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Abstract

Distributional Reinforcement Learning (DRL) seeks to optimize risk-sensitive objectives by
modeling the full return distribution rather than only its expectation. A key challenge
is to choose a return distribution representation that allows (i) efficient estimation of risk
measures, (ii) tractable optimization, and (iii) sufficient expressiveness. Gaussian mixtures
(GM) provide a flexible and powerful representation for this purpose, yet they remain un-
derexplored in DRL, with most existing methods relying on the L2 norm as a tractable
metric between GM. In this work, we conduct a theoretical and empirical study of alterna-
tive metrics for GM-based DRL. We show that the L2 norm is not suitable and introduce
two principled alternatives: a mixture-specific optimal transport distance (MW) and a max-
imum mean discrepancy (MMD) distance. For the MW metric, we establish convergence
guarantees for a dynamic programming algorithm related to temporal-difference (TD) learn-
ing. Leveraging multivariate GM representations, we also highlight the potential of MW
in multi-objective RL. Experimental results on selected Atari Learning Environment tasks
illustrate the practical benefits of the proposed metrics, showing promising performance.

1 Introduction

Deep Reinforcement Learning (RL) has shown outstanding results in robotics (Li et al., 2018), and control
(Yang et al., 2018; Kaufmann et al., 2023), by estimating and optimizing the expectation of the total reward
(or return) given to an agent. Distributional RL (DRL) (Bellemare et al., 2023) generalizes the approach
by estimating the whole distribution of the return, leading to better results than the non-distributional
approach (Dabney et al., 2018a). DRL has many other benefits. It fits better than the traditional approach
in a stochastic setting (Martin et al., 2020) and it allows for new exploration strategies taking into account
aleatoric uncertainty (Mavrin et al., 2019). DRL can also be used to design risk-aware RL agents using
distortion risk measures that could lead to better results depending on the environment. Indeed, risk-averse
policies lead to longer play times and better returns, in life-dependent games (Dabney et al., 2018a).

To derive practical DRL algorithms, two ingredients are required. First, tractable and informative represen-
tations of returns as probability distributions, which are infinite dimensional objects. Second, an efficient
quantitative way to compare them through tractable metrics, to define a relevant and useful loss, based on
a so-called distributional Bellman operator and typically similar to a temporal difference (TD) learning loss
in RL. The metric choice is also crucial since each metric offers different theoretical convergence guarantees,
e.g. to characterize the contraction property of the distributional Bellman operator and its projection.
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Choosing an appropriate representation of the return distribution remains challenging as it has to meet
somewhat opposite requirements. The representation has to be rich enough to capture the return distribution
complexity and simple enough to allow tractable implementations at reasonable computing costs. Current
state-of-the-art DRL methods need large computational resources and/or are mainly based on convenient
choices with no performance guarantee in terms of their ability to represent actual return distributions.
For instance, some methods use discrete distribution representations (C51 in Bellemare et al. (2017a), QR-
DQN in Dabney et al. (2018b)) leading to low approximation rates and consequently large numbers of
parameters, which increase the computational cost. Another theoretical downside is that those algorithms
learn statistics of the distribution and not the distribution itself. It follows that they need to satisfy the
approximate Bellman-closedness property as most, such as C51, do not satisfy the exact Bellman-closedness
property (Rowland et al., 2019). Another set of methods use continuous representations (IQN by Dabney
et al. (2018a), FQF by Yang et al. (2019)) that do not lead to a proper distribution in practice as they
approximate the quantile function with non-monotonic surrogates, which questions their use with a risk-
aware agent (Théate et al., 2023). More generally, most approaches use nonparametric empirical measure
representations as opposed to parametric ones corresponding to a family of parametric distributions.

In this paper, we investigate parametric representations and more specifically Gaussian mixtures (GM).
Introduced in the DRL framework by Choi et al. (2019), Gaussian mixtures present interesting features. They
often lead to closed-form formulas, more likely to yield tractable loss and risk measure estimations. They
are proper distributions, available in any dimension and with good approximation power, see e.g. Nguyen
et al. (2023) for a recent reference. When it comes to computing metrics, there exists a number of closed-
form expressions or efficient estimators specifically tuned to handle comparison between GM. Surprisingly,
the large variety of tractable divergences between Gaussian mixtures has not been fully exploited yet in a
DRL context. In this work, we consider three such metrics, the Jensen-Tsallis (JT), the maximum mean
discrepancy (MMD) and a mixture-specific optimal transport distance, introduced by Delon & Desolneux
(2020) and named the Mixture-Wasserstein (MW) distance. We compare them in terms of their theoretical
and practical performance. More specifically, our main contributions can be summarized as follows:

• We prove that, although the JT metric has been used in DRL with GM (Choi et al., 2019), it does
not guarantee that the distributional Bellman operator is a contraction mapping, leading to poor
results for certain environments and justifying the search for alternatives. We propose an extended
JT formulation with more flexibility.

• We introduce MW in DRL as a new possible metric, which is more tractable than the classical
Wasserstein distance when comparing mixtures. We prove the contraction of the projected distribu-
tional Bellman operator with MW and the convergence of a dynamic programming algorithm related
to TD learning. We then provide a generalization to multi-objective RL.

• We study various MMD kernels in the GM setting and give new insights on their performance in
DRL. We observe that the so-called unrectified kernel performs as well as other common choices
such as the mixture of Gaussian kernels. This is consistent with the good theoretical properties of
the former but contrasts with previous results by Nguyen-Tang et al. (2020).

Overall, we address a critical problem in DRL, which is the search for effective metrics that maintain
theoretical tractability and improve performance. We introduce a new bridge between classical mixture
models and modern reinforcement learning, by revisiting GM through the lens of new probability metrics.
We provide extensive theoretical justification (Table 1, Theorems 1 to 10) for these new metrics and a
practical implementation framework. These metrics have not been studied in prior work in GM-based DRL
(Choi et al., 2019; Nam et al., 2021; Zhang et al., 2024). To our knowledge, we present the most broad
study of probability metrics under which it is feasible to learn GM representations of return distributions.
In terms of impact, our work shows that although the most natural, the JT metric should not be used.
Also, we propose the first alternative to the categorical approach, which comes with proved convergence and
straightforward extensions to multi-objective DRL.
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2 Distributional RL

In the standard RL setting, a Markov decision process (X ,A, R, P, γ) models the interaction between an
agent and an environment. X and A denote the state and action spaces, R(x, a) is a reward random variable
depending on a given state x ∈ X and action a ∈ A with distribution ρ(x, a)(·), P (·|x, a) is a transition
kernel to a new state from state x after taking action a, and γ ∈ (0, 1) is a discount factor. In RL, we
search for a policy π(·|x) that maps a state x to a distribution over actions in A. To emphasize this,
we use upper case to denote random variables and lower case for their realizations. For an agent taking
actions given by a policy π, the return is the random variable denoted by Zπ(x, a) =

∑∞
t=0 γtR(Xt, At)

where X0 = x, A0 = a, Xt ∼ P (· | xt−1, at−1), At ∼ π(· | xt). The Q-value function is defined by the
expected return Qπ(x, a) = E[Zπ(x, a)] and can be characterized by the Bellman equation, Qπ(x, a) =
Eρ(x,a)[R(x, a)] + γEP (·|x,a),π[Qπ(X ′, A′)], following from the random transition from (x, a) to realizations of
(X ′, A′) given by X ′ ∼ P (· | x, a), A′ ∼ π(· | x). The objective is then to find the optimal policy π∗ which
maximizes the expected return, with Qπ∗(x, a) ≥ Qπ(x, a) for all (x, a) and π. Qπ∗ satisfies the optimal
Bellman equation and can be found as the unique fixed point of the Bellman optimality operator T defined
as Q(x, a) = T Q(x, a) with TQ(x, a)=Eρ(x,a)[R(x, a)]+γEP (·|x,a)[maxa′Q(X ′, a′)]. To this end, TD learning
consists of minimizing the squared temporal difference (TD) error, which is an estimation using the observed
states, actions and rewards of the squared difference between a parameterized Qθ and its update via the
operator T Qθ. In deep Q-learning, this is usually performed by considering an ϵ-greedy policy and a neural
network to parameterize Qθ.

In distributional RL (Bellemare et al., 2023), the idea is to consider the whole random variable Zπ(x, a)
rather than just its scalar expectation Qπ(x, a). An analogous distributional Bellman equation can be
derived between random variables. Denoting by η̄π(x, a) the distribution of Zπ(x, a), η1 ∗ η2 the convolution
between two distributions η1 and η2, and (Tγ)# the pushforward operator through function Tγ(z) = γz, we
can write, η̄π(x, a) = ρ(x, a) ∗ EP (·|x,a),π[(Tγ)#η̄π(X ′, A′)], where the expectation corresponds to a mixture
distribution over next states. This equation defines the so-called distributional Bellman operator denoted
by T π and so that η̄π(x, a) = T π η̄π(x, a). See Proposition 2.17 and Figure 2.6 of Bellemare et al. (2023)
for an illustration. Note that if η̄(x, a) (resp. T π η̄(x, a)) is the probability density function of Z(x, a) (resp.
T πZ(x, a)), an equivalent random variable formulation, with d= meaning equality in distribution, is

T πZ(x, a) d= R(x, a) + γZ(X ′, A′),

where X ′ ∼ P (· | x, a), A′ ∼ π(· | x). This is referred to as the random-variable Bellman equation by
Bellemare et al. (2023) (Proposition 2.16). The hope is then to find the return distribution as a fixed
point of the distributional Bellman operator. The TD learning principle can be extended to differences
between distributions leading to the minimization of quantities of the form D(T π η̄1(x, a), η̄2(x, a)) where
D is a discrepancy or quasi-metric between distributions, equivalently denoted using random variables by
D(T πZ1(x, a), Z2(x, a)). We will refer to D as a probability metric. Unfortunately, searching for a solution
in the whole space of probability distributions is impossible. To use this approach, two main ingredients
are required. We first need representations of distributions, rich enough to capture the return complexity
and second, a choice of D for which a tractable fixed point algorithm can be implemented. This requires
tractable evaluations of D(T πZ1(x, a), Z2(x, a)) and T π being a contraction mapping with respect to D the
supremum extension of D defined as D(η̄1, η̄2) = sup

(x,a)∈X ×A
D(η̄1(x, a), η̄2(x, a)), where η̄1 and η̄2 denote two

collections of distributions, also named return functions by Bellemare et al. (2023) (Definition 4.21) .

2.1 Representations of the random return

For DRL, the goal is to define a good approximation (E, D) of the probability metric space to which Z(x, a)
belongs. Several ways to uniquely characterize a distribution are well known, such as the probability density
function (PDF), the cumulative distribution function (CDF), the quantile function or the inverse CDF (QF),
the characteristic function (Φ), etc. These representations are recalled in Appendix A. In the DRL literature,
most choices are based on empirical or particles representations of the above, sometimes referred to as non
parametric in statistics. In contrast, in this work, denoting by F a latent functional space giving the neural
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networks architectures, we propose to investigate a parametric choice using the PDF representation and
F = M = ∪K∈NMK where MK is the set of univariate K-component Gaussian mixtures (GM) whose
PDFs are of the form,

η(z) =
K∑

k=1
πkN (z; µk, σ2

k)

where N (·; µk, σ2
k) or simply N (µk, σ2

k) denotes the Gaussian PDF with µk’s (resp. σ2
k’s) the component

means (resp. variances) and πk’s the components weights with πk ∈ [0, 1] and
∑K

k=1 πk = 1.

