.7

Sonnet-3.5

Repeated Sampling
IdeaSearch
PlanSearch

Public Filtering
No Public Filtering

Pass@k vs k for Methods with Public Filtering on LiveCodeBench

Figure 4: Performance of all models and methods on LiveCodeBench with public test filtering. The
purpose of filtering is to shift pass@k curves leftward (i.e., bringing performance at high k to low k),
so we plot curves in detail over k ∈ {1, . . . , 20}. Even at 10 completions, PLANSEARCH outperforms
filtered REPEATED SAMPLING by a flat 30 to 40%. Again, full pass@k plots are included in their
entirety in Appendix A.

All models are run with temperature 0.9 and top-p of 0.95. (o1-mini was run with temperature 1.0
and top-p of 1.0 because of API constraints.) Temperature was determined through a coarse hyper-
parameter sweep on REPEATED SAMPLING and IDEASEARCH from T ∈ {0.0, 0.1, 0.2, . . . , 1.2},
which we describe in Appendix F.

Both REPEATED SAMPLING and IDEASEARCH generate exactly n codes, whereas PLANSEARCH
generates a variable number of codes, usually ranging on the order of 300 to 400. To compute pass@k,
we use the unbiased estimator in Equation 4 (Chen et al., 2021)1.

If k > n, we assume the remaining generations did not pass. To compute pass@k for filtering, we
limit the pool of codes to those that are filtered, meaning that both n and c may shrink in size. This
can be thought of as a conditional probability, where the condition is that the code passes public tests.
For more information on public test filtering, see Appendix R.

5.3 RESULTS

Our summarized results for REPEATED SAMPLING, IDEASEARCH, and PLANSEARCH can be found
in Table 1, Figure 1, and Figure 4. We find that PlanSearch improves over existing methods for all
models and benchmarks considered.

1Note that the estimator in Equation 4 theoretically requires that the number of successes follows a binomial
distribution. REPEATED SAMPLING and IDEASEARCH obey this, but PLANSEARCH generations may not be
independent. See Appendix O for more discussion.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Additionally, we plot our full pass@k curves for all methods, models, and datasets in Appendix A. Due
to prohibitively high costs, we only evaluate o1-mini on LiveCodeBench, as HumanEval+ and MBPP+
show strong saturation effects even with weaker models like GPT4o-mini. The pass@k curves of
o1-mini and associated discussion can be found in Appendix K. For sake of easy comparison, we also
plot all relative gains compared to REPEATED SAMPLING@1 averaged over all models in Appendix C.
For a compute-normalized comparison between REPEATED SAMPLING and PLANSEARCH, see
Figure 17. Additionally, we ablate over the design choices made for PLANSEARCH in Appendix H.

6 ANALYSIS

Our results suggest that both PLANSEARCH and IDEASEARCH outperform basic sampling by a wide
margin (Figures 11, 12, 13), with PLANSEARCH achieving the best score across all methods and
models considered. Since o1-mini is unique from all other models tested, we show and discuss its
unique results in Appendix K. We show the detailed pass@k results for each dataset in Figures 6, 7
and 8. We also compare with Chain-of-Thought (Wei et al., 2022) in Appendix E. Interestingly, we
find that IDEASEARCH performs somewhat better, which we speculate comes from differences in
splitting solution sketch into two model responses, instead of doing both chain-of-thought and code
solution in one model response.

Investigating the differences in specific models, we notice that trends exhibited by the pass@k curves
are not uniform across all models; in fact, each curve seems unique. We hypothesize that these
differences are in part due to changes in idea diversity, as investigated in Figures 5, 25, 26. Figure 5
includes o1-mini diversities, which also follow the observed trend. From the figures, we can see that
our approximate diversity score accounts for much of the variance we see in the relative improvement
that arrives from scaling-up inference-time compute. This correlation holds across all methods and
models on the same dataset, thus suggesting that diversity score can be used as a proxy to predict
for relative pass@k improvement. For further discussion on the specifics of the diversity score, see
Section 6.1.

One interesting point of observation is that PLANSEARCH often hurts pass@1 for several models,
including most notably Sonnet 3.5 on LiveCodeBench, our best performing combination. Intuitively,
this is because increasing the diversity across ideas likely dilutes the probability that any particular
idea is generated, while simultaneously increasing the chance of having at least one correct idea
within said pool. Therefore, pass@1 may be slightly lower than usual, yet pass@k will likely surpass
“pools” of ideas lacking diversity for this reason. See Figure 41 for a graphical intuition.

Finally, in Table 1 and Figure 1, we present our main results normalized across attempts/completion,
where each search method is allowed k attempts to solve each problem. An alternative method of
normalizing across methods is to equalize the amount of compute spent on each method. Since
PLANSEARCH and IDEASEARCH first plan out an idea before implementing the final solution,
they both spend more compute at inference time per solution generated. In Appendix D, we report
the equivalent plots normalized across compute. Our findings are highly similar and suggest that
PLANSEARCH outperforms all other methods if sufficient compute is expended at inference time.

6.1 MEASURING DIVERSITY

We find that idea-space diversity strongly predicts search performance, measured by the relative
improvement between pass@1 and pass@200 (Figure 5). While entropy is a common diversity
measure (Shannon, 1948), it is inadequate for LLM settings (Hashimoto et al., 2019; Zhang et al.,
2021). For instance, a model generating variations of the same program and another producing
distinct programs may have equal entropy, yet the latter will perform better in search-augmented
tasks.

We measure diversity in idea space via pairwise comparisons across all generated programs. Let
{c1, . . . , cn} be a set of n code generations, each corresponding to a latent idea. Two sketches can be
thought to be considered similar if they are within some ϵ of each other in idea space, noting that
transitivity may not hold here.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0.1 0.2 0.3 0.4 0.5 0.6
Idea Diversity

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Re
la

tiv
e 

Ga
in

s (
Pa

ss
@

1 
to

 P
as

s@
20

0)

Idea Diversity vs Relative Gains from Search (on LiveCodeBench)
Repeated Sampling
IdeaSearch
PlanSearch

GPT-4o-mini
GPT-4o
DeepSeek-Coder-V2
Sonnet-3.5
o1-mini

Figure 5: We observe a strong positive correlation between the measured amount of idea diversity
(higher score is better) in a search algorithm and the resulting improvements due to search. See
Section 6.1 for information regarding the diversity score.

To compute diversity, we construct the
(
n
2

)
pairs and evaluate their similarity using an LLM, defining

S(ci, cj) ∈ {0, 1}, where S(ci, cj) = 1 iff ci and cj are similar. The diversity score is:

D = 1−
∑

i<j S(ci, cj)(
n
2

) (1)

A model producing all identical ideas has D = 0, while one generating all unique ideas has D = 1.
A score of D is also equivalent to the probability that two randomly selected programs are similar to
each other (see Appendix T for more details).

For each method, we report the diversity score across all problems. For large n, we sample 40
codes and compare all pairs. GPT-4o-mini is used to evaluate S, and full prompt details are in
Appendix O.1.

7 CONCLUSION

In this work, we find that diversity in idea space is incredibly useful to unlock significant achievements
in the effectiveness of inference-time compute—otherwise referred to as search—particularly in code
generation tasks. We propose PLANSEARCH, which obtains great performance on all datasets tested,
almost doubling baseline performance at pass@200. Additionally, we find strong correlation between
our diversity metric and resulting performance gains from evaluating at pass@k instead of pass@1,
which underscores the importance of idea diversity in effective search. We believe that these insights
can be applied to many other domains and will be crucial to realize the full potential of LLMs to
unlock significant performance gains as seen here.

However, while PLANSEARCH substantially improves diversity over idea space at inference-time,
fundamentally, improvements in diversity should also come at the post-training stage, like with
methods such as o1 (OpenAI, 2024). This likely requires re-imagining the post-training pipeline for
LLMs around search, instead of the current paradigm optimized for a single correct response.

Even without such advances, a natural extension of this work is to train the underlying model itself
on successful plans and code solutions obtained from PLANSEARCH, which has the potential to
distill the pass@k into the pass@1—without inference-time methods like filtering—by reducing the
probability of the model going down unfavorable branches of the search tree. Such training is likely
to significantly improve the model, and we look forward to future work in this direction.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Zhiqiang Shen Aidar Myrzakhan, Sondos Mahmoud Bsharat. Open-llm-leaderboard: From multi-
choice to open-style questions for llms evaluation, benchmark, and arena. arXiv preprint
arXiv:2406.07545, 2024.

Anthropic. Claude 3.5 sonnet. https://www.anthropic.com/news/
claude-3-5-sonnet, June 2024.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large
language models, 2021. URL https://arxiv.org/abs/2108.07732.

Anton Bakhtin, David J. Wu, Adam Lerer, Jonathan Gray, Athul Paul Jacob, Gabriele Farina,
Alexander H. Miller, and Noam Brown. Mastering the Game of No-Press Diplomacy via Human-
Regularized Reinforcement Learning and Planning, October 2022. URL http://arxiv.org/
abs/2210.05492. arXiv:2210.05492 [cs].

