
Cross-fluctuation phase transitions reveal sampling
dynamics in diffusion models

Sai Niranjan Ramachandran∗† Manish Krishan Lal∗† Suvrit Sra∗†

Abstract

We analyse how the sampling dynamics of distributions evolve in score-based
diffusion models using cross-fluctuations, a centered-moment statistic from sta-
tistical physics. Specifically, we show that starting from an unbiased isotropic
normal distribution, samples undergo sharp, discrete transitions, eventually form-
ing distinct events of a desired distribution while progressively revealing finer
structure. As this process is reversible, these transitions also occur in reverse,
where intermediate states progressively merge, tracing a path back to the initial
distribution. We demonstrate that these transitions can be detected as disconti-
nuities in nth-order cross-fluctuations. For variance-preserving SDEs, we derive
a closed-form for these cross-fluctuations that is efficiently computable for the
reverse trajectory. We find that detecting these transitions directly boosts sampling
efficiency, accelerates class-conditional and rare-class generation, and improves
two zero-shot tasks–image classification and style transfer–without expensive grid
search or retraining. We also show that this viewpoint unifies classical coupling
and mixing from finite Markov chains with continuous dynamics while extending
to stochastic SDEs and non Markovian samplers. Our framework therefore bridges
discrete Markov chain theory, phase analysis, and modern generative modeling.

1 Introduction

Diffusion models are now a cornerstone of generative systems. They learn to reverse a process
that gradually erases structure from data, transforming it into featureless (isotropic) noise. During
inference, the model starts with this noise and progressively refines it, adding structure step by step
until realistic data samples emerge. [Ho et al., 2020, Sohl-Dickstein et al., 2015]. These models
can generate lifelike images, 3D scenes, audio, and even molecular structures [Rombach et al.,
2022, Blattmann et al., 2023, Chen et al., 2022b, Corso et al., 2022, 2023, Karnewar et al., 2023,
Kynkäänniemi et al., 2024]. They also excel in complex tasks like protein design [Jumper et al.,
2021] and zero-shot vision tasks [Li et al., 2023, Meng et al., 2021, Rombach et al., 2022].

Yet, the sampling process remains a black box. Each step blends thousands of values in ways that are
difficult to anticipate. Like other generative paradigms [Hutchinson and Mitchell, 2019, Hendrycks
et al., 2023, Rudin, 2019, Sharkey et al., 2025], small tweaks in code or hyperparameters can turn a
perfect sample into a failure or introduce unintended biases. This unpredictability underscores the
need for a clear understanding of how successful and failed outcomes diverge as the sampler operates.

We provide a clear framework by defining a user-specified goal (e.g., a class label, an aesthetic style, or
a semantic attribute) as a desirable event, which is a set of outcomes that align with the user’s objective.
As the sampler evolves backward in time, it iteratively generates a distribution over possible outcomes
at each step. Initially, paths corresponding to different outcomes, whether desirable or undesirable,
may appear indistinguishable. However, we demonstrate that at certain critical intermediate steps,
these paths undergo discrete phase transitions, where they become distinguishable as they separate
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into distinct regions of the outcome space. These transitions occur when the sampling process reveals
structural differences between outcomes that align with the user’s goal (desirable) and those that do
not (undesirable), marked by a breakdown of path separability.

Main contributions

The main contributions of this paper are the following:

1. Framework and theory. We present a rigorous framework using fluctuation theory from
statistical physics [Chaikin et al., 1995, Kivelson et al., 2024, Landau and Lifshitz, 1980, Pathria
and Beale, 2011] to identify and quantify discrete phase transitions in the diffusion process
(Section 2.2, Appendices B.1.1 and B.3.6). This framework incorporates user-specified goals
as desirable events and shows how their dynamics can be tracked (Section 3). Moreover, we
establish a connection between ensemble based techniques in statistical mechanics as well as
classical mixing-coupling results for Markov chains [Aldous and Fill, 2002, Levin and Peres,
2017, Saloff-Coste, 1997], using a generalised notion of phase transitions, thereby providing a
unified perspective on probability flows (Section B.1.3.2 and Appendices B.1.4 and B.3.6).

2. Practical toolkit. We develop a practical toolkit with clear diagnostic criteria for identifying and
leveraging these discrete transitions (Section 3, Appendices B and C). The proposed Algorithm 1
systematically identifies discrete transitions in cross-fluctuations to characterise the sampling
dynamics of desired outcomes. This enables precise intervention to enhance the generation and
likelihood of desirable samples, thereby improving overall model performance.

3. Illustrative applications. We illustrate the power of the proposed framework and toolkit through
several applications: accelerated sampling (Section 4.1), conditional generation (Section 4.2),
rare-class coverage (Section 4.3), and improved zero-shot performance in classification (Sec-
tion 4.4) and style transfer (Section 4.5). Remarkably, a simple fluctuation driven tweak can
improve the performance of baseline methods.

The remainder of this paper is organised as follows: background (Section 2); methodology (Section 3);
experiments (Section 4); theoretical foundations (Appendix B); implementation details and additional
experiments (Appendix C); and limitations and related-work context (Appendix D–E).

2 Background

We first review variance-preserving diffusion models and the fluctuation-theoretic statistics that let us
detect emergent phases. For detailed notation used throughout the paper, see Appendix A.

2.1 Diffusion models in continuous and discrete time

Let x0 ∼ p0 be a sample from a distribution with support X ⊆ Rd. The forward variance-preserving
stochastic differential equation (SDE) of Song et al. [2021] is

dxt = − 1
2β(t)xt dt+

√
β(t) dwt, t ∈ [0, T ], (2.1)

where β(t) > 0 is the noise schedule and wt is a standard Wiener process. For linear schedules
and sufficiently large T we have pT ≈ N (0, I). Removing stochasticity yields the probability-flow
ODE (PF-ODE) with identical marginals,

dxt

dt
= − 1

2β(t)xt − β(t) ∇x log pt(xt)︸ ︷︷ ︸
score

. (2.2)

A neural network sθ(x, t) learns an approximation of the score; sampling integrates the reverse ODE
from t = T back to 0. In discrete time, the Denoising Diffusion Probabilistic Model (DDPM) update
of Ho et al. [2020] is

xt =
√
1− βt xt−1 +

√
βt εt, εt ∼ N (0, I), t = 1, . . . , T. (2.3)

Both the continuous and the discrete processes admit the closed-form marginal

pt(xt | x0) = N
(
J(t)x0,

(
1− J2(t)

)
I
)
, J(t) = exp

(
− 1

2

∫ t

0
β(s) ds

)
, (2.4)

which separates signal from noise cleanly, where J(t) is known as the signal-attenuation factor.
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2.2 Measuring statistical distinctiveness

The central insight of our work is the observation that given coarse categories of data e.g, object
classes, tracking their statistical distinctiveness throughout the diffusion process suffices to pinpoint
the emergence of structure during generation.

Figure 1: The addition of noise causes distinct categories of data to "merge" through the forward diffusion
process as statistical properties progressively converge to those of the standard normal distribution.

As Figure 1 shows, the statistical properties of data show a well-defined convergence on noise addition
and conversely show divergence as the sampling process progresses. We formalise this notion through
the use of fluctuation theory adapted from physics.

2.2.1 Basics of fluctuation theory

Fluctuation theory supplies statistics that reveal when trajectories become (in)distinguishable—our
operational signature of a phase transition. We present a formal framework for analyzing these
fluctuations in vector-valued state spaces, which generalises the concepts from statistical physics and
provides a direct connection to modern tools like Centered Kernel Alignment (CKA) (Kornblith et al.
[2019]).

Fluctuations. Let (Ω,F , P ) be a probability space. The state of the system is described by a
vector-valued random variable ρ : Ω → Rd. The fundamental object for our analysis is the nth-order
fluctuation, a random tensor representing the nth centered moment at a single point ω ∈ Ω:

F (n)
ρ (ω) :=

n⊗
k=1

(
ρ(ω)− E[ρ]

)
. (2.5)

This is a tensor of rank n. For instance, for n = 2, this gives F (2)
ρ (ω) = (ρ(ω)−E[ρ])(ρ(ω)−E[ρ])⊤,

which is a d× d matrix. Its expectation, E[F (2)
ρ ], is the familiar covariance matrix of ρ. We assume

these random fluctuation tensors (and their expectations) reside in suitable Hilbert spaces Hn (for
rank-n tensors) equipped with an inner product ⟨·, ·⟩Hn

. For matrices (n = 2), H2 is typically the
space of d× d matrices with the Frobenius inner product, ⟨A,B⟩F = Tr(A⊤B).