2.2 Probability metrics

In DRL, probability metrics are used to provide a comparison of two random return distributions, generally
in order to apply a TD learning principle. To compare distributions, in principle, all divergences are suitable
candidates, but only a few have been used in DRL. The main used ones are the Kullback-Leibler (KL)
divergence, the Cramer distance (also named energy distance) and the Wasserstein distance. The choice
of metric may be particularly important as each metric offers different theoretical and practical properties.
In DRL (Bellemare et al., 2017b), we have two first desirable properties to look for. First, we need to
provide a contraction property for the distributional Bellman operator, i.e. to have α < 1 such that for all
possible return functions η̄1 and η̄2, D(T π η̄1, T π η̄2) ≤ αD(η̄1, η̄2). This property is important as it implies
the existence of a fixed point that can be reached by applying repeatedly the Bellman operator. To obtain
such a property, D is often proved to be ideal, which is a sufficient condition assuming that D is p-convex
(Theorem 4.25 of Bellemare et al. (2023) recalled in Appendix D.1). Being ideal means satisfying the two
(SI) (sum-invariant) and (S) (scale-sensitive) properties below. For A, X, Y random variables, λ ∈ (0, 1),

(SI) A⊥(X, Y ) =⇒ D(A + X, A + Y ) ≤ D(X, Y )
(S) ∃c > 0, D(λX, λY ) ≤ λcD(X, Y ).

In addition, since minimizing D(T π η̄1, η̄2) is usually done using stochastic gradient-based algorithms, we also
need to make sure that the numerically found optimum is the good one. For instance, it is proved by Bellemare
et al. (2017b) that the Wasserstein distance has biased sample gradients which leads to convergence towards
a wrong optima in practice according to the authors. Although it is possible to deal with biased stochastic
gradient algorithms, see e.g. Rhee & Glynn (2015); Demidovich et al. (2023), a second important property
of the metric is thus that it satisfies the following (USG) (Unbiased Sample Gradient) property (Bellemare
et al., 2017b). Let ηθ be a probability distribution parameterized by θ and {Xm}m∈[M ] a collection of M

i.i.d. random variables distributed as X ∼ ηX . Define η̂M = 1
M

∑M
m=1 δXm the empirical distribution of the

{Xm}m∈[M ], the (USG) property is satisfied if for all M ∈ N,

(USG) EXm∼ηX
[∇θD(η̂M , ηθ)] = ∇θD(ηX , ηθ).

As already mentioned, the Wasserstein distance does not satisfy the (USG) property.

In addition to theoretical properties, an important feature is the tractability of D to allow practical imple-
mentations. In this work, we are in particular interested in tractable D when comparing Gaussian mixtures.
The following Table 1 summarizes, for a number of distances D, whether the four main characteristics im-
portant for practical DRL are satisfied. Details are given in the next sections. From the listed features,
three metric-dependent properties can be derived: (1) a non-expansive projection, (2) a contracting Bellman
operator, (3) a (USG) metric. While (1,2) are of theoretical nature, (3) is an algorithmic issue, that can
be more easily addressed. As for QRDQN (Rowland et al., 2024), a solution is to find an (USG) metric
with the same projection. Among metrics tractable for GM, the Cramer distance C (Section 6) and the
mixture-specific Wasserstein distance MW2 (Section 5) are thus the most promising ones as they satisfy
(1,2) and experimental results in Section 8 show their practical effectiveness.
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Table 1: Metrics properties. ✓ (resp.×) means satisfied (resp. unsatisfied), − means unknown. The
KL, Cramer, MMD, Wasserstein metrics are studied by Bellemare et al. (2017b). The Jensen-Tsallis (JT)
is proved to satisfy (USG) by Choi et al. (2019). MW2 is a Wasserstein distance introduced by Delon &
Desolneux (2020) but not investigated before in DRL. Properties showed in this paper are in red.

Metric properties
Metric SI S USG GM Tractability
KL - × ✓ ×
MMDken/C ✓ ✓ ✓ ✓
MMDkrbf - × ✓ ✓
MMDk lap - - ✓ ✓
Wasserstein ✓ ✓ × ×
MW2 ✓ ✓ × ✓
JT1,2 ✓ × ✓ ✓
JTx2,2 × ✓ ✓ ✓

2.3 Analysis of GM dynamic programming

In practice, when choosing GM representations ηθ ∈ MK , we also have to handle the fact that the result
of the distributional Bellman operator on this class does not in general remain in the class. Practical
implementations thus require a projection back on MK . When choosing a probability metric, it is then
also important to check whether this projection is non expansive, so that the combination of the projection
and the distributional Bellman operator is still a contraction with respect to the chosen metric. We further
discuss and specify this aspect in the case of TD learning.

In principle, a contraction property of T π deduced from (S) and (SI) is sufficient to guarantee the convergence
of TD learning. However, a practical TD learning algorithm cannot represent the full return function T πη,
which could be any return function. Hence, we need to take into account the approximation made at each
iteration by the stochastic gradient descent. In this paper, we are only interested in the dynamic programming
part of TD learning summarized in Algorithm 1, with a projection ΠDη that is typically defined as a solution
of minη′∈MK D(η, η′) for any η ∈ M. This solution is not necessarily unique, so the projection needs to
be parametrized with some parameter w∗. An example is provided in Section 5 and Appendix D.8. The
full operator is then defined as (Πw∗

D η̄)(x, a) = Πw∗

D (η̄(x, a)) for all return function η̄ and (x, a) ∈ X × A.
Using this definition, we can formulate our following main result below. As summarized in Table 1, only the
MMD/Cramer (C), the Wasserstein and Mixture Wasserstein (MW2) satisfy the (SI) and (S) conditions,
which limits the hope to get convergence results for the others. Among the former ones, only the Cramer
distance is (USG) but it is mentioned in Wiltzer et al. (2024) p.6 that the associated projection is not a
non-expansion. In contrast, we show in what follows that the MW2 metric is not in general (USG) (Theorem
5) but admits a non-expansive projection Πw∗

MW2
(Theorem 6). It follows Theorem 1 that states the projected

Bellman operator is a contraction. All proofs are provided in the Appendix.

Algorithm 1: Mixture Dynamic Programming
1 Require: Mixture parameters estimates (θ(x) = (θk(x))K

k=1 : x ∈ X ), projection ΠD

2 for x ∈ X do
3 Let (x, R, X ′) define the random transition under policy π with a = π(x)
4 Update θ(x) to the mixture parameters corresponding to the distribution of ΠD(R + γηθ(X′))
5 Return: θ

Theorem 1. Assume that ρ(x, a) ∈ M for every state-action pair (x, a) (where ρ(x, a) is the law of the
reward R(x, a)), then Πw∗

MW2
T π is a contraction mapping with respect to MW2.

Thus applying Banach’s fixed point theorem, Algorithm 1 converges towards a unique fixed point of Πw∗
MW2
T π

if R(x, a) is a Gaussian mixture. Unfortunately, as for quantile temporal difference (QTD) learning (Rowland
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et al., 2024), the sample-estimate of Πw∗
MW2
T π is biased (see Appendix D.9), so that we cannot straightfor-

wardly deduce the convergence of our TD algorithm with stochastic gradient descent (SGD). However, we
could hope to prove such a convergence by using techniques from Rowland et al. (2024) for QTD, with
another metric that satisfies (USG) and for which the SGD converges to the same optima as MW2.

3 Related work

Most methods (QR-DQN, IQN, FQF) use a quantile-based representation. The advantage of such an ap-
proach is that it is straightforward to derive the Monte-Carlo calculation of risk-aware policies with a dis-
tortion risk measure (Dabney et al., 2018a) using the functions largely studied in economics. Another
advantage is that the change of variables, on the quantile function F −1, F −1

γZ+r(τ) = γF −1
Z (τ) + r, induced

by the distributional Bellman operator is easier to manipulate. Among quantile-based solutions, state-of-
the-art performance is reached by the FQF method that builds a neural network supervising the choice of
the sampled quantile fractions. However, it seems to fix an imaginary problem since it does not arise from
the original RL problem but from the way we represent it and more particularly from the Monte-Carlo
estimation of the 1D integral that defines the loss. In addition, the monotonicity of the represented quantile
function is not guaranteed and the loss used (Huber variant of the Wasserstein loss) leads to biased gradient
estimations. A more detailed discussion is given in Appendix B.

Therefore, it is interesting to search for alternative representations. In their paper, Choi et al. (2019) take
an architecture inspired from Gaussian mixtures where the output of their neural network ηθ (named neural
Gaussian mixture) is :

ηθ(x, a) =
K∑

k=1
πk,θ(x, a)N (µk,θ(x, a), σ2

k,θ(x, a)),

where πk,θ(x, a), µk,θ(x, a), σ2
k,θ(x, a) have the same architecture as in DQN (Mnih et al., 2015). To compute

the temporal difference, the authors use D(X, Y ) =
∫
R |ηX(z)− ηY (z)|2dz, where ηX , resp. ηY , is the PDF

of variable X, resp. Y . This metric is also used by Malekzadeh et al. (2023) in a different setting. However,
it was shown recently by Zhang et al. (2024) that the DRL state-of-the-art could be outperformed using
Gaussian neural mixtures with the Euclidean distance between the mixtures parameters instead. In this
work, we investigate two other metrics detailed in the next sections.

4 Jensen-Tsallis divergence

The Jensen-Tsallis divergence is a generalization of the Jensen-Shannon divergence (Tsallis, 1988). In their
work on DRL, Choi et al. (2019) refer to this divergence but they use it only in its simplest form JT1,2,
which is the norm of the L2 space. To better understand the issue with this metric, we consider a weighted
version of it.
Definition 1. Let ω : R → R+ a measurable function. Let p ∈ N, X and Y two random variables, whose
PDFs, ηX and ηY , are assumed to have their power p integrable with respect to the ω(z)dz measure. JTω,p

is defined as,
JTω,p(X, Y ) =

∫
R

ω(z)|ηX(z)− ηY (z)|pdz

and also denoted by ∥ηX − ηY ∥p
Lp(ω).

When ω = 1, p = 2, we recover the Jensen-Tsallis metric used in Choi et al. (2019). This metric has
the advantage to provide a closed-form formula for Gaussian mixtures. Let Z1 ∼

∑K1
k=1 π1k g1k and Z2 ∼∑K2

k=1 π2k g2k two random variables distributed as Gaussian mixtures, with gik denoting a Gaussian PDF,

JTω,2(Z1, Z2) =
∑
k,ℓ

π1kπ1ℓ⟨g1k, g1ℓ⟩ω +
∑
k,ℓ

π2kπ2ℓ⟨g2k, g2ℓ⟩ω − 2
∑
k,ℓ

π1kπ2ℓ⟨g1k, g2ℓ⟩ω,

where ⟨·, ·⟩ω denotes the weighted L2 scalar product, which for two univariate Gaussian PDFs g1 =
N (µ1, σ2

1) and g2 = N (µ2, σ2
2) is closed-form, ⟨g1, g2⟩ω = N (µ1; µ2, σ2

1 + σ2
2) EG[ω(G)], where G ∼
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N
(

µ1σ2
2+µ2σ2

1
σ2

1+σ2
2

,
σ2

1σ2
2

σ2
1+σ2

2

)
. Unfortunately, in its tractable form, the Jensen-Tsallis is not ideal. More specif-

ically, the following result holds.
Theorem 2. JT1,2 is not ideal. Furthermore, if ω : R → R+ is a measurable function such that ω(x) =
0 =⇒ x = 0, we have, for A, X, Y random variables, with A independent on X and Y , and such that
E[ω(A)] <∞,

JTω,2(A + X, A + Y ) ≤ JTω,2(X, Y )E[ω(A)]2 (1)

JTω,2(λX, λY ) ≤ sup
x∈R

ω(λx)
λω(x)JTω,2(X, Y ). (2)

In particular, it can be deduced from (2) that JT1,2 does not satisfy (S). The distributional Bellman operator
T π is then not always a contraction mapping with respect to the associated metric. Moreover, it does not
seem easy to correct the problem by taking another ω. For instance, JTx2,2 satisfies (S) but does not always
satisfy (SI) according to the previous result. See details in Appendix D.3.

The following result shows that if the reward is not noisy enough, then the distributional Bellman operator
T π cannot be a contraction mapping with JT1,2.
Theorem 3. Let γ ∈ (0, 1) and X, Y two non-identically distributed random variables. There exists σmax > 0
such that for any random variable A independent of X, Y , we have

V[A]≤σmax =⇒ JT1,2(A + γX, A + γY )>JT1,2(X, Y ),

where V[A] denotes the variance of A.

