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ABSTRACT

While scaling training compute has led to remarkable improvements in large lan-
guage models (LLMs), scaling inference compute has not yet yielded analogous
gains. We hypothesize that a core missing component is a lack of diverse LLM out-
puts, leading to inefficient search due to models repeatedly sampling highly similar,
yet incorrect generations. We empirically demonstrate that this lack of diversity can
be mitigated by searching over candidate plans for solving a problem in natural lan-
guage. Based on this insight, we propose PLANSEARCH, a novel search algorithm
which shows strong results across HumanEval+, MBPP+, and LiveCodeBench (a
contamination-free benchmark for competitive coding). PLANSEARCH generates a
diverse set of observations about the problem and uses these observations to con-
struct plans for solving the problem. By searching over plans in natural language
rather than directly over code solutions, PLANSEARCH explores a significantly
more diverse range of potential solutions compared to baseline search methods.
Using PLANSEARCH on top of Claude 3.5 Sonnet achieves a pass@200 of 77.0%
on LiveCodeBench, outperforming both the best pass-rate achieved without any
search (pass@1 = 41.4%) and using standard repeated sampling on top of exist-
ing non-search models (pass@200 = 60.6%). Finally, we show that, across all
models, search algorithms, and benchmarks analyzed, we can accurately predict
performance gains from search as a function of the diversity over generated ideas.
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Figure 1: Comparison of REPEATED SAMPLING, both pass@1 and pass@k, and our novel method
PLANSEARCH. On every model, our method outperforms baselines by a wide margin, with the best
model-method combination of Claude 3.5 Sonnet / PLANSEARCH achieving performance nearly
double that of the best model without search.
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1 INTRODUCTION

The bitter lesson (Sutton, 2019) famously posits that two forms of scaling trump everything else:
learning and search. While recent advances in large language models (LLMs) have shown that
learning is extremely effective, search has not yet proven its value for LLMs, despite its success with
classical machine learning techniques (Campbell et al., 2002; Silver et al., 2016; 2017; Brown &
Sandholm, 2018; 2019; Bakhtin et al., 2022; FAIR et al., 2022).

Here, we refer to search as any method of spending compute at inference time to improve overall
performance (McLaughlin, 2024). In this work, we focus our efforts on improving LLM search
for code generation, one of the most important current applications of LLMs. We hypothesize
the major bottleneck preventing widespread use of search at inference time for code is a lack of
high-level diversity in model outputs. This lack of diversity is likely in part due to specific post-
training objectives commonly used to train LLMs as chatbots, in which models are oftentimes
optimized to produce a single correct answer (Rafailov et al., 2024; Ouyang et al., 2022). We
empirically demonstrate that this is the case for many open-source language models which have
undergone significant post-training. Specifically, we show that in many cases, despite instruction
tuned models outperforming base models by large margins on a single sample regime (pass@1),
this trend disappears—sometimes even reversing—on a multi-sample regime (pass@k). We refer to
Figure 30 as an example of this phenomenon.

Furthermore, the lack of diversity is particularly harmful for search algorithms. In the most egregious
of cases with little to no diversity, such as greedy decoding, repeated sampling from the model returns
highly similar programs, resulting in minimal gain from additional inference-time compute. This
diversity problem is also not reflected in many public leaderboards (e.g. LMSYS Chatbot Arena
(Chiang et al., 2024), LiveCodeBench (Jain et al., 2024), OpenLLMLeaderboard (Aidar Myrzakhan,
2024)), which often report only the pass rate from a single sample of the model, ignoring an entire
dimension along which to compare models. While the performance of one sample is the primary
metric of relevance for applications such as chatbots, as users typically are sensitive to latency, this
single scalar is insufficient to fully capture the quality of a model when it is allowed to use more
inference-time compute.

"Use hashmaps"

"Use binary
search"

"Use greedy
search"

"Precompute
positions for each

subsequence"

"Return False if
the array is

empty"

"Identify the
longest

subsequence" 

"Bucket each
array into a size

of root n"

. . .Coding Problem

Strategy
Description

PseudocodeStrategy
Description

CodePseudocode

Code

Prompt new solutions with 
"Your idea is wrong"

First-order
observations

Second-order
observations

Stage 1: Generate diverse observations Stage 2: Implement code from observations

Figure 2: An example trajectory of PLANSEARCH, which searches over plans in natural language as a
method of increasing diversity in the search process. PLANSEARCH first generates observations, then
combinatorially samples subsets of these observations to generate the next step in the search process.
To generate the next layer of observations, the combinations derived from the first observations are
used as a stepping stone to generate the next observations, and the process repeats. After generating
both the first and second order observations, PLANSEARCH then generates a natural language
description of a strategy to solve the problem. For additional diversity, the model is prompted to
regenerate its strategy as an additional sample before generating code. See Section 4.3 for additional
discussion.
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In this paper, we explore several directions for improving the diversity of LLMs at inference time.
We hypothesize that the right axis of diversity to search over is the natural language conceptual/idea
space, and we validate our hypothesis across several experiments. First, we show that models can
produce the correct final program when fed correct solution sketches, where these sketches have
been “backtranslated” from passing solution code into sketches in idea space (Section 3.2). Second,
we show that when models are asked to generate their own ideas before implementing them on
LiveCodeBench (IDEASEARCH), their accuracy conditioned on a particular sketch trends towards
either 0% or 100%, suggesting that most of the variance in passing a particular problem is captured
by whether the sketch is correct rather than any other factor. These two experiments suggest a natural
method to improving LLM search for code generation: by searching for the correct idea to implement.

Guided by this principle of maximizing exploration of ideas, we propose PLANSEARCH. In contrast
to many existing search methods that search over individual tokens (Zhang et al., 2024; 2023), lines
of code (Kulal et al., 2019), or even entire programs (Li et al., 2022), PLANSEARCH searches over
possible plans for solving the problem at hand, where a plan is defined as a collection of high
level observations and sketches helpful to solve a particular problem (Figure 2). To generate novel
plans, PLANSEARCH generates a number of observations about the problem, before combining these
observations into a candidate plan for solving the problem. This is done for every possible subset
of the generated observations to maximally encourage exploration in idea space, before the codes
are eventually all translated into a final code solution (Section 4.3). We find that searching over
plans outperforms both standard repeated sampling and directly searching over ideas (IDEASEARCH,
introduced in Section 4.2) in terms of effectively using compute at inference time.

Applying PLANSEARCH on top of Claude 3.5 Sonnet achieves a pass@200 of 77.0% on Live-
CodeBench, outperforming both the best score achieved without search (pass@1 = 41.4%) and
the standard best-of-n sampling score on non-search methods (pass@200 = 60.6%). Furthermore,
consistent with recent findings on the effectiveness of search on top of small models (Chen et al.,
2024; Brown et al., 2024; Bansal et al., 2024; Wu et al., 2024), running PLANSEARCH on top of
a small model (GPT-4o-mini) outperforms larger models not augmented with search after merely
4 attempts. Evaluations of PLANSEARCH across two other coding benchmarks, HumanEval+ and
MBPP+ (Liu et al., 2023), suggest similar improvements.

Finally, we measure the diversity of output code over the idea space of all search methods via
an LLM-as-a-judge procedure (Section 6.1) and show that the resulting diversity score is highly
correlated with the performance gains generated by that search method. This provides further support
for our hypothesis that the effective exploration of plans in idea space is key to LLM search for code
generation (Figure 5).