Hritik Bansal, Arian Hosseini, Rishabh Agarwal, Vinh Q. Tran, and Mehran Kazemi. Smaller,
weaker, yet better: Training llm reasoners via compute-optimal sampling, 2024. URL https:
//arxiv.org/abs/2408.16737.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V. Le, Christopher Ré, and
Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling,
2024. URL https://arxiv.org/abs/2407.21787.

Noam Brown and Tuomas Sandholm. Superhuman AI for heads-up no-limit poker: Libratus beats
top professionals. Science, 359(6374):418–424, 2018. Publisher: American Association for the
Advancement of Science.

Noam Brown and Tuomas Sandholm. Superhuman AI for multiplayer poker. Science, 365(6456):
885–890, 2019. Publisher: American Association for the Advancement of Science.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Ben-
jamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and
Dario Amodei. Language models are few-shot learners. In H. Larochelle, M. Ranzato, R. Hadsell,
M. F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33,
pp. 1877–1901. Curran Associates, Inc., 2020. URL https://proceedings.neurips.
cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Murray Campbell, A.Joseph Hoane, and Feng hsiung Hsu. Deep blue. Artificial Intelli-
gence, 134(1):57–83, 2002. ISSN 0004-3702. doi: https://doi.org/10.1016/S0004-3702(01)
00129-1. URL https://www.sciencedirect.com/science/article/pii/
S0004370201001291.

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan, Zeqi Lin, Jian-Guang Lou, and Weizhu Chen.
Codet: Code generation with generated tests. arXiv preprint arXiv:2207.10397, 2022a.

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan, Zeqi Lin, Jian-Guang Lou, and Weizhu Chen.
Codet: Code generation with generated tests, 2022b. URL https://arxiv.org/abs/2207.
10397.

Lingjiao Chen, Jared Quincy Davis, Boris Hanin, Peter Bailis, Ion Stoica, Matei Zaharia, and James
Zou. Are more llm calls all you need? towards scaling laws of compound inference systems, 2024.
URL https://arxiv.org/abs/2403.02419.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,

11

https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://arxiv.org/abs/2108.07732
http://arxiv.org/abs/2210.05492
http://arxiv.org/abs/2210.05492
https://arxiv.org/abs/2408.16737
https://arxiv.org/abs/2408.16737
https://arxiv.org/abs/2407.21787
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://www.sciencedirect.com/science/article/pii/S0004370201001291
https://www.sciencedirect.com/science/article/pii/S0004370201001291
https://arxiv.org/abs/2207.10397
https://arxiv.org/abs/2207.10397
https://arxiv.org/abs/2403.02419


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
Large Language Models Trained on Code, July 2021. URL http://arxiv.org/abs/2107.
03374. arXiv:2107.03374 [cs].

Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li, Dacheng
Li, Hao Zhang, Banghua Zhu, Michael Jordan, Joseph E. Gonzalez, and Ion Stoica. Chatbot arena:
An open platform for evaluating llms by human preference, 2024. URL https://arxiv.org/
abs/2403.04132.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Sergey Edunov, Myle Ott, Michael Auli, and David Grangier. Understanding back-translation at
scale, 2018. URL https://arxiv.org/abs/1808.09381.

FAIR, Anton Bakhtin, Noam Brown, Emily Dinan, Gabriele Farina, Colin Flaherty, Daniel Fried,
Andrew Goff, Jonathan Gray, Hengyuan Hu, Athul Paul Jacob, Mojtaba Komeili, Karthik Konath,
Minae Kwon, Adam Lerer, Mike Lewis, Alexander H. Miller, Sasha Mitts, Adithya Renduch-
intala, Stephen Roller, Dirk Rowe, Weiyan Shi, Joe Spisak, Alexander Wei, David Wu, Hugh
Zhang, and Markus Zijlstra. Human-level play in the game of Diplomacy by combining lan-
guage models with strategic reasoning. Science, 378(6624):1067–1074, December 2022. doi:
10.1126/science.ade9097. URL https://www.science.org/doi/10.1126/science.
ade9097. Publisher: American Association for the Advancement of Science.

Markus Freitag and Yaser Al-Onaizan. Beam search strategies for neural machine translation. In
Proceedings of the First Workshop on Neural Machine Translation. Association for Computational
Linguistics, 2017. doi: 10.18653/v1/w17-3207. URL http://dx.doi.org/10.18653/
v1/W17-3207.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: Program-aided language models, 2023. URL https://arxiv.org/
abs/2211.10435.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhiting
Hu. Reasoning with Language Model is Planning with World Model, May 2023a. URL http:
//arxiv.org/abs/2305.14992. arXiv:2305.14992 [cs].

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhiting
Hu. Reasoning with language model is planning with world model, 2023b. URL https:
//arxiv.org/abs/2305.14992.

Tatsunori B. Hashimoto, Hugh Zhang, and Percy Liang. Unifying Human and Statistical Evaluation
for Natural Language Generation. North American Association for Computational Linguistics
(NAACL)., April 2019. URL http://arxiv.org/abs/1904.02792. arXiv: 1904.02792.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024.

Andy L. Jones. Scaling scaling laws with board games, 2021. URL https://arxiv.org/abs/
2104.03113.

Sumith Kulal, Panupong Pasupat, Kartik Chandra, Mina Lee, Oded Padon, Alex Aiken, and Percy
Liang. Spoc: Search-based pseudocode to code, 2019. URL https://arxiv.org/abs/
1906.04908.

12

http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2403.04132
https://arxiv.org/abs/2403.04132
https://arxiv.org/abs/1808.09381
https://www.science.org/doi/10.1126/science.ade9097
https://www.science.org/doi/10.1126/science.ade9097
http://dx.doi.org/10.18653/v1/W17-3207
http://dx.doi.org/10.18653/v1/W17-3207
https://arxiv.org/abs/2211.10435
https://arxiv.org/abs/2211.10435
http://arxiv.org/abs/2305.14992
http://arxiv.org/abs/2305.14992
https://arxiv.org/abs/2305.14992
https://arxiv.org/abs/2305.14992
http://arxiv.org/abs/1904.02792
https://arxiv.org/abs/2104.03113
https://arxiv.org/abs/2104.03113
https://arxiv.org/abs/1906.04908
https://arxiv.org/abs/1906.04908


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. Science, 378(6624):1092–1097, 2022.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is Your Code Generated by
ChatGPT Really Correct? Rigorous Evaluation of Large Language Models for Code Generation.
In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=1qvx610Cu7.

Drew M. McDermott. The 1998 ai planning systems competition. AI Magazine, 21(2):35, Jun. 2000.
doi: 10.1609/aimag.v21i2.1506. URL https://ojs.aaai.org/aimagazine/index.
php/aimagazine/article/view/1506.

Aidan McLaughlin. AI Search: The Bitter-er Lesson, 2024. Accessed on September 3, 2024.

Sidharth Mudgal, Jong Lee, Harish Ganapathy, YaGuang Li, Tao Wang, Yanping Huang, Zhifeng
Chen, Heng-Tze Cheng, Michael Collins, Trevor Strohman, Jilin Chen, Alex Beutel, and Ahmad
Beirami. Controlled decoding from language models, 2024. URL https://arxiv.org/
abs/2310.17022.

OpenAI. Learning to reason with llms. https://openai.com/index/
learning-to-reason-with-llms/, Sep 2024. Accessed: October 1, 2024.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor
Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Mohammad Bavarian,
Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher Berner, Lenny
Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brockman, Tim Brooks,
Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann, Brittany Carey, Chelsea
Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully Chen,
Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey Chu, Hyung Won Chung,
Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux, Thomas Degry, Noah Deutsch,
Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila Dunning, Adrien Ecoffet, Atty
Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, Simón Posada Fishman, Juston Forte,
Isabella Fulford, Leo Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun Gogineni, Gabriel
Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua
Gross, Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, Yuchen He, Mike
Heaton, Johannes Heidecke, Chris Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, Brandon
Houghton, Kenny Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne
Jang, Angela Jiang, Roger Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo
Jun, Tomer Kaftan, Łukasz Kaiser, Ali Kamali, Ingmar Kanitscheider, Nitish Shirish Keskar,
Tabarak Khan, Logan Kilpatrick, Jong Wook Kim, Christina Kim, Yongjik Kim, Jan Hendrik
Kirchner, Jamie Kiros, Matt Knight, Daniel Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich,
Aris Konstantinidis, Kyle Kosic, Gretchen Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy
Lee, Jan Leike, Jade Leung, Daniel Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie
Lin, Mateusz Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini,
Sam Manning, Todor Markov, Yaniv Markovski, Bianca Martin, Katie Mayer, Andrew Mayne,
Bob McGrew, Scott Mayer McKinney, Christine McLeavey, Paul McMillan, Jake McNeil, David
Medina, Aalok Mehta, Jacob Menick, Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie
Monaco, Evan Morikawa, Daniel Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély,
Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo
Noh, Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano,
Giambattista Parascandolo, Joel Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew
Peng, Adam Perelman, Filipe de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira
Pinto, Michael, Pokorny, Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris
Power, Elizabeth Proehl, Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond,
Francis Real, Kendra Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario
Saltarelli, Ted Sanders, Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John
Schulman, Daniel Selsam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav
Shyam, Szymon Sidor, Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl,
Benjamin Sokolowsky, Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers,

13

https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/1506
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/1506
https://arxiv.org/abs/2310.17022
https://arxiv.org/abs/2310.17022
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Ilya Sutskever, Jie Tang, Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian,
Elizabeth Tseng, Preston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea
Vallone, Arun Vijayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben
Wang, Jonathan Ward, Jason Wei, C. J. Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng,
Lilian Weng, Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong,
Lauren Workman, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu,
Qiming Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao,
Tianhao Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. GPT-4 Technical Report, March
2024. URL http://arxiv.org/abs/2303.08774. arXiv:2303.08774 [cs].

