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Abstract

Game-based decision-making involves reasoning over both world dynamics and1

strategic interactions among the agents. Typically, empirical models capturing these2

respective aspects are learned and used separately. We investigate the potential gain3

from co-learning these elements: a world model for dynamics and an empirical4

game for strategic interactions. Empirical games drive world models toward a5

broader consideration of possible game dynamics induced by a diversity of strategy6

profiles. Conversely, world models guide empirical games to efficiently discover7

new strategies through planning. We demonstrate these benefits first independently,8

then in combination as realized by a new algorithm, Dyna-PSRO, that co-learns9

an empirical game and a world model. When compared to PSRO—a baseline10

empirical-game building algorithm, Dyna-PSRO is found to compute lower regret11

solutions on partially observable general-sum games. In our experiments, Dyna-12

PSRO also requires substantially fewer experiences than PSRO, a key algorithmic13

advantage for settings where collecting player-game interaction data is a cost-14

limiting factor.15

1 Introduction16

Even seemingly simple games can actually embody a level of complexity rendering them intractable17

to direct reasoning. This complexity stems from the interplay of two sources: dynamics of the18

game environment, and strategic interactions among the game’s players. As an alternative to direct19

reasoning, models have been developed to facilitate reasoning over these distinct aspects of the game.20

Empirical games capture strategic interactions in the form of payoff estimates for joint policies [80].21

World models represent a game’s transition dynamics and reward signal directly [69, 19]. Whereas22

each of these forms of model have been found useful for game reasoning, typical use in prior work23

has focused on one or the other, learned and employed in isolation from its natural counterpart.24

Co-learning both models presents an opportunity to leverage their complementary strengths as a25

means to improve each other. World models predict successor states and rewards given a game’s26

current state and action(s). However, their performance depends on coverage of their training data,27

which is limited by the range of strategies considered during learning. Empirical games can inform28

training of world models by suggesting a diverse set of salient strategies, based on game-theoretic29

reasoning [80]. These strategies can expose the world model to a broader range of relevant dynamics.30

Moreover, as empirical games are estimated through simulation of strategy profiles, this same31

simulation data can be reused as training data for the world model.32

Strategic diversity through empirical games, however, comes at a cost. In the popular framework33

of Policy-Space Response Oracles (PSRO) [38], empirical normal-form game models are built34

iteratively, at each step expanding a restricted strategy set by computing best-response policies to35

the current game’s solution. As computing an exact best-response is generally intractable, PSRO36

uses Deep Reinforcement Learning (DRL) to compute approximate response policies. However,37

each application of DRL can be considerably resource-intensive, necessitating the generation of38
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a vast amount of gameplays for learning. Whether gameplays, or experiences, are generated via39

simulation [48] or from real-world interactions [24], their collection poses a major limiting factor in40

DRL and by extension PSRO. World models present one avenue to reduce this cost by transferring41

previously learned game dynamics across response computations.42
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Figure 1: Dyna-PSRO co-learns a world model and
empirical game. Empirical games offer world mod-
els strategically diverse game dynamics. World
models offer empirical games more efficient strat-
egy discovery through planning.

We investigate the mutual benefits of co-learning43

a world model and an empirical game by first44

verifying the potential contributions of each45

component independently. We then show how46

to realize the combined effects in a new algo-47

rithm, Dyna-PSRO, that co-learns a world model48

and an empirical game (illustrated in Figure 1).49

Dyna-PSRO extends PSRO to learn a world50

model concurrently with empirical game expan-51

sion, and applies this world model to reduce the52

computational cost of computing new policies.53

This is implemented by a Dyna-based reinforce-54

ment learner [67, 68] that integrates planning,55

acting, and learning in parallel. Dyna-PSRO56

is evaluated against PSRO on a collection of57

partially observable general-sum games. In our58

experiments, Dyna-PSRO found lower-regret59

solutions while requiring substantially fewer cu-60

mulative experiences.61

The main points of novelty of this paper are as follows: (1) empirically demonstrate that world models62

benefit from the strategic diversity induced by an empirical game; (2) empirically demonstrate that a63

world model can be effectively transferred and used in planning with new other-players. The major64

contribution of this work is a new algorithm, Dyna-PSRO, that co-learns an empirical game and65

world model finding a stronger solution at less cost than the baseline, PSRO.66

2 Related Work67

Empirical Game Theoretic Analysis (EGTA). The core idea of EGTA [80] is to reason over68

approximate game models (empirical games) estimated by simulation over a restricted strategy set.69