Joint dynamics and conditional expectations. We consider two disjoint events, Ω1 and Ω2. While
samples are drawn independently from each, the events themselves are coupled: they originate
from the same data manifold and evolve under the same stochastic dynamics. This coupling
justifies the comparison of their respective conditional expectations of the fluctuation tensor:
E1[F (n)

ρ ] = E[F (n)
ρ |ω ∈ Ω1] and E2[F (n)

ρ ] = E[F (n)
ρ |ω ∈ Ω2]. For n = 2, these are the conditional

covariance matrices for each event.

Normalised and unnormalised cross-fluctuations. We now redefine our key statistics based on
these conditional expectations.

1. Unnormalised cross-fluctuation (G): This measures the alignment of the conditional
expected fluctuation tensors of the two events.

G(n)
ρ (Ω1,Ω2) := ⟨E1[F (n)

ρ ],E2[F (n)
ρ ]⟩Hn . (2.6)

2. Within event fluctuation (F̂ ): This measures the magnitude (or self-alignment) of the
conditional expected fluctuation tensor for a single event.

F̂ (2n)
ρ (Ωi) := ⟨Ek[F (n)

ρ ],Ek[F (n)
ρ ]⟩Hn = ∥Ek[F (n)

ρ ]∥2Hn
. (2.7)

Note the 2n in the symbol F̂ is a convention.
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3. Normalised cross-fluctuation (M): This is the magnitude of the cosine similarity between
the conditional expected fluctuation tensors.

M(n)
ρ (Ω1,Ω2) :=

∥G(n)
ρ (Ω1,Ω2)∥√

F̂
(2n)
ρ (Ω1)F̂

(2n)
ρ (Ω2)

=
|⟨E1[F (n)

ρ ],E2[F (n)
ρ ]⟩Hn |

∥E1[F (n)
ρ ]∥Hn

∥E2[F (n)
ρ ]∥Hn

. (2.8)

The normalized cross-fluctuation, M(n)
ρ ∈ [0, 1], measures the structural similarity between the

events’ n-th order moments. A value of M(n)
ρ ≈ 1 indicates that the events’ statistical shapes have

aligned, a condition we define as a “merge.” Conversely, a value significantly less than 1 implies
distinguishability. For the important special case of n = 2, M(2)

ρ quantifies the similarity between
the conditional covariance matrices (Σk) of the two events and is connected to CKA.

3 A practical toolkit for diffusion models

We now present the theoretical construction for our methodology. The main practical outcome is
Algorithm 1, an algorithm whose applications are demonstrated in Sections 4.1 to 4.5.

Embedding in diffusion time. Let pi be the marginal at step i = 0, . . . , n of a forward diffusion
process (For simplicity, we focus on the PF-ODE case3), with p0 = pdesired, where pdesired represents
a constructed distribution that encodes properties of interest, and pn = N (0, I). Choose two disjoint
events Ω1,0,Ω2,0 ⊆ supp(p0) and propagate them to Ω1,i,Ω2,i. As the forward trajectory converges
to white noise, the regions coincide at i = n in theory, but due to hyper-contractivity and numerical
effects, they often appear to merge much earlier. We thus redefine the operator M(n)

ρ to capture this
discrete transition (Appendix B.3.6),

M̃(n)
ρ (i) =

{
M(n)

ρ

(
Ω1,i,Ω2,i

)
, d

(
F̂

(2n)
ρ (Ω1,i), F̂

(2n)
ρ (Ω2,i)

)
> ε,

1, otherwise,
(3.1)

where d(·, ·) is a distance metric which for our case is the ℓ1 distance between the traces of F̂ (n)
ρ (·)

and ε > 0 is a fixed threshold.4 The earliest index

i⋆ = min
{
i : M̃(n)

ρ (i) = 1
}

generalises the coupling time of a Markov chain [Aldous and Fill, 2002, Levin and Peres, 2017]
(Appendix B.1.4). The operator undergoes a discrete phase transition dictated by ε. Conceptually,
the smooth distance function has been replaced by a "relu" like non-linearity to capture numerical
effects. Further details on this kind of phase transition and how it differs from the traditional notion
of a phase-transition can be found in (Appendix B.3.6).

We justify our choice of the forward trajectory in Appendix B.2.1, establishing that the detected
transitions also occur in the sampling trajectory of a trained diffusion model. Crucially, this approach
allows us to rely solely on the computationally efficient empirical forward process. We tailor
pdesired and (Ω1,0,Ω2,0) to illuminate specific phenomena. Algorithm 1 implements these steps.
Note that, when p0 has compact support (e.g., images), the PF-ODE ensures spatial continuity of
M(n)

ρ [Coddington and Levinson, 1955, Thm 5.2]; any jump thus indicates a genuine phase transition
(for SDEs see Appendix B.2.3). A single forward Monte-Carlo sweep yields unbiased estimates of
all terms in M̃(n)

ρ see Appendix B.2.5.

3A detailed treatment for the PF-ODE appears in Appendix B.2.2, and the SDE case is discussed in
Appendix B.2.3.

4Details on the topological equivalence of a metric space on within-event fluctuations and the absolute
distance of normalised cross-fluctuation from 1 can be found at Section B.1.3.1
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Algorithm 1 Compute
{
M̃(n)

ρ (i)
}n
i=0

and the first merger step i⋆

Require: pdata, steps n, forward sampler PF, task objective L, fluctuation F
(n)
ρ , metric d, threshold ε

1: pdesired ← DEFINEDESIRED(pdata,L)
2: (Ω1,0,Ω2,0)← PICKEVENTS(pdesired,L)
3: M← [ ] ▷ dynamic array forM(n)

ρ (i)
4: i⋆ ← n ▷ merge no later than white noise
5: for i = 0 to n do
6: if i > 0 then
7: (Ω1,i,Ω2,i)← FORWARDSTEP(Ω1,i−1,Ω2,i−1)
8: else
9: (Ω1,i,Ω2,i)← (Ω1,0,Ω2,0)

10: end if
11: δ ← d

(
F

(n)
ρ (Ω1,i), F

(n)
ρ (Ω2,i)

)
12: M(n)

ρ (i)←

{
M(n)

ρ (Ω1,i,Ω2,i), δ > ε,

1, δ ≤ ε

13: append M̃(n)
ρ (i) to M

14: if M̃(n)
ρ (i) = 1 and i⋆ = n then

15: i⋆ ← i ▷ first step where events merge
16: end if
17: end for
18: return M, i⋆

4 Demonstrations of our methodology

We next present case studies that show how our machinery can diagnose and subsequently improve
the behaviour of diffusion samplers on practical tasks. Our aim is to illustrate simple recipes for
working with user-defined events that need not require a deep dive into the underlying theory but at
the same time showcase the utility of our framework.

4.1 Warm-up: Predicting convergence of the data distribution

In this case study, we abuse notation and let the sequence {p0, . . . , pn} represent the marginals
under the PF-ODE for a data distribution p0. Assume that the support of the data distribution,
D0 = supp(p0), is essentially disjoint from the support of the Gaussian endpoint, Dn = supp(pn) =

supp
(
N (0d, Id)

)
. In high dimensions, this is realistic because Dn ≈

√
dSd−1 and therefore has

asymptotically negligible volume [Vershynin, 2018]5

We now show the setup of Algorithm 1 in this setting. Let pdesired the desired distribution be defined
over the union of all supports ∪n

i=0Dn such that,

Pdesired(Z) =

{
P0(Z), Z ⊆ D0,

0, otherwise,
(4.1)

where Pdesired, P0 are the probability masses associated with pdesired, p0 respectively. It is easy to
see that the PF-ODE on p̂0 = pdesired leads to the set of marginals that we term as an augmented
process, aug = {p̂i}ni=0 defined as,

P̂i(Z) =

{
Pi(Z), Z ⊆ Di,

0, otherwise,
(4.2)

where Pi (resp. P̂i) is the probability measure associated with pi (resp. p̂i). Operationally, aug
coincides with the original PF-ODE but with an explicitly enlarged state space.6

5Note that,Dn becomes a null set for d→∞, so overlap with any finite-volume data manifold is vanishingly
unlikely. Concentration inequalities showing rapid decay as a function of increasing n can be found, e.g.,
in [Vershynin, 2018]. Formally, we assume that if D∗ = D0 ∪ Dn, then P0(D∗), Pn(D∗)→ 0.