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

Hieu Pham, Xinyi Wang, Yiming Yang, and Graham Neubig. Meta back-translation, 2021. URL
https://arxiv.org/abs/2102.07847.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36, 2024.

Stuart Russell and Peter Norvig. Artificial intelligence: a modern approach. 2002.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessı̀, Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer,
Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach themselves to
use tools, 2023. URL https://arxiv.org/abs/2302.04761.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Improving neural machine translation models
with monolingual data, 2016. URL https://arxiv.org/abs/1511.06709.

Claude E Shannon. A mathematical theory of communication. Bell System Technical Journal, 27(3):
379–423, 623–656, 1948.

Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan, and
Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning, 2023. URL
https://arxiv.org/abs/2303.11366.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman,
Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine
Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the Game of Go with
Deep Neural Networks and Tree Search. Nature, 529(7587):484–489, January 2016. ISSN 0028-
0836, 1476-4687. doi: 10.1038/nature16961. URL http://www.nature.com/articles/
nature16961.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, and others. Mastering the Game of Go
Without Human Knowledge. Nature, 550(7676):354–359, 2017. Publisher: Nature Publishing
Group.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters, 2024. URL https://arxiv.org/abs/
2408.03314.

Richard S Sutton. The bitter lesson. Incomplete Ideas, 2019. URL http://www.
incompleteideas.net/IncIdeas/BitterLesson.html.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-Thought Prompting Elicits Reasoning in Large Language Mod-
els. arXiv, 2022. doi: 10.48550/arXiv.2201.11903. URL http://arxiv.org/abs/2201.
11903. arXiv:2201.11903 [cs].

14

http://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2102.07847
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/1511.06709
https://arxiv.org/abs/2303.11366
http://www.nature.com/articles/nature16961
http://www.nature.com/articles/nature16961
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314
http://www.incompleteideas.net/IncIdeas/BitterLesson.html
http://www.incompleteideas.net/IncIdeas/BitterLesson.html
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. An empirical analysis
of compute-optimal inference for problem-solving with language models, 2024. URL https:
//arxiv.org/abs/2408.00724.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of Thoughts: Deliberate Problem Solving with Large Language Models, May
2023a. URL http://arxiv.org/abs/2305.10601. arXiv:2305.10601 [cs].

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models, 2023b. URL https://arxiv.
org/abs/2210.03629.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah D. Goodman. STaR: Bootstrapping Reasoning With
Reasoning, May 2022. URL http://arxiv.org/abs/2203.14465. arXiv:2203.14465
[cs].

Eric Zelikman, Qian Huang, Gabriel Poesia, Noah D. Goodman, and Nick Haber. Parsel: Algorithmic
reasoning with language models by composing decompositions, 2023. URL https://arxiv.
org/abs/2212.10561.

Eric Zelikman, Georges Harik, Yijia Shao, Varuna Jayasiri, Nick Haber, and Noah D. Goodman.
Quiet-star: Language models can teach themselves to think before speaking, 2024. URL https:
//arxiv.org/abs/2403.09629.

Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue, Yuxiao Dong, and Jie Tang. Rest-mcts*: Llm
self-training via process reward guided tree search, 2024. URL https://arxiv.org/abs/
2406.03816.

Hugh Zhang and David C. Parkes. Chain-of-thought reasoning is a policy improvement operator,
2023. URL https://arxiv.org/abs/2309.08589.

Hugh Zhang, Daniel Duckworth, Daphne Ippolito, and Arvind Neelakantan. Trading off diversity and
quality in natural language generation. In Proceedings of the workshop on human evaluation of
NLP systems (HumEval), pp. 25–33, Online, April 2021. Association for Computational Linguistics.
URL https://aclanthology.org/2021.humeval-1.3.

Shun Zhang, Zhenfang Chen, Yikang Shen, Mingyu Ding, Joshua B. Tenenbaum, and Chuang
Gan. Planning with large language models for code generation. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=Lr8cOOtYbfL.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc Le, and Ed Chi. Least-to-most prompting enables complex
reasoning in large language models, 2023. URL https://arxiv.org/abs/2205.10625.

15

https://arxiv.org/abs/2408.00724
https://arxiv.org/abs/2408.00724
http://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
http://arxiv.org/abs/2203.14465
https://arxiv.org/abs/2212.10561
https://arxiv.org/abs/2212.10561
https://arxiv.org/abs/2403.09629
https://arxiv.org/abs/2403.09629
https://arxiv.org/abs/2406.03816
https://arxiv.org/abs/2406.03816
https://arxiv.org/abs/2309.08589
https://aclanthology.org/2021.humeval-1.3
https://openreview.net/forum?id=Lr8cOOtYbfL
https://openreview.net/forum?id=Lr8cOOtYbfL
https://arxiv.org/abs/2205.10625


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A FULL PASS@K CURVES FOR ALL MODELS AND ALL BENCHMARKS

See Figures 6, 7, 8. We plot all models and methods on HumanEval+, MBPP+ (Liu et al., 2023), and
LiveCodeBench (Jain et al., 2024), respectively.

1 10 100

0.6

0.7

0.8

0.9

1.0

Pa
ss

@
k

GPT-4o-mini

1 10 100

0.6

0.7

0.8

0.9

1.0 GPT-4o

1 10 100
k

0.6

0.7

0.8

0.9

1.0

Pa
ss

@
k

DeepSeek-Coder-V2

1 10 100
k

0.6

0.7

0.8

0.9

1.0 Sonnet-3.5

Repeated Sampling
IdeaSearch
PlanSearch

Repeated Sampling
IdeaSearch
PlanSearch

Pass@k vs k for Methods on HumanEval+

Figure 6: Pass@k performance of all models and methods on HumanEval+, plotted over k ∈
{1, . . . , 200}.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

1 10 100
0.5

0.6

0.7

0.8

0.9

Pa
ss

@
k

GPT-4o-mini

1 10 100
0.5

0.6

0.7

0.8

0.9

GPT-4o

1 10 100
k

0.5

0.6

0.7

0.8

0.9

Pa
ss

@
k

DeepSeek-Coder-V2

1 10 100
k

0.5

0.6

0.7

0.8

0.9

Sonnet-3.5

Repeated Sampling
IdeaSearch
PlanSearch

Repeated Sampling
IdeaSearch
PlanSearch

Pass@k vs k for Methods on MBPP+

Figure 7: Pass@k performance of all models and methods on MBPP+, plotted over k ∈ {1, . . . , 200}.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

1 10 100
0.3

0.4

0.5

0.6

0.7

Pa
ss

@
k

GPT-4o-mini

1 10 100
0.3

0.4

0.5

0.6

0.7

GPT-4o

1 10 100
k

0.3

0.4

0.5

0.6

0.7

Pa
ss

@
k

DeepSeek-Coder-V2

1 10 100
k

0.3

0.4

0.5

0.6

0.7

Sonnet-3.5

Repeated Sampling
IdeaSearch
PlanSearch

Repeated Sampling
IdeaSearch
PlanSearch

Pass@k vs k for Methods on LiveCodeBench

Figure 8: Pass@k performance of all models and methods on LiveCodeBench, plotted over k ∈
{1, . . . , 200}.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

B FULL PASS@K CURVES WITH PUBLIC FILTERING

See Figures 9, 10, 4. We plot all models and methods with public test filtering on HumanEval+,
MBPP+ (Liu et al., 2023), and LiveCodeBench (Jain et al., 2024), respectively.