2 RELATED WORK

We reiterate that search as defined in the context of our paper refers to any method which expends
inference-time compute to improve performance. We further specify planning as any form of high
level observation or abstract thought that assists a model in generating a final solution. Our work
builds off a long history of work in scaling search and planning. For information on relevant work in
classical AI, general search, and filtering, see Appendix Q.

Regarding searching over plans in natural language, several approaches have proposed generalizing
chain-of-thought (Wei et al., 2022) reasoning into a search-like process, such as Tree of Thoughts
(Yao et al., 2023a) and Reasoning via Planning (Hao et al., 2023b). However, prior methods have
largely demonstrated effectiveness on somewhat contrived problems designed to highlight the power
of search, such as the game of 24, or classic planning benchmarks such as Blocksworld (McDermott,
2000), where both benchmarks are easier to solve by explicitly considering many options, and where
the ‘steps’ over which to search over are fairly obvious. By contrast, most real-world planning is used
to assist in domains that are complex enough to benefit from, but not require, the additional exploration
of plans. We demonstrate that PLANSEARCH, which plans in natural language, outperforms baseline
search methods in one such domain: code generation. Moreover, our analysis reveals the underlying
reason that such search is effective: it increases the diversity of the generated ideas, allowing
more efficient search relative to other methods which repeatedly submit highly similar, incorrect
solutions. This is consistent with prior work suggesting the importance of diversity in natural
language generation (Hashimoto et al., 2019; Zhang et al., 2021). Other directions for search include
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decomposing programs down into smaller parts before solving each one individually (Zelikman et al.,
2023; Zhou et al., 2023; Gao et al., 2023).

PLANSEARCH is also distinct from other methods which explicitly train a model to search or on
reasoning traces sampled from the model (Zelikman et al., 2022; Zhang & Parkes, 2023; Zelikman
et al., 2024; OpenAI, 2024) in that PLANSEARCH induces diversity at inference-time and converts
an LLM API not designed for search into one that is capable of showing strong gains from search.
Separately, there is a large family of work in the agent space, in which outputs from terminal
commands or other tools are fed back into the model before the agent is queried for the next step
(Shinn et al., 2023; Yao et al., 2023b; Schick et al., 2023; Chen et al., 2022b).

3 MOTIVATION

Coding is a powerful area in which search should excel. While search in other domains requires both
generating many solutions and selecting the correct solution amongst all the resulting generations,
coding often only requires the former, as any valid piece of code can be tested via code execution
against given test cases. This allows code search algorithms to sidestep many of the issues that plague
search algorithms for more open-ended domains (e.g. generating poetry) due to difficulty in selecting
correct solutions out of all the generated solutions.
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ing lengths. The baselines plot performance without
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compressed solution in natural language, even as short
as 10 tokens, significantly increases performance.
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(b) We plot the distribution of solve rates conditioned
on being given a solution sketch and without. When
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Most of the variance in performance is predicted by
whether a given idea is correct or not.

Figure 3: Backtranslation shows the promise of providing good sketches, and conditioning on idea
shows the presence of a solution sketch polarizes performance.

3.1 DEFINING THE SEARCH SPACE

Perhaps the most important question for eliciting strong search capacities is determining which space
to search over, as finding the proper layer of abstraction is critical to progress in the field. Prior
approaches have varied, with many people searching over individual tokens (Zhang et al., 2024;
2023), lines of code (Kulal et al., 2019), or even entire programs (Li et al., 2022). We hypothesize that
the key factor is obtaining the correct solution sketch, which we define as a description of the correct
program in natural language space. Intuitively, conducting the reasoning process in natural language
space allows us to effectively harness the training process of LLMs, which have observed many
human reasoning traces in both pre- and post-training. Prior work (Wei et al., 2022) has observed
strong positive effects from being allowed to conduct such reasoning in natural language, making it a
natural place to search over. We describe two experiments providing evidence for this hypothesis by
testing on the LiveCodeBench benchmark using GPT-4o-mini as our model.

3.2 BACKTRANSLATION

To investigate the hypothesis whether the idea space, instantiated as solution sketches, is the right area
of exploration, a natural question is whether LLMs can correctly implement a correct code solution

4
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given a correct sketch. Inspired by approaches to backtranslation in machine learning (Sennrich
et al., 2016; Pham et al., 2021; Edunov et al., 2018), we experiment with “backtranslating” passing
code solutions back into idea space. First, we generate code solutions using GPT-4o to generate
1000 attempts to solve the problem and filter out problems without any passing solutions. As we
also do not have a dataset of correct solution sketches associated with each solution, we generate
a candidate correct idea via backtranslation. We do this by feeding an LLM both the problem and
code solution and asking the LLM to convert said solution into a natural language description of the
solution. Additionally, we vary the detail of the backtranslated idea via instructions to the LLM in
the prompt (e.g. ‘in w words’). A full description of the prompts can be found in Appendix M.1,
alongside several example backtranslated solutions of various lengths.

We observe that prompting a model with a backtranslated idea significantly improves accuracy,
increasing with the length of the translated idea (Figure 3a), which suggests that having a correct
sketch is sufficient to produce the correct final solution with relatively high accuracy, even only after
10 tokens of backtranslated solution. This suggests that the correct direction of search is to explore
through idea space to maximize the chance of arriving at a correct idea.

3.3 CONDITIONING ON IDEA QUALITY

In a follow-up experiment, we prompt an LLM to generate its own sketches to solve LiveCodeBench
problems instead of providing it with golden ones via backtranslation. First, we generate 5 ideas per
problem using IDEASEARCH, defined in Section 4.2. For each idea, we then sample 25 candidate
solutions and measure their pass rate. For this experiment, we filter out any problem that GPT-4o-mini
solves with either a 100% or a 0% solve rate, since such problems are either too easy or too hard
for the model and would not be informative for this experiment. We end with 75 problems and 375
sketches.

To test our hypothesis that generating a correct sketch is a critical factor for solving problems, we
compare the distribution of solve rates for generating correct code solutions conditioned on a given
sketch to the distribution over solve rates given a sketch drawn at random, i.e., just the distribution
over solve rates. While verifying whether a sketch is correct or incorrect is difficult without access
to external labels, a key insight is that if generating the correct idea is a critical factor in solving
the problem, then conditioning on a particular sketch should polarize the distribution of solve rates
towards {0, 1}. If the model is given a correct sketch, it should consistently generate correct solutions,
while if given a bad sketch, it should consistently generate incorrect solutions.

Our results confirm this to be the case. Figure 3b shows the distribution of solve rates across
problems, both unconditionally (in red) and conditioned on each sketch (in blue). We notice that
when grouping by sketches, the solve rates indeed become polarized towards {0, 1}. This result has
important implications for improving code generation, suggesting that a large portion of variance
in performance can be explained by whether the model is able to generate a correct idea or not.
Therefore, a natural path for improvement is to focus on the sketch generation step and search for
correct sketches and observations in idea space before generating solution code.

4 METHODS

We provide a description of the various methods of search we explore in our work. If additional
background on competitive programming and related notation is desired, we provide more (optional)
information in Appendix P.

4.1 REPEATED SAMPLING

We consider the basic prompting approach as a baseline, in which we use few-shot prompting by
providing the LLM with a number of problem-solution pairs before asking it to solve the desired
question (Brown et al., 2020). A full example of the prompt is given in Appendix M.2. In code
generation, the most common variant of search utilized is repeated sampling, where models are
repeatedly sampled from until they generate an output that passes the test or the maximum number of
samples is reached. Refer to the Related Work for more information (Section Q.2).
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4.2 IDEASEARCH

A natural extension of the REPEATED SAMPLING approach discussed in Section 4.1 is to avoid
prompting the LLM for the solution code immediately. This can be viewed as an application of the
commonly used “chain-of-thought” prompting to programming problems (Wei et al., 2022), although
we find that IdeaSearch shows non-negligible performance boosts over standard “chain-of-thought”
prompting (see Appendix E).