6The above construction is designed to measure how probability mass transfers away from any marginal pi
towards another marginal pj where j > i. In our work we only concern ourselves with the case where j = n so
as to probe convergence to stationarity.
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Set Ω1,0 = D0 and Ω2,0 = Dn. Because Ω2,0 is already the support of the stationary distribution,
Ω2,i = Ω2,0 for all i > 0. Detecting the smallest index i for whichM (n)

ρ,Ω1,Ω2
(i)≈1 therefore amounts

to deducing the onset of convergence to the stationary distribution, this is in practice equivalent to
a multivariate normality test on pi. We adopt the D’Agostino-Pearson omnibus test [D’Agostino,
1971, D’Agostino and Pearson, 1973], the p-value threshold is the conventional 0.05. We evaluate
MNIST [Deng, 2012], CIFAR-10 [Krizhevsky et al., 2009], and a compressed INT-8 variant of
ImageNet [Deng et al., 2009, Ryu, 2024], using the popular DDPM noise schedule [Ho et al., 2020].
Results appear in Figure 7 in Appendix C.2.

Acceleration via early stopping. Let i⋆ denote the smallest index flagged as Gaussian by the test.
Starting the reverse sampler from t = i⋆, rather than the conventional t = n, preserves visual quality
while saving n − i⋆ steps, as summarised in Table 1 across datasets. By convention, throughout
our work a (↓) sign denotes that lower values are better and vice-versa for an (↑). For ImageNet
we employ the state-of-the-art DiT-XL/2 model at 512 × 512 resolution [Peebles and Xie, 2022];
open-source checkpoints are used for the other datasets. A comparable observation was reported by
Raya and Ambrogioni [2024], who derive i⋆ analytically under stronger assumptions on the data.
Intriguingly, an unrelated theorem on Brownian equilibrium time predicts i⋆ surprisingly well for
our data in Appendix B.3.1; clarifying this connection is left to future work, but the theorem already
provides a useful heuristic.

Model / Dataset FID(↓) Steps(↓) GFLOPs(↓)
DiT-XL/2 (ImageNet, full) 3.42± 0.21 250 4100
DiT-XL/2 (ImageNet, ours) 3.37± 0.31 175 2870
DDPM (MNIST, full) 2.27± 0.19 1000 2000
DDPM (MNIST, ours) 2.29± 0.17 600 1200
DDPM (CIFAR-10, full) 3.62± 0.35 500 6000
DDPM (CIFAR-10, ours) 3.47± 0.34 300 3600

Table 1: Acceleration achieved by stopping reverse diffusion at t = i⋆ instead of t = n (DDPM
schedule). FID scores are averaged over three runs with 95% confidence intervals.

Thus, starting the reverse sampler from the observed convergence time yields the same perceptual
quality while reducing wall-clock cost— often by thousands of gigaflops (GFLOPs).

Visualizing the merger cascade. Before detailing our next set of applications, it is instructive to
visualise mergers occurring over a disjoint partition of events. Figure 2 presents the “merger cascade,”
a temporal hierarchy visualizing how disjoint events merge over diffusion time t. Events start as
distinct leaves at t = 0. As time progresses upwards, branches join at a black dot—a discrete merger
event (Appendix B.3.6)—at the precise moment their fluctuation tensors become indistinguishable.
This dendrogram provides an intuitive map of how structural similarities are lost, motivating the
targeted interventions that follow.
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Visualizing the Merger Cascade: A Temporal Hierarchy of Discrete Merger Transitions

Figure 2: Visualizing the merger cascade. This temporal hierarchy illustrates how distinct, mutually disjoint
events merge as the diffusion process evolves. Time t flows upward. At t = 0, events are distinct leaves. As they
diffuse, pairs whose fluctuation tensors become indistinguishable undergo a discrete merger event (black dot),
and their branches merge. This cascade continues until all discriminating information has vanished into a single
cluster.
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4.2 Class-conditional generation

We now study the behaviour of Algorithm 1 when pdesired is just the data split into K mutually
disjoint classes {Ω1,0, . . . ,ΩK,0} such that

⋃K
k=1 Ωk,0 = Ω where Ω is the sample space of the

data distribution and Ωk,0 ∩ Ωℓ,0 = ∅ whenever k ̸= ℓ. Throughout we write Ωk,t for the image
of Ωk,0 under the forward diffusion map at (discrete) time t. A formal algorithm summarizing this
modification is present in Algorithm 4.

A second-order statistic via centred kernel alignment. Higher-order fluctuations for vector
states become unwieldy, so we fix n = 2, leveraging covariance matrices to efficiently capture
fourth-order moments. This captures non-linear feature information while maintaining second-order
structure (Appendix B.3.3). For completeness, we also demonstrate an experiment with higher-order
fluctuations, simplified using Isserlis’/Wick’s theorem [Isserlis, 1918, Wick, 1950] (Appendix B.3.2).
Let us for the n = 2 case define,

Σk,t = Cov
(
ρ | Ωk,t

)
∈ Rd×d. (4.3)

The normalised second-order cross-fluctuation M(2)
ρ (Ωk,t,Ωℓ,t) is then the centred kernel alignment

(CKA) between Σk,t and Σℓ,t [Cortes et al., 2012, Cristianini et al., 2001, Kornblith et al., 2019]:

CKAkℓ(t) =
Tr
(
Σ⊤

k,tΣℓ,t

)√
Tr
(
Σ⊤

k,tΣk,t

)
Tr
(
Σ⊤

ℓ,tΣℓ,t

) . (4.4)

where G(2)
ρ (Ωk,t,Ωl,t) = Tr

(
Σ⊤

k,tΣℓ,t

)
, F̂

(4)
ρ (Ωk,t) = Tr

(
Σ⊤

k,tΣk,t

)
, F̂

(4)
ρ (Ωl,t) = Tr

(
Σ⊤

l,tΣl,t

)
.

We convert the above definition (4.4) into a discrete phase transition indicator (3.1) detecting whether
the events have “merged / not merged” by the rule

M(2)
kℓ (t) =

{
CKAkℓ(t), if d

(
F̂

(2n)
ρ (Ω1,i), F̂

(2n)
ρ (Ω2,i)

)
> ε,

1, otherwise,
(4.5)

Because the forward SDE is isotropic, Σk,t contracts in the radial direction only; its spectrum
therefore collapses towards a scaled identity. Hyper-contractivity implies that the merger of two
classes is governed by the largest eigenvalues (See Appendix B.3.3 for further details)

λmax
k (t) = λmax(Σk,t), λmax

ℓ (t) = λmax(Σℓ,t),

so we may replace the trace metric by d
(
λmax
k (t), λmax

ℓ (t)
)
< ε. In practice, we fix

ε ≈ maxk λ
max
k (0)

400
,

and use absolute eigenvalue differences for d. This criterion yields clear merger times across datasets;
trajectories are plotted in Appendix C.3.

Practical payoff: class-wise Interval guidance. The state-of-the-art guidance algorithm, Interval
guidance (IG) [Kynkäänniemi et al., 2024] argues that class conditioning should be applied only for a
sub-interval t ∈ (tstart, tend) for optimal results. The reference implementation runs an expensive grid
search as detailed in Appendix C.3. Our fluctuation analysis supplies both bounds for free:

• tstart = i⋆, the convergence index from Section 4.1;

• tend = max
{
t : M(2)

kℓ (t) < 1 for some ℓ ̸= k
}

.

Using these class-specific windows, we match or improve IG performance on ImageNet, CIFAR-10,
and MNIST datasets. Our method is capable of cutting the combinatorial search cost by orders of
magnitude. We present the results in Table 2. We utilise the metrics Frechet Inception Distance (FID)
Heusel et al. [2017], Precision, Recall, and their more suitable variants for generative models such as
Density and Coverage Naeem et al. [2020]. (We also show results for the StableDiffusion Rombach
et al. [2022] model using Imagenet and the fine-grained classification dataset OxfordIIITPets in
Appendix C.3 along with further results.)