Hence, if in a deterministic (or sufficiently low-noise) setting and all states are accessible, T π is not a
contraction mapping with respect to JT1,2. A simple illustration of the result can be given in a simplified
Gaussian setting. Consider a policy π that maps any state x to a single action a0 and a transition that leaves
the state invariant, i.e. π(·|x) = δa0(·) and P (·|x, a0) = δx(·). Consider then a reward with a Gaussian
distribution ρ(x, a0) = N (0, σ2

R). For two Gaussian distributions η1(x, a0) = N (µ1, σ2
Z) and η2(x, a0) =

N (µ2, σ2
Z), it follows that T πηi(x, a0) = N (γµi, γ2σ2

Z + σ2
R) for any γ and i = 1, 2. For Gaussian mixtures

and single Gaussian distributions, the JT1,2 metric is available in closed-form, so that JT1,2(T πη1, T πη2) =
1√

π
√

γ2σ2
Z

+σ2
R

(
1− exp

(
− γ2(µ1−µ2)2

4(γ2σ2
Z

+σ2
R

)

))
and JT1,2(η1, η2) = 1√

π
√

σ2
Z

(
1− exp

(
− (µ1−µ2)2

4σ2
Z

))
. It is then easy

to see that if γ2 < 1 and σ2
Z > γ2σ2

Z + σ2
R, then JT1,2(T πη1, T πη2) > JT1,2(η1, η2). And this occurs as

soon as γ ∈ (0, 1) and σR is taken low enough. Conversely, when σR increases JT1,2(T πη1, T πη2) decreases
and can go below JT1,2(η1, η2). A graphical illustration is given in Figure 1, with a0 = 0, γ = 0.5 and
σR = 0.002 or σR = 0.2. For low values of σR, the effect of the T π is to decrease variances and thus increase
the separation between the two Gaussians and consequently their JT1,2 distance (Figure 1-(a)). In contrast
for higher σR (Figure 1-(b)), T πη1 and T πη2 are more intertwined and the distance decreases. To address
this contraction issue with the JT1,2 metric, we propose studying other metrics that seem more promising.

5 Mixture-Wasserstein distance

Delon & Desolneux (2020) have introduced a distance specifically designed for Gaussian mixtures based on
the Wasserstein distance. In an optimal transport context, by restricting the possible coupling measures (i.e.,
the optimal transport plan) to a Gaussian mixture, they propose a discrete formulation for this distance. This
makes it tractable while in general using the standard Wasserstein distance between mixtures is problematic.
Delon & Desolneux (2020) refer to the proposed new distance as MW2, for Mixture Wasserstein. The
MW2 definition makes use of the tractability of the Wasserstein distance between two Gaussians for a
quadratic cost. The standard quadratic cost Wasserstein distance between two univariate Gaussian PDFs
g1 = N (µ1, σ2

1), g2 = N (µ2, σ2
2) is,

W2
2(g1, g2) = (µ1 − µ2)2 + (σ1 − σ2)2. (3)

Section 4 of Delon & Desolneux (2020) shows that the MW2 distance between two mixtures can be computed
by solving a discrete transport problem.
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(a) Low-noise (σR = 0.002) (b) Higher noise (σR = 0.2)

Figure 1: JT1,2 contraction in low (a) and higher (b) noise. The purple curve shows the (1− exp(−y2/4)) ≈
y2/4 term in the JT1,2 expression and illustrates how the distance increases with the separation (y).

Definition 2. Let η1 =
∑K1

k=1 π1k g1k and by η2 =
∑K2

k=1 π2k g2k be two Gaussian mixtures. Then, the
mixture Wasserstein distance MW2 is defined as,

MW2
2(η1, η2) = min

w∈Π(π1,π2)

∑
k,ℓ

wkℓ W2
2(g1k, g2ℓ) (4)

where π1 and π2 are the discrete distributions on the simplex defined by the respective weights of the mixtures
and Π(π1, π2) is the set of discrete joint distributions w = (wkℓ ∈ [0, 1], k ∈ [K1], ℓ ∈ [K2]), whose marginals
are π1 and π2.

Finding the minimizer w∗ of (4) boils down to solving a simple discrete optimal transport problem, where the
entries of the K1×K2 dimensional cost matrix are the W2

2(g1k, g2ℓ) quantities. As implicitly suggested above,
MW2 is indeed a distance on the space of Gaussian mixtures; see Delon & Desolneux (2020). In particular, for
two Gaussian mixtures η1 and η2, MW2 satisfies the equality property according to which MW2(η1, η2) = 0
implies that η1 = η2. Expression (4) is interesting as when using (3), it can be favorably compared to the
Euclidean distance used in Zhang et al. (2024). The latter compares parameters of two Gaussian mixtures,
which need to have the same number of components in a prescribed order for the comparison to make
sense. The MW2 distance instead is a generalization, that can be computed between any mixtures without
requiring manual alignment, thanks to the transport map. In addition, when considering mixtures η1 and
η2 of components ℓik in a distributions family L, we can define the following generalization,

MWp
D,L(η1, η2) = min

w∈Π(π1,π2)

∑
k,l

wkl Dp(ℓ1k, ℓ2l).

When D is the Euclidean distance and p = 2, such a generalization is discussed in Section 4.6 of Delon
& Desolneux (2020). For instance, mixtures of elliptical distributions satisfy the required properties, in
particular when considering the easier case of univariate mixtures. In what follows, we will thus assume that
MWp

D,L is a metric. Details on results that are still valid if MWp
D,L is a quasi-metric are given in Appendix

D.6. We can show the following Lemma.
Lemma 1. Assume that D is ideal and L is stable by scaling and summing, then MWp

D,L is ideal.

It follows from Lemma 1 and Theorem 4.25 in Bellemare et al. (2023) that MWp
D,L can make T π a contraction

while maintaining tractability. More specifically, we prove the following result.
Theorem 4. Assume that D is ideal, L is stable by scaling and summing and ρ(x, a) ∈ L for every state-
action pair (x, a) (where ρ(x, a) is the law of the reward R(x, a)), then T π is a contraction mapping with
respect to MWp

D,L.

MWp
D,L variants and in particular MW2

2 provide then new interesting alternative metrics for neural mixtures.
Unfortunately, the MW2

2 distance is not satisfying in general the (USG) property and does not have unbiased
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sample gradients. Indeed, note that MW2 and W2 coincide on Dirac mixtures and W2 does not have unbiased
sample gradients (see Bellemare et al. (2017b)) so that it is impossible for MW2 to satisfy (USG). The
following theorem gives the exact formulation of the bias.
Theorem 5. Let η̂M = 1

M

∑M
m=1 δXm

be the empirical distribution of M i.i.d. {Xm}m∈[M ] from ηX =∑KX

ℓ=1 πℓ,XN (µℓ,X , σ2
ℓ,X). Define ηθ =

∑K
k=1 πk,θN (µk,θ, σ2

k,θ) parameterized by θ then,

EXm∼ηX

[
∇θMW 2

2 (η̂M , ηθ)
]
−∇θMW 2

2 (ηX , ηθ) =

2∇θ

∑
k,ℓ

w̃∗
kℓ(µℓ,Xµk,θ + σℓ,Xσk,θ)

− 2∇θ

(∑
k

µk,θE[
∑
m

w∗
km(X̄)Xm]

)

where w̃∗
kℓ ∈ Π(πθ, πX) is the optimal coupling defining MW2

2(ηX , ηθ) and w∗
km that of MW2

2(η̂M , ηθ).

The right-hand side above is in general non zero. If all variances in ηθ are constant, i.e. σk,θ = σ, then
∇θ

(∑
k,ℓ w̃∗

k,ℓσk,θσℓ,X

)
= σ∇θ (

∑
ℓ πℓ,Xσℓ,X) = 0. This condition would be acceptable in practice as the

resulting GM remain flexible models but it is not enough to cancel the right-hand side. However, (USG) is
trivially satisfied if ηθ has only one component (K = 1).

Nevertheless, MW2
2 remains an interesting metric. Theorem 6 below shows the existence of a non-expansive

projection. Combined with Theorem 4, it guaranties that the corresponding projected Bellman operator is
a contraction mapping with respect to MW2 as announced in Theorem 1. As discussed in Section 2.3, this
is an important feature to analyse the behavior of a TD algorithm.
Theorem 6. Let K ∈ N. There exists a set W ∗

K of functions w∗ :M→ [0, 1]N×K verifying for all L ∈ N,
ℓ ∈ [L],

∑K
k=1 w∗

ℓk(η) = πℓ, where η =
∑L

ℓ=1 πℓN (µℓ, σ2
ℓ ), such that the MW2 projections are characterized

by w∗ ∈W ∗
K and for all η ∈M, the projection is defined by

Πw∗

MW2
η =

K∑
k=1

π̃k(η)N (µ̃k(η), σ̃k(η)2),

with π̃k(η) =
∑

ℓ w∗
ℓk(η), µ̃k(η) =

∑
ℓ

w∗
ℓk(η)µℓ

π̃k(η) and σ̃k(η) =
∑

ℓ
w∗

ℓk(η)
π̃k(η) σℓ.

Moreover, Πw∗

MW2
is a non-expansion with respect to MW2 for all w∗ ∈W ∗

K .

As an example, if η′ = N (µ′, σ2) and η = π1N (µ1, σ2) + π2N (µ2, σ2) then Πw∗

MW2
η = N (π1µ1 + π2µ2, σ2),

MW2
2(η, η′) = π1(µ1 − µ′)2 + π2(µ2 − µ′)2 and MW2

2(Πw∗

MW2
η, η′) = (π1µ1 + π2µ2 − µ′)2. It follows from the

Cauchy–Schwarz inequality that MW2
2(Πw∗

MW2
η, η′) ≤ MW2

2(η, η′). Figure 2 gives a graphical illustration,
where the non-expansion property is more clearly visualized in 2D, below in the case ||µ1−µ′|| = ||µ2−µ′||.

N (µ′, Σ)

N (µ1, Σ)

Πw∗
MW2

η

N (µ2, Σ)

∥µ1 − µ′∥

∥µ2 − µ′∥

∥(π1µ1 + π2µ2) − µ′∥

Figure 2: Illustration of the non-expansion Πw∗

MW2
(Theorem 6) for K = 1 and L = 2.

6 Maximum Mean Discrepancy

In their work, Nguyen-Tang et al. (2020) use MMD for Q-learning in DRL with particles and have demon-
strated competitive performance. Different MMD exist depending on a choice of kernel.
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Definition 3. Let k : (Rd)2 → R a kernel. Let P, Q be two distributions and X, X̃ (resp. Y, Ỹ ) two
independent variables following P (resp. Q), with X also independent of Y . The squared MMD (Maximum
Mean Discrepancy) between P and Q is defined as

MMD2
k(P, Q)=E[k(X, X̃)]+ E[k(Y, Ỹ )]− 2E[k(X, Y )].

If k is a reproducing kernel, the metric MMDk is equal to ∥µP − µQ∥K where K is the RKHS associated to
k and µP (resp. µQ) is the mean on this RKHS of P (resp. Q). In this work, we only consider translation-
invariant kernels and more particularly, the Laplacian kernel kγ0,lap(x, y) = e−γ0∥x−y∥2 , the Gaussian kernel
kγ1,rbf(x, y) = e−0.5γ−2

1 ∥x−y∥2
2 and the energy kernel ken(x, y) = −∥x− y∥2.

The reason why Gaussian kernels perform better than energy kernels, called unrectified kernels by Nguyen-
Tang et al. (2020), is still unclear in the literature. Indeed, it is shown by Killingberg & Langseth (2023) that
the so-called multiquadric kernel seems better than the Gaussian kernel on a theoretical point of view and
less sensitive to hyperparameters. In this work, we propose to shed another light on these kernels comparison
by using them with our GM representations. We show in Theorem 10 in Appendix D.11 that the above
kernels all lead to tractable formulas for GM.