In IDEASEARCH, the LLM is given the problem P and is asked to output a natural language solution
S of the problem. Then, a separate instance of the LLM is given P and S, and tasked to follow
the proposed solution S to solve the problem P . The purpose of IDEASEARCH is to isolate the
effectiveness of having the correct “idea/sketch” for solving the problem. Empirically, we find that
explicitly forcing the search algorithm to articulate an idea for solving the problem increases diversity.
See Appendix M.3 for detailed prompts.

4.3 PLANSEARCH

While both REPEATED SAMPLING and IDEASEARCH are successful and lead to improvement in
the results on benchmark results, we observe that in many of the cases, prompting multiple times
(pass@k) (even at high temperatures) will only lead to small, narrow changes in the output code that
change minor aspects but fail to improve upon pitfalls in idea.

Ablations for many of the choices in the subsequent description of PLANSEARCH can be found in
Appendix H.

4.3.1 PROMPTING FOR OBSERVATIONS

Starting from the problem statement P , we prompt an LLM for “observations”/hints to the problem.

We denote these observations as O1
i , where, i ∈ {1, . . . , n1} due to the fact that they are first-order

observations. Typically, n1 is on the order of 3 to 6. The exact number depends on the LLM output.
To use these observations to inspire future idea generation, we create all subsets with size at most
S = 2 of s1 =

{
O1

1, . . . , O
1
n1

}
. Each of these subsets is a combination of observations, and for

clarity we denote each subset as C1
i , i ∈ {1, . . . , l1}, where l1 = 1 + n1 +

(
n1

2

)
.

4.3.2 DERIVING NEW OBSERVATIONS

The set of all observations can be thus defined as a directed tree with depth 1, where the root
node is P , and an edge exists for each C1

i pointing from P to C1
i . We then repeat this procedure

from Section 4.3.1 on each leaf node C1
i to generate a set of second order observations, s2i =

{O2
i,1, . . . , O

2
i,ni,2

}. To obtain second order observations, we prompt the model with both the original
problem P and all observations contained in C1

i , framed as primitive observations that are necessary
in order to solve P . The LLM is then prompted to use/merge the observations found in C1

i in order
to derive new ones.

The same procedure as Section 4.3.1 is used to create all subsets C2
i,j , for all i ∈ {1, . . . , l1}. This

process may be arbitrarily repeated, but we truncate the tree at depth L = 2 for computational
constraints.

Note that there is no assumption any of the observations generated are correct. In fact, it is critical to
note that many of them may be incorrect. The observations merely serve to elicit the model to search
over a more diverse set of ideas.

4.3.3 OBSERVATIONS TO CODE

After the observations have been made, they must be implemented as ideas before being translated
into code. For each leaf node, we prompt the model with all observations, along with the original
problem P , in order to generate a natural language solution to the problem P . To add more diversity,
for each generated idea, we generate an additional idea by supposing the idea is wrong, and asking an
LLM to give criticisms/feedback, thus increasing our proposed ideas by a factor of 2.
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These natural language solutions are then translated into pseudocode, which are subsequently trans-
lated into actual Python code. We take a more granular approach to reduce the translation error (which
may cause the model to revert to its original mode, disregarding the reasoned-through observations).
We provide all prompts for all sections in Appendix M.4.

5 EXPERIMENTAL RESULTS

Model Eval Pass@1 Pass@200 IS@200 (ours) PS@200 (ours)
GPT-4o-mini LCB 39.0 53.3 59.4 64.9
GPT-4o LCB 41.3 60.6 70.4 73.0
DeepSeek-Coder-V2 LCB 41.4 53.2 65.9 70.3
Claude-Sonnet-3.5 LCB 40.3 55.6 70.2 77.0
GPT-4o-mini HE+ 83.7 95.0 97.5 98.2
GPT-4o HE+ 86.4 98.2 97.6 99.5
DeepSeek-Coder-V2 HE+ 82.8 91.4 97.2 99.3
Claude-Sonnet-3.5 HE+ 81.6 88.9 95.6 98.5
GPT-4o-mini M+ 73.5 83.8 87.3 91.0
GPT-4o M+ 77.2 87.4 89.3 92.2
DeepSeek-Coder-V2 M+ 76.3 81.9 89.1 92.6
Claude-Sonnet-3.5 M+ 77.1 83.0 87.8 93.7

o1-mini (search model) LCB 69.5 90.8 91.2 91.3

Table 1: LCB, HE+, M+ short for LiveCodeBench, HumanEval+, and MBPP+, respectively. IS short
for IDEASEARCH and PS short for PLANSEARCH. We find that PLANSEARCH and IDEASEARCH
improve upon search baselines across all models, with PLANSEARCH achieving the best results
across all models and benchmarks considered. Notably, using PLANSEARCH on top of Claude
3.5 Sonnet (Anthropic, 2024) has a pass@200 of 77.0 on LiveCodeBench, which is nearly double
the performance of the top model without using search (41.4). PLANSEARCH also outperforms
basic pass@200 on o1-mini for LiveCodeBench, though since o1-mini already uses inference-time
compute, the gap is much smaller than compared to non-search models. The full pass@k curves are
included in Appendix A.

5.1 DATASETS

We evaluate our search methods on three benchmarks: MBPP+, HumanEval+ (Liu et al., 2023), and
LiveCodeBench (Jain et al., 2024). MBPP (Austin et al., 2021) and HumanEval (Chen et al., 2021)
are some of the most widely used code benchmarks in the field. However, since both benchmarks
provide only a few test cases, Liu et al. (2023) updates both benchmarks with additional test cases that
increase the benchmarks’ robustness to reward hacking. LiveCodeBench is a benchmark for coding
that consists of competitive programming problems which typically require advanced reasoning
capabilities. Given the reality that coding data is often highly upsampled during pre-training (OpenAI
et al., 2024; Dubey et al., 2024), LiveCodeBench differentiates itself from other benchmarks by
taking care to segregate problems by date to avoid data contamination concerns. For this paper,
we use only the subset of problems between May 2024 and September 2024 to avoid possibilities
of contamination. We choose May 2024 as the cutoff date to ensure that our results with our best
performing model (Claude 3.5 Sonnet) are not due to contamination, because Claude 3.5 Sonnet has
a knowledge cutoff of April 2024. To ensure fair comparison, we use the same cutoff for all models
evaluated, even though the precise cutoff dates for other models may vary slightly from May 2024.

5.2 EXPERIMENT DETAILS

For all search algorithms, we require that all output code be in the correct format specified, and we
mark a solution as incorrect if it does not follow the intended formatting. The extracted code is then
run through all tests of the program and marked as correct if and only if it passes all tests.
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Figure 4: Performance of all models and methods on LiveCodeBench with public test filtering. The
purpose of filtering is to shift pass@k curves leftward (i.e., bringing performance at high k to low k),
so we plot curves in detail over k ∈ {1, . . . , 20}. Even at 10 completions, PLANSEARCH outperforms
filtered REPEATED SAMPLING by a flat 30 to 40%. Again, full pass@k plots are included in their
entirety in Appendix A.

All models are run with temperature 0.9 and top-p of 0.95. (o1-mini was run with temperature 1.0
and top-p of 1.0 because of API constraints.) Temperature was determined through a coarse hyper-
parameter sweep on REPEATED SAMPLING and IDEASEARCH from T ∈ {0.0, 0.1, 0.2, . . . , 1.2},
which we describe in Appendix F.