Monitoring when class supports merge lets us place guidance exactly where it helps, eliminating
costly grid searches and boosting class-conditional quality with negligible overhead.
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Model/Dataset FID (↓) Precision (↑) Recall (↑) Density (↑) Coverage (↑)
DiT-XL/2 (Imagenet, IG Baseline) 3.22± 0.16 0.78± 0.01 0.23± 0.05 0.83± 0.01 0.35± 0.02
DiT-XL/2 (Imagenet, IG Ours) 2.86± 0.15 0.83± 0.02 0.26± 0.04 0.85± 0.01 0.39± 0.02
DDPM (MNIST, IG Baseline) 2.15± 0.06 0.80± 0.02 0.25± 0.01 0.85± 0.01 0.36± 0.02
DDPM (MNIST, IG Ours) 1.99± 0.11 0.85± 0.01 0.28± 0.03 0.89± 0.02 0.40± 0.01
DDPM (CIFAR10, IG Baseline) 3.32± 0.25 0.77± 0.01 0.19± 0.14 0.81± 0.03 0.32± 0.02
DDPM (CIFAR10, IG Ours) 3.01± 0.14 0.79± 0.02 0.22± 0.01 0.84± 0.01 0.35± 0.04

Table 2: Class conditional generation

Model/Dataset CLIP Similarity (↑) Precision (↑) Recall (↑) Density (↑) Coverage (↑)
SD (iNaturalist, IG baseline) 0.21± 0.03 0.70± 0.01 0.15± 0.01 0.75± 0.01 0.27± 0.02
SD (iNaturalist, IG Ours) 0.24± 0.02 0.73± 0.01 0.18± 0.01 0.78± 0.02 0.30± 0.04
SD (iNaturalist, IG-ILVR Ours) 0.27± 0.01 0.76± 0.01 0.19± 0.02 0.81± 0.01 0.31± 0.03
SD (CUB200, IG baseline) 0.24± 0.05 0.75± 0.01 0.14± 0.01 0.79± 0.02 0.30± 0.02
SD (CUB200, IG Ours) 0.26± 0.01 0.78± 0.05 0.17± 0.01 0.82± 0.02 0.33± 0.01
SD (CUB200, IG-ILVR Ours) 0.27± 0.02 0.82± 0.02 0.18± 0.02 0.85± 0.01 0.31± 0.02

Table 3: Rare class generation using StableDiffusion
4.3 Rare-class generation

We reuse the same modification of Algorithm 1 as in Section 4.2 but focus on tail classes-categories
under-represented in the training data, and therefore poorly synthesised by off-the-shelf diffusion
models. Concretely, we study the following datasets,

• CUB-200 (200 bird species), and
• iNaturalist 2019 (fine-grained flora & fauna).

Both have been identified as failure cases for Stable Diffusion [Samuel et al., 2024]. For each species
k, we denote the source event by Ωk,0 and its forward image at timestep t by Ωk,t.

Merger-aware guidance window. Adopting the notation of Sections 4.1 and 4.2, let

tconv = i⋆, tmerge,k = min
{
t : M̃(2)

ρ (Ωk,t,Ωℓ,t) = 1 for some ℓ ̸= k
}
.

The class-specific guidance interval is then (tstart,k, tend,k) =
(
tconv, tmerge,k

)
, that is, from global

data convergence up to-but not beyond-the first time the target class becomes indistinguishable from
any other class.

Interval guidance with corrupted exemplars. We observe that for this setting as compared to
naive interval guidance, a slight tweak using corrupted exemplars can yield better results 7. Inside
this window, we apply Interval Guidance [Kynkäänniemi et al., 2024] and interpolate with a single
exemplar xref∼Ωk,0 that is forward-noised in lock-step with the individual sample being generated.
The conditioning term is effectively therefore the pair

(
zt, xref,t

)
, making the scheme a class-specific

variant of ILVR [Choi et al., 2021] with intervals. No additional hyper-parameters are introduced; we
keep the noise schedule and scaling constants from Section 4.2. A formal version of the algorithm is
presented in Algorithm 3, refer to Appendix C.4 for further details.

Table 3 summarises the results using standard metrics, where we compare three settings: (i) naïve
Interval Guidance over the full horizon, (ii) merger-aware Interval Guidance as in Section 4.2 and
(iii) merger-aware IG + corrupted exemplar (ours). Across metrics, the merger-aware schedules
consistently outperform the baselines, with the exemplar variant giving the largest gains.

We conclude that as fluctuation-driven merger times generalise from mainstream classes to the tail
classes without re-tuning, leveraging them yields a lightweight yet effective strategy for rare-class
synthesis, mitigating class imbalance at essentially zero extra computational cost.

4.4 Zero-shot classification

Once again we continue with a setting of Algorithm 1 as is in Section 4.2: where each sample z∼p0
belongs to exactly one class event Ωk,0. Given a trained class-conditional diffusion model fθ with

7We observed no appreciable gain for the setup in Section 4.2, hence omit this tactic there.
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label index set Λ = {1, . . . ,K}, the goal is to predict

k⋆ = argmax
k∈Λ

pk(z),

where pk(z) estimates the posterior class probability. We build upon the procedure proposed by Li
et al. [2023] for this task. Let zt(z, ε) ∈ Rd denote the forward-noised version of z at step t, obtained
with seed ε ∼ N (0, I). For that configuration, define the logit

sk(t, ε) = −
∥∥fθ(zt(z, ε), ε, k)− ε

∥∥2
2
, k ∈ Λ.

With N noise seeds {εn}Nn=1 and weights w(t), our importance-weighted class score becomes

pk(z) =

tstop,k∑
t=tstart,k

w(t)
[ 1

N

∑N

n=1
qk
(
t, εn

)]
, qk(t, ε) =

exp
(
sk(t, ε)

)∑
ℓ∈Λ exp

(
sℓ(t, ε)

) . (4.6)

where qk(t, ε) is the corresponding softmax probability. The choices uniform, inverse-SNR and
truncated inverse-SNR correspond to three concrete w distributions, each summing to 1 on its
support. For the inverse-SNR strategies, the weights at each time are proportional to the inverse of
the Signal to Noise Ratio (SNR) [Kingma et al., 2021] at that time, while uniform assigns a constant
weight. The lower bound is set to tstart,k = 0 ∀k for the uniform and inverse-SNR strategies. For the
truncated case we set tstart,k = 20 for all k; (Appendix C.5) the upper bound

tstop,k = min
{
t : M̃(2)

ρ (Ωk,t,Ωℓ,t) = 1 for some ℓ ̸= k
}

ensures that no timestep beyond the first class merger contributes to (4.6). A formal version of the
above algorithm is present in Algorithm 4 along with further details in Appendix C.5. Using a Stable
Diffusion backbone [Rombach et al., 2022], we obtain the accuracies in Table 2. Merger-aware
weighting improves on the uniform baseline of Li et al. [2023], where tstart,k = 0 and tstop,k = T for
all classes k, where T is the horizon of the diffusion process; truncated inverse-SNR performs best.

Method ImageNet ↑ CIFAR-10 ↑ Oxford-IIIT Pets ↑
SD, uniform ( Li et al.) 54.96±0.67 84.67±1.23 82.87±0.39
SD, uniform (ours) 57.91±0.53 85.17±0.17 86.17±0.26
SD, inverse-SNR 64.17±0.33 87.26±0.67 88.17±0.29
SD, trunc. inverse-SNR 65.28±0.46 88.38±0.43 89.15±0.26
CLIP RN-50 58.41±0.35 75.42±0.26 85.61±0.29
OpenCLIP ViT-H/14 76.91±0.75 96.87±0.59 94.61±0.37

Table 4: Zero-shot multi-class accuracy (%); ± 95% CI over five runs.

That truncated inverse-SNR outperforms uniform weighting suggests the corrupted marginals remain
most discriminative shortly before class supports merge. Appendix C.5.1 analyses this effect in detail
via linear probes for binary classification between Imagenet classes.

Thus, merger times not only optimise guidance but also delimit the timesteps that matter for zero-shot
recognition, yielding tangible gains at negligible cost.

4.5 Zero-shot style transfer

Let p0 be a source image distribution on X ⊂ Rd and let p⋆ = Tstyle(p0) be the same semantic content
rendered in a new artistic style. We assume

1. Bijectivity. Tstyle : X → X is invertible on the supports, so p⋆ is a valid density and
supp(p⋆) = Tstyle

(
supp(p0)

)
.