This basic approach was first demonstrated by Walsh et al. [77], in a study of pricing and bidding70

games. Phelps et al. [51] introduced the idea of extending a strategy set automatically through71

optimization, employing genetic search over a policy space. Schvartzman & Wellman [58] proposed72

using RL to derive new strategies that are approximate best responses (BRs) to the current empirical73

game’s Nash equilibrium. The general question of which strategies to add to an empirical game74

has been termed the strategy exploration problem [31]. PSRO [38] generalized the target for BR75

beyond NE, and introduced DRL for BR computation in empirical games. Many further variants and76

extensions of EGTA have been proposed, for example those using structured game representations77

such as extensive-form [43, 34]. Some prior work has considered transfer learning across BR78

computations in EGTA, specifically by reusing elements of policies and value functions [64, 65].79

Model-Based Reinforcement Learning (MBRL). Model-Based RL algorithms construct or use80

a model of the environment (henceforth, world model) in the process of learning a policy or value81

function [69]. World models may either predict successor observations directly (e.g., at pixel82

level [76, 79]), or in a learned latent space [18, 17]. The world models can be either used for83

background planning by rolling out model-predicted trajectories to train a policy, or by decision-84

time planning where the world model is used to evaluate the current state by planning into the85

future. Talvitie [71] demonstrated that even in small Markov decision processes (MDP) [52], model-86

prediction errors tend to compound—rendering long-term planning at the abstraction of observations87

ineffective. A follow-up study demonstrated that for imperfect models, short-term planning was88

no better than repeatedly training on previously collected real experiences; however, medium-term89

planning offered advantages even with an imperfect model [27]. Parallel studies hypothesized that90

these errors are a result of insufficient data for that transition to be learned [36, 8]. To remedy91

the data insufficiency, ensembles of world models were proposed to account for world model92
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uncertainty [8, 36, 84], and another line of inquiry used world model uncertainty to guide exploration93

in state-action space [3, 59]. This study extends this problem into the multiagent setting, where94

now other-agents may preclude transitions from occurring. The proposed remedy is to leverage the95

strategy exploration process of building an empirical game to guide data generation.96

Multiagent Reinforcement Learning (MARL). Previous research intersecting MARL and MBRL97

has primarily focused on modeling the opponent, particularly in scenarios where the opponent is fixed98

and well-defined. Within specific game sub-classes, like cooperative games and two-player zero-sum99

games, it has been theoretically shown that opponent modeling reduces the sample complexity of100

RL [73, 85]. Opponent models can either explicitly [46, 15] or implicitly [4, 29] model the behavior101

of the opponent. Additionally, these models can either construct a single model of opponent behavior,102

or learn a set of models [12, 21]. While opponent modeling details are beyond the scope of this103

study, readers can refer to Albrecht & Stone’s survey [1] for a comprehensive review on this subject.104

Instead, we consider the case where the learner has explicit access to the opponent’s policy during105

training, as is the case in empirical-game building. A natural example is that of Self-Play, where all106

agents play the same policy; therefore, a world model can be learned used to evaluate the quality of107

actions with Monte-Carlo Tree Search [60, 62, 72, 56]. Li et al. [41] expands on this by building a108

population of candidate opponent policies through PSRO to augment the search procedure. Krupnik109

et al. [35] demonstrated that a generative world model could be useful in multi-step opponent-action110

prediction. Sun et al. [66] examined modeling stateful game dynamics from observations when111

the agents’ policies are stationary. Chockalingam et al. [11] explored learning world models for112

homogeneous agents with a centralized controller in a cooperative game. World models may also be113

shared by independent reinforcement learners in cooperative games [81, 86].114

3 Co-Learning Benefits115

We begin by specifying exactly what we mean by world model and empirical game. This requires116

defining some primitive elements. Let t ∈ T denote time in the real game, with st ∈ S the117

information state and ht ∈ H the game state at time t. The information state st ≡ (mπ,t, ot)118

is composed of the agent’s memory mπ ∈ Mπ , or recurrent state, and the current observation119

o ∈ O. Subscripts denote a player-specific component si, negative subscripts denote all but the120

player s−i, and boldface denote the joint of all players s. The transition dynamics p : H×A →121