Both REPEATED SAMPLING and IDEASEARCH generate exactly n codes, whereas PLANSEARCH
generates a variable number of codes, usually ranging on the order of 300 to 400. To compute pass@k,
we use the unbiased estimator in Equation 4 (Chen et al., 2021)1.

If k > n, we assume the remaining generations did not pass. To compute pass@k for filtering, we
limit the pool of codes to those that are filtered, meaning that both n and c may shrink in size. This
can be thought of as a conditional probability, where the condition is that the code passes public tests.
For more information on public test filtering, see Appendix R.

5.3 RESULTS

Our summarized results for REPEATED SAMPLING, IDEASEARCH, and PLANSEARCH can be found
in Table 1, Figure 1, and Figure 4. We find that PlanSearch improves over existing methods for all
models and benchmarks considered.

1Note that the estimator in Equation 4 theoretically requires that the number of successes follows a binomial
distribution. REPEATED SAMPLING and IDEASEARCH obey this, but PLANSEARCH generations may not be
independent. See Appendix O for more discussion.
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Additionally, we plot our full pass@k curves for all methods, models, and datasets in Appendix A. Due
to prohibitively high costs, we only evaluate o1-mini on LiveCodeBench, as HumanEval+ and MBPP+
show strong saturation effects even with weaker models like GPT4o-mini. The pass@k curves of
o1-mini and associated discussion can be found in Appendix K. For sake of easy comparison, we also
plot all relative gains compared to REPEATED SAMPLING@1 averaged over all models in Appendix C.
For a compute-normalized comparison between REPEATED SAMPLING and PLANSEARCH, see
Figure 17. Additionally, we ablate over the design choices made for PLANSEARCH in Appendix H.

6 ANALYSIS

Our results suggest that both PLANSEARCH and IDEASEARCH outperform basic sampling by a wide
margin (Figures 11, 12, 13), with PLANSEARCH achieving the best score across all methods and
models considered. Since o1-mini is unique from all other models tested, we show and discuss its
unique results in Appendix K. We show the detailed pass@k results for each dataset in Figures 6, 7
and 8. We also compare with Chain-of-Thought (Wei et al., 2022) in Appendix E. Interestingly, we
find that IDEASEARCH performs somewhat better, which we speculate comes from differences in
splitting solution sketch into two model responses, instead of doing both chain-of-thought and code
solution in one model response.

Investigating the differences in specific models, we notice that trends exhibited by the pass@k curves
are not uniform across all models; in fact, each curve seems unique. We hypothesize that these
differences are in part due to changes in idea diversity, as investigated in Figures 5, 25, 26. Figure 5
includes o1-mini diversities, which also follow the observed trend. From the figures, we can see that
our approximate diversity score accounts for much of the variance we see in the relative improvement
that arrives from scaling-up inference-time compute. This correlation holds across all methods and
models on the same dataset, thus suggesting that diversity score can be used as a proxy to predict
for relative pass@k improvement. For further discussion on the specifics of the diversity score, see
Section 6.1.

One interesting point of observation is that PLANSEARCH often hurts pass@1 for several models,
including most notably Sonnet 3.5 on LiveCodeBench, our best performing combination. Intuitively,
this is because increasing the diversity across ideas likely dilutes the probability that any particular
idea is generated, while simultaneously increasing the chance of having at least one correct idea
within said pool. Therefore, pass@1 may be slightly lower than usual, yet pass@k will likely surpass
“pools” of ideas lacking diversity for this reason. See Figure 41 for a graphical intuition.

Finally, in Table 1 and Figure 1, we present our main results normalized across attempts/completion,
where each search method is allowed k attempts to solve each problem. An alternative method of
normalizing across methods is to equalize the amount of compute spent on each method. Since
PLANSEARCH and IDEASEARCH first plan out an idea before implementing the final solution,
they both spend more compute at inference time per solution generated. In Appendix D, we report
the equivalent plots normalized across compute. Our findings are highly similar and suggest that
PLANSEARCH outperforms all other methods if sufficient compute is expended at inference time.

6.1 MEASURING DIVERSITY

We find that idea-space diversity strongly predicts search performance, measured by the relative
improvement between pass@1 and pass@200 (Figure 5). While entropy is a common diversity
measure (Shannon, 1948), it is inadequate for LLM settings (Hashimoto et al., 2019; Zhang et al.,
2021). For instance, a model generating variations of the same program and another producing
distinct programs may have equal entropy, yet the latter will perform better in search-augmented
tasks.

We measure diversity in idea space via pairwise comparisons across all generated programs. Let
{c1, . . . , cn} be a set of n code generations, each corresponding to a latent idea. Two sketches can be
thought to be considered similar if they are within some ϵ of each other in idea space, noting that
transitivity may not hold here.
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Figure 5: We observe a strong positive correlation between the measured amount of idea diversity
(higher score is better) in a search algorithm and the resulting improvements due to search. See
Section 6.1 for information regarding the diversity score.

To compute diversity, we construct the
(
n
2

)
pairs and evaluate their similarity using an LLM, defining

S(ci, cj) ∈ {0, 1}, where S(ci, cj) = 1 iff ci and cj are similar. The diversity score is:

D = 1−
∑

i<j S(ci, cj)(
n
2

) (1)

A model producing all identical ideas has D = 0, while one generating all unique ideas has D = 1.
A score of D is also equivalent to the probability that two randomly selected programs are similar to
each other (see Appendix T for more details).

For each method, we report the diversity score across all problems. For large n, we sample 40
codes and compare all pairs. GPT-4o-mini is used to evaluate S, and full prompt details are in
Appendix O.1.

7 CONCLUSION

In this work, we find that diversity in idea space is incredibly useful to unlock significant achievements
in the effectiveness of inference-time compute—otherwise referred to as search—particularly in code
generation tasks. We propose PLANSEARCH, which obtains great performance on all datasets tested,
almost doubling baseline performance at pass@200. Additionally, we find strong correlation between
our diversity metric and resulting performance gains from evaluating at pass@k instead of pass@1,
which underscores the importance of idea diversity in effective search. We believe that these insights
can be applied to many other domains and will be crucial to realize the full potential of LLMs to
unlock significant performance gains as seen here.

However, while PLANSEARCH substantially improves diversity over idea space at inference-time,
fundamentally, improvements in diversity should also come at the post-training stage, like with
methods such as o1 (OpenAI, 2024). This likely requires re-imagining the post-training pipeline for
LLMs around search, instead of the current paradigm optimized for a single correct response.