2. Structure preservation in the Fourier domain. For a density q write q̂(ξ) =∫
X q(x) e

−2πiξ⊤xdx and define the frequency-domain norm ∥p − q∥f = ∥p̂ − q̂∥L2(Rd).
We posit the regularity bound

∥p0 − p⋆∥f ≤ δ, with 0 < δ ≪ 1. (4.7)
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Fluctuation adaptation lemma for style transfer. Let ρ(x) = x be the identity state operator for
p0 and let ρ⋆ = ρ ◦ T −1

style for p⋆. Appendix B.3.4 proves that for every measurable Ω ⊆ X and each
moment order n ∈ {1, 2, 3, 4},∣∣F̂ (n)

ρ (Ω) − F̂
(n)
ρ⋆

(
Tstyle(Ω)

)∣∣ ≤ Cn δ, (4.8)

with a constant Cn independent of Ω. Hence the fluctuation trajectories of the source distribution p0
approximate those of the target-style distribution p⋆ to O(δ) accuracy.

Choosing a start time for reverse denoising. For each semantic class λ ∈ Λ let

mλ = min
{
t : M̃(2)

ρ

(
Ωλ,t,Ωℓ,t

)
= 1 for some ℓ ̸= λ

}
be its earliest merger time under the forward diffusion of p0 (see Section 4.2). By the lemma above,
mλ remains a valid approximation for the target-style chain. Therefore, when we apply a target-style
model (e.g. Stable Diffusion fine-tuned on van-Gogh paintings) we can kick-start reverse denoising
at t = mλ rather than at the full horizon t = n, achieving style transfer in fewer steps. Thus pdesired
in Algorithm 1 here is the source distribution while the diffusion model is actually trained on a
different target distribution. A formal version of the above algorithm is presented in Algorithm 5.
We also note that the current procedure naturally extends to inverse problems using diffusion models,
following a similar procedure under conditions analogous to (4.8). These conditions align with prior
methodologies for inverse problems Song et al. [2022]. Exploring these extensions is left for future
work

We follow the setup of [Meng et al., 2021] wherein an optimal time needs to be estimated till which
noising must occur. Our baseline is the grid search technique used in [Meng et al., 2021] computed
over an entire dataset. We present sample results for the Studio Ghibli Miyazaki and Ghibli [2014]
and Van Gogh Roojen [2019] artistic styles in Table 5 using the PSNR and MSE metrics. See
Appendix C.6 for experimental details, figures and empirical verification of the fluctuation adaptation
lemma, and additional results for the Elden Ring Software and Entertainment [2022] and Arcane
Production and Games [2021] styles.

Style Ghibli van-Gogh
Models/Metrics PSNR (↑) MSE (↓) PSNR (↑) MSE (↓)
SD Edit (OxfordIIITPets) 25.67± 1.14 0.09± 0.001 26.16± 0.72 0.09± 0.003
Ours (OxfordIIITPets) 28.71± 0.86 0.03± 0.005 28.65± 0.49 0.03± 0.002
SD Edit (AFHQv2) 27.12± 0.59 0.05± 0.006 27.49± 0.27 0.04± 0.004
Ours (AFHQ v2) 27.65± 0.57 0.04± 0.004 28.07± 0.32 0.03± 0.006

Table 5: Style Transfer results for Ghibli and van-Gogh styles

Thus, as under mild Fourier regularity, the merger schedule learned on a source dataset transfers
directly to any purely stylistic variant of that dataset, the result is a true zero-shot style transfer
procedure that inherits the efficiency gains of Section 4.1 without additional tuning.

5 Conclusion

We introduced cross-fluctuation mergers: a centred-moment statistic that fires precisely when two
regions of a diffusion trajectory become indistinguishable. The concept links statistical-physics fluc-
tuation theory with generative modelling and yields practical benefits: early stopping in the forward
process cuts a quarter to two-fifths of reverse steps; class-wise guidance windows raise conditional
image quality without grid search; merger-aware weighting upgrades zero-shot classification, and
the same signal powers zero-shot style transfer and rare-class generation—all without re-training
or new knobs to tune. Our analysis assumes a variance-preserving noise schedule; extending to
non-VP schedules (e.g., EDM [Karras et al., 2022]), anisotropic diffusions, higher-order fluctuations
for complex data, and different modalities are promising directions for future work. We expect our
framework to inspire further developments in tighter theory, training-time objectives, and applications.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Please refer to Sections 2 to 4 and Appendices B and C for supporting evidence
to our claims.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: Please refer to Appendix D for the same.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provide all theoretical details in Appendix B. Due to space constraints we
were unable to provide sketches in the main paper.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all details in Section 4 and Appendix C

Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide supplementary code for our work.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/pu
blic/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Please check Section 4 and Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Yes, these are reported in all of our results in Section 4, Appendix C

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialisation, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide details in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our work conforms in every respect to the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the limitations of our approach in Appendix D
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We work with pretrained models and standard datasets throughout our paper.
Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We provide proper credit throughout our work. Appendix C has the details.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification:
Guidelines: The core method development in our work does not involve LLMs as any
important, original, or non-standard components.

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Notation used throughout the paper

Table 6: Global symbols
Symbol Domain / type Meaning

x0∼ p0 Rd Data sample from initial distribution p0
pdesired density on Rd Desired distribution
xt Rd Forward-diffused variable at time t
β(t), βt R>0 / (0, 1) Continuous / discrete noise schedule
J(t) (0, 1] Signal attenuation factor (2.4)
pt density on Rd Marginal distribution of xt

sθ(x, t) Rd→Rd Learned score network
ρ(·) map Ω→Rm State operator (usually ρ(x) = x) (Sec-

tion 3)
F

(n)
ρ (Ω) R≥0 nth centred fluctuation moment on event Ω

(2.5)
F̂

(n)
ρ (Ωi), F̂

(n)
ρi (Ωi) R≥0 2nth within-event fluctuation moment on

Ωi (2.7)
G

(n)
ρ (Ω1,Ω2), G

(n)
ρ1,ρ2(Ω1,Ω2) R≥0 Unnormalised cross-fluctuation (2.6)

M(n)
ρ (Ω1,Ω2),M(n)

ρ1,ρ2(Ω1,Ω2) [0, 1] Normalised cross-fluctuation (2.8)
Ωk,0 event in Ω Class-k source region (k = 1, . . . ,K)

(Section 4.2)
Ωk,t event Image of Ωk,0 after t forward steps
Σk,t Sd

+ Covariance of Ωk,t

λmax
k (t) R≥0 Maximum eigenvalue of Σk,t

Mρ(t) [0, 1] Shorthand forM(2)
ρ (Ω1,t,Ω2,t)

i⋆ {0, . . . , T} First index whereM(n)
ρ (t) = 1 (merger)

(Section 3)
w(t) probability mass Importance weight over timesteps (Sec-

tion 4.4)
SNR(t) R≥0 α2

t/(1− α2
t ) (signal-to-noise)

Tr(·) R Matrix trace operator

Table 7: Time- and index-specific symbols
Symbol Type / range Meaning

t R≥0 Continuous diffusion time (PF-ODE or SDE)
s, u R≥0 Generic continuous times used in flow composition (0≤s≤ t≤u≤

T )
i {0, . . . , n} Discrete forward-process index (i = 0 data; i = n white noise)
T positive real / integer Continuous final time (SDE/ODE) or discrete horizon with schedule

{βt}Tt=1

n N Chosen number of forward (or reverse) discrete steps in an experi-
ment (may be n=T )

∆t R>0 Integration step size in continuous-time numerical solvers
βt sequence on {1, . . . , T} Discrete noise-schedule value at step t
β(t) function [0, T ]→R>0 Continuous noise-schedule function
i⋆ integer Earliest discrete index where two events first merge (convergence

index)
tconv R≥0 Same as i⋆ but expressed on the continuous time axis
tmerge,k R≥0 First time class k merges with any other class
tstart,k R≥0 or int Lower bound of guidance / weighting window for class k
tstop,k same type as above Upper bound of the window for class k
tu→s, ts→c R≥0 Thermodynamic phase-transition times (unbiased→speciation, speci-

ation→condensation)
tmix(ε) R≥0 (Appendix B.3.6) ε-mixing time of the VP–SDE (Appendix B.1.4)
tcpl(ε) integer ε-coupling time for discrete Markov chains (Appendix B.1.4)
tlatkℓ (ε) R≥0 First lattice-merger time between classes k and ℓ with tolerance ε

(Appendix B.3.6)
ηt [0, 1] Interpolation schedule value used in Algorithm 3 (rare-class genera-

tion)
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B Theoretical contributions

This appendix provides the theoretical support for the results presented in the main paper. The content
is structured in three parts: we first introduce the general framework, then apply it to diffusion models,
and finally, we connect our work to existing methods while also presenting new theoretical results
and interpretations.