Regarding the use of MMD with Gaussian mixtures, Nam et al. (2021) have shown the good performance of
the Cramer distance, which is equivalent to the energy distance, as recalled in Theorem 11 in Appendix D.12.
However, they use a policy-gradient algorithm and no real assessment has been made for TD algorithms,
although they have been considered in Zhang (2023). The MMD metric always satisfies (USG) (Bellemare
et al., 2017b) so all the good properties of JTw,2 are recovered but it also makes T π a contraction mapping for
the energy kernel. In Nguyen-Tang et al. (2020), the authors report that the energy kernel (called unrectified
kernel in their paper) does not seem to give promising results. In contrast, they show that a mixture of
Gaussian kernels give better results in practice although the MMD with Gaussian kernel suffers from the
same problem as JT1,2. They explain this with a moment-matching-like property of MMDkγ1,rbf that should
also be valid in our case with Gaussian mixtures. However, we show in our experiments that the energy
kernel leads to better results, suggesting that the results obtained in Nguyen-Tang et al. (2020) might be
due to their choice of representations using particles.

7 Generalization to multidimensional rewards

Another good feature of our proposed GM setting is its natural generalization to higher dimensions. Although
a full empirical analysis of multi-objective RL approaches would go beyond the scope of this paper, this
section provides some theoretical discussion and first steps towards multidimensional rewards. Generalizing
DRL algorithms to the multi-objective case requires to consider multidimensional rewards; see Appendix
C.3 for details. This has been considered before but only for independent dimensions (Zhou et al., 2021) or
with particles (Wiltzer et al., 2024). However, accounting for dependence between objectives allows to keep
track of more information and the use of multivariate particles (or quantiles) seems unsatisfying as quantiles
do not generalize satisfyingly in dimension greater than one. In contrast, multivariate Gaussian mixtures
provide a natural way to define a TD algorithm for multidimensional rewards. We can easily generalize our
previous results in the multidimensional case except for the projection associated to MW2. The MW2 as
defined by Delon & Desolneux (2020), corresponds to our MWp

D,L, introduced in Section 5, with D = W2
the 2-Wasserstein distance. This distance between two multivariate Gaussian distributions in dimension
d, g1 = Nd(µ1, Σ1) and g2 = Nd(µ2, Σ2) is, W2

2(g1, g2) = ∥µ1 − µ2∥2 + Tr(Σ1 + Σ2 − 2(Σ1/2
1 Σ2Σ1/2

1 )1/2),
and there is no obvious way to show that the associated projection is a non-expansion. As an alternative,
we propose to make use of our MWp

D,L generalization to define a new multivariate metric MW2
F,Md where

Md is the set of d-variate Gaussian mixtures and, F 2(g1, g2) = ∥µ1 − µ2∥2 + Tr((Σ1/2
1 − Σ1/2

2 )2). For two
multivariate GM in dimension d, η1 =

∑K1
k=1 π1kNd(µ1k, Σ1k) and η2 =

∑K2
k=1 π2kNd(µ2k, Σ2k), we define,

MW2
F,Md(η1, η2) = min

w∈Π(π1,π2)

∑
k,ℓ

wkℓ

(
∥µ1k − µ2ℓ∥2 + Tr((Σ1/2

1k − Σ1/2
2ℓ )2)

)
.

10



Published in Transactions on Machine Learning Research (12/2025)

It is possible to check that MW2
F,Md is ideal using Lemma 1 and to derive the same kind of non-expansive

projection as for MW2 (details are in Appendix D.10). Thus, we obtain the following result generalizing
Theorem 1 to the multivariate case.
Theorem 7. Assume that ρ(x, a) ∈ Md for every state-action pair (x, a) (where ρ(x, a) is the law of the
reward R(x, a)), then Πw∗

MW2
F,Md

T π is a contraction mapping with respect to MW2
F,Md .

8 Experiments

Considering a standard TD learning framework, we first compare our proposed algorithm with Gaussian
mixtures and different metrics, by running our agent on a selected subset of Atari games referred to as
Atari-5. Atari-5 is a subset of 5 representative Atari games exhibited in the study of Aitchison et al. (2023)
based on which a global normalized score can be computed using weights. These games are by default
deterministic. We use the same standard architecture as in DQN (Mnih et al., 2015). We then also illustrate
the different metrics behavior on the previous Atari games, with a modified MDP by adding sticky actions
with probability 0.25, bringing stochasticity. Details on the hyperparameters used in these experiments are
provided in the Appendix. The compared metrics are MW2, JT1,2 and two MMDs. As in Nguyen-Tang et al.
(2020), we consider the kernel built as the following sum of Gaussian kernel kmix rbf(x, y) =

∑10
i=1 k√

i,rbf(x, y)
and the energy kernel. The results for the Gaussian kernel are not shown as it can be seen as a simpler
version of kmix rbf and we observed that the Laplacian kernel behaved similarly to the Gaussian one. Results
showing average normalized scores and their standard deviations (over 5 runs), using the weights given in
Aitchison et al. (2023), are reported in Table 2. MMDken , MMDkmixrbf , MW2, perform better than the
JT1,2 metric. Interestingly, no environment shows a real advantage of MMDkmixrbf over MMDken , which
contrasts with the results of Nguyen-Tang et al. (2020). In particular, in the deterministic setting, the mean
normalized score is better for MMDken . The results also illustrate the superiority of our proposed metrics
compared to JT1,2, whenever the environment is not stochastic enough, as suggested by Theorem 3.

Table 2: Metrics comparison on Atari-5. Average final normalized scores and standard deviations (over 5
runs) using the weights given in Aitchison et al. (2023) (best in bold characters).

Environment JT1,2 MW2 MMDken MMDkmixrbf

Stochastic 37.24 ± 6.02 43.38 ± 4.72 46.84 ± 4.31 57.66 ± 4.47
Deterministic 34.06 ± 6.89 39.90 ± 14.77 57.82 ± 18.67 54.07 ± 8.54

Figure 3 shows in the deterministic (first row) and stochastic environment (second row), moving average
returns over 30 millions of training frames for each game and the resulting normalized score. For games Qbert
and Name This Game, the gap between the JT1,2 and other metrics learning curves is clearly reduced in
the stochastic case. This is also observed in the normalized results (last column), comforting our theoretical
statement that the noisier the environment, the more contractive T π becomes with respect to JT1,2.

We then perform an ablation study, varying the number of mixture components K ∈ {1, 3, 5, 16} in the
deterministic case with the Atari-3 subset of 3 games proposed in Aitchison et al. (2023). Results for metric
MW2 are reported in Appendix Table 4. Surprisingly, a too high K = 16 seems to degrade results. However,
Appendix Figure 5, e.g. for the Battle Zone game, suggests that the K = 16 learning curve might catch up
with the other curves with more training frames. The similarly performance for K ∈ {1, 3, 5} is also probably
due to a too small number of training frames. In contrast, in different environments, such as that of the
Asterix game, the K = 5 results are significantly better than the K = 1 case with more training frames (200
millions). Experiments made on a set of 3 other Atari games (see Figure 6 in Appendix) corroborate this
analysis when the number of training frames is increased to 175 millions.

Finally, we observe that the metrics we propose do not introduce much additional computation cost except
for MW2 (see Tables 5 and 6 in Appendix). In the MW2 metric case, most of the computation overhead is
due to the optimal transport (EMD) solver used internally. This computation overhead may be reduced by
reducing K or optimizing the implementation using recent developments in applied optimal transport.
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Our code is implemented in Python and is available at https://gitlab.inria.fr/mantonet/gm-drl.

9 Conclusion

We showed that mixtures were interesting models to represent distributions in DRL. Their tractability and
expressiveness allow to consider various metrics and result in implementations requiring less parameters than
other algorithms. In a standard TD learning setting, we illustrated that the simple JT1,2 metric may not be
suitable and proposed alternative Wasserstein-like and MMD metrics, with better theoretical and empirical
properties. In particular, the proposed Mixture-Wasserstein metric showed both tractability and promising
performance. To fully justify its use in stochastic gradient-based methods, it would be useful to study whether
it is possible to handle its biased sample gradients. We also proposed an extended formulation JTω,p of the
Jensen-Tsallis distance with an additional weight term ω, which provides more flexibility and could be further
exploited. Additionally, as briefly discussed in Section 7, the MW setting provides a promising approach to
multi-objective DRL but a more complete study was out of the scope of this paper. In Appendix Section E,
we also presented another advantage of mixtures, which is their particular adaptability to an alternative way
to solve the distributional Bellman fixed point using a stochastic approximation principle. This alternative
opens the way to the design of new efficient DRL procedures whose investigation is left for future work.
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Figure 3: Comparison of MW2(orange), JT1,2(blue), MMDken
(red) and MMDkmixrbf

(green) metrics for
Atari-5 games in a deterministic (first row) and stochastic (second row) environment. Moving average
return for each game and normalized score, over 50 episodes, with respect to the number of training frames.
Curves are averaged over 5 runs with shaded areas representing standard deviations.
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A Representations of the random return

Random returns can be characterized in several ways. The most common representations are using the
probability density function (PDF), the cumulative distribution function (CDF), the quantile function or
the inverse CDF (QF) or the characteristic function (Φ). Specifically, denoting by F a latent functional
space giving the neural networks architectures, the most used representations are the following.

CDF representation: E = {Z | ∃f ∈ F , FZ = f}. In that case, we have FγZ+r(z) = FZ

(
z−r

γ

)
and

E[Z(x, a)]=
∫ 0

−∞
FZ(x,a)(z)dz +

∫ +∞

0
(1− FZ(x,a)(z))dz.

QF representation: E = {Z | ∃f ∈ F , F −1
Z = f}. In that case, we have F −1

γZ+r(z) = γF −1
Z (z) + r and

E[Z(x, a)] =
∫ 1

0
F −1

Z(x,a)(t)dt.

PDF representation: E = {Z | ∃f ∈ F , ηZ = f}. In that case, we have ηγZ+r(z) = 1
γ ηZ

(
z−r

γ

)
and

E[Z(x, a)] =
∫
R

zηZ(x,a)(z)dz.

Characteristic function representation:

E = {Z | ∃f ∈ F , ΦZ = f}. We have ΦγZ+r(t) = eirtΦZ(γt) and denoting by ℑ the imaginary part,

E[Z(x, a)] = ℑΦ′
Z(x,a)(0).
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B Details on related work

Most methods (QR-DQN, IQN, FQF) use a quantile-based representation. The advantage of such an ap-
proach is that it is straightforward to derive the Monte-Carlo calculation of risk-aware policies with a dis-
tortion risk measure β using the functions largely studied in economics as follows :

Q(x, a) =
∫ 1

0
F −1

Z(x,a)(β(τ))dτ.

B.1 Discrete representations

The principle of discrete algorithms is to take a mixture of atoms ηZ =
∑K

k=1 wkδθk
. Then there are two

common points of view. Either we set the quantiles θk and we classify the weights using the KL divergence as
this is done in C51, or we set the weights wk (taking usually wk = 1

K ) and we regress the quantiles (quantile
regression) as this is done in QR-DQN using the loss :

LQR(Zθ, Z̃) =
K∑

k=1
E[ρτk

(Z̃ − θk)],

where ρτ (u) = (τ − 1u<0)u and τk =
∑k

i=1 wi.

Later, Rowland et al. (2019) apply the expectile regression in the same manner, by taking ρτ (u) = (τ −
1u<0)u2 instead, leading to better practical results for their ER-DQN algorithm. This is not surprising, as
the goal is to estimate the mean return and expectiles are generalizations of the mean, while quantiles are
generalizations of the median.