∆(H)×∆(R) define the game state update and reward signal. The agent experiences transitions, or122

experiences, (st, at, rt+1, st+1) of the game; where, sequences of transitions are called trajectories τ123

and trajectories ending in a terminal game state are episodes.124

At the start of an episode, all players sample their current policy π from their strategy σ : Π →125

[0, 1], where Π is the policy space and Σ is the corresponding strategy space. A utility function126

U : Π→ Rn defines the payoffs/returns (i.e., cumulative reward) for each of n players. The tuple127

Γ ≡ (Π, U, n) defines a normal-form game (NFG) based on these elements. We represent empirical128

games in normal form. An empirical normal-form game (ENFG) Γ̂ ≡ (Π̂, Û , n) models a game129

with a restricted strategy set Π̂ and an estimated payoff function Û . An empirical game is typically130

built by alternating between game reasoning and strategy exploration. During the game reasoning131

phase, the empirical game is solved based on a solution concept predefined by the modeler. The132

strategy exploration step uses this solution to generate new policies to add to the empirical game. One133

common heuristic is to generate new policies that best-respond to the current solution [45, 57]. As134

exact best-responses typically cannot be computed, RL or DRL are employed to derive approximate135

best-responses [38].136

An agent world model w represents dynamics in terms of information available to the agent. Specifi-137

cally, w maps information states and actions to observations and rewards, w : O×A×Mw → O×R,138

where mw ∈Mw is the world model’s memory, or recurrent state. For simplicity, in this work, we139

assume the agent learns and uses a deterministic world model, irrespective of stochasticity that may be140

present in the true game. Specific implementation details for this work are provided in Appendix C.2.141

Until now, we have implicitly assumed the need for distinct models. However, if a single model could142

serve both functions, co-learning two separate models would not be needed. Empirical games, in143

general, cannot replace a world model as they entirely abstract away any concept of game dynamics.144

Conversely, world models have the potential to substitute for the payoff estimations in empirical145

games by estimating payoffs as rollouts with the world model. We explore this possibility in an146
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auxiliary experiment included in Appendix E.4, but our findings indicate that this substitution is147

impractical. Due to compounding of model-prediction errors, the payoff estimates and entailed game148

solutions were quite inaccurate.149

Having defined the models and established the need for their separate instantiations, we can proceed150

to evaluate the claims of beneficial co-learning. Our first experiment shows that the strategic diversity151

embodied in an empirical game yields diverse game dynamics, resulting in the training of a more152

performant world model. The second set of experiments demonstrates that a world model can help153

reduce the computational cost of policy construction in an empirical game.154

3.1 Strategic Diversity155

A world model is trained to predict successor observations and rewards, from the current observations156

and actions, using a supervised learning signal. Ideally, the training data would cover all possible157

transitions. This is not feasible, so instead draws are conventionally taken from a dataset generated158

from play of a behavioral strategy. Performance of the world model is then measured against a target159

strategy. Differences between the behavioral and target strategies present challenges in learning an160

effective world model.161

We call the probability of drawing a state-action pair under some strategy its reach probability. From162

this, we define a strategy’s strategic diversity as the distribution induced from reach probabilities.163

across the full state-action space. These terms allow us to observe two challenges for learning world164

models. First, the diversity of the behavioral strategy ought to cover the target strategy’s diversity.165

Otherwise, transitions will be absent from the training data. It is possible to supplement coverage of166

the absent transitions if they can be generalized from covered data; however, this cannot be generally167

guaranteed. Second, the closer the diversities are, the more accurate the learning objective will be.168

An extended formal argument of these challenges is provided in Appendix C.3.169

If the target strategy were known, we could readily construct the ideal training data for the world170

model. However the target is generally not known at the outset; indeed determining this target is the171

ultimate purpose of empirical game reasoning. The evolving empirical game essentially reflects a172

search for the target. Serendipitously, construction of this empirical game entails generation of data173

that captures elements of likely targets. This data can be reused for world model training without174

incurring any additional data collection cost.175

Game. We evaluate the claims of independent co-learning benefits within the context of a commons176

game called “Harvest”. In Harvest, players move around an orchard picking apples. The challenging177

commons element is that apple regrowth rate is proportional to nearby apples, so that socially optimum178