Appendix B.1 introduces the cross-fluctuation framework. It covers the necessary definitions, proves
that merger times can serve as an efficient proxy for convergence in total variation, and shows that
the method is applicable to both discrete and continuous state spaces.

Appendix B.2 applies this framework specifically to diffusion models. This section justifies the use
of the forward process for our analysis, details the dynamics of event structures under the model’s
SDE/ODE, confirms the consistency of the resulting merger events, and provides an efficient method
for their estimation.

Appendix B.3 discusses connections to other methods and provides additional context. We show the
relationship between our framework and Centered Kernel Alignment (CKA), prove the fluctuation
adaptation lemma for style transfer, and conclude by framing our analysis of discrete phase transitions
(what we term lattice transitions) within the context of statistical physics.

B.1 Theoretical foundations of the cross fluctuation framework

B.1.1 A concise primer on fluctuation theory with physical intuition

Here we provide a concise overview of the fluctuation-theoretic framework that underpins the notation
introduced in Section 2.2.

From observables to fluctuations. In statistical physics, a system’s properties are understood
by measuring observables (e.g., energy, momentum). For a distribution p, the expectation of an
observable A is Ep[A]. Deviations from this mean, or fluctuations, reveal the system’s internal
structure and correlations. Our framework generalises this by treating the state vector ρ(ω) itself as
the core observable.

The key object, the nth-order fluctuation (Eq. (2.5)),

F (n)
ρ (ω) :=

n⊗
k=1

(
ρ(ω)− E[ρ]

)
,

and its conditional expectation Ei[F (n)
ρ ] over an event Ωi, directly correspond to the centered moments

used to characterise complex distributions. For example, Ei[F (2)
ρ ] is the conditional covariance matrix,

a fundamental second-order statistic.

Diffusion models as dynamical systems. The forward diffusion process, whether described by the
SDE (Eq. (2.1)) or the PF-ODE (Eq. (2.2)), defines a dynamical system that evolves an initial data
distribution p0 into a sequence of marginals {pt}. The PF-ODE,

dxt

dt
= − 1

2β(t)xt − β(t)∇x log pt(xt),

describes a deterministic flow governed by a vector field. Its associated continuity equation, ∂tpt +
∇x · (ptvt) = 0, confirms that pt evolves via a deterministic transport of probability mass. This
deterministic evolution makes it a perfect setting for applying our fluctuation analysis to track how
the moment structures of different subpopulations (events) evolve and merge over time [Biroli and
Mézard, 2023, Raya and Ambrogioni, 2024].

Fluctuations and the significance of mergers. A cornerstone of statistical physics is the deep
connection between a system’s internal fluctuations and its large-scale correlational structure [Chaikin
et al., 1995, Kivelson et al., 2024]. This principle, often formalised in Fluctuation-Dissipation
Theorems, provides the physical intuition for our approach.

For our purposes, this connection justifies why monitoring cross-fluctuations is meaningful. The
normalised cross-fluctuation M(n)

ρ acts as a generalised correlation function between the moment
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structures of two events. A sharp change in this correlation (i.e., a merger where |M(n)
ρ | → 1)

signals that the two events have become statistically indistinguishable with respect to their n-th
order structure. In physical systems, such a loss of distinguishability is the hallmark of a phase
transition, where the system undergoes a qualitative change. While we do not compute system-wide
thermodynamic quantities directly, detecting the merger via M(n)

ρ serves as a direct, practical probe
for these critical points in the diffusion trajectory.

Working with multiple states. In Eqs. (2.6) and (2.8) we defined

G(n)
ρ1,ρ2

and M(n)
ρ1,ρ2

,

allowing ρ1 and ρ2 to be heterogeneous (i.e., ρ1 ̸= ρ2). As the following example illustrates, different
state-operator choices can yield qualitatively different cross-fluctuation behaviour.

Example 1 Let Ω be the unit circle in R2. Consider two events: Ω1, the arc in the first quadrant
(x > 0, y > 0), and Ω2, the arc in the second quadrant (x < 0, y > 0). Assume a uniform
distribution on the circle. Let the state operator be the identity, ρ(x, y) = [x, y]⊤. The global mean
is E[ρ] = [0, 0]⊤.

For n = 2, we compute the conditional covariance matrices Σ1 = E1[F (2)
ρ ] and Σ2 = E2[F (2)

ρ ] by
evaluating standard integrals. This leads to the following conclusions,

• The mean of Ω1 is E1[ρ] = [2/π, 2/π]⊤. Its covariance matrix Σ1 will have a dominant
eigenvector along the direction [1,−1]⊤, indicating negative correlation (as y decreases
when x increases along the arc).

• The mean of Ω2 is E2[ρ] = [−2/π, 2/π]⊤. Its covariance matrix Σ2 will have a dominant
eigenvector along [1, 1]⊤, indicating positive correlation.

Since the dominant structures (covariance matrices) Σ1 and Σ2 are nearly orthogonal, their Frobenius
inner product Tr(Σ⊤

1 Σ2) will be close to zero. Consequently, their normalized cross-fluctuation
M(2)

ρ (Ω1,Ω2) will be close to 0, correctly identifying the events as structurally distinct.

This flexibility is crucial in quantum mechanics, where one often considers distinct pure-state
projectors

ρi = |ψi⟩ ⟨ψi|
on a Hilbert space H.8 Their cross-fluctuations underpin tasks such as quantum state tomography
and discrimination of non-orthogonal states Nielsen and Chuang [2010], Peres [1995].

More generally, heterogeneous ρ1, ρ2 detect an alignment between two evolving state spaces. For
example, if text and image embeddings are both driven by the same diffusion dynamics, choosing ρ1
and ρ2 to sample each modality reveals how a given concept manifests across them. We leave such
multimodal extensions for future work.

B.1.2 On the validity of fluctuation theory

The entire fluctuation framework rests on the existence and properties of moments, which are
fundamentally linked to the derivatives of the characteristic function (CF). For a random vector
ρ ∈ Rd, its characteristic function is the Fourier transform of its probability law:

φρ(t) = E
[
eit

⊤ρ
]
, t ∈ Rd.

The CF always exists and satisfies |φρ(t)| ≤ 1. If moments up to order n exist, the CF is n-times
differentiable at the origin. The derivatives of the CF generate the moment tensors. For example, the
raw second moment tensor (a matrix) is given by the Hessian of the CF at the origin:

E[ρjρk] =
1

i2
∂2φρ

∂tj∂tk

∣∣∣∣
t=0

.

8Mathematically, measurements project the density operator onto the eigenspace associated with the outcome;
see Nielsen and Chuang [2010] for details.
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To obtain the centered moment tensors used in our framework, one differentiates the characteristic
function of the centered variable ρ− E[ρ]. The conditional expectation of the nth-order fluctuation
tensor, Ek[F (n)

ρ ], is thus completely determined by the derivatives of the conditional characteristic
function φρ(t|Ωk) at the origin. This connection is crucial for the moment-TV inequality used in our
theoretical results (Theorem 5).

Foundational facts. The theory of characteristic functions is well-established [Lukacs, 1970]:

1. Uniqueness. If φX(t) = φY (t) for all t, then X and Y have the same distribution.
2. Inversion. The distribution can be recovered from the CF. For instance, in one dimension:

CDF(x) = 1
2 − 1

π

∫ ∞

0

ℑ
(
e−itx φX(t)

)
t

dt [Dudley, 2018].

3. Convolution. For independent X,Y , the CF of their sum is the product of their CFs:
φX+Y (t) = φX(t)φY (t).

Theorem 2 (Bochner’s theorem for Rd) A function φ : Rd → C is a characteristic function of
some random vector if and only if it is positive-definite, continuous at the origin, and φ(0) = 1.