Alternatively, Nguyen-Tang et al. (2020) use the MMD metric, instead of the previous losses, with the biased
estimator

LMMD(X, Y ) = 1
N2

∑
i,j

k(Xi, Xj) + 1
M2

∑
i,j

k(Yi, Yj)− 2
NM

∑
i,j

k(Xi, Yj),

where X = {Xi}i∈[N ] and Y = {Yi}i∈[M ] are sample sets generated from the distributions of Zθ and Z̃.
They use this estimator because it leads to less variance in practice, compensating the bias. However, they
do not consider the possibility of exact computation in the case of parametric representations.

B.2 Continuous representations

Dabney et al. (2018a) use a fully-continuous representation of the distribution using neural networks which
leads to a better approximation but they use quantile samples (Monte-Carlo) to estimate the Huber loss.
Thus, this method adds unnecessary noise in the loss estimation depending on the choice of quantile fractions.
This is why the state-of-the-art is now the FQF method that builds a neural network supervising the choice
of the sampled quantile fractions.

C Advantages of parametric representations

We further specify, in the next sub-sections, some advantages of using parametric representations instead of
the more common approaches.

C.1 Computational tractability

Gaussian mixtures (GM) provide a good trade-off between expressiveness and computational cost. Setting
hyperparameters to the values in the original papers, we can assess, for various methods, the number of
parameters as a function of the number of states |A|. For our approach, denoted below GM-DQN, the
number of mixture components is set to K = 5. Conformity is satisfied when the representation leads to
a valid distribution. The comparison is reported in the following Table, which shows that GM provide the
smallest number of parameters and preserve conformity.
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Method comparison
Method Number of parameters Conformity
GM-DQN 15× |A| ✓
C51 51× |A| ✓
QR-DQN 200× |A| ✓
IQN 576× |A| ×
FQF 608× |A| ×

C.2 Tractability of risk measures

In DRL, we generally use risk-aware policies and variants to recover the agent policy from the Q-network
using something like :

π(a | x) =
1a∈K(x)

|K(x)| , K(x) = argmax
a′∈A

R(Z(x, a′)),

where R is a risk measure.

Let α ∈ (0, 1) and X a random variable, the expectile eα(X) is uniquely defined as the solution of (see Bellini
& Bernardino (2017))

αE[(X − eα(X))+] = (1− α)E[(X − eα(X))−].

It is well-known that e 1
2
(X) = E[X] and α 7−→ eα(X) is increasing. It leads to an interesting greedy policy

with R = eα. This policy is risk-averse if α < 1
2 and risk-seeking otherwise. Similarly, we can take the

quantile version R = qα.

In our case with Gaussian mixtures, we can easily compute the expectiles and the quantiles using the
Newton-Raphson method.

Theorem 8. Let X ∼
∑K

k=1 πkN (µk, σ2
k), we have Eα(eα(X)) = 0 and Qα(qα(X)) = 0 where

Eα(x) := (1− 2α)
K∑

k=1
πk

(
σ2

kN
(
x; µk, σ2

k

)
+ (x− µk)FN (µk,σ2

k
) (x)

)
+ α

K∑
k=1

πk(x− µk),

Qα(x) :=
K∑

k=1
πkFN (µk,σ2

k
) (x)− α.

Moreover, we have

E′
α(x) = (1− 2α)Qα(x) + 2α(1− α).

Another possible risk measure is R(X) =
∑K

k=1 πk(µk +ησk) for X ∼
∑K

k=1 πkN (µk, σ2
k). All these proposed

risk measures are popular in statistics and fully tractable using Gaussian mixtures.

As an illustration, Figure 4, shows the effect of a more (or less) risk-seeking policy on performance, still
measured and shown as the average return. When considering the Assault ALE game, compared to the
standard risk-neutral policy based on maximizing expectation, better returns are obtained with a more
risk-averse policy (0.05 expectile), while worse returns are obtained with a more risk-seeking setting (0.95
expectile). This suggests that for this game, controlling actions in a more pessimistic manner is a better
strategy. This should also be typically the case in life-dependent games. The choice of the expectile level
impacts performance by influencing the exploration strategy but the effect of exploration also depends on
the task, which may tolerate or not very risking options.
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Figure 4: Gaussian mixture representations with the MMD energy distance. Effect of the risk-aware expectile
policy on the ALE Assault game: Test return averaged over 500k testing frames for 47M training frames.

C.3 Multi-Objective Applications

Designing a reward function in RL can be challenging, as it must encapsulate and balance potentially
conflicting objectives. In the classical RL setting, the agent observes a single scalar reward after interacting
with the environment. This scalar reward implicitly reflects the weighted importance of different goals,
guiding the agent to learn a policy π that maximizes it. However, once the policy is learned, it becomes
difficult to disentangle and prioritize the individual contributions of each objective. This limitation occurs
because the reward function does not explicitly represent the separate impact of each objective on the
outcome.

Multi-objective RL (Roijers et al., 2013; Hayes et al., 2021) addresses this limitation by explicitly representing
and ordering each objective i in a vector of cumulative returns, allowing the agent to learn a single policy
that optimizes all objectives. Thus, action selection, guided by Pareto dominance, can be formalized as
follows:

a∗ = arg max
a∈A(x)

P (∀i,∀a′ ̸= a (Zπ
i (x, a) ≥ Zπ

i (x, a′))) .

This approach enables the agent to select actions based on prioritized sub-goals without the need for re-
training the policy each time one objective must be emphasized over the others. Recently, some works have
explored parametric representations of returns (see e.g. Cai et al. (2023); Wiltzer et al. (2024)), opening up
the possibility of representing multidimensional distributions suitable for multi-objective settings. GM are
good candidates. Indeed, multivariate risk measures are well-known (Charpentier, 2018) and we have seen
two types of probability metrics (Jensen-Tsallis and Mixture-Wasserstein) that are tractable with multivari-
ate GM. This metrics could leverage the powerful ability of DRL to represent aleatoric uncertainty, allowing
different strategies to handle it in the multi-objective RL setting.
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D Proofs of main results

D.1 Sufficient conditions on D

Bellemare et al. (2017b) and Bellemare et al. (2023) introduced the following useful properties of D. D is
said to be ideal if D satisfies the following to conditions,

(SI) if A is independent on X and Y =⇒ D(A + X, A + Y ) ≤ D(X, Y )
(S) considering λ ∈ (0, 1),∃c > 0,∀X, Y, D(λX, λY ) ≤ λcD(X, Y ).

If in addition D is p-convex, meaning (see Definition 4.24 in Bellemare et al. (2023)),
Definition 4. Given p > 1, the probability metric D is p-convex if for any α ∈ (0, 1) and distributions
η1, η2, η′

1, η′
2 ∈ P(R), we have

Dp(αη1 + (1− α)η2, αη′
1 + (1− α)η′

2) ≤ αDp(η1, η′
1) + (1− α)Dp(η2, η′

2) ,

then Theorem 4.25 of Bellemare et al. (2023) states that (SI) and (S) imply that, for any two return functions
η̄1 and η̄2,

D(T π η̄1, T π η̄2) ≤ γcD(η̄1, η̄2).
Note that the assumptions in Theorem 4.25 of Bellemare et al. (2023) use the fact that D is regular, which
is equivalent to satisfying (SI) (see Definition 4.23 therein), and that D is c-homogeneous which is (S) but
where the inequality is replaced by an equality. However, it is easy to see from the proof of Theorem 4.25,
that the inequality given by the (S) condition is enough.

D.2 Proof of Theorem 1

Proof. The proof is straightforward combining Theorems 4 and 6 that show respectively that T π is a con-
traction and that the projection is non-expansive. So that for two return function η̄1 and η̄2,

MW2(Πw∗
MW 2T

π η̄1, Πw∗
MW 2T

π η̄2) ≤MW2(T π η̄1, T π η̄2) ≤ γMW2(η̄1, η̄2).

D.3 Proof and specifications on Theorem 2

Proof. We assume E[ω(A)] <∞, although inequality (1) can still makes sense if the right-hand site of (1) is
infinite. With ηA the PDF of A and A independent on X and Y , the PDF of X + A (resp. Y + A) is the
convolution ηA ∗ ηX (resp. ηA ∗ ηY ). This latter condition is also important as it prevents to use inequality
(1) with X set to X + A, Y set to Y + A and A to −A, which would lead to the opposite inequality and
then to an equality in (1). We thus obtain, JTω,2(A + X, A + Y ) = ∥(ηX − ηY ) ∗ ηA∥2

L2(ω). Hence using the
Young inequality (Bogachev, 2007), we get (1) as follows,

JTω,2(A + X, A + Y ) ≤∥ηX − ηY ∥2
L2(ω)∥ηA∥2

L1(ω) ≤ JTω,2(X, Y )E[ω(A)]2.

Then, using ηλX(x) = λ−1ηX(λ−1x), we obtain

JTω,2(λX, λY )=λ−1
∫
R
ω(λx)|ηX(x)− ηY (x)|2dx (5)

from which (2) follows. It is straightforward to see that JT1,2 does not satisfy (S) according to (5). Indeed,
applying (5) with ω = 1, leads to JT1,2(λX, λY ) = λ−1JT1,2(X, Y ). So that if (S) was satisfied for JT1,2,
this would mean λc+1 ≥ 1 for some c > 0 and λ ≥ 1, which conflicts with the assumption λ ∈ (0, 1).

Furthermore, when considering ω(x) = x2, inequality (2) in the paper leads to

JTx2,2(λX, λY ) ≤ λJTx2,2(X, Y ) .
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For λ ∈ (0, 1), it follows that condition (S) is satisfied with c = 1. In contrast, (1) implies that

JTx2,2(A + X, A + Y ) ≤ JTx2,2(X, Y )E[A2]2 .

If E[A2] > 1, this may prevent (SI) to be satisfied since the Young inequality is optimal.

For instance, if A is constant, A = a, with a > max
(

0,− 2JTx,2(X,Y )
JT1,2(X,Y )

)
, it comes

JTx2,2(A + X, A + Y ) =
∫
R

x2(ηX(x− a)− ηY (x− a))2dx =
∫
R
(x + a)2(ηX(x)− ηY (x))2dx,

which leads to

JTx2,2(A + X, A + Y ) = a(aJT1,2(X, Y ) + 2JTx,2(X, Y )) + JTx2,2(X, Y ) > JTx2,2(X, Y ).

D.4 Proof of Theorem 3

Let us first note that the result is easy to check if V[A] = 0. In that case A is a constant random variable
and for any scalar a, we can show that since ηa+γX(x) = ηX( x−a

γ ), then for γ ∈ (0, 1),

JT1,2(a + γX, a + γY ) = JT1,2(γX, γY ) = γ−1JT1,2(X, Y ) > JT1,2(X, Y ).

More generally using the mean/variance decomposition A = E[A] + V[A]1/2U , where U is a standardized
random variable with E[U ] = 0 and V[U ] = 1, it follows that

JT1,2(A + γX, A + γY ) = JT1,2(V[A]1/2U + γX,V[A]1/2U + γY ),

where the right-hand side is independent on the mean of A.

Then, if V[A] → 0, the distribution pV[A]1/2U → δ0, where δ0 indicates the Dirac mass in 0. Using that
the convolution operator is a bilinear continuous operator (owing to the weak Young inequality) and that
δ0 ∗ p = p ∗ δ0 = p, we can deduce that when V[A]→ 0 then

JT1,2(V[A]1/2U + γX,V[A]1/2U + γY ) =||ηV[A]1/2U ∗ (ηγX − ηγY )||22
→ ||(ηγX − ηγY )||22 = JT1,2(γX, γY ) .

More formally, let us decompose the difference

JT1,2(A + γX, A + γY )− JT1,2(X, Y ) =JT1,2(A + γX, A + γY )− JT1,2(γX, γY )
+ JT1,2(γX, γY )− JT1,2(X, Y ) .

The second difference is JT1,2(γX, γY ) − JT1,2(X, Y ) = ( 1
γ − 1)JT1,2(X, Y ), which is strictly positive if

γ ∈ (0, 1) and JT1,2(X, Y ) ̸= 0 or equivalently ηX ̸= ηY . For the first term, using continuity,

∀ϵ > 0,∃ϵ′ > 0, so that V[A] ≤ ϵ′ ⇒ |JT1,2(A + γX, A + γY )− JT1,2(γX, γY )| ≤ ϵ .