behavior would entail managed harvesting. Self-interested agents capture only part of the benefit of179

optimal growth, thus non-cooperative equilibria tend to exhibit collective over-harvesting. The game180

has established roots in human-behavioral studies [30] and in agent-based modeling of emergent181

behavior [53, 40, 39]. For our initial experiments, we use a symmetric two-player version of the game,182

where in-game entities are represented categorically [28]. Each player has a 10× 10 viewbox within183

their field of vision. The possible actions include moving in the four cardinal directions, rotating184

either way, tagging, or remaining idle. A successful tag temporarily removes the other player from185

the game, but can only be done to other nearby players. Players receive a reward of 1 for each apple186

picked. More detailed information and visualizations are available in Appendix D.1.187

Experiment. To test the effects of strategic diversity, we train a suite of world models that differ188

in the diversity of their training data. The datasets are constructed from the play of three policies:189

a random baseline policy, and two PSRO-generated policies. The PSRO policies were arbitrarily190

sampled from an approximate solution produced by a run of PSRO. We sampled an additional191

policy from PSRO for evaluating the generalization capacity of the world models. These policies192

are then subsampled and used to train seven world models. The world models are referred to by193

icons that depict the symmetric strategy profiles used to train them in the normal-form. Strategy194

profiles included in the training data of the world models are shaded black. For instance, the first195

(random) policy , or the first and third policies . Each world model’s dataset contains 1 million196

total transitions, collected uniformly from each distinct strategy profile (symmetric profiles are not197

re-sampled). The world models are then evaluated on accuracy and recall for their predictions of both198

4



observation and reward for both players. The world models are optimized with a weighted-average199

cross-entropy objective. Additional details are in Appendix C.2.200
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Figure 2: World model accuracy across strategy profiles. Each heatmap portrays a world model’s
accuracy over 16 strategy profiles. The meta x-axis corresponds to the profiles used to train the world
model (as black cells). Above each heatmap is the model’s average accuracy.

Results. Figure 2 presents each world model’s per-profile accuracy, as well as its aver-201

age over all profiles. Inclusion of the random policy corresponds to decreases in observa-202

tion prediction accuracy: 0.75± 0.02→ 0.58± 0.05, 0.80± 0.02→ 0.62± 0.05,203

and 0.83± 0.02→ 0.68± 0.04. Figure 13 (Appendix E.1) contains the world204

model’s per-profile recall. Inclusion of the random policy corresponds to increases in re-205

ward 1 recall: 0.25± 0.07→ 0.37± 0.11, 0.25± 0.07→ 0.36± 0.11, and206

0.26± 0.07→ 0.37± 0.11.207

Discussion. The PSRO policies offer the most strategically salient view of the game’s dynamics.208

Consequently, the world model trained with these policies yields the highest observation accuracy.209

However, this world model performs poorly on reward accuracy, scoring only 0.50 ± 0.10. In210

comparison, the model trained on the random policy scores 0.73 ± 0.08. This seemingly211

counterintuitive result can be attributed to a significant class imbalance in rewards. predicts only212

the most common class, no reward, which gives the illusion of higher performance. In contrast, the213

remaining world models attempt to predict rewarding states, which reduces their overall accuracy.214

Therefore, we should compare the world models based on their ability to recall rewards. When we215

examine again, we find that it also struggles to recall rewards, scoring only 0.26±0.07. However,216

when the random policy is included in the training data ( ), the recall improves to 0.37± 0.11. This217

improvement is also due to the same class imbalance. The PSRO policies are highly competitive,218

tending to over-harvest. This limits the proportion of rewarding experiences. Including the random219

policy enhances the diversity of rewards in this instance, as its coplayer can demonstrate successful220

harvesting. Given the importance of accurately predicting both observations and rewards for effective221

planning, appears to be the most promising option. However, the strong performance of222

suggests future work on algorithms that can benefit solely from observation predictions. Overall,223

these results support the claim that strategic diversity enhances the training of world models.224