Proof. See Rudin [1962, Thm. 15.2] for the 1D case, which generalises to Rd.

Remark 3 (Existence of the characteristic function) We assume the state operator ρ has a well-
defined characteristic function, which is a very mild condition. It is automatically satisfied by
most data distributions in machine learning and physics [Blanchard and Brüning, 2015, Bertini
et al., 2002]. This assumption is more fundamental than the existence of a density, as characteristic
functions also exist for purely discrete or singular measures [Dudley, 2018, Rudin, 1962], giving the
approach greater utility [Ansari et al., 2020, Sriperumbudur et al., 2010].

B.1.3 Merger Times as an efficient proxy for convergence in total variation

The justification for using merger times as a proxy for convergence is a two-step argument connecting
our practical measurement to fundamental theory.

First, we validate our specific measurement technique, proving that the computationally efficient
method of directly thresholding the distance between moment tensors is topologically equivalent to
the intuitive alternative of monitoring the cross-fluctuation similarity |M(n)

ρ |.
Second, we establish the core theoretical link. A moment-TV inequality proves that this proximity
between moments rigorously guarantees that the total variation distance between the underlying
distributions also vanishes.

This validates our method: measuring tensor distance is a sound and efficient proxy for observing
true distributional convergence.

B.1.3.1 Equivalence of distance and similarity based merger thresholds

In our main methodology (Section 3), we define the discrete transition detector M̃(n)
ρ (i) using a

threshold on the distance between conditional expected fluctuation tensors:

M̃(n)
ρ (i) =

{
|M(n)

ρ

(
Ω1,i,Ω2,i

)
|, ∥E1[F (n)

ρ (Ω1,i)]− E2[F (n)
ρ (Ω2,i)]∥Hn > ε,

1, otherwise.
(B.1)

An alternative, and perhaps more direct, formulation would be to threshold the value of |M(n)
ρ | itself:

M̃(n)
ρ,alt(i) =

{
|M(n)

ρ

(
Ω1,i,Ω2,i

)
|, 1− |M(n)

ρ

(
Ω1,i,Ω2,i

)
| > ϑ,

1, otherwise.
(B.2)

Here, we show that these two thresholding criteria are topologically equivalent, meaning they detect
the same notion of convergence. The first formulation is often more computationally stable and
efficient and hence is the prefered choice in our work.
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Theorem 4 Let the conditional expected fluctuation tensors Ek[F (n)
ρ (Ωk)] for events Ωk reside in a

Hilbert space Hn with norm ∥ · ∥Hn
. Define two metrics on the space of pairs of events (Ω1,Ω2):

1. The direct distance between their moment tensors: dF (Ω1,Ω2) := ∥E1[F (n)
ρ (Ω1)] −

E2[F (n)
ρ (Ω2)]∥Hn

.

2. The similarity-based distance: dM(Ω1,Ω2) := 1− |M(n)
ρ (Ω1,Ω2)|.

If the mapping Ω 7→ Ek[F (n)
ρ (Ω)] is continuous with respect to a suitable topology on the

space of events, then the metrics dF and dM are topologically equivalent in any region where
∥Ek[F (n)

ρ (Ωk)]∥Hn
is bounded away from zero.

Proof. To establish topological equivalence, we show that for any sequence of event pairs
{(Ω1,k,Ω2,k)}∞k=1, convergence under metric dF is equivalent to convergence under metric dM. Let
Ak = E1[F (n)

ρ (Ω1,k)] and Bk = E2[F (n)
ρ (Ω2,k)] be the corresponding sequence of tensors in the

Hilbert space Hn.

Part 1: dF → 0 =⇒ dM → 0. Assume that dF (Ω1,k,Ω2,k) → 0 as k → ∞. This means
∥Ak −Bk∥Hn

→ 0.

First, by the reverse triangle inequality, we have:

|∥Ak∥Hn
− ∥Bk∥Hn

| ≤ ∥Ak −Bk∥Hn
.

Since the right-hand side goes to zero, the norms converge to each other. As we are in a region where
the norms are bounded away from zero, if ∥Ak∥ converges to a limit L > 0, then ∥Bk∥ must also
converge to L.

Second, the inner product is a continuous function on Hn × Hn. This follows from the Cauchy-
Schwarz inequality:

|⟨Ak, Bk⟩ − ⟨Bk, Bk⟩| = |⟨Ak −Bk, Bk⟩|
≤ ∥Ak −Bk∥Hn

∥Bk∥Hn
.

As ∥Ak − Bk∥Hn → 0 and ∥Bk∥Hn is bounded, the right-hand side goes to zero. This shows
⟨Ak, Bk⟩ − ∥Bk∥2 → 0. Since ∥Ak∥ → ∥Bk∥, we have ⟨Ak, Bk⟩ → L2.

Now consider the limit of |M(n)
ρ |:

lim
k→∞

|M(n)
ρ (Ω1,k,Ω2,k)| = lim

k→∞

|⟨Ak, Bk⟩|
∥Ak∥Hn∥Bk∥Hn

=
L2

L · L
= 1.

Therefore, dM(Ω1,k,Ω2,k) = 1− |M(n)
ρ (Ω1,k,Ω2,k)| → 0.

Part 2: dM → 0 =⇒ dF → 0. Assume that dM(Ω1,k,Ω2,k) → 0 as k → ∞. This
means |M(n)

ρ (Ω1,k,Ω2,k)| → 1. Let θk be the angle between Ak and Bk. Then | cos θk| =

|M(n)
ρ (Ω1,k,Ω2,k)|, which implies | cos θk| → 1.

Consider the squared distance d2F = ∥Ak −Bk∥2. Using the law of cosines in a Hilbert space:

∥Ak −Bk∥2 = ∥Ak∥2 + ∥Bk∥2 − 2⟨Ak, Bk⟩ = ∥Ak∥2 + ∥Bk∥2 − 2∥Ak∥∥Bk∥ cos θk.
For the distance to converge to zero, we require not only that the angle between the vectors vanishes
(i.e., cos θk → 1), but also that their norms converge to the same value. The physical process of
distributional merging implies that not only the orientation of the moment structures but also their
magnitudes become identical. We therefore assume that as events merge, if ∥Ak∥ converges, then
∥Bk∥ converges to the same limit L > 0. Under this assumption:

lim
k→∞

∥Ak −Bk∥2 = lim
k→∞

(∥Ak∥2 + ∥Bk∥2 − 2∥Ak∥∥Bk∥ cos θk)

= L2 + L2 − 2(L)(L)(1)

= 0.

30



Thus, dF (Ω1,k,Ω2,k) = ∥Ak −Bk∥ → 0.

Since convergence under dF is equivalent to convergence under dM, the two metrics induce the same
topology.

B.1.3.2 Fluctuation moments bound total variation distance

We now show that asymptotically utilizing fluctuation theory to understand mergers is equivalent to
probing the similarity of probability distributions using the Total Variation Distance.

Theorem 5 (Moment–TV inequality) Fix an integer n ≥ 2. Let p, q be probability densities on R
that

(i) are of bounded variation;

(ii) admit centred moments µ̂(k)
p , µ̂

(k)
q for k = 1, . . . , n+ 1;

(iii) obey the moment proximity bound |µ̂(k)
p − µ̂

(k)
q | ≤M for k = 1, . . . , n;

(iv) satisfy the uniform first– and second–moment bound |µ̂(1)
• |, µ̂(2)

• ≤ B;

(v) have matching tails: lim
R→∞

∫
|x|>R

(p− q) = 0.

Then
dTV(p, q) ≤ Cn

(
M2 +B

)
,

where one may take Cn = c0 (1 + n!) (2n + 48) and c0 > 0 is an absolute constant.

Proof. 1. Characteristic–function bound. To connect the proposition’s conditions to the proof, we
work with the characteristic functions (CFs) of the centered random variables. Let fp(t) and fq(t)
denote these adjusted CFs. Since p, q are absolutely continuous and of bounded variation, fp, fq
are bounded by 1 and possess derivatives up to order n+ 1 at the origin. Write the order–n Taylor
expansions with integral remainder

fp(t) =

n∑
k=0

(it)k

k!
µ(k)
p +

(it)n+1

n!

∫ 1

0

(1− s)nµ(n+1)
p eistX ds.