Even without such advances, a natural extension of this work is to train the underlying model itself
on successful plans and code solutions obtained from PLANSEARCH, which has the potential to
distill the pass@k into the pass@1—without inference-time methods like filtering—by reducing the
probability of the model going down unfavorable branches of the search tree. Such training is likely
to significantly improve the model, and we look forward to future work in this direction.
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A FULL PASS@K CURVES FOR ALL MODELS AND ALL BENCHMARKS

See Figures 6, 7, 8. We plot all models and methods on HumanEval+, MBPP+ (Liu et al., 2023), and
LiveCodeBench (Jain et al., 2024), respectively.
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Figure 6: Pass@k performance of all models and methods on HumanEval+, plotted over k ∈
{1, . . . , 200}.
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Figure 7: Pass@k performance of all models and methods on MBPP+, plotted over k ∈ {1, . . . , 200}.
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Figure 8: Pass@k performance of all models and methods on LiveCodeBench, plotted over k ∈
{1, . . . , 200}.
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B FULL PASS@K CURVES WITH PUBLIC FILTERING

See Figures 9, 10, 4. We plot all models and methods with public test filtering on HumanEval+,
MBPP+ (Liu et al., 2023), and LiveCodeBench (Jain et al., 2024), respectively.
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Figure 9: Pass@k performance of all models and methods on HumanEval+, with public test filtering,
plotted over k ∈ {1, . . . , 20}. Note that dotted lines are provided for reference of the base method
pass@k before filtering.
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Figure 10: Pass@k performance of all models and methods on MBPP+, with public test filtering,
plotted over k ∈ {1, . . . , 20}. Note that dotted lines are provided for reference of the base method
pass@k before filtering.
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C AVERAGE RELATIVE IMPROVEMENTS

See Figures 11, 12, 13. To create these graphs, the relative improvements of each point on all pass@k
curves are computed and compared to the respective pass@1 of REPEATED SAMPLING. Then these
values are averaged over all models, so that there is one curve per method per dataset. The datasets
are HumanEval+, MBPP+ (Liu et al., 2023), and LiveCodeBench (Jain et al., 2024), respectively. For
the public test filtered versions, see Figures 14, 15, 16.
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Figure 11: Performance gain over REPEATED SAMPLING@1 averaged over all models on Hu-
manEval+, plotted over k ∈ {1, . . . , 200}.
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Figure 12: Performance gain over REPEATED SAMPLING@1 averaged over all models on MBPP+,
plotted over k ∈ {1, . . . , 200}.
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Figure 13: Performance gain over REPEATED SAMPLING@1 averaged over all models on Live-
CodeBench, plotted over k ∈ {1, . . . , 200}.
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Figure 14: Average performance gain over all models of methods with public test filtering compared
to REPEATED SAMPLING@1, plotted over k ∈ {1, . . . , 20}. Note that dotted lines are provided for
reference of the base method pass@k (before filtering).
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Figure 15: Average performance gain over all models of methods with public test filtering compared
to REPEATED SAMPLING@1, plotted over k ∈ {1, . . . , 20}. Note that dotted lines are provided for
reference of the base method pass@k (before filtering).
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Figure 16: Average performance gain over all models of methods with public test filtering compared
to REPEATED SAMPLING@1, plotted over k ∈ {1, . . . , 20}. Note that dotted lines are provided for
reference of the base method pass@k (before filtering).
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D COMPUTE NORMALIZED PASS@K GRAPHS

See Figure 17. For each run of a method in Appendix A, we compute the number of generated tokens
needed per completion, per problem, independently on each dataset. Then, we average across all
datasets to obtain 244 generated tokens per completion per problem for REPEATED SAMPLING, and
1, 428 generated tokens per completion per problem for PLANSEARCH.
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Figure 17: Normalized pass@k by average tokens used per problem. REPEATED SAMPLING uses
roughly 244 tokens per completion per problem, and PLANSEARCH uses roughly 1428 tokens per
completion per problem. When we normalize compute across methods, we find that PLANSEARCH
begins to be more effective than repeated sampling if the user is willing to sample at least 10,000
tokens per problem.
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E COMPARISON WITH CHAIN-OF-THOUGHT

See Figures 18, 19, 20, which are run on LiveCodeBench (Jain et al., 2024), MBPP+, and Hu-
manEval+ (Liu et al., 2023), respectively. These are the same plots as Appendix A, with CoT (Wei
et al., 2022). See Figures 21, 22, 23 for the public test filtered versions.
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Figure 18: Pass@k graphs on LiveCodeBench, with the Chain-of-Thought baseline.
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Figure 19: Pass@k graphs on MBPP+, with the Chain-of-Thought baseline.
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Figure 20: Pass@k graphs on HumanEval+, with the Chain-of-Thought baseline.
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Figure 21: Pass@k graphs on LiveCodeBench, with the Chain-of-Thought baseline and public
filtering.
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Figure 22: Pass@k graphs on MBPP+, with the Chain-of-Thought baseline and public filtering.
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Figure 23: Pass@k graphs on HumanEval+, with the Chain-of-Thought baseline and public filtering.
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F ABLATION ON TEMPERATURE FOR REPEATED SAMPLING AND
IDEASEARCH

See Figure 24. We sweep over temperature increments of 0.1 from 0.0 to 1.2, inclusive, with top-p of
0.95, on REPEATED SAMPLING and IDEASEARCH.
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Figure 24: Sweep over temperature in 0.1 increments from 0.0 to 1.2. REPEATED SAMPLING and
IDEASEARCH both exhibit pass@k improvements at higher temperature, although it seems that
higher temperatures may begin to plateau.
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G DIVERSITY SCORE VS SEARCH IMPROVEMENT PLOTS FOR MBPP+ AND
HUMANEVAL+

See Figures 25, 26, 5. Each figure is made through running the diversity measure as described in
Section 6.1 on the generated codes of each run, then compared with the relative gain from pass@k
compared to pass@1.
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Figure 25: Relationship between the measured diversity score as described in Section 6.1 (where
higher is more diverse) and relative improvement from the pass@1 of the method to the pass@200 of
the method.
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Figure 26: Relationship between the measured diversity score as described in Section 6.1 (where
higher is more diverse) and relative improvement from the pass@1 of the method to the pass@200 of
the method on MBPP+.
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H ABLATIONS

We run ablations on the core parts of PLANSEARCH, using GPT-4o-mini on LiveCodeBench (Jain
et al., 2024). On the diverse observation generation side, we first verify our choice of S = 2—the
maximum subset size to sample from out of a given pool of observations—and also compare perfor-
mance across varying the number of observation layers used (Figures 27, 28). On the implementation
side, we compare different sections of the proposed pipeline (see Figure 2) to translate combinations
of observations to code in Figure 29. We compare each method’s pass@k from k = 1 to k = 200.
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Figure 27: We run ablations of PLANSEARCH with different S—controlling the maximum subset
size from a given pool of observations. There is not a large difference between different S, but we
find that 1 or 2 is slightly more optimal, although if more completions are desired, S can be increased
to 3 as well.

The effect S, the maximum observation subset size to build upon, has on performance is not overly
significant; there are small degradations as S is increased to 3, but not noticeable. We choose S = 2
to obtain more code completions. See Figure 27.

Increasing L, the maximum number of layers of the observation tree, increases pass@k at large
enough k (above 50). We choose L = 2 to strike a balance between extracting a large pass@k gain
while keeping compute costs reasonable. See Figure 28.

From Figure 29, we see that our overall translation step adds minor pass@k gains. We deconstruct the
translation step into parts: the pseudocode step, the fix step (i.e., asking the model to fix its proposed
solution sketch), and creating the solution sketch at all (which includes the fix step).

• “No solution sketch, no pseudocode” implies using a given observation combination to
directly prompt for the solution code.

• “No pseudocode” implies skipping the pseudocode step. In other words, given a solution
sketch, the sketch is directly translated into code.

• “No fix step, no pseudocode” implies the fix step is skipped, as well as the pseudocode. In
order to have the same number of completions, the whole PLANSEARCH pipeline is run
twice.
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Figure 28: We run ablations of PLANSEARCH with different L—controlling the maximum order of
observation used, i.e., how many layers the observation tree will search. We find pass@k scales with
respect to increasing L
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Figure 29: We run ablations of PLANSEARCH with different methods of translating a combination of
observations to code.
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Figure 30: Despite DeepSeek-Coder-V2-Lite-Base having significantly lower pass@1 than its instruct
counterpart, we observe that this trend reverses as k increases, suggesting that the instruct model has
less diversity than its base model counterpart. We observe this trend for many, but not all, models and
benchmarks, and provide the full data in Appendix I.