1 10

0.6

0.7

0.8

0.9

1.0

Pa
ss

@
k

GPT-4o-mini

1 10

0.6

0.7

0.8

0.9

1.0 GPT-4o

1 10
k

0.6

0.7

0.8

0.9

1.0

Pa
ss

@
k

DeepSeek-Coder-V2

1 10
k

0.6

0.7

0.8

0.9

1.0 Sonnet-3.5

Repeated Sampling
IdeaSearch
PlanSearch

Public Filtering
No Public Filtering

Pass@k vs k for Methods with Public Filtering on HumanEval+

Figure 9: Pass@k performance of all models and methods on HumanEval+, with public test filtering,
plotted over k ∈ {1, . . . , 20}. Note that dotted lines are provided for reference of the base method
pass@k before filtering.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

1 10
0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Pa
ss

@
k

GPT-4o-mini

1 10
0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90
GPT-4o

1 10
k

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Pa
ss

@
k

DeepSeek-Coder-V2

1 10
k

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90
Sonnet-3.5

Repeated Sampling
IdeaSearch
PlanSearch

Public Filtering
No Public Filtering

Pass@k vs k for Methods with Public Filtering on MBPP+

Figure 10: Pass@k performance of all models and methods on MBPP+, with public test filtering,
plotted over k ∈ {1, . . . , 20}. Note that dotted lines are provided for reference of the base method
pass@k before filtering.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

C AVERAGE RELATIVE IMPROVEMENTS

See Figures 11, 12, 13. To create these graphs, the relative improvements of each point on all pass@k
curves are computed and compared to the respective pass@1 of REPEATED SAMPLING. Then these
values are averaged over all models, so that there is one curve per method per dataset. The datasets
are HumanEval+, MBPP+ (Liu et al., 2023), and LiveCodeBench (Jain et al., 2024), respectively. For
the public test filtered versions, see Figures 14, 15, 16.

100 101 102

k
20

15

10

5

0

5

10

15

20

Re
la

tiv
e 

Ga
in

 (%
)

Average Gains on HumanEval+

Repeated Sampling
IdeaSearch
PlanSearch

Repeated Sampling
IdeaSearch
PlanSearch

Figure 11: Performance gain over REPEATED SAMPLING@1 averaged over all models on Hu-
manEval+, plotted over k ∈ {1, . . . , 200}.

100 101 102

k

20

10

0

10

20

Re
la

tiv
e 

Ga
in

 (%
)

Average Gains on MBPP+

Repeated Sampling
IdeaSearch
PlanSearch

Repeated Sampling
IdeaSearch
PlanSearch

Figure 12: Performance gain over REPEATED SAMPLING@1 averaged over all models on MBPP+,
plotted over k ∈ {1, . . . , 200}.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

100 101 102

k

0

20

40

60

80

Re
la

tiv
e 

Ga
in

 (%
)

Average Gains on LiveCodeBench

Repeated Sampling
IdeaSearch
PlanSearch

Repeated Sampling
IdeaSearch
PlanSearch

Figure 13: Performance gain over REPEATED SAMPLING@1 averaged over all models on Live-
CodeBench, plotted over k ∈ {1, . . . , 200}.

100 101

k
20

15

10

5

0

5

10

15

Re
la

tiv
e 

Ga
in

 (%
)

Average Gains with Public Filtering on HumanEval+

Repeated Sampling
IdeaSearch
PlanSearch

Public Filtering
No Public Filtering

Figure 14: Average performance gain over all models of methods with public test filtering compared
to REPEATED SAMPLING@1, plotted over k ∈ {1, . . . , 20}. Note that dotted lines are provided for
reference of the base method pass@k (before filtering).

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

100 101

k

20

15

10

5

0

5

10

15

20

Re
la

tiv
e 

Ga
in

 (%
)

Average Gains with Public Filtering on MBPP+

Repeated Sampling
IdeaSearch
PlanSearch

Public Filtering
No Public Filtering

Figure 15: Average performance gain over all models of methods with public test filtering compared
to REPEATED SAMPLING@1, plotted over k ∈ {1, . . . , 20}. Note that dotted lines are provided for
reference of the base method pass@k (before filtering).

100 101

k

0

20

40

60

Re
la

tiv
e 

Ga
in

 (%
)

Average Gains with Public Filtering on LiveCodeBench

Repeated Sampling
IdeaSearch
PlanSearch

Public Filtering
No Public Filtering

Figure 16: Average performance gain over all models of methods with public test filtering compared
to REPEATED SAMPLING@1, plotted over k ∈ {1, . . . , 20}. Note that dotted lines are provided for
reference of the base method pass@k (before filtering).

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

D COMPUTE NORMALIZED PASS@K GRAPHS

See Figure 17. For each run of a method in Appendix A, we compute the number of generated tokens
needed per completion, per problem, independently on each dataset. Then, we average across all
datasets to obtain 244 generated tokens per completion per problem for REPEATED SAMPLING, and
1, 428 generated tokens per completion per problem for PLANSEARCH.

245 103 104 105

Average Tokens Used (per problem)

0.3

0.4

0.5

0.6

0.7

0.8

So
lv

e-
ra

te

Compute-Normalized Repeated Sampling vs PlanSearch
PlanSearch
Repeated Sampling

GPT-4o-mini
GPT-4o
DeepSeek-Coder-V2
Sonnet-3.5

Figure 17: Normalized pass@k by average tokens used per problem. REPEATED SAMPLING uses
roughly 244 tokens per completion per problem, and PLANSEARCH uses roughly 1428 tokens per
completion per problem. When we normalize compute across methods, we find that PLANSEARCH
begins to be more effective than repeated sampling if the user is willing to sample at least 10,000
tokens per problem.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

E COMPARISON WITH CHAIN-OF-THOUGHT

See Figures 18, 19, 20, which are run on LiveCodeBench (Jain et al., 2024), MBPP+, and Hu-
manEval+ (Liu et al., 2023), respectively. These are the same plots as Appendix A, with CoT (Wei
et al., 2022). See Figures 21, 22, 23 for the public test filtered versions.

1 10 100
0.3

0.4

0.5

0.6

0.7

Pa
ss

@
k

GPT-4o-mini

1 10 100
0.3

0.4

0.5

0.6

0.7

GPT-4o

1 10 100
k

0.3

0.4

0.5

0.6

0.7

Pa
ss

@
k

DeepSeek-Coder-V2

1 10 100
k

0.3

0.4

0.5

0.6

0.7

Sonnet-3.5

Repeated Sampling
IdeaSearch
Chain-of-Thought
PlanSearch

Repeated Sampling
IdeaSearch
Chain-of-Thought
PlanSearch

Pass@k vs k with CoT on LiveCodeBench

Figure 18: Pass@k graphs on LiveCodeBench, with the Chain-of-Thought baseline.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

1 10 100
0.5

0.6

0.7

0.8

0.9

Pa
ss

@
k

GPT-4o-mini

1 10 100
0.5

0.6

0.7

0.8

0.9

GPT-4o

1 10 100
k

0.5

0.6

0.7

0.8

0.9

Pa
ss

@
k

DeepSeek-Coder-V2

1 10 100
k

0.5

0.6

0.7

0.8

0.9

Sonnet-3.5

Repeated Sampling
IdeaSearch
Chain-of-Thought
PlanSearch

Repeated Sampling
IdeaSearch
Chain-of-Thought
PlanSearch

Pass@k vs k with CoT on MBPP+

Figure 19: Pass@k graphs on MBPP+, with the Chain-of-Thought baseline.

1 10 100

0.6

0.7

0.8

0.9

1.0

Pa
ss

@
k

GPT-4o-mini

1 10 100

0.6

0.7

0.8

0.9

1.0 GPT-4o

1 10 100
k

0.6

0.7

0.8

0.9

1.0

Pa
ss

@
k

DeepSeek-Coder-V2

1 10 100
k

0.6

0.7

0.8

0.9

1.0 Sonnet-3.5

Repeated Sampling
IdeaSearch
Chain-of-Thought
PlanSearch

Repeated Sampling
IdeaSearch
Chain-of-Thought
PlanSearch

Pass@k vs k with CoT on HumanEval+

Figure 20: Pass@k graphs on HumanEval+, with the Chain-of-Thought baseline.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

1 10
0.3

0.4

0.5

0.6

0.7

Pa
ss

@
k

GPT-4o-mini

1 10
0.3

0.4

0.5

0.6

0.7

GPT-4o

1 10
k

0.3

0.4

0.5

0.6

0.7

Pa
ss

@
k

DeepSeek-Coder-V2

1 10
k

0.3

0.4

0.5

0.6

0.7

Sonnet-3.5

Repeated Sampling
IdeaSearch
Chain-of-Thought
PlanSearch

Public Filtering
No Public Filtering

Pass@k vs k with CoT (Public Filtering) on LiveCodeBench

Figure 21: Pass@k graphs on LiveCodeBench, with the Chain-of-Thought baseline and public
filtering.