3.2 Response Calculations225

Empirical games are built by iteratively calculating and incorporating responses to the current226

solution. However, direct computation of these responses is often infeasible, so RL or DRL is used227

to approximate the response. This process of approximating a single response policy using RL is228

computationally intensive, posing a significant constraint in empirical game modeling when executed229

repeatedly. World models present an opportunity to address this issue. A world model can serve as a230

medium for transferring previously learned knowledge about the game’s dynamics. Therefore, the231

dynamics need not be relearned, reducing the computational cost associated with response calculation.232
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Exercising a world model for transfer is achieved through a process called planning. Planning is233

any procedure that takes a world model and produces or improves a policy. In the context of games,234

planning can optionally take into account the existence of coplayers. This consideration can reduce235

experiential variance caused by unobserved confounders (i.e., the coplayers). However, coplayer236

modeling errors may introduce further errors in the planning procedure [21].237

Planning alongside empirical-game construction allows us to side-step this issue as we have direct238

access to the policies of all players during training. This allows us to circumvent the challenge239

of building accurate agent models. Instead, the policies of coplayers can be directly queried and240

used alongside a world model, leading to more accurate planning. In this section, we empirically241

demonstrate the effectiveness of two methods that decrease the cost of response calculation by242

integrating planning with a world model and other agent policies.243

3.2.1 Background Planning244

The first type of planning that is investigated is background planning, popularized by the Dyna245

architecture [67]. In background planning, agents interact with the world model to produce planned246

experiences1. The planned experiences are then used by a model-free reinforcement learning247

algorithm as if they were real experiences (experiences generated from the real game). Background248

planning enables learners to generate experiences of states they are not currently in.249

Experiment. To assess whether planned experiences are effective for training a policy in the actual250

game, we compute two response policies. The first response policy, serving as our baseline, learns251

exclusively from real experiences. The second response policy, referred to as the planner, is trained252

using a two-step procedure. Initially, the planner is exclusively trained on planned experiences. After253

10 000 updates, it then transitions to learning solely from real experiences. Policies are trained using254

IMPALA [14], with further details available in Appendix C.1. The planner employs the world255

model from Section 3.1, and the opponent plays the previously held-out policy. In this and subsequent256

experiments, the cost of methods is measured by the number of experiences they require with the257

actual game. This is because, experience collection is often the bottleneck when applying RL-based258

methods [48, 24]. Throughout the remainder of this work, each experience represents a trajectory of259

20 transitions, facilitating the training of recurrent policies.260
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Figure 3: Effects of background planning on response learning. Left: Return curves measured by the
number of real experiences used. Right: Return curves measured by usage of both real and planned
experiences. The planner’s return is measured against the real game and the world model. (5 seeds,
with 95% bootstrapped CI).

Results. Figure 3 presents the results of the background planning experiment. The methods are261

compared based on their final return, utilizing an equivalent amount of real experiences. The baseline262

yields a return of 23.00± 4.01, whereas the planner yields a return of 31.17± 0.25.263

Discussion. In this experiment, the planner converges to a stronger policy, and makes earlier gains264

in performance than the baseline. Despite this, there is a significant gap in the planner’s learning265

1Other names include “imaginary”, “simulated”, or “hallucinated” experiences.
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curves, which are reported with respect to both the world model and real game. This gap arises due266

to accumulated model-prediction errors, causing the trajectories to deviate from the true state space.267

Nevertheless, the planner effectively learns to interact with the world model during planning, and268

this behavior shows positive transfer into the real game, as evidenced by the planner’s rapid learning.269

The exact magnitude of benefit will vary across coplayers’ policies, games, and world models. In270

Figure 14 (Appendix E.2), we repeat the same experiment with the poorly performing world271

model, and observe a marginal benefit (26.05±1.32). The key take-away is that background planning272

tends to lead towards learning benefits, and not generally hamper learning.273

3.2.2 Decision-Time Planning274

The second main way that a world model is used is to inform action selection at decision time275

[planning] (DT). In this case, the agent evaluates the quality of actions by comparing the value of276

the model’s predicted successor state for all candidate actions. Action evaluation can also occur277

recursively, allowing the agent to consider successor states further into the future. Overall, this278

process should enable the learner to select better actions earlier in training, thereby reducing the279

amount of experiences needed to compute a response. A potential flaw with decision-time planning280

is that the agent’s learned value function may not be well-defined on model-predicted successor281

states [71]. To remedy this issue, the value function should also be trained on model-predicted states.282