Subtract the analogous expression for fq, use hypothesis (iii), and take absolute values and the
standard property of integrals:

|fp(t)− fq(t)| ≤
n∑

k=1

|t|k

k!
M +

|t|n+1

(n)!

∫ 1

0

(1− s)n
∣∣∣µ̂(n+1)

p − µ̂n+1
q eistX

∣∣∣ ds.
Now, use the triangle inequality and note that the integral is a simple weighting integral this gives,

|fp(t)− fq(t)| ≤
n∑

k=1

|t|k

k!
M +

|t|n+1

(n+ 1)!

(
µ̂(n+1)
p + µ̂(n+1)

q

)
. (B.3)

2. Bounding the (n+1)st moments. By Jensen’s inequality, µ̂(n+1)
• ≤

(
µ̂
(2)
•
)(n+1)/2 ≤ B(n+1)/2.

Insert this in (B.3) to get

|fp(t)− fq(t)| ≤ anM |t|+ bnB
(n+1)/2|t|n+1, (An)

where an :=
∑n

k=1
1
k! , bn := 2

(n+1)! .
3. Esseen’s smoothing inequality. For any T > 0 (Ibragimov., 1975, Thm. 1.5.4),

dTV(p, q) ≤ 1

2π

∫ T

−T

∣∣∣fp(t)− fq(t)

t

∣∣∣dt+ 24

πT

(
Var(p) + Var(q)

)
. (B.4)
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Integral term: divide (An) by |t| and integrate,

1

2π

∫ T

−T

∣∣∣fp − fq
t

∣∣∣ ≤ anMT +
bn

n+ 1
B(n+1)/2 T n+1.

Variance term: hypothesis (iv) yields Var(p),Var(q) ≤ B +M2, so the second term in (B.4) is
bounded by 48 (B +M2)/(πT ).

4. Choice of T . Set T = 1. (A different T only rescales the constant.) The bounds become

dTV(p, q) ≤
[
an + bn

]
M +

[
an + bn

]
B(n+1)/2 +

48

π
(B +M2)

≤ Cn

(
M2 +B

)
,

where the last line uses M ≤ M2 + 1 and B(n+1)/2 ≤ 2nB for B ≥ 1, and absorbs all numeric
factors into Cn = c0 (1 + n!) (2n + 48) with a universal c0.

Remark 6 If p, q are sub-Gaussian (or sub-exponential) [Vershynin, 2018], all moments exist and
satisfy µ(k)

p = O
(
(
√
B) k

)
; the conditions of Proposition 5 are then automatically satisfied on Rd.

Generalisation to multivariate distributions and moment tensors. The logic of Theorem 5
extends to multivariate distributions on Rd. As established in Appendix B.1.2, the derivatives
of the multivariate characteristic function φρ(t) at the origin generate the moment tensors. A
multivariate version of Esseen’s inequality bounds the TV distance by an integral over the difference
of characteristic functions, which is in turn bounded by the norm of the difference between moment
tensors, ∥Ep[F (k)

ρ ]− Eq[F (k)
ρ ]∥Hk

.

B.1.4 Equivalence in continuous and discrete state spaces

We recall (and slightly adapt) the terminology of Aldous and Fill [2002], Levin and Peres [2017]
so that it aligns with the notation used in the main text and provides a foundation for generalizing
concepts to continuous processes.

Single chain and mixing time. Let S =
{
S0, S1, . . .

}
be the marginal sequence of an ergodic

Markov chain on a finite state space X . Its transition matrix is Π ∈ [0, 1]X×X and the (unique)
stationary distribution satisfies ΠS∞ = S∞. For two probability vectors p, q onX , the total-variation
(TV) distance is

dTV(p, q) =
1

2

∑
x∈X

|p(x)− q(x)| = sup
A⊆X

∣∣P (A)−Q(A)
∣∣.

The ε–mixing time of the chain is the first time the distribution is ε-close to stationarity:

tmix(ε) = min
{
t ≥ 0 : dTV

(
St, S∞

)
≤ ε
}
. (B.5)

Multiple chains and coupling time. Let Λ be a finite index set. For every λ ∈ Λ, fix an initial
event Ωλ,0 ⊆ X partitioning the state space. Run the same transition matrix on each event to obtain
a collection of conditional chains Sλ =

{
Sλ,t

}
t≥0

, where Sλ,t is the law of the chain at time t
conditioned on starting in Ωλ,0. Because the dynamics are identical, all chains converge to the same
stationary distribution S∞, but their finite-time marginals differ. The coupling time is the first time
all conditional chains become ε-close to each other:

tcpl(ε) = min
{
t ≥ 0 : max

α,β∈Λ
dTV

(
Sα,t, Sβ,t

)
≤ ε
}
. (B.6)

Hence, tcpl measures when all initial subpopulations have effectively merged in distribution.

Generalisation to continuous state spaces. The total-variation distance is ill-suited for comparing
distributions on continuous state spaces like Rd, where it is often trivially 1 unless the distributions
have overlapping singular parts [Bhattacharyya et al., 2024, Tao et al., 2024]. Our fluctuation-based
metric provides a natural generalisation.
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As established in Section B.1.3.2, our cross-fluctuation statistic M(n)
ρ is intimately linked to the

similarity of distributions via their moment structures. We can therefore define a generalised coupling
time using this measure of structural similarity:

t(n)gen(ε) = min
{
t ≥ 0 : min

α̸=β
|M(n)

ρ

(
Ωα,t,Ωβ,t

)
| ≥ 1− ε

}
.

This definition measures the first time t at which the least-related pair of events (α, β) has achieved a
structural similarity of at least 1− ε. It directly generalises the discrete coupling time to continuous
diffusion processes. For our main application with n = 2, this provides a practical tool for tracking
when the covariance structures of different event distributions have merged.

B.2 Application and analysis in diffusion models

B.2.1 From the empirical reverse process to the learned sampler

Our justification for analyzing the forward process hinges on its tight correspondence with the learned
reverse sampler. This connection is forged during training, where the diffusion model minimises the
simplified ELBO, an objective that intuitively trains the model fθ to predict and reverse the noise
added during the forward process.

simplified ELBO:
Lsimple = Ei∼Unif{0,...,T−1}

x0∼p0, ε∼N (0,I)

∥∥fθ(xi(x0, ε), i
)
− ε
∥∥2
2
, (B.7)

where xi(x0, ε) =
√
αi x0 +

√
1− αi ε ∼ pi (cf. Eq. (2.3)).

While practical training results in a non-zero error Lsimple > 0, a key theoretical result guarantees
that the learned sampler’s trajectory remains faithful to the true process.

Theorem 7 (Chen et al., 2022a, Thm. 1) Under standard regularity conditions, if the score error
ε⋆ is bounded and a sufficient number of reverse steps are taken, then for all steps i:

∥prev
i − p̂i∥TV ≤ ε,

where prev
i is the marginal of the true reverse process and p̂i is the marginal produced by the learned

sampler fθ.

The power of this result is its implication: closeness in total variation guarantees that all statistics,
including the cross-fluctuation metrics we use, are also close. This validation allows us to use the
computationally efficient forward process to identify merger times (i⋆), confident that these critical
points directly correspond to observable behaviors in a well-trained reverse sampler.

B.2.2 Pull-back of data events along the PF-ODE

Our method tracks the evolution of distinct subpopulations, or events, through the forward diffusion
process. For the deterministic probability-flow ODE (Eq. (2.2)), this evolution is governed by a
well-behaved flow map.

Let Φs→t : Rd → Rd be the flow map of the PF-ODE. Because the drift field is globally Lipschitz
under standard assumptions, Φs→t is a bijection for every 0 ≤ s < t ≤ T . The continuity equation,

∂tpt +∇x ·
(
pt vt

)
= 0,

implies that the time-t marginal pt is the push-forward of the time-s marginal ps under the flow map:

pt = (Φs→t)#ps, which means Pt(B) = Ps

(
Φ−1

s→t(B)
)

for any measurable set B ⊆ Rd,

where Pt is the probability measure associated with the density pt.

From source events to time-t marginals. Fix two disjoint source events Ω1,0,Ω2,0 ⊆ supp(p0).
We define their images at a later time t by pulling them forward along the flow:

Ωk,t := Φ0→t

(
Ωk,0

)
, k ∈ {1, 2}, t ∈ [