I BASE MODELS VS. INSTRUCT MODELS FOR LARGE SAMPLES

We find that base models, despite performing poorly relative to their instruct counterparts for evaluated
with pass@1, will frequently match or even exceed performance on pass@k for sufficiently high
k. This is likely due to higher amounts of diversity in base models, which have not undergone
post-training designed to elicit a single strong response from the model.

We see this effect across all models for HumanEval+ and MBPP+, but only the DeepSeek-Coder-V2
family for LiveCodeBench.

See Figure 31 for all base and instruct model comparisons between DeepSeek-Coder-V2-Lite, Llama-
3.1-8B, and Llama-3.1-70B on all three datasets.

We also provide Llama-3.1-8b and DeepSeek-Coder-V2-Lite pass@k comparisons for k up to 10, 000;
see Figures 33, 32.

J BASE MODELS VS. INSTRUCT MODELS WITH PUBLIC TEST FILTERING

We repeat the graphs from Appendix I, but with public test filtering. We find that base models with
public test filtering almost always exceed the pass@1 of their instruct model variants.

See Figure 34 for all base and instruct model comparisons between DeepSeek-Coder-V2-Lite, Llama-
3.1-8B, and Llama-3.1-70B on all three datasets with public test filtering.

We also report Llama-3.1-8b and DeepSeek-Coder-V2-Lite pass@k comparisons with public test
filtering for k up to 10, 000; see Figures 35, 36.
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Figure 31: Pass@k curves comparing DeepSeek-Coder-V2-Lite, Llama-3.1-8B, and Llama-3.1-70B
base and instruct performance.
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Figure 32: Pass@k curves comparing DeepSeek-Coder-V2-Lite’s base and instruct versions on
LiveCodeBench with up to 10, 000 completions.
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Figure 33: Pass@k curves comparing Llama-3.1-8B’s base and instruct versions on LiveCodeBench
with up to 10, 000 completions.
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Figure 34: Pass@k curves comparing DeepSeek-Coder-V2-Lite, Llama-3.1-8B, and Llama-3.1-70B
base and instruct performance with public test filtering.
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Figure 35: Pass@k curves comparing Llama-3.1-8B’s base and instruct versions on LiveCodeBench
with up to 1, 000 completions and with public test filtering.
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Figure 36: Pass@k curves comparing DeepSeek-Coder-V2-Lite’s base and instruct versions on
LiveCodeBench with up to 1, 000 completions and with public test filtering.

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

K OPENAI O1

We also do a brief analysis of OpenAI’s o1 (OpenAI, 2024) models. We run PLANSEARCH on
top of o1-mini, which is the best o1 model available through API access at the time of writing for
competitive coding. Due to both severe cost constraints and dataset saturation on HumanEval+ and
MBPP+, we only run o1-mini on LiveCodeBench (Jain et al., 2024).

First, we investigate its pass@k trends on LiveCodeBench. (See Figure 37.) As expected,
PLANSEARCH trails REPEATED SAMPLING for low k. However, at high k, PLANSEARCH competes
with/slightly outperforms REPEATED SAMPLING.

We believe there to be two reasons why there is not as large of an improvement compared to other
non-search-based models. First, there may be diminishing returns when stacking multiple search
methods on top of each other naı̈vely. Second, LiveCodeBench is noticeably saturated, reaching
solve-rates of over 90%. Thus, it is much harder to notice large jumps in dataset performance, as
can be seen in pass@k curves (see Figure 6) on HumanEval+ (Liu et al., 2023). There, REPEATED
SAMPLING, IDEASEARCH, and PLANSEARCH all perform roughly the same, with PLANSEARCH
only slightly outperforming the others. We believe a combination of these effects also implies a
greater k is required to notice a large difference between REPEATED SAMPLING and PLANSEARCH.
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Figure 37: Pass@k performance methods applied on top of o1-mini, on LiveCodeBench, plotted over
k ∈ {1, . . . , 200}. PLANSEARCH slightly outperforms REPEATED SAMPLING at high k; larger k is
not run due to cost constraints.

We notice that the OpenAI frequently refuses to answer queries from PLANSEARCH, likely due to
efforts to minimize revealing the full chain-of-thought the model is using. To combat this, we find
that filtering out the words steps, step, and quote reduces the fraction of unanswered queries
from roughly 40% to less than 0.5%. For any query that is still refused after this approach, we route
the same prompt to GPT-4o. In addition, we remove the pseudocode step to reduce the amount of
flagged responses.

On the diversity end, we apply the same methodology as described in Section 6.1. The corresponding
plot can be found in Figure 5. Even though o1-mini is strong on its own, we find that it is not very
diverse, which is consistent with our claim that diversity correlates with relative performance gain
seen with increasing k.
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L BAR CHARTS

See Figures 38, 39, 1. These plot pass@1 and pass@200 of select methods between REPEATED
SAMPLING and PLANSEARCH, on datasets MBPP+, HumanEval+ (Liu et al., 2023), and Live-
CodeBench (Jain et al., 2024).
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Figure 38: Bar chart with REPEATED SAMPLING@1, REPEATED SAMPLING@200, and
PLANSEARCH@200, on MBPP+.
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Figure 39: Bar chart with REPEATED SAMPLING@1, REPEATED SAMPLING@200, and
PLANSEARCH@200, on HumanEval+.
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M PROMPTS

M.1 BACKTRANSLATION

M.1.1 BACKTRANSLATE SYSTEM PROMPT

You are an expert Python programmer. You will be given an
algorithmic question (problem specification). You will return
a high-level, natural language solution to the question, like
an editorial. You will NOT return any code. Be as creative as
possible, going beyond what you think is intuitively correct.

M.1.2 IMPLEMENT BACKTRANSLATION IDEA

You are an expert Python programmer. You will be given a question
(problem specification) and a natural language solution/tutorial
that describes how to solve the problem. You will generate
a correct Python program that matches said specification and
tutorial and passes all tests. You will NOT return anything
except for the program inside markdown codeblocks.

M.2 REPEATED SAMPLING

You are an expert Python programmer. You will be given a question
(problem specification) and will generate a correct Python program
that matches the specification and passes all tests. You will NOT
return anything except for the program inside Markdown codeblocks.

M.3 SIMPLE IDEA

You will given a competitive programming problem; please output
a high-level description of how to solve the problem in natural
language. Below are examples:

Example input: PROBLEM DESCRIPTION HERE
Example output: EXAMPLE OUTPUT HERE
Here is the competitive programming problem: PROBLEM TO SOLVE

Brainstorm a high-level, natural language solution to the problem
above. Note that your intuition may lead you astray, so come up
with simple, creative ideas that go beyond what you would usually
come up with and go beyond your narrow intuition. Brainstorming
solutions that do not seem intuitively correct IS CRUCIAL.

M.4 PLANSEARCH

M.4.1 PROMPT FOR OBSERVATION PART 1

You are an expert Python programmer. You will be given an
competitive programming question (problem specification). You
will return several useful, non-obvious, and correct observations
about the problem, like hints to solve the problem. You will NOT
return any code. Be as creative as possible, going beyond what
you think is intuitively correct.

M.4.2 PROMPT FOR OBSERVATION PART 2

You are an expert Python programmer. You will be given an
competitive programming question (problem specification) and

40



2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

several correct observations about the problem.

You will brainstorm several new, useful, and correct observations
about the problem, derived from the given observations. You will
NOT return any code. Be as creative as possible, going beyond
what you think is intuitively correct.