Experiment. To evaluate the impact the decision-time planning, we perform an experiment similar283

to the background planning experiment (Section 3.2.1). However, in this experiment, we evaluate284

the quality of four types of decision-time planners that perform one-step three-action search. The285

planners differ in the their ablations of background planning types: (1) warm-start background286

planning (BG: W) learning from planned experiences before any real experiences, and (2) concurrent287

background planning (BG: C) where after BG: W, learning proceeds simultaneously on both planned288

and real experiences. The intuition behind BG: C is that the agent can complement its learning289

process by incorporating planned experiences that align with its current behavior, offsetting the290

reliance on costly real experiences. Extended experimental details are provided in Appendix C.291
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Figure 4: Effects of decision-time planning on response learning. Four planners using decision-
time planning (DT) are shown in combinations with warm-start background planning (BG: W) and
concurrent background planning (BG: C). (5 seeds, with 95% bootstrapped CI).

Results. The results for this experiment are shown in Figure 4. The baseline policy receives a final292

return of 23.00± 4.01. The planners that do not include BG: W, perform worse, with final returns of293

9.98± 7.60 (DT) and 12.42± 3.97 (DT & BG: C). The planners that perform BG: W outperform the294

baseline, with final returns of 44.11± 2.81 (DT & BG: W) and 44.31± 2.56 (DT, BG: W, & BG: C).295

Discussion. Our results suggest that the addition of BG: W provides sizable benefits: 9.98± 7.60296

(DT)→ 44.11± 2.81 (DT & BG:W) and 12.42± 3.97 (DT & BG: C)→ 44.31± 2.56 (DT, BG: W,297

& BG: C). We postulate that this is because it informs the policy’s value function on model-predictive298

states early into training. This allows that the learner is able to more effectively search earlier into299

training. BG: C appears to offer minor stability and variance improvements throughout the training300
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procedure; however, it does not have a measurable difference in final performance. This result301

suggests using planning methods in combination to reap their respective advantages.302

However, we caution against focusing on the magnitude of improvement found within this experiment.303

As the margin of benefit depends on many factors including the world model accuracy, the opponent304

policy, and the game. To exemplify, similar to the background planning section, we repeat the same305

experiment with the poorly performing world model. The results of this ancillary experiment are306

in Figure 15 (Appendix E.3). The trend of BG: W providing benefits was reinforced: 6.29± 5.12307

(DT)→ 20.98± 9.76 (DT & BG: W) and 3.64± 0.26 (DT & BG: C)→ 33.07± 7.67 (DT, BG: W,308

& BG: C). However, the addition of BG: C now measurably improved performance 20.98 ± 9.76309

(DT & BG: W)→ 33.07± 7.67 (DT, BG: W, & BG: C). The main outcome of these experiments310

is the observation that multi-faceted planning is unlikely to harm a response calculation, and has a311

potentially large benefit when applied effectively. These results support the claim that world models312

offer the potential to improve response calculation through decision-time planning.313

4 Dyna-PSRO314

In this section we introduce Dyna-PSRO, Dyna-Policy-Space Response Oracles, an approximate315

game-solving algorithm that builds on the PSRO [38] framework. Dyna-PSRO employs co-learning316

to combine the benefits of world models and empirical games.317

Dyna-PSRO is defined by two significant alterations to the original PSRO algorithm. First, it trains318

a world model in parallel with all the typical PSRO routines (i.e., game reasoning and response319

calculation). We collect training data for the world model from both the episodes used to estimate the320

empirical game’s payoffs, and the episodes that are generated during response learning and evaluation.321

This approach ensures that the world model is informed by a diversity of data from a salient set of322

strategy profiles. By reusing data from empirical game development, training the world model incurs323

no additional cost for data collection.324

The second modification introduced by Dyna-PSRO pertains to the way response policies are learned.325

Dyna-PSRO adopts a Dyna-based reinforcement learner [67, 68, 70] that integrates simultaneous plan-326

ning, learning, and acting. Consequently, the learner concurrently processes experiences generated327

from decision-time planning, background planning, and direct game interaction. These experiences,328

regardless of their origin, are then learned from using the IMPALA [14] update rule. For all accounts329

of planning, the learner uses the single world model that is trained within Dyna-PSRO. This allows330

game knowledge accrued from previous response calculations to be transferred and used to reduce331

the cost of the current and future response calculations. Pseudocode and additional details for both332