1 10
0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Pa
ss

@
k

GPT-4o-mini

1 10
0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90
GPT-4o

1 10
k

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Pa
ss

@
k

DeepSeek-Coder-V2

1 10
k

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90
Sonnet-3.5

Repeated Sampling
IdeaSearch
Chain-of-Thought
PlanSearch

Public Filtering
No Public Filtering

Pass@k vs k with CoT (Public Filtering) on MBPP+

Figure 22: Pass@k graphs on MBPP+, with the Chain-of-Thought baseline and public filtering.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

1 10

0.6

0.7

0.8

0.9

1.0

Pa
ss

@
k

GPT-4o-mini

1 10

0.6

0.7

0.8

0.9

1.0 GPT-4o

1 10
k

0.6

0.7

0.8

0.9

1.0

Pa
ss

@
k

DeepSeek-Coder-V2

1 10
k

0.6

0.7

0.8

0.9

1.0 Sonnet-3.5

Repeated Sampling
IdeaSearch
Chain-of-Thought
PlanSearch

Public Filtering
No Public Filtering

Pass@k vs k with CoT (Public Filtering) on HumanEval+

Figure 23: Pass@k graphs on HumanEval+, with the Chain-of-Thought baseline and public filtering.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

F ABLATION ON TEMPERATURE FOR REPEATED SAMPLING AND
IDEASEARCH

See Figure 24. We sweep over temperature increments of 0.1 from 0.0 to 1.2, inclusive, with top-p of
0.95, on REPEATED SAMPLING and IDEASEARCH.

100 101

k
0.375

0.400

0.425

0.450

0.475

0.500

0.525

0.550

0.575

Pa
ss

@
k

Temperature Effects on Pass@k (on LiveCodeBench)
Repeated Sampling
IdeaSearch

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Te
m

pe
ra

tu
re

Figure 24: Sweep over temperature in 0.1 increments from 0.0 to 1.2. REPEATED SAMPLING and
IDEASEARCH both exhibit pass@k improvements at higher temperature, although it seems that
higher temperatures may begin to plateau.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

G DIVERSITY SCORE VS SEARCH IMPROVEMENT PLOTS FOR MBPP+ AND
HUMANEVAL+

See Figures 25, 26, 5. Each figure is made through running the diversity measure as described in
Section 6.1 on the generated codes of each run, then compared with the relative gain from pass@k
compared to pass@1.

0.1 0.2 0.3 0.4 0.5
Idea Diversity

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Re
la

tiv
e 

Ga
in

s (
Pa

ss
@

1 
to

 P
as

s@
20

0)

Idea Diversity vs Relative Gains from Search (on HumanEval+)
Repeated Sampling
IdeaSearch
PlanSearch

GPT-4o-mini
GPT-4o
DeepSeek-Coder-V2
Sonnet-3.5

Figure 25: Relationship between the measured diversity score as described in Section 6.1 (where
higher is more diverse) and relative improvement from the pass@1 of the method to the pass@200 of
the method.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

0.1 0.2 0.3 0.4 0.5 0.6
Idea Diversity

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Re
la

tiv
e 

Ga
in

s (
Pa

ss
@

1 
to

 P
as

s@
20

0)

Idea Diversity vs Relative Gains from Search (on MBPP+)
Repeated Sampling
IdeaSearch
PlanSearch

GPT-4o-mini
GPT-4o
DeepSeek-Coder-V2
Sonnet-3.5

Figure 26: Relationship between the measured diversity score as described in Section 6.1 (where
higher is more diverse) and relative improvement from the pass@1 of the method to the pass@200 of
the method on MBPP+.

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

H ABLATIONS

We run ablations on the core parts of PLANSEARCH, using GPT-4o-mini on LiveCodeBench (Jain
et al., 2024). On the diverse observation generation side, we first verify our choice of S = 2—the
maximum subset size to sample from out of a given pool of observations—and also compare perfor-
mance across varying the number of observation layers used (Figures 27, 28). On the implementation
side, we compare different sections of the proposed pipeline (see Figure 2) to translate combinations
of observations to code in Figure 29. We compare each method’s pass@k from k = 1 to k = 200.

1 10 100
k

0.40

0.45

0.50

0.55

0.60

0.65

Pa
ss

@
k

Ablations Varying S on LiveCodeBench

PlanSearch (S=1)
PlanSearch (S=2)
PlanSearch (S=3)

PlanSearch (S=1)
PlanSearch (S=2)
PlanSearch (S=3)

Figure 27: We run ablations of PLANSEARCH with different S—controlling the maximum subset
size from a given pool of observations. There is not a large difference between different S, but we
find that 1 or 2 is slightly more optimal, although if more completions are desired, S can be increased
to 3 as well.

The effect S, the maximum observation subset size to build upon, has on performance is not overly
significant; there are small degradations as S is increased to 3, but not noticeable. We choose S = 2
to obtain more code completions. See Figure 27.

Increasing L, the maximum number of layers of the observation tree, increases pass@k at large
enough k (above 50). We choose L = 2 to strike a balance between extracting a large pass@k gain
while keeping compute costs reasonable. See Figure 28.

From Figure 29, we see that our overall translation step adds minor pass@k gains. We deconstruct the
translation step into parts: the pseudocode step, the fix step (i.e., asking the model to fix its proposed
solution sketch), and creating the solution sketch at all (which includes the fix step).

• “No solution sketch, no pseudocode” implies using a given observation combination to
directly prompt for the solution code.

• “No pseudocode” implies skipping the pseudocode step. In other words, given a solution
sketch, the sketch is directly translated into code.

• “No fix step, no pseudocode” implies the fix step is skipped, as well as the pseudocode. In
order to have the same number of completions, the whole PLANSEARCH pipeline is run
twice.

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

1 10 100
k

0.40

0.45

0.50

0.55

0.60

0.65

Pa
ss

@
k

Ablations Varying L on LiveCodeBench

PlanSearch (L=1)
PlanSearch (L=2)
PlanSearch (L=3)

PlanSearch (L=1)
PlanSearch (L=2)
PlanSearch (L=3)

Figure 28: We run ablations of PLANSEARCH with different L—controlling the maximum order of
observation used, i.e., how many layers the observation tree will search. We find pass@k scales with
respect to increasing L

1 10 100
k

0.40

0.45

0.50

0.55

0.60

0.65

Pa
ss

@
k

Ablations Varying Observation to Code on LiveCodeBench

PlanSearch
PlanSearch (No pseudocode)
PlanSearch (No fix step, no pseudocode)
PlanSearch (No solution sketch, no pseudocode)

PlanSearch
PlanSearch (No pseudocode)
PlanSearch (No fix step, no pseudocode)
PlanSearch (No solution sketch, no pseudocode)

Figure 29: We run ablations of PLANSEARCH with different methods of translating a combination of
observations to code.

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

1 10 100
k

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Pa
ss

@
k

Pass@k vs k for DeepSeek-Coder-V2-Lite Models on MBPP+

DeepSeek-Coder-V2-Lite-Base
DeepSeek-Coder-V2-Lite-Instruct
DeepSeek-Coder-V2-Lite-Base
DeepSeek-Coder-V2-Lite-Instruct

Figure 30: Despite DeepSeek-Coder-V2-Lite-Base having significantly lower pass@1 than its instruct
counterpart, we observe that this trend reverses as k increases, suggesting that the instruct model has
less diversity than its base model counterpart. We observe this trend for many, but not all, models and
benchmarks, and provide the full data in Appendix I.

I BASE MODELS VS. INSTRUCT MODELS FOR LARGE SAMPLES

We find that base models, despite performing poorly relative to their instruct counterparts for evaluated
with pass@1, will frequently match or even exceed performance on pass@k for sufficiently high
k. This is likely due to higher amounts of diversity in base models, which have not undergone
post-training designed to elicit a single strong response from the model.

We see this effect across all models for HumanEval+ and MBPP+, but only the DeepSeek-Coder-V2
family for LiveCodeBench.

See Figure 31 for all base and instruct model comparisons between DeepSeek-Coder-V2-Lite, Llama-
3.1-8B, and Llama-3.1-70B on all three datasets.

We also provide Llama-3.1-8b and DeepSeek-Coder-V2-Lite pass@k comparisons for k up to 10, 000;
see Figures 33, 32.

J BASE MODELS VS. INSTRUCT MODELS WITH PUBLIC TEST FILTERING

We repeat the graphs from Appendix I, but with public test filtering. We find that base models with
public test filtering almost always exceed the pass@1 of their instruct model variants.

See Figure 34 for all base and instruct model comparisons between DeepSeek-Coder-V2-Lite, Llama-
3.1-8B, and Llama-3.1-70B on all three datasets with public test filtering.

We also report Llama-3.1-8b and DeepSeek-Coder-V2-Lite pass@k comparisons with public test
filtering for k up to 10, 000; see Figures 35, 36.

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

1 10 100

0.5

0.6

0.7

0.8

0.9
M

BP
P+

Pa
ss

@
k

1 10 100

0.5

0.6

0.7

0.8

0.9

1 10 100

0.5

0.6

0.7

0.8

0.9

1 10 100

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Hu
m

an
Ev

al
+

Pa
ss

@
k

1 10 100

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 10 100

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 10 100
DeepSeek-Coder-V2-Lite

k

0.1

0.2

0.3

0.4

0.5

0.6

Liv
eC

od
eB

en
ch

Pa
ss

@
k

1 10 100
Llama-3.1-8B

k

0.1

0.2

0.3

0.4

0.5

0.6

1 10 100
Llama-3.1-70B

k

0.1

0.2

0.3

0.4

0.5

0.6

Base Model
Instruct Model
Base Model
Instruct Model

Pass@k of Base and Instruct Models

Figure 31: Pass@k curves comparing DeepSeek-Coder-V2-Lite, Llama-3.1-8B, and Llama-3.1-70B
base and instruct performance.