Choosing ϵ < ( 1
γ − 1)JT1,2(X, Y ) and σmax = ϵ′ ends the proof.

D.5 Proof of Lemma 1

Let A be independent of X and Y and all these random variables distributed according to a mixture of
distributions in L, denoted respectively by ηZ =

∑KZ

k=1 πZ
k ℓZ

k , where Z represents in turn X, Y or A and
ℓZ

k ∈ L. For Z = X and Z = Y , by distributivity of convolution and summing stability of L, Z + A also
follows a mixture of elements in L given by,

ηZ+A = ηZ ∗ ηA =
KZ∑
k=1

KA∑
i=1

πZ
k πA

i (ℓZ
k ∗ ℓA

i ) =
KZ∑
k=1

KA∑
i=1

πZ+A
ki ℓZ+A

ki .
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Let w =(wkl, k ∈ [KX ], l ∈ [KY ]) be a discrete distribution. For w∈Π(πX , πY ), the marginals of w are πX

and πY. For such a w, define the discrete distribution w̃=(wklij , k ∈ [KX ], l ∈ [KY ], i, j ∈ [KA]) where,

wklij = wkl πA
i if i = j

= 0 otherwise

The set of such distributions is denoted by

Π′ = {w̃, s.t w ∈ Π(πX , πY )}.

For an element in Π′, the marginals are respectively πX+A and πY +A since,

KY∑
l=1

KA∑
j=1

wkl πA
i δ{i=j} = πA

i

KY∑
l=1

wkl = πA
i πX

k = πX+A
ki

and similarly,
KX∑
k=1

KA∑
i=1

wkl πA
i δ{i=j} = πA

j

KX∑
k=1

wkl = πA
j πY

l = πY +A
lj .

It follows that Π′ ⊂ Π(πX+A, πY +A).

Let us first prove the (SI) property. By definition of MWp
D,L,

MWp
D,L(X + A, Y + A) = MWp

D,L(ηX+A, ηY +A)

= min
w̃∈Π(πX+A,πY +A)

∑
k,l,i,j

wklij Dp(ℓX+A
ki , ℓY +A

lj )

≤ min
w̃∈Π′

∑
k,l

wkl

(∑
i

πA
i Dp(ℓX+A

ki , ℓY +A
li )

)

Using the (SI) property of D, we have D(ℓX+A
ki , ℓY +A

li ) ≤ D(ℓX
k , ℓY

l ) from which we deduce the (SI) property
for MWp

D,L, that is,

MWp
D,L(X + A, Y + A) ≤ min

w̃∈Π′

∑
k,l

wklD
p(ℓX

k , ℓY
l )) = MWp

D,L(X, Y ) .

For the (S) property, for all λ > 0, we have ηλZ(x) =
∑KZ

k=1 πZ
k ℓZ

k,λ with ℓZ
k,λ = ℓλZ

k , since L is stable by
scaling. Thus, using the (S) property of D, we obtain

MWp
D,L(λX, λY ) = min

w∈Π(πX ,πY )

∑
k,l

wkl Dp(ℓλX
k , ℓλY

l )

≤ min
w∈Π(πX ,πY )

∑
k,l

wkl λcp Dp(ℓX
k , ℓY

l ) = λcp MWp
D,L(X, Y ) .

This achieves the proof that MWp
D,L is ideal.

D.6 Proof of Theorem 4

As mentioned in Section D.1, Theorem 4.25 of Bellemare et al. (2023) can be used to get the desired
contraction result. Note that although Theorem 4.25 of Bellemare et al. (2023) is stated for probability
metrics, it is easy to check that the proof does not use any particular property of probability metrics so it is
still valid for quasi-metrics or discrepancies.

Thus, as Lemma 1 above implies the (S) and (SI) conditions, it remains to show that MWp
D,L is 1-convex.

This follows from the convexity of the discrete Wasserstein distance, which we prove below for completeness.
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Let α ∈ (0, 1). Let for i = 1, 2, ηi =
∑Ki

i=1 πikℓik and η′
i =

∑K′
i

i=1 π′
ikℓ′

ik be four mixtures distributions with
elements in L. By construction, distributions of the form α ηi + (1− α) η′

i are also mixtures of elements in
L. More specifically,

α ηi + (1− α) η′
i =

Ki+K′
i∑

k=1
α πik δ{k≤Ki}ℓik + (1− α) π′

ik δ{k>Ki}ℓ′
ik =

Ki+K′
i∑

k=1
π̂ik ℓ̂ik .

Moreover, defining
Π̂ = {(α δ{k≤K1,l≤K2}wkl + (1− α) δ{k>K1,l>K2}w′

kl)kl with w ∈ Π(π1, π2) and w′ ∈ Π(π′
1, π′

2)},

we have Π̂ ⊂ Π(π̂1, π̂2). It follows,

MWp
D,L(α η1 + (1− α) η′

1, α η2 + (1− α) η′
2) = min

w∈Π(π̂1,π̂2)

K1+K′
1∑

k=1

K2+K′
2∑

l=1
wklD(ℓ̂1k, ℓ̂2l)p

≤ min
w∈Π̂

K1+K′
1∑

k=1

K2+K′
2∑

l=1
wklD(ℓ̂1k, ℓ̂2l)p

≤ min
w∈Π(π1,π2)

K1∑
k=1

K2∑
l=1

αwk,lD(ℓ1k, ℓ2l)p

+ min
w′∈Π(π′

1,π′
2)

K′
1∑

k=1

K′
2∑

l=1
(1− α)w′

k,lD(ℓ′
1k, ℓ′

2l)p

≤ αMWp
D,L(η1, η2) + (1− α)MWp

D,L(η′
1, η′

2).

D.7 Proof of Theorem 5

The goal is to investigate the reliability of performing a stochastic gradient descent with respect to θ over
a MW2 loss. In practice, we rather equivalently consider the square of the metric, MW2

2 to avoid fractional
exponents. We thus consider the estimate∇θMW 2

2 (η̂M , ηθ) of the gradient∇θMW 2
2 (ηX , ηθ) and show that is

in general biased. Write X̄ = {Xm}m∈[M ]. Recall that Π(π, π′) denotes the set of discrete joint distributions
w = (wkℓ, k ∈ [K], ℓ ∈ [K ′]), whose marginals are π = (π1, . . . , πK) and π′ = (π′

1, . . . , π′
K′),

Π(π, π′) = {w = (wkℓ)k,ℓ, s.t.
∑
k,ℓ

wkℓ = 1, πk =
∑

ℓ

wkℓ, π′
ℓ =

∑
k

wkℓ} .

Using Definition 4 of the squared MW2 metric, we denote by w∗(X̄) = (w∗
km, k ∈ [K], m ∈ [M ]) the optimal

coupling defining MW2
2(η̂M , ηθ) and similarly by w̃∗ = (w̃∗

kℓ, k ∈ [K], ℓ ∈ [KX ]) the optimal coupling defining
MW2

2(ηX , ηθ) .

We can then write,

MW 2
2 (η̂M , ηθ) =

∑
k,m

w∗
km(X̄)

(
(Xm − µk,θ)2 + σ2

k,θ

)
(6)

=
∑

k

πk,θ(µ2
k,θ + σ2

k,θ) +
∑
m

X2
m/M − 2

∑
k,m

w∗
km(X̄)Xmµk,θ (7)

(8)
Then,

E
[
∇θMW 2

2 (η̂M , ηθ)
]

= ∇θ

(∑
k

πk,θ(µ2
k,θ + σ2

k,θ)
)
− 2∇θ

∑
k,m

E[w∗
km(X̄)Xm] µk,θ

 (9)

= ∇θ

(∑
k

πk,θ(µ2
k,θ + σ2

k,θ)
)
− 2∇θ

(∑
k

µk,θE[
∑
m

w∗
km(X̄)Xm]

)
(10)
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While the target distance is

MW 2
2 (ηX , ηθ) =

∑
k,ℓ

w̃∗
kℓ

(
(µℓ,X − µk,θ)2 + (σℓ,X − σk,θ)2) (11)

from which we can derive that

∇θMW 2
2 (ηX , ηθ) = ∇θ

(∑
k

πk,θ(µ2
k,θ + σ2

k,θ)
)
− 2∇θ

∑
k,ℓ

w̃∗
kℓ(µℓ,Xµk,θ + σℓ,Xσk,θ)

 . (12)

It follows that the difference E
[
∇θMW 2

2 (η̂M , ηθ)
]
−∇θMW 2

2 (ηX , ηθ) is equal to

2∇θ

∑
k,ℓ

w̃∗
kℓ(µℓ,Xµk,θ + σℓ,Xσk,θ)

− 2∇θ

(∑
k

µk,θE[
∑
m

w∗
km(X̄)Xm]

)
(13)

which is in general non zero. Standard stochastic gradient optimization does not come with standard
guarantees when applied to a MW2

2 loss. However, several solutions using biased gradients have been
investigated and may be possible without too restrictive assumptions; see the recent review of Demidovich
et al. (2023).

D.8 Proof of Theorem 6

Let us consider the projection on MK the space of GM with a fixed number K of components. The proof
consists mainly is exhibiting the subset W ∗

K . Recall that M denotes the set of all GM. The goal is to show
that when considering the MW2

2 metric, the projection on MK is non expansive. This projection is defined
for any GM distribution η ∈M as arg minη′∈MK

MW 2
2 (η, η′). As the univariate MW2

2 metric is defined with
the Euclidean distance as cost function, we can first make use of standard results to explicit this projection.

Consider for some arbitrary L ∈ N, η =
∑L

ℓ=1 πℓN (µℓ, σ2
ℓ ) and η′ =

∑K
k=1 π′

kN (µ′
k, σ

′2
k ) two univariate

mixtures in ML and MK respectively. Denote π = (π1, . . . , πL), π′ = (π′
1, . . . , π′

K) and the set of couplings
between π and π′ by

Π(π, π′) = {w = (wℓk)ℓ,k, s.t.
∑
ℓ,k

wℓk = 1, πℓ =
∑

k

wℓk, π′
k =

∑
ℓ

wℓk}.

Recall that, for any random variables X and Y , the characterization of E[X | Y ] as the unique L2 projection
of X leads to

E[(X − Y )2] ≥ E[(X − E[X | Y ])2] . (14)

For w = (wℓk)ℓ,k ∈ Π(π, π′), we then consider two variables X and Y so that (X, Y ) ∼ η̂LK where η̂LK =∑
ℓ,k wℓkδ(xℓ,yk). For all {xℓ}ℓ, {yk}k, w ∈ Π(π, π′), inequality (14) writes,

∑
ℓ,k

wℓk(xℓ − yk)2 ≥
∑
ℓ,k

wℓk

(
xℓ −

∑
ℓ′

wℓ′k

π′
k

xℓ′

)2

, (15)

with equality if and only if yk =
∑

ℓ′
wℓ′k

π′
k

xℓ′ for all k.

Then using that MW2
2(η, η′) is defined as the minimum over w ∈ Π(π, π′) of

Λ(w, η, η′) =
∑
ℓ,k

wℓk

(
(µℓ − µ′

k)2 + (σℓ − σ′
k)2) ,
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we can replace x and y in (15) with successively the means and then the standard deviations of the two
mixtures components to get,

Λ(w, η, η′) ≥
∑
ℓ,k

wℓk

(µℓ −
∑

ℓ′

wℓ′k

π′
k

µℓ′

)2

+
(

σℓ −
∑

ℓ′

wℓ′k

π′
k

σℓ′

)2
 .