PSRO and Dyna-PSRO are provided in Appendix C.4.333

Games. Dyna-PSRO is evaluated on three games. The first is the harvest commons game used in the334

experiments described above, denoted “Harvest: Categorical”. The other two games come from the335

MeltingPot [39] evaluation suite and feature rich image-based observations. “Harvest: RGB” is their336

version of the same commons harvest game (details in Appendix D.2). “Running With Scissors” is a337

temporally extended version of rock-paper-scissors (details in Appendix D.3). World model training338

and implementation details for each game are in Appendix C.2, likewise, policies in Appendix C.1.339

Experiment. Dyna-PSRO’s performance is measured by the quality of the solution it produces340

when compared against the world-model-free baseline PSRO. The two methods are evaluated on341

SumRegret (sometimes called Nash convergence), which measures the regret across all players342

SumRegret(σ,Π) =
∑

i∈n maxπi∈Πi
Ûi(πi, σ−i)− Ûi(σi, σ−i), where σ is the method’s solution343

and Π ⊆ Π denotes the deviation set. We define deviation sets based on policies generated across344

methods (i.e., regret is with respect to the combined game): Π ≡
⋃

method Π̂
method, for all methods for345

a particular seed (detailed in Appendix C.5) [2]. We measure SumRegret for intermediate solutions,346

and report it as a function of the cumulative number of real experiences employed in the respective347

methods.348

Results. Figure 5 presents the results for this experiment. For Harvest: Categorical, Dyna-PSRO349

found a no regret solution within the combined-game in 3.2e6 experiences. Whereas, PSRO achieves350

a solution of at best 5.45± 1.62 within 2e7 experiences. In Harvest: RGB, Dyna-PSRO reaches a351
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Figure 5: PSRO compared against Dyna-PSRO. (5 seeds, with 95% bootstrapped CI).

solution with 0.89± 0.74 regret at 5.12e6 experiences. At the same time, PSRO had found a solution352

with 6.42 ± 4.73 regret, and at the end of its run had 2.50 ± 2.24 regret. In the final game, RWS,353

Dyna-PSRO has 2e−3±5e−4 regret at 1.06e7 experiences, and at a similar point (9.6e6 experiences),354

PSRO has 6.68e−3± 2.51e−3. At the end of the run, PSRO achieves a regret 3.50e−3± 7.36e−4.355

Discussion. The results indicate that across all games, Dyna-PSRO consistently outperforms PSRO356

by achieving a superior solution. Furthermore, this improved performance is realized while consuming357

fewer real-game experiences. For instance, in the case of Harvest: Categorical, the application of358

the world model for decision-time planning enables the computation of an effective policy after only359

a few iterations. On the other hand, we observe a trend of accruing marginal gains in other games,360

suggesting that the benefits are likely attributed to the transfer of knowledge about the game dynamics.361

In Harvest: Categorical and Running With Scissors, Dyna-PSRO also had lower variance than PSRO.362

5 Limitations363

Although our experiments demonstrate benefits for co-learning world models and empirical games,364

there are several areas for potential improvement. The world models used in this study necessitated365

observational data from all players for training, and assumed a simultaneous-action game. Future366

research could consider relaxing these assumptions to accommodate different interaction protocols,367

a larger number of players, and incomplete data perspectives. Furthermore, our world models368

functioned directly on agent observations, which made them computationally costly to query. If369

the generation of experiences is the major limiting factor, as assumed in this study, this approach is370

acceptable. Nevertheless, reducing computational demands through methods like latent world models371

presents a promising avenue for future research. Lastly, the evaluation of solution concepts could372

also be improved. While combined-game regret employs all available estimates in approximating373

regret, its inherent inaccuracies may lead to misinterpretations of relative performance.374

6 Conclusion375

This study showed the mutual benefit of co-learning a world model and empirical game. First, we376

demonstrated that empirical games provide strategically diverse training data that could inform a more377

robust world model. We then showed that world models can reduce the computational cost, measured378

in experiences, of response calculations through planning. These two benefits were combined and379

realized in a new algorithm, Dyna-PSRO. In our experiments, Dyna-PSRO computed lower-regret380

solutions than PSRO on several partially observable general-sum games. Dyna-PSRO also required381

substantially fewer experiences than PSRO, a key algorithmic advantage for settings where collecting382

experiences is a cost-limiting factor.383
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