1 10 100 1,000 10,000
k

0.2

0.3

0.4

0.5

0.6

Pa
ss

@
k

Pass@k vs k for DeepSeek-Coder-V2-Lite Models on LiveCodeBench

DeepSeek-Coder-V2-Lite-Base
DeepSeek-Coder-V2-Lite-Instruct
DeepSeek-Coder-V2-Lite-Base
DeepSeek-Coder-V2-Lite-Instruct

Figure 32: Pass@k curves comparing DeepSeek-Coder-V2-Lite’s base and instruct versions on
LiveCodeBench with up to 10, 000 completions.

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

1 10 100 1,000 10,000
k

0.1

0.2

0.3

0.4

0.5

Pa
ss

@
k

Pass@k vs k for Llama-3.1-8B Models on LiveCodeBench

Llama-3.1-8B-Base
Llama-3.1-8B-Instruct
Llama-3.1-8B-Base
Llama-3.1-8B-Instruct

Figure 33: Pass@k curves comparing Llama-3.1-8B’s base and instruct versions on LiveCodeBench
with up to 10, 000 completions.

1 10

0.5

0.6

0.7

0.8

0.9

M
BP

P+

Pa
ss

@
k

1 10

0.5

0.6

0.7

0.8

0.9

1 10

0.5

0.6

0.7

0.8

0.9

1 10

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Hu
m

an
Ev

al
+

Pa
ss

@
k

1 10

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 10

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 10
DeepSeek-Coder-V2-Lite

k

0.1

0.2

0.3

0.4

0.5

0.6

Liv
eC

od
eB

en
ch

Pa
ss

@
k

1 10
Llama-3.1-8B

k

0.1

0.2

0.3

0.4

0.5

0.6

1 10
Llama-3.1-70B

k

0.1

0.2

0.3

0.4

0.5

0.6

Base Model
Instruct Model

Public Filtering
No Public Filtering

Pass@k of Base and Instruct Models

Figure 34: Pass@k curves comparing DeepSeek-Coder-V2-Lite, Llama-3.1-8B, and Llama-3.1-70B
base and instruct performance with public test filtering.

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

1 10 100 1,000
k

0.1

0.2

0.3

0.4

0.5
Pa

ss
@

k

Pass@k vs k for Llama-3.1-8B Models on LiveCodeBench

Llama-3.1-8B-Base
Llama-3.1-8B-Instruct

Public Filtering
No Public Filtering

Figure 35: Pass@k curves comparing Llama-3.1-8B’s base and instruct versions on LiveCodeBench
with up to 1, 000 completions and with public test filtering.

1 10 100 1,000
k

0.2

0.3

0.4

0.5

0.6

Pa
ss

@
k

Pass@k vs k for DeepSeek-Coder-V2-Lite Models on LiveCodeBench

DeepSeek-Coder-V2-Lite-Base
DeepSeek-Coder-V2-Lite-Instruct

Public Filtering
No Public Filtering

Figure 36: Pass@k curves comparing DeepSeek-Coder-V2-Lite’s base and instruct versions on
LiveCodeBench with up to 1, 000 completions and with public test filtering.

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

K OPENAI O1

We also do a brief analysis of OpenAI’s o1 (OpenAI, 2024) models. We run PLANSEARCH on
top of o1-mini, which is the best o1 model available through API access at the time of writing for
competitive coding. Due to both severe cost constraints and dataset saturation on HumanEval+ and
MBPP+, we only run o1-mini on LiveCodeBench (Jain et al., 2024).

First, we investigate its pass@k trends on LiveCodeBench. (See Figure 37.) As expected,
PLANSEARCH trails REPEATED SAMPLING for low k. However, at high k, PLANSEARCH competes
with/slightly outperforms REPEATED SAMPLING.

We believe there to be two reasons why there is not as large of an improvement compared to other
non-search-based models. First, there may be diminishing returns when stacking multiple search
methods on top of each other naı̈vely. Second, LiveCodeBench is noticeably saturated, reaching
solve-rates of over 90%. Thus, it is much harder to notice large jumps in dataset performance, as
can be seen in pass@k curves (see Figure 6) on HumanEval+ (Liu et al., 2023). There, REPEATED
SAMPLING, IDEASEARCH, and PLANSEARCH all perform roughly the same, with PLANSEARCH
only slightly outperforming the others. We believe a combination of these effects also implies a
greater k is required to notice a large difference between REPEATED SAMPLING and PLANSEARCH.

1 10 100
k

0.70

0.75

0.80

0.85

0.90

Pa
ss

@
k

Pass@k vs k for o1-mini on LiveCodeBench

Repeated Sampling
IdeaSearch
PlanSearch

Repeated Sampling
IdeaSearch
PlanSearch

Figure 37: Pass@k performance methods applied on top of o1-mini, on LiveCodeBench, plotted over
k ∈ {1, . . . , 200}. PLANSEARCH slightly outperforms REPEATED SAMPLING at high k; larger k is
not run due to cost constraints.

We notice that the OpenAI frequently refuses to answer queries from PLANSEARCH, likely due to
efforts to minimize revealing the full chain-of-thought the model is using. To combat this, we find
that filtering out the words steps, step, and quote reduces the fraction of unanswered queries
from roughly 40% to less than 0.5%. For any query that is still refused after this approach, we route
the same prompt to GPT-4o. In addition, we remove the pseudocode step to reduce the amount of
flagged responses.

On the diversity end, we apply the same methodology as described in Section 6.1. The corresponding
plot can be found in Figure 5. Even though o1-mini is strong on its own, we find that it is not very
diverse, which is consistent with our claim that diversity correlates with relative performance gain
seen with increasing k.

38



2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

L BAR CHARTS

See Figures 38, 39, 1. These plot pass@1 and pass@200 of select methods between REPEATED
SAMPLING and PLANSEARCH, on datasets MBPP+, HumanEval+ (Liu et al., 2023), and Live-
CodeBench (Jain et al., 2024).

GPT-
4o

-m
ini

GPT-
4o

Dee
pS

ee
k-C

od
er-

V2

So
nn

et-
3.5

0.0

0.2

0.4

0.6

0.8

Pa
ss

@
k

0.735
0.772 0.763 0.771

0.838
0.874

0.819 0.829

0.910 0.922 0.926 0.937
Pass@k Scores by Method on MBPP+

Repeated Sampling@1
Repeated Sampling@200
PlanSearch@200

Figure 38: Bar chart with REPEATED SAMPLING@1, REPEATED SAMPLING@200, and
PLANSEARCH@200, on MBPP+.

GPT-
4o

-m
ini

GPT-
4o

Dee
pS

ee
k-C

od
er-

V2

So
nn

et-
3.5

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ss

@
k

0.837
0.864

0.828 0.816

0.950
0.982

0.914
0.889

0.982 0.995 0.993 0.985

Pass@k Scores by Method on HumanEval+

Repeated Sampling@1
Repeated Sampling@200
PlanSearch@200

Figure 39: Bar chart with REPEATED SAMPLING@1, REPEATED SAMPLING@200, and
PLANSEARCH@200, on HumanEval+.

39



2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

M PROMPTS

M.1 BACKTRANSLATION

M.1.1 BACKTRANSLATE SYSTEM PROMPT

You are an expert Python programmer. You will be given an
algorithmic question (problem specification). You will return
a high-level, natural language solution to the question, like
an editorial. You will NOT return any code. Be as creative as
possible, going beyond what you think is intuitively correct.

M.1.2 IMPLEMENT BACKTRANSLATION IDEA

You are an expert Python programmer. You will be given a question
(problem specification) and a natural language solution/tutorial
that describes how to solve the problem. You will generate
a correct Python program that matches said specification and
tutorial and passes all tests. You will NOT return anything
except for the program inside markdown codeblocks.

M.2 REPEATED SAMPLING

You are an expert Python programmer. You will be given a question
(problem specification) and will generate a correct Python program
that matches the specification and passes all tests. You will NOT
return anything except for the program inside Markdown codeblocks.

M.3 SIMPLE IDEA

You will given a competitive programming problem; please output
a high-level description of how to solve the problem in natural
language. Below are examples:

Example input: PROBLEM DESCRIPTION HERE
Example output: EXAMPLE OUTPUT HERE
Here is the competitive programming problem: PROBLEM TO SOLVE

Brainstorm a high-level, natural language solution to the problem
above. Note that your intuition may lead you astray, so come up
with simple, creative ideas that go beyond what you would usually
come up with and go beyond your narrow intuition. Brainstorming
solutions that do not seem intuitively correct IS CRUCIAL.

M.4 PLANSEARCH

M.4.1 PROMPT FOR OBSERVATION PART 1

You are an expert Python programmer. You will be given an
competitive programming question (problem specification). You
will return several useful, non-obvious, and correct observations
about the problem, like hints to solve the problem. You will NOT
return any code. Be as creative as possible, going beyond what
you think is intuitively correct.