It follows that,

MW 2
2 (η, η′) ≥ min

w∈Π(π,π′)

∑
ℓ,k

wℓk

(µℓ −
∑

ℓ′

wℓ′k

π′
k

µℓ′

)2

+
(

σℓ −
∑

ℓ′

wℓ′k

π′
k

σℓ′

)2
 ,

and then that,

min
η′∈MK

MW 2
2 (η, η′) ≥ min

π′
min

w∈Π(π,π′)

∑
ℓ,k

wℓk

(µℓ −
∑

ℓ′

wℓ′k

π′
k

µℓ′

)2

+
(

σℓ −
∑

ℓ′

wℓ′k

π′
k

σℓ′

)2
 ,

Then denoting by w∗(η) the coupling where the minimum above is reached, we define µ̃k(η) =
∑

ℓ′
w∗

ℓ′k
(η)

π̃k(η) µℓ′ ,
σ̃k(η) =

∑
ℓ′

w∗
ℓ′k

(η)
π̃k(η) σℓ′ , π̃k(η) =

∑
ℓ′ w∗

ℓ′k(η) and consider the mixture η̃w∗(η) ∈ MK , η̃w∗(η) =∑
k π̃k(η)N (µ̃k(η), σ̃2

k(η)). Thus we obtain the projection operator Πw∗

MW2
η = η̃w∗(η) that satisfies

MW 2
2 (η, Πw∗

MW2
η) = min

η′∈MK

MW 2
2 (η, η′).

In addition, η̃w∗(η) is a mixture whose expectation is the same as that of η, i.e.
∑

ℓ πℓµℓ so that
E[Πw∗

Z(x, a)] = E[Z(x, a)] if the PDF of Z(x, a) (resp. Πw∗
Z(x, a)) is η (resp. Πw∗

η) so the projection is
mean-preserving.

Similarly, it is easy to show the non-expansion. For two mixtures η and η′ and w ∈ Π(π, π′), we consider a
random vector (X0, X1, Y0, Y1) ∼

∑
i,j,k,ℓ w̃i,j,k,ℓδ(xi,x′

j
,yk,y′

ℓ
) such that

∀i, j,
∑
k,ℓ

w̃i,j,k,ℓ = w∗
ij(η),

∀k, ℓ,
∑
i,j

w̃i,j,k,ℓ = w∗
kℓ(η′),

∀i, k,
∑
j,ℓ

w̃i,j,k,ℓ = wik,

with X0 (resp. Y0) independent of Y1 (resp. X1). Using Cauchy-Schwarz inequality, we obtain

E[X0 − Y0 | (X1, Y1) = (x′
j , y′

ℓ)]2 ≤ E[(X0 − Y0)2 | (X1, Y1) = (x′
j , y′

ℓ)].

Moreover, since we have independence, we get

E[X0 − Y0 | (X1, Y1) = (x′
j , y′

ℓ)]2 = E[X0 | X1 = x′
j ]− E[Y0 | Y1 = y′

ℓ],

so the following inequality holds,

∀j, ℓ,

(∑
i

w∗
ij(η)

π̃j(η) xi −
∑

k

w∗
kℓ(η′)

π̃ℓ(η′) yk

)2

≤
∑
i,k

P((X0, Y0) = (xi, yk) | (X1, Y1) = (x′
j , y′

ℓ))(xi − yk)2.

Hence we obtain

∑
j,ℓ

P((X1, Y1) = (x′
j , y′

ℓ))
(∑

i

w∗
ij(η)

π̃j(η) xi −
∑

k

w∗
kℓ(η′)

π̃ℓ(η′) yk

)2

≤
∑
i,k

wik(xi − yk)2, (16)

24



Published in Transactions on Machine Learning Research (12/2025)

for all x, y, w ∈ Π (π, π′). Since (P((X1, Y1) = (x′
j , y′

ℓ)))j,ℓ ∈ Π(π̃(η), π̃(η′)), we can replace the xi’s’ and yi’s’
in (16) by the means and standard deviations of the two mixtures components to get

MW 2
2 (Πw∗

MW2
η, Πw∗

MW2
η′) ≤MW 2

2 (η, η′),

thus Πw∗

MW2
is a non-expansion with respect to MW2.

D.9 Unbiasedness property

If the sample estimates of the projected distributional Bellman operator are unbiased, then it is easy to
conclude to the convergence of the associated TD algorithm. This is how the convergence of the categorical
TD algorithm is typically shown (see Bellemare et al. (2023)). However, this is not possible in our case.

Indeed, define for all return function η̄ and for all x ∈ X ,

ηπ(x) =
∑
a∈A

η̄(x, a)π(a | x),

ρπ(x) =
∑
a∈A

ρ(x, a)π(a | x),

P π(· | x) =
∑
a∈A

P (· | x, a)π(a | x).

The standard property of unbiasedness defined in p. 166 of Bellemare et al. (2023), which would amount to
check the following equality, with our projection Πw∗

MW2
defined previously,

∀x ∈ X ,

∫
X

∫
R

Πw∗

MW2
((r + γId)#ηπ(x′))ρπ(x)(r)P π(x′ | x)drdx′ = Πw∗

MW2
T πηπ(x),

is not satisfied, as it is also not the case for quantile temporal difference (see example 6.3 of Bellemare et al.
(2023)).

In fact, we can show instead that

∫
X

∫
R

Πw∗

MW2
((r + γId)#ηπ(x′))ρπ(x)(r)P π(x′ | x)drdx′ = T πΠw∗

MW2
ηπ(x). (17)

Thus we indeed have a bias since the result T πΠw∗
ηπ differs from Πw∗T πηπ.

Proof of (17). To compute Πw∗((r + γId)#ηπ(x′)), we use that w∗((r + γId)#η) is defined as

w∗((r + γId)#η)∈arg min
w,
∑

k
wℓk=πℓ

∑
ℓ,k

wℓk

((
γµℓ + r −

∑
ℓ′

wℓ′k∑
i
wik

(γµℓ′ + r)

)2

+

(
γσℓ −

∑
ℓ′

wℓ′k∑
i
wik

(γσℓ′ )

)2)
.

It follows that w∗((r + γId)#η) can be chosen the same as w∗(η) and thus that Πw∗((r + γId)#ηπ(x′)) =
(r + γId)#Πw∗(ηπ(x′)), which leads to (17) as desired.

D.10 Generalization to the multidimensional case

D.10.1 General metric properties

We define the F 2 probability metric between two multivariate Gaussian distributions in dimension d, g1 =
Nd(µ1, Σ1) and g2 = Nd(µ2, Σ2) as

F 2(g1, g2) = ∥µ1 − µ2∥2 + Tr

((
Σ

1
2
1 − Σ

1
2
2

)2
)

.
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This semi-metric is an upper-bound of the 2-Wasserstein distance making it an appealing alternative with a
projection easier to manipulate. Indeed, we have

Tr((Σ
1
2
1 − Σ

1
2
2 )2) = Tr(Σ1 + Σ2 − 2Σ

1
2
1 Σ

1
2
2 ) ≥ Tr(Σ1 + Σ2 − 2(Σ

1
2
1 Σ2Σ

1
2
1 ) 1

2 ),

using the classical inequality Tr((AAT ) 1
2 ) ≥ Tr(A) with A = Σ

1
2
1 Σ

1
2
2 . Moreover, it is ideal according to the

following theorem 9 so we can apply Theorem 4 to get that T π is a contraction mapping with respect to
MW2

F 2,Md if the reward is a multivariate Gaussian mixture for each state-action pair.
Theorem 9. F is ideal.

Proof. It is clear that F satisfies (S). In addition, for all i ∈ {1, 2} and g′ = Nd(µ′, Σ′), we have g′ ∗ gi =
Nd(µi + µ′, Σi + Σ′) so we get

F 2(g′ ∗ g1, g′ ∗ g2)− F 2(g1, g2) = 2Tr
(

Σ′ + Σ
1
2
1 Σ

1
2
2 − (Σ1 + Σ′) 1

2 (Σ2 + Σ′) 1
2

)
. (18)

Moreover, The function ϕ : (M, N, K) 7−→ Tr(M 1
4 KT N

1
2 KM

1
4 ) is jointly concave in (M, N) ∈ S2

+ (see Lieb
(1973), Corollary 1.1) where S+ is the space of positive semi-definite matrices so we have

ϕ

(
1
2(Σ′, Σ′, I) + 1

2(Σ1, Σ2, I)
)
≥ 1

2ϕ(Σ′, Σ′, I) + 1
2ϕ(Σ1, Σ2, I),

i.e.

Tr
(

(Σ1 + Σ′) 1
2 (Σ2 + Σ′) 1

2

)
=Tr

(
(Σ1 + Σ′) 1

4 (Σ2 + Σ′) 1
2 (Σ1 + Σ′) 1

4

)
≥ Tr (Σ′) + Tr

(
Σ

1
4
1 Σ

1
2
2 Σ

1
4
1

)
= Tr

(
Σ′ + Σ

1
2
1 Σ

1
2
2

)
.

Using this inequality and (18), we obtain that F satisfies (SI).

D.10.2 Projection

Similarly to the d = 1 case, using that MW2
F,Md(η, η′) is defined as the minimum over w ∈ Π(π, π′) of

Λ(w, η, η′) =
∑
ℓ,k

wℓk

∑
i

(µℓi − µ′
ki)2 +

∑
i,j

(Σ1/2
ℓij − (Σ′)1/2

kij )2

 ,

we can replace x and y in (15) with successively the means coefficients and then the covariance matrices
coefficients of the two mixtures components to get,

Λ(w, η, η′) ≥
∑
ℓ,k

wℓk

∑
i

(
µℓi −

∑
ℓ′

wℓ′k

π′
k

µℓ′i

)2

+
∑
i,j

(
Σ1/2

ℓij −
∑

ℓ′

wℓ′k

π′
k

Σ1/2
ℓ′ij

)2
 .

Following the same methodology as in Theorem 6, we define w∗(η) as a minimiser of the previous expression,
µ̃k(η) =

∑
ℓ′

w∗
ℓ′k

(η)
π′

k
µℓ′ , Σ̃1/2

k (η) =
∑

ℓ′
w∗

ℓ′k
(η)

π′
k

Σ1/2
ℓ′ , π̃k(η) =

∑
ℓ′ w∗

ℓ′k(η), and we get the following projection

Πw∗

MW
F,Md

η =
∑

k

π̃k(η)N (µ̃k(η), Σ̃k(η)) ∈MK .

As previously, we can replace the xi’s’ and yi’s’ in (16) by the means coefficients and covariance matrix
coefficients of the two mixtures components to get

MW2
F,Md(Πw∗

MW
F,Md

η, Πw∗

MW
F,Md

η′) ≤ MW2
F,Md(η, η′),

thus Πw∗

MW
F,Md

is a non-expansion with respect to MWF,Md .
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D.11 Expressions of MMD distances for GM

In the MMD case, Theorem 10 provides closed-form expressions for a number of kernel choices, when the
compared distributions are mixtures or Gaussians.
Theorem 10. Let X ∼

∑K1
k=1 π1kN (µ1k, σ2

1k) and Y ∼
∑K2

k=1 π2k N (µ2k, σ2
2k), two independent random

variables distributed as GM. We have the following closed-form expressions:

E[kγ0,lap(X, Y )] =
∑
k,ℓ

π1kπ2ℓG (γ0µ̃k,ℓ, γ0σ̃k,ℓ) ,

E[kγ1,rbf(X, Y )] =
∑
k,ℓ

π1kπ2ℓ
γ1√

γ2
1 + σ̃2

k,ℓ

e
−

µ̃2
k,ℓ

2
(

γ2
1 +σ̃2

k,ℓ

)
,

E[ken(X, Y )] = −
∑
k,ℓ

π1kπ2ℓσ̃k,ℓV

(
µ̃k,ℓ

σ̃k,ℓ

)
,

where G (x, y) = F (x, y) + F (−x, y) with F (x, y) = e
y2
2 −xFN (0,1)

(
x

y
− y

)
,

V (x) = x(2FN (0,1)(x)− 1) + 2N (x; 0, 1) and σ̃2
k,ℓ = σ2

1k + σ2
2ℓ, µ̃k,ℓ = µ1k − µ2ℓ.