M.4.3 COMBINING OBSERVATIONS

Here is a sample prompt from the function with placeholders:

Here is the competitive programming problem:

Problem statement placeholder

Here are the intelligent observations to help solve the problem:

Observation 1 placeholder
Observation 2 placeholder
Observation 3 placeholder

Use these observations above to brainstorm a natural language
solution to the problem above. Note that your intuition may
lead you astray, so come up with simple, creative ideas that go
beyond what you would usually come up with and exceeds your narrow
intuition.
Quote relevant parts of the observations EXACTLY before each step
of the solution. QUOTING IS CRUCIAL.

N A MODEL OF REPEATED SAMPLING: PASS@K

Consider a simplified model of repeated sampling for code generation. Suppose we have a dataset
D = {P1, . . . , Pl} with l problems. For some problem Pi, define the probability pi as the probability
that our code generation model solves the problem Pi in one submission. The pass@k (Chen et al.,
2021; Kulal et al., 2019) metric (for problem Pi) is defined as the probability that our code generation
model solves the problem Pi at least once out of k submissions. Thus, if we know the true pi of our
model, we may compute our pass@k simply:

pass@ki = 1− (1− pi)
k (2)

pass@k =
∑
i

pass@ki/l (3)

However, it turns out that for k > 1, the naı̈ve estimator as seen in Equation 2 is biased, if we sample
ni ≥ k from our code model to solve Pi, ci ≤ ni are correct, and compute pi = ci/ni (Chen et al.,
2021). Instead, pass@ki is typically computed using the unbiased estimator:

pass@ki = 1−
(
n−c
k

)(
n
k

) (4)

Note that reporting pass@k on a dataset where l = 1 is rather pointless, since pass@k can be derived
using only pass@11 and n1. Every curve, over a suitable range of k values, will look like the S-curve
seen in Figure 40 (as k is plotted on a log scale).

However, with datasets where l > 1, models are able to differentiate themselves through larger k,
since the overall pass@k is an average of these l curves. For example, for l = 3, it is less optimal to
have solved probabilities of Set1 = {0.001, 0.7, 0.9} versus Set2 = {0.05, 0.1, 0.25}, in the regime
of roughly k = 20 to k = 2, 000 (in which both converge to 1), even though Set1 has a pass@1 of
53% and Set2 has a pass@1 of 13%. See Figure 41.
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Figure 40: A simple pass@k ‘S-curve’ plotted with 1− (1− p)k, where p = 0.04.

Although not shown in the graph, Set2 converges close to 1 at roughly k = 400, several orders of
magnitude below Set1. In addition, note that the slight notch seen in Set1’s curve at large k is due to
the presence of low, but non-zero solve-rates, which can be seen in empirical pass@k curves later
on. (These can be thought as the beginning of the ‘ramping-up’ regime of the typical S-curves in
Figure 40.)
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Figure 41: Two pass@k curves on a hypothetical dataset of length l = 3, and the solve probabilities
of Set 1 are {0.001, 0.7, 0.9} and Set 2 are {0.05, 0.1, 0.25}. Note that the pass@1 is 53% and 13%,
respectively. However, at roughly k = 20, Set 2 surpasses Set 1 and within an order of magnitude,
achieves pass@k of roughly 1.0.
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O BIASED ESTIMATOR FOR PASS@K DUE TO NON-INDEPENDENCE OF
PLANSEARCH

From a pure theoretical standpoint, the expression is biased (if using the same interpretation), but it
still leads to a similar interpretation—computing the probability that a subset of size k drawn from
the set of samples we already generated contains at least one success. (These given samples were
generated by one run of PLANSEARCH.) As such, in theory, the estimator may be slightly biased in
the PLANSEARCH case when computing its true pass@k. In practice, we do not believe this to be a
large concern, especially as our primary results feature a relatively large k = 200.

O.1 MEASURING DIVERSITY

You are an expert Python programmer. You will be given a
competitive programming problem and two pieces of code which
are attempts to solve the problem. For your convenience, you
will also be given the idea for each code, summarized in natural
language. You will be asked to answer whether the ideas behind
the code are the same. You must ONLY output ’Yes.’ or ’No.’

P COMPETITIVE PROGRAMMING

Competitive programming is a popular subset of programming tasks that involve solving complex
algorithmic reasoning. Typically, problems consist of a problem statement (written in natural
language) P , with associated tests: (xi, yi), i ∈ {1, . . . ,m}, for which any solution must pass all of
them.

The number of tests m depends on the problem, but typically ranges on the order of 25 to 100. A
small subset of the tests are typically given to the solver (we call these public tests) to use as validation
that their program passes simple cases. The rest of the tests are hidden. Solutions to the problems
must generally pass all the tests to be considered correct. Formally, we let f(x) denote the output of
said code ran on input x. The solution code is considered correct (passing) if and only if f(xi) = yi
for all i ∈ {1, . . . ,m}.

Each dataset consists of many (on the order of low-hundreds) independent problems, and models are
evaluated on each of these problems independently.

Q OTHER RELATED WORK

Q.1 SEARCH IN CLASSICAL AI

Classical search algorithms like breadth-first search, depth-first search, and A* search have been
widely used for pathfinding, planning, and optimization (Russell & Norvig, 2002). More advanced
search techniques like Monte Carlo Tree Search (MCTS) have achieved remarkable success in
domains like game playing, enabling superhuman performance in Go (Silver et al., 2016; 2017),
Poker (Brown & Sandholm, 2018; 2019) and Diplomacy (FAIR et al., 2022). More recently, scaling
laws have been found for the performance of AI systems in board games, where ELO improves
logarithmically with the amount of compute spent at inference (Jones, 2021).

Q.2 SEARCH WITH LANGUAGE MODELS

Applying search on top of LLMs has been a topic of much interest, especially with an eye towards
code generation (Chen et al., 2021; Li et al., 2022). Historically, methods such as beam search
significantly improved performance for translation systems (Freitag & Al-Onaizan, 2017). Closer
to the present day, several recent works have explored repeated sampling (Chen et al., 2024; Brown
et al., 2024; Bansal et al., 2024; Wu et al., 2024) as a search method for improving performance.
Repeated sampling is a method which directly generates candidate code solutions from the model
many times at moderate to high temperatures in hopes that one of the resulting generations will be
correct. However, although these works address the roughly linear increase in pass@k with respect
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to log k, they only focus on the most basic version of repeated sampling, without searching in idea
space.

When combined with a verifier, reward model, or other filtering algorithm to select the best generation
(in cases where pass@k is not a viable metric due to lack of test cases), it is also known under
the name of best-of-n sampling (Mudgal et al., 2024). Many works show somewhat good results
under intelligent selection of such a filtering algorithm (Chen et al., 2022a; 2024). Recently, several
approaches have demonstrated the power of repeated sampling. For example, repeated sampling from
a small model can sometimes outperform taking a single sample from a large model on an equalized
compute bases (Snell et al., 2024). Unlike algorithms such as repeated sampling, which search over
the output space, the key insight of PLANSEARCH is that it is far more effective to instead search
plans over the latent idea space. By explicitly searching over different natural language plans before
generating the code, we significantly increase the diversity of the final code outputs and thus, the
resulting pass@k scores for sufficiently large k.

R PUBLIC TEST FILTERING

Public test filtering is a method which only chooses samples out of the original pool n which pass the
public tests. This is particularly useful in settings such as code deployment where executing the full
suite of tests may be computationally costly or otherwise undesirable (e.g. in a coding contest where
every incorrect submission is penalized). Thus, instead of submitting all n codes, after public test
filtering, only codes ci would be submitted such that ci(xj) = yj for all j ∈ {1, . . . , u}, where ci(x)
refers to the output from running the code on some input x. The primary effect of public test filtering
is to shift the pass@k curve leftward, since public test filtering will discard low quality candidate
solutions that either fail to compile or fail elementary test cases for the problem.