M.4.2 PROMPT FOR OBSERVATION PART 2

You are an expert Python programmer. You will be given an
competitive programming question (problem specification) and

40



2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

several correct observations about the problem.

You will brainstorm several new, useful, and correct observations
about the problem, derived from the given observations. You will
NOT return any code. Be as creative as possible, going beyond
what you think is intuitively correct.

M.4.3 COMBINING OBSERVATIONS

Here is a sample prompt from the function with placeholders:

Here is the competitive programming problem:

Problem statement placeholder

Here are the intelligent observations to help solve the problem:

Observation 1 placeholder
Observation 2 placeholder
Observation 3 placeholder

Use these observations above to brainstorm a natural language
solution to the problem above. Note that your intuition may
lead you astray, so come up with simple, creative ideas that go
beyond what you would usually come up with and exceeds your narrow
intuition.
Quote relevant parts of the observations EXACTLY before each step
of the solution. QUOTING IS CRUCIAL.

N A MODEL OF REPEATED SAMPLING: PASS@K

Consider a simplified model of repeated sampling for code generation. Suppose we have a dataset
D = {P1, . . . , Pl} with l problems. For some problem Pi, define the probability pi as the probability
that our code generation model solves the problem Pi in one submission. The pass@k (Chen et al.,
2021; Kulal et al., 2019) metric (for problem Pi) is defined as the probability that our code generation
model solves the problem Pi at least once out of k submissions. Thus, if we know the true pi of our
model, we may compute our pass@k simply:

pass@ki = 1− (1− pi)
k (2)

pass@k =
∑
i

pass@ki/l (3)

However, it turns out that for k > 1, the naı̈ve estimator as seen in Equation 2 is biased, if we sample
ni ≥ k from our code model to solve Pi, ci ≤ ni are correct, and compute pi = ci/ni (Chen et al.,
2021). Instead, pass@ki is typically computed using the unbiased estimator:

pass@ki = 1−
(
n−c
k

)(
n
k

) (4)

Note that reporting pass@k on a dataset where l = 1 is rather pointless, since pass@k can be derived
using only pass@11 and n1. Every curve, over a suitable range of k values, will look like the S-curve
seen in Figure 40 (as k is plotted on a log scale).

However, with datasets where l > 1, models are able to differentiate themselves through larger k,
since the overall pass@k is an average of these l curves. For example, for l = 3, it is less optimal to
have solved probabilities of Set1 = {0.001, 0.7, 0.9} versus Set2 = {0.05, 0.1, 0.25}, in the regime
of roughly k = 20 to k = 2, 000 (in which both converge to 1), even though Set1 has a pass@1 of
53% and Set2 has a pass@1 of 13%. See Figure 41.

41



2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

100 101 102

k
0.0

0.2

0.4

0.6

0.8

1.0

Pa
ss

@
k

Pass@k for Solve Probability p=0.04

p=0.04

Figure 40: A simple pass@k ‘S-curve’ plotted with 1− (1− p)k, where p = 0.04.

Although not shown in the graph, Set2 converges close to 1 at roughly k = 400, several orders of
magnitude below Set1. In addition, note that the slight notch seen in Set1’s curve at large k is due to
the presence of low, but non-zero solve-rates, which can be seen in empirical pass@k curves later
on. (These can be thought as the beginning of the ‘ramping-up’ regime of the typical S-curves in
Figure 40.)

100 101 102

k

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ss

@
k

Pass@k Across Different Solve Probability Sets

Average (Set 1)
p=0.001 (Set 1)
p=0.7 (Set 1)
p=0.9 (Set 1)
Average (Set 2)
p=0.01 (Set 2)
p=0.1 (Set 2)
p=0.25 (Set 2)

Figure 41: Two pass@k curves on a hypothetical dataset of length l = 3, and the solve probabilities
of Set 1 are {0.001, 0.7, 0.9} and Set 2 are {0.05, 0.1, 0.25}. Note that the pass@1 is 53% and 13%,
respectively. However, at roughly k = 20, Set 2 surpasses Set 1 and within an order of magnitude,
achieves pass@k of roughly 1.0.

42



2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

O BIASED ESTIMATOR FOR PASS@K DUE TO NON-INDEPENDENCE OF
PLANSEARCH

From a pure theoretical standpoint, the expression is biased (if using the same interpretation), but it
still leads to a similar interpretation—computing the probability that a subset of size k drawn from
the set of samples we already generated contains at least one success. (These given samples were
generated by one run of PLANSEARCH.) As such, in theory, the estimator may be slightly biased in
the PLANSEARCH case when computing its true pass@k. In practice, we do not believe this to be a
large concern, especially as our primary results feature a relatively large k = 200.

O.1 MEASURING DIVERSITY

You are an expert Python programmer. You will be given a
competitive programming problem and two pieces of code which
are attempts to solve the problem. For your convenience, you
will also be given the idea for each code, summarized in natural
language. You will be asked to answer whether the ideas behind
the code are the same. You must ONLY output ’Yes.’ or ’No.’

P COMPETITIVE PROGRAMMING

Competitive programming is a popular subset of programming tasks that involve solving complex
algorithmic reasoning. Typically, problems consist of a problem statement (written in natural
language) P , with associated tests: (xi, yi), i ∈ {1, . . . ,m}, for which any solution must pass all of
them.

The number of tests m depends on the problem, but typically ranges on the order of 25 to 100. A
small subset of the tests are typically given to the solver (we call these public tests) to use as validation
that their program passes simple cases. The rest of the tests are hidden. Solutions to the problems
must generally pass all the tests to be considered correct. Formally, we let f(x) denote the output of
said code ran on input x. The solution code is considered correct (passing) if and only if f(xi) = yi
for all i ∈ {1, . . . ,m}.

Each dataset consists of many (on the order of low-hundreds) independent problems, and models are
evaluated on each of these problems independently.

Q OTHER RELATED WORK

Q.1 SEARCH IN CLASSICAL AI

Classical search algorithms like breadth-first search, depth-first search, and A* search have been
widely used for pathfinding, planning, and optimization (Russell & Norvig, 2002). More advanced
search techniques like Monte Carlo Tree Search (MCTS) have achieved remarkable success in
domains like game playing, enabling superhuman performance in Go (Silver et al., 2016; 2017),
Poker (Brown & Sandholm, 2018; 2019) and Diplomacy (FAIR et al., 2022). More recently, scaling
laws have been found for the performance of AI systems in board games, where ELO improves
logarithmically with the amount of compute spent at inference (Jones, 2021).

Q.2 SEARCH WITH LANGUAGE MODELS

Applying search on top of LLMs has been a topic of much interest, especially with an eye towards
code generation (Chen et al., 2021; Li et al., 2022). Historically, methods such as beam search
significantly improved performance for translation systems (Freitag & Al-Onaizan, 2017). Closer
to the present day, several recent works have explored repeated sampling (Chen et al., 2024; Brown
et al., 2024; Bansal et al., 2024; Wu et al., 2024) as a search method for improving performance.
Repeated sampling is a method which directly generates candidate code solutions from the model
many times at moderate to high temperatures in hopes that one of the resulting generations will be
correct. However, although these works address the roughly linear increase in pass@k with respect

43



2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

to log k, they only focus on the most basic version of repeated sampling, without searching in idea
space.

When combined with a verifier, reward model, or other filtering algorithm to select the best generation
(in cases where pass@k is not a viable metric due to lack of test cases), it is also known under
the name of best-of-n sampling (Mudgal et al., 2024). Many works show somewhat good results
under intelligent selection of such a filtering algorithm (Chen et al., 2022a; 2024). Recently, several
approaches have demonstrated the power of repeated sampling. For example, repeated sampling from
a small model can sometimes outperform taking a single sample from a large model on an equalized
compute bases (Snell et al., 2024). Unlike algorithms such as repeated sampling, which search over
the output space, the key insight of PLANSEARCH is that it is far more effective to instead search
plans over the latent idea space. By explicitly searching over different natural language plans before
generating the code, we significantly increase the diversity of the final code outputs and thus, the
resulting pass@k scores for sufficiently large k.

R PUBLIC TEST FILTERING

Public test filtering is a method which only chooses samples out of the original pool n which pass the
public tests. This is particularly useful in settings such as code deployment where executing the full
suite of tests may be computationally costly or otherwise undesirable (e.g. in a coding contest where
every incorrect submission is penalized). Thus, instead of submitting all n codes, after public test
filtering, only codes ci would be submitted such that ci(xj) = yj for all j ∈ {1, . . . , u}, where ci(x)
refers to the output from running the code on some input x. The primary effect of public test filtering
is to shift the pass@k curve leftward, since public test filtering will discard low quality candidate
solutions that either fail to compile or fail elementary test cases for the problem.

All problems in MBPP+, HumanEval+, and LiveCodeBench come with a few public tests which
are usually used to sanity check any submissions. We can further improve performance by filtering
on these public tests before a final submission, as described. Applying public test filtering reduces
the number of samples to achieve the same accuracy by tenfold: PLANSEARCH to achieve a 77.1%
accuracy on LiveCodeBench after just 20 submissions (pass@20) compared to a pass@200 of
77.0% without using public filtering (see Figure 4). We provide full results for the other datasets in
Appendix B.

S LIMITATIONS AND FUTURE WORK

While PLANSEARCH substantially improves diversity over idea space at inference-time, fundamen-
tally, improvements in diversity should come at the post-training stage, like with methods such as
o1 OpenAI (2024). This likely requires re-imagining the post-training pipeline for LLMs around
search, instead of the current paradigm optimized for a single correct response. We are optimistic
about future work in designing improved post-training objectives to maximize both quality and
diversity, while specifically optimized to use inference-time compute to maximum effectiveness.

PLANSEARCH and IDEASEARCH tradeoff a slight deterioration of pass@1 performance for a large
improvement in pass@k performance. However, in many such cases outside of code generation, it
is infeasible to run an LLM-based model for more than a few attempts at most. For example, in
Figure 8, PLANSEARCH does not significantly outperform REPEATED SAMPLING until k ≥ 4.

Fortunately, many filtering algorithms exist, which mitigates this tradeoff by implicitly bringing
pass@k (for high k) to pass@1 (or lower k), i.e. shifting the original pass@k curve leftward. Even
the simplest filtering—public test filtering—improves PLANSEARCH’s pass@1 significantly above
REPEATED SAMPLING’s pass@1, which continues as k increases. Moreover, most to almost all base
models with public test filtering outperform their instruct model variants at pass@1, no matter the
dataset (see Appendix J). Since base models’ pass@1 is known to be worse than instruct models
to trade off for higher diversity, we suggest a new paradigm—developing search algorithms which
tradeoff pass@1 performance for much stronger pass@k performance, then filtering the generated
solutions to extract the pass@k back into pass@1.

With good filtering methods, which we demonstrate can be simple in nature, pass@k, for medium k,
can be effectively brought down to pass@1, emphasizing a similar paradigm of increasing diversity,

44



2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

then strengthening existing filtering methods, even for domains outside of code generation that are
out of scope of this paper.

Finally, a natural extension of this work is training the underlying model itself on successful plans
and code solutions obtained from PLANSEARCH. This has the potential to distill the pass@k into the
pass@1—without inference-time methods like filtering—by reducing the likelihood of the model
going down unfavorable branches of the search tree. We believe that such training is likely to
significantly improve the model and look forward to future work in this direction.

T MATHEMATICS AND EXAMPLES OF THE DIVERSITY MEASURE

While our choice of a diversity metric is intuitive, one should note that there are a number of intriguing
details that result from our definition.

For example, it is the case that with k unique ideas and n samples of each idea, respectively (for a
total of kn total generated codes), we achieve a diversity score approaching (k − 1)/k.

For a quick proof, suppose that there are k cliques, each of n size. Each clique represents a unique
idea. We wish to capture the number of unfilled edges over the number of possible edges as our
diversity score: (

k
2

)
n2(

kn
2

) =
(k − 1)n

kn− 1
(5)

which converges to k−1
k as n grows large.

Our formulation seems more intuitive than other proposals, such as one that simply counts how many
unique ideas k lie within a pool of size n to compute k/n as the diversity score.

For instance, suppose there are only two unique ideas, one clique of which is of size 2n− 1, and the
other only output once. The simple proposal would compute both the diversity score of this uneven
group and that of an even group (where both ideas are output n times) to be 2

2n = 1
n .

However, our score would compute the even group to be n
2n−1 , and the uneven group as:

1

2n
· 1 + 2n− 1

2n
· 1

2n− 1
=

1

n
(6)

Instead of counting edges, we compute the probability that two randomly selected outputs have
similar idea to each other, which is another interpretation of our diversity score.

It seems clear that a case with 2n − 1 instances of idea 1 and 1 instance of idea 2 is ‘less diverse’
than a case with n instances of both idea 1 and idea 2. A naı̈ve proposal may score these two as being
the same diversity, whereas our score scores them as 1/n and roughly 1/2, respectively.

U ADDITIONAL DIRECTIONS FOR FUTURE WORK

In terms of methodological improvements to PLANSEARCH, PLANSEARCH currently searches all
leaf nodes in the search tree uniformly. Because of this, it becomes quickly intractable to go further
than a couple levels deep, and in our experiments, we are only able to go two levels down the tree.
Several approaches based on Monte-Carlo Tree Search (MCTS), such as Tree of Thought Yao et al.
(2023a) or Reasoning as Planning (Hao et al., 2023a), have suggested that some form of dynamic
pruning and expansion of nodes can be very helpful. We are optimistic that PLANSEARCH can be
further improved by such methods.

Furthermore, PLANSEARCH is a fairly elementary method taking advantage of the paradigm that
searching over a conceptual or idea space is an effective method to improve diversity, and thus,
downstream task performance. It is completely feasible to search at an even higher level of abstraction
than observations, which may be used to inject even more diversity into the final generated outputs.

45



2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

V COMPARISON WITH AGENTIC MODELS

We also run baselines with a basic ‘agentic’ model which is allowed a code execution environment
with the given public tests. To do this, it first generates code similar to REPEATED SAMPLING, then
runs said code on the given public tests. If the code does not pass, the error is returned to the model
and the model is prompted to fix the code. This process continues until either the model successfully
passes the public tests or it reaches a certain iteration limit T .

We compare such a model with our baselines as well. For all comparisons, we set T = 10. Note that
the agentic models do have access to a code execution environment, which is an inherently different
paradigm than all of our baselines. Thus, we do two comparisons.

We first compare the last submission of the agentic model (which is either passing public tests or does
not complete in the allotted iteration limit) versus the public-filtered versions of each of our baselines.
The rationale behind this is that in both methods, all the faulty submissions which do not pass public
tests are discarded, and both have access to code execution. The results are seen in Figure 42.

1 10
k

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Pa
ss

@
k

GPT-4o-mini

1 10
k

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

GPT-4o

Repeated Sampling
IdeaSearch
PlanSearch
Public Test Agent

Public Filtering
Agent Last Submission
No Public Filtering

Pass@k vs k for Methods with Public Filtering on LiveCodeBench

Figure 42: Pass@k curves comparing the basic agentic model’s last submissions only on Live-
CodeBench with up to 20 completions and public test filtering.

Next, instead of stopping when successful, the agentic model continues to iterate even when the code
is successful. If the code is successful and uses i iterations out of T , the agentic model starts over
from scratch, except with T − i total iterations instead. We compare all submissions of this agentic
model versus the default versions of each of our baselines, since the submissions of both methods are
not guaranteed to pass public tests. Note that this setup is still slightly unfair for our baselines, since
the last submissions of the agentic model will have already iterated and extracted sufficient signal
from public tests, whereas our baselines do not use any test execution signal at all. The results can be
found in Figure 43.

46



2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

1 10 100
k

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Pa
ss

@
k

GPT-4o-mini

1 10 100
k

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

GPT-4o

Repeated Sampling
IdeaSearch
PlanSearch
Public Test Agent

Repeated Sampling
IdeaSearch
PlanSearch
Public Test Agent

Pass@k vs k for Methods on LiveCodeBench

Figure 43: Pass@k curves comparing the basic agentic model with all T generations on Live-
CodeBench with up to 200 completions.

47


	Introduction
	Related Work
	Motivation
	Defining the Search Space
	Backtranslation
	Conditioning on Idea Quality

	Methods
	Repeated Sampling
	IdeaSearch
	PlanSearch
	Prompting for Observations
	Deriving New Observations
	Observations to Code


	Experimental Results
	Datasets
	Experiment Details
	Results

	Analysis
	Measuring Diversity

	Conclusion
	Full Pass@K curves for All Models and All Benchmarks
	Full Pass@k Curves with Public Filtering
	Average Relative Improvements
	Compute Normalized Pass@K Graphs
	Comparison with Chain-of-Thought
	Ablation on Temperature for Repeated Sampling and IdeaSearch
	Diversity Score vs Search Improvement Plots for MBPP+ and HumanEval+
	Ablations
	Base Models vs. Instruct Models for Large Samples
	Base Models vs. Instruct Models with Public Test Filtering
	OpenAI O1
	Bar Charts
	Prompts
	Backtranslation
	Backtranslate System Prompt
	Implement Backtranslation Idea

	Repeated Sampling
	Simple Idea
	PlanSearch
	Prompt for Observation Part 1
	Prompt for Observation Part 2
	Combining Observations


	A Model of Repeated Sampling: Pass@k
	Biased Estimator for Pass@K Due to Non-Independence of PlanSearch
	Measuring Diversity

	Competitive Programming
	Other Related Work
	Search in Classical AI
	Search with Language Models

	Public Test Filtering
	Limitations and Future Work
	Mathematics and Examples of the Diversity Measure
	Additional Directions for Future Work
	Comparison with Agentic Models