Proof. For any kernel k,

E[k(X, Y )] =
K1∑

k=1

K2∑
ℓ=1

π1kπ2ℓ E[k(Xk, Yℓ)],

where Xk∼N (µ1k,σ2
1k), Yℓ∼N (µ2ℓ,σ

2
2ℓ). We only need to compute expectations for two Gaussian variables.

Laplacian kernel. Since Xk−Yℓ ∼ N (µ1k−µ2ℓ, σ2
1k + σ2

2ℓ), for all γ0 ≥ 0, we need to compute E[e−γ0|Z|]
where Z is univariate Gaussian distributed. For Z ∼ N (µ, σ2),∫ +∞

0
e−γ0xηZ(x)dx = e

(γ0σ)2
2 −µγ0

∫ +∞

0
ηZ(x + γ0σ2)dx

= e
(γ0σ)2

2 −µγ0

∫ +∞

γ0σ− µ
σ

η Z−µ
σ

(x)dx

= e
(γ0σ)2

2 −µγ0FN (0,1)

(µ

σ
− γ0σ

)
.

From which, we deduce that

E[e−γ0|Z|] =
∫
R

e−γ0|x|ηZ(x)dx

=
∫ +∞

0
e−γ0x(ηZ(x) + ηZ(−x))dx

=
∫ +∞

0
e−γ0x(ηZ(x) + η−Z(x))dx.

Hence,

E[e−γ0|Xk−Yℓ|] =e
(γ0σ̃k,ℓ)2

2 −γ0µ̃kℓFN (0,1)

(
µ̃kℓ

σ̃kℓ
− cσ̃kℓ

)
+ e

(γ0σ̃kℓ)2
2 +γ0µ̃kℓFN (0,1)

(
−µ̃kℓ

σ̃kℓ
− γ0σ̃kℓ

)
.
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Gaussian kernel. We also have

E[e
− |Xk−Yℓ|2

2γ2
1 ] =

√
2πγ1

∫
R
N (x | 0, γ2

1)N (x | µ̃kℓ, σ̃2
kℓ)dx

=
√

2πγ1N (µ̃kℓ | 0, γ2
1 + σ̃2

kℓ)

= γ1√
γ2

1 + σ̃2
kℓ

e
−

µ̃2
kℓ

2(γ2
1 +σ̃2

kℓ
) .

Energy kernel. Using that

E[|Z|] =
∫ ∞

0
(1− F|Z|(x)) dx =

∫ 0

−∞
(FZ(x) + F−Z(x)) dx (19)

and considering the standardization with U = (Z − µ)/σ ∼ N (0, 1), it comes

E[|Z|] = σ

(∫ −µ/σ

−∞
FU (x) dx +

∫ µ/σ

−∞
F−U (x) dx

)
.

Integration by parts leads to ∫ u

−∞
FU (x) dx = u

∫ u

−∞
N (t; 0, 1) dt +N (u; 0, 1)

= uFU (u) +N (u; 0, 1)∫ −u

−∞
FU (x) dx = −uFU (−u) +N (u; 0, 1)

= −u(1− FU (u)) +N (u; 0, 1)

and to E[|Z|] = σ (u(2FU (u)− 1) + 2N (u; 0, 1)) = σV (u), where V (u) is as stated in the theorem.

D.12 Equivalence between the Cramer and energy distance

Zhang (2023) implicitly provides a proof that the Cramer distance is proportional to MMDken that is different
from the already well-known geometric proof cited by Nam et al. (2021). To highlight this, let us consider
the following lemma.
Lemma 2. Let X, Y be two independent random variables. We have the following formula,

∀r ∈ R,

∫
R

FX(x)(1− Fr+Y (x))dx =
∫ r

−∞
FX−Y (x)dx, (20)

where FX is the CDF of X.

Proof. We adapt here the proof used in the particular case of Gaussian mixtures in Zhang (2023). Indeed,
we have

∂2

∂r2

∫
R

FX(x)(1− FY +r(x))dx = ∂

∂r

∫
R

∂

∂r
(1− FY (x− r)) FX(x)dx

= ∂

∂r

∫
R

ηY (x)FX(x + r)dx =
∫
R

ηY (x)ηX(x + r)dx

=
∫
R

ηY +r(x)ηX(x)dx = (η−Y ∗ ηX)(r).

Hence there exist constants C1, C2 independent of r such that∫
R

FX(x)(1− FY +r(x))dx = C1 + C2r +
∫ r

−∞

∫ x

−∞
(η−Y ∗ ηX)(t)dtdx.
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By taking the limit r → −∞, it comes C1 = C2 = 0 and thus∫
R

FX(x)(1− FY +r(x))dx =
∫ r

−∞

∫ x

−∞
(η−Y ∗ ηX)(t)dtdx =

∫ r

−∞
FX−Y (x)dx.

Using this lemma, we can prove that the Cramer distance C is proportional to MMDken if d = 1. The result
is well-known but we provide a proof different from the classical proof of Szekely (2002).
Theorem 11. Let P, Q two distributions, we have C2(P, Q) = 1

2 MMD2
ken

(P, Q).

Proof. The Cramer distance is defined by C2(P, Q) =
∫
R |FP (x)− FQ(x)|2dx. Then,∫

R
|FP (x)− FQ(x)|2dx =

∫
R

FP (x)(1− FQ(x))dx +
∫
R

FQ(x)(1− FP (x))dx

−
∫
R

FP (x)(1− FP (x))dx−
∫
R

FQ(x)(1− FQ(x))dx,

For some independent variables (X, X̃, Y, Ỹ ) with X, X̃ ∼ P and Y, Ỹ ∼ Q, Lemma 2 leads to∫
R
|FP (t)− FQ(t)|2dt =

∫ 0

−∞
FX−Y (x)dx +

∫ 0

−∞
FY −X(x)dx−

∫ 0

−∞
FX−X̃(x)dx−

∫ 0

−∞
FY −Ỹ (x)dx.

Using formula (19) and that FX−X̃ = FX̃−X and FY −Ỹ = FỸ −Y by symmetry, it follows,

2
∫
R
|FP (t)− FQ(t)|2dt = 2E[|X − Y |]− E[|X − X̃|]− E[|Y − Ỹ |] = MMD2

ken
(P, Q).

E Stochastic Approximation solution

Although most DRL solutions are based on a TD learning principle, the approximation of returns by Gaussian
mixtures opens the way to other approaches to access the targeted fixed point. Stochastic approximation
(SA) is a popular approach for solving fixed-point equations where the information is corrupted by noise.
Such is the case in RL and this technique has theoretical advantages over TD-learning (Chen et al., 2020).
More recently, it has shown tremendous results in DRL using Gaussian mixtures (Zhang et al., 2024).
The principle is simpler than TD-learning. The online network is updated using a point-wise stochastic
approximation,

η̄t+1(x, a) = (1− β)η̄t(x, a) + β(r + Tγ)#η̄t(x′, a′),
with a transition sample (x, a, r, x′, a′). As the right-hand term is a mixture of two distributions, it is natural
to use mixtures as representations, as a mixture of mixtures is a mixture. However, it is impractical to use
directly the resulting mixture since the number of components increases exponentially. The solution of Zhang
et al. (2024) uses an EM estimation to approximate the resulting mixture by a fixed number of components.
This is crucial in their approach which then optimizes a loss that can only be computed between mixtures
with the same component numbers. One advantage of the metrics we propose is that this approximation is
not necessary as they can handle mixtures of arbitrary sizes. It follows the possibility to design new simpler
algorithms whose global principle is illustrated in Algorithm 2 (sg is the stopgrad operation). In practice,
this would require refinements out of the scope of this paper.

F Experimental setup and hyperparameters

All experiments were run on our local cluster. The main experiments on Atari-5 were run on NVIDIA L40S
GPUs. The ablation study on Atari-3 was carried out on NVIDIA A40 GPUs. Additional experiments
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Algorithm 2: SA training for 1 episode
1 while environment is not terminated do
2 Sample at ∼ πε−greedy(· | xt)
3 Get xt+1 ∼ P (· | xt, at) and rt ∼ R(xt, at)
4 ηnew ← (1− β)sg(η̄t(xt, at))
5 ηnew ← ηnew + βsg((R + Tγ)#η̄t(xt+1, at+1))
6 Minimize D(ηt(xt, at), ηnew) over network parameters
7 t← t + 1

shown in Figure 6 were run on NVIDIA V100 GPUs. We mostly used the Dopamine (Castro et al., 2018)
hyperparameters recommandations (Table 3) but we had to use gradient clipping to stabilize the training.
To guarantee fair comparison, we used the same hyperparameters for all methods for each environment
and we selected the gradient clipping by selecting for each environment the highest possible giving a stable
training for all methods. This leads in our case to gradclip = 100 for Asterix and Bowling, and gradclip = 1
for Qbert. As regards the GM representations, the number of components was set to K = 5 in the Atari-5
experiments, while K was varying in {1, 3, 5, 16} in the ablation study. To compute metrics, the MW2 was
implemented using the POT package (Flamary et al., 2021) and for MMD computations, we used the same
setting as Nguyen-Tang et al. (2020).

Table 3: Hyperparameters used in experiments
Hyperparameter Setting
Sticky actions probability 0.25 (stochastic case)
Discount factor (γ) 0.99
Frames stacked 4
Mini-batch size (B) 32
Replay memory size 105

Online network update rate (λ) 4 steps
Target network update rate (τ) 104 steps
Initial exploration (ϵ) 1
Exploration decay rate 10−2

Exploration decay period 2.5× 105 steps
Test exploration 10−3

Environment steps per iteration 2.5× 105 steps
Starting step 5× 104 steps
Adam hyperparameters
β1 decay 0.9
β2 decay 0.999
Eps 10−2

B
Learning rate 5× 10−5

G Additional experiments

Table 4 and Figure 5 provide results for an ablation study, varying the number of mixture components
K ∈ {1, 3, 5, 16} in the deterministic case with the Atari-3 subset of 3 games proposed in Aitchison et al.
(2023). Figure 6 provides additional illustrations on 3 other Atari games, in a deterministic setting, plus one
of the games in a stochastic setting similar to that of Section 8.
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Table 4: Ablation over the number of components K, in the deterministic case with metric MW2. Normalized
scores on Atari-3 using the weights given in Aitchison et al. (2023), for varying K.

Environment K = 1 K = 3 K = 5 K = 16

Deterministic 43.80 ± 3.63 44.40 ± 13.20 48.37 ± 13.36 31.82 ± 19.98

Figure 5: Ablation over the number of components K, using the Atari-3 games in the deterministic case
with metric MW2. Moving average return, over 500k frames, with respect to the number of training frames.
Curves are averaged over 5 runs with shaded areas representing standard deviations.

(a) Asterix (b) Bowling (c) Qbert (d) Qbert stochastic

Figure 6: Comparison of MW2(green), JT1,2(yellow), MMDken
(blue) and MMDkmixrbf

(red) metrics for Atari
games in deterministic (a,b,c) and stochastic (d) environments. Moving average return, over 500k frames,
with respect to the number of training frames. Curves are averaged over 5 runs with shaded areas representing
standard deviations.
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H Computation times

Tables 5 and 6 present respectively computation times for the Atari-5 experiments and the ablation study
on K for the Atari-3 games. Computation times tend to increase with K.

Table 5: Average computation overheads and standard deviations (in hours) on Atari-5 for the different
compared metrics in deterministic and stochastic environments. The shortest times are indicated in bold
characters.

Environment JT1,2 MW2 MMDken MMDkmixrbf

Stochastic 46.12 ± 0.27 166.45 ± 0.42 46.38 ± 0.16 45.71 ± 0.06
Deterministic 44.45 ± 0.57 166.25 ± 0.65 46.29 ± 0.47 43.68 ± 0.33

Table 6: Average computation overheads and standard deviations (in hours) on Atari-3 when using the MW2
metric in a deterministic environment and varying the number of mixture components K. The shortest times
are indicated in bold characters.

Environment K = 1 K = 3 K = 5

Deterministic 16.02 ± 0.18 62.05 ± 0.31 135.46 ± 0.53
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