All problems in MBPP+, HumanEval+, and LiveCodeBench come with a few public tests which
are usually used to sanity check any submissions. We can further improve performance by filtering
on these public tests before a final submission, as described. Applying public test filtering reduces
the number of samples to achieve the same accuracy by tenfold: PLANSEARCH to achieve a 77.1%
accuracy on LiveCodeBench after just 20 submissions (pass@20) compared to a pass@200 of
77.0% without using public filtering (see Figure 4). We provide full results for the other datasets in
Appendix B.

S LIMITATIONS AND FUTURE WORK

While PLANSEARCH substantially improves diversity over idea space at inference-time, fundamen-
tally, improvements in diversity should come at the post-training stage, like with methods such as
o1 OpenAI (2024). This likely requires re-imagining the post-training pipeline for LLMs around
search, instead of the current paradigm optimized for a single correct response. We are optimistic
about future work in designing improved post-training objectives to maximize both quality and
diversity, while specifically optimized to use inference-time compute to maximum effectiveness.

PLANSEARCH and IDEASEARCH tradeoff a slight deterioration of pass@1 performance for a large
improvement in pass@k performance. However, in many such cases outside of code generation, it
is infeasible to run an LLM-based model for more than a few attempts at most. For example, in
Figure 8, PLANSEARCH does not significantly outperform REPEATED SAMPLING until k ≥ 4.

Fortunately, many filtering algorithms exist, which mitigates this tradeoff by implicitly bringing
pass@k (for high k) to pass@1 (or lower k), i.e. shifting the original pass@k curve leftward. Even
the simplest filtering—public test filtering—improves PLANSEARCH’s pass@1 significantly above
REPEATED SAMPLING’s pass@1, which continues as k increases. Moreover, most to almost all base
models with public test filtering outperform their instruct model variants at pass@1, no matter the
dataset (see Appendix J). Since base models’ pass@1 is known to be worse than instruct models
to trade off for higher diversity, we suggest a new paradigm—developing search algorithms which
tradeoff pass@1 performance for much stronger pass@k performance, then filtering the generated
solutions to extract the pass@k back into pass@1.

With good filtering methods, which we demonstrate can be simple in nature, pass@k, for medium k,
can be effectively brought down to pass@1, emphasizing a similar paradigm of increasing diversity,
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then strengthening existing filtering methods, even for domains outside of code generation that are
out of scope of this paper.

Finally, a natural extension of this work is training the underlying model itself on successful plans
and code solutions obtained from PLANSEARCH. This has the potential to distill the pass@k into the
pass@1—without inference-time methods like filtering—by reducing the likelihood of the model
going down unfavorable branches of the search tree. We believe that such training is likely to
significantly improve the model and look forward to future work in this direction.

T MATHEMATICS AND EXAMPLES OF THE DIVERSITY MEASURE

While our choice of a diversity metric is intuitive, one should note that there are a number of intriguing
details that result from our definition.

For example, it is the case that with k unique ideas and n samples of each idea, respectively (for a
total of kn total generated codes), we achieve a diversity score approaching (k − 1)/k.

For a quick proof, suppose that there are k cliques, each of n size. Each clique represents a unique
idea. We wish to capture the number of unfilled edges over the number of possible edges as our
diversity score: (

k
2

)
n2(

kn
2

) =
(k − 1)n

kn− 1
(5)

which converges to k−1
k as n grows large.

Our formulation seems more intuitive than other proposals, such as one that simply counts how many
unique ideas k lie within a pool of size n to compute k/n as the diversity score.

For instance, suppose there are only two unique ideas, one clique of which is of size 2n− 1, and the
other only output once. The simple proposal would compute both the diversity score of this uneven
group and that of an even group (where both ideas are output n times) to be 2

2n = 1
n .

However, our score would compute the even group to be n
2n−1 , and the uneven group as:

1

2n
· 1 + 2n− 1

2n
· 1

2n− 1
=

1

n
(6)

Instead of counting edges, we compute the probability that two randomly selected outputs have
similar idea to each other, which is another interpretation of our diversity score.

It seems clear that a case with 2n − 1 instances of idea 1 and 1 instance of idea 2 is ‘less diverse’
than a case with n instances of both idea 1 and idea 2. A naı̈ve proposal may score these two as being
the same diversity, whereas our score scores them as 1/n and roughly 1/2, respectively.

U ADDITIONAL DIRECTIONS FOR FUTURE WORK

In terms of methodological improvements to PLANSEARCH, PLANSEARCH currently searches all
leaf nodes in the search tree uniformly. Because of this, it becomes quickly intractable to go further
than a couple levels deep, and in our experiments, we are only able to go two levels down the tree.
Several approaches based on Monte-Carlo Tree Search (MCTS), such as Tree of Thought Yao et al.
(2023a) or Reasoning as Planning (Hao et al., 2023a), have suggested that some form of dynamic
pruning and expansion of nodes can be very helpful. We are optimistic that PLANSEARCH can be
further improved by such methods.

Furthermore, PLANSEARCH is a fairly elementary method taking advantage of the paradigm that
searching over a conceptual or idea space is an effective method to improve diversity, and thus,
downstream task performance. It is completely feasible to search at an even higher level of abstraction
than observations, which may be used to inject even more diversity into the final generated outputs.
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V COMPARISON WITH AGENTIC MODELS

We also run baselines with a basic ‘agentic’ model which is allowed a code execution environment
with the given public tests. To do this, it first generates code similar to REPEATED SAMPLING, then
runs said code on the given public tests. If the code does not pass, the error is returned to the model
and the model is prompted to fix the code. This process continues until either the model successfully
passes the public tests or it reaches a certain iteration limit T .

We compare such a model with our baselines as well. For all comparisons, we set T = 10. Note that
the agentic models do have access to a code execution environment, which is an inherently different
paradigm than all of our baselines. Thus, we do two comparisons.

We first compare the last submission of the agentic model (which is either passing public tests or does
not complete in the allotted iteration limit) versus the public-filtered versions of each of our baselines.
The rationale behind this is that in both methods, all the faulty submissions which do not pass public
tests are discarded, and both have access to code execution. The results are seen in Figure 42.
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Figure 42: Pass@k curves comparing the basic agentic model’s last submissions only on Live-
CodeBench with up to 20 completions and public test filtering.

Next, instead of stopping when successful, the agentic model continues to iterate even when the code
is successful. If the code is successful and uses i iterations out of T , the agentic model starts over
from scratch, except with T − i total iterations instead. We compare all submissions of this agentic
model versus the default versions of each of our baselines, since the submissions of both methods are
not guaranteed to pass public tests. Note that this setup is still slightly unfair for our baselines, since
the last submissions of the agentic model will have already iterated and extracted sufficient signal
from public tests, whereas our baselines do not use any test execution signal at all. The results can be
found in Figure 43.

46



2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

1 10 100
k

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Pa
ss

@
k

GPT-4o-mini

1 10 100
k

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

GPT-4o

Repeated Sampling
IdeaSearch
PlanSearch
Public Test Agent

Repeated Sampling
IdeaSearch
PlanSearch
Public Test Agent

Pass@k vs k for Methods on LiveCodeBench

Figure 43: Pass@k curves comparing the basic agentic model with all T generations on Live-
CodeBench with up to 200 completions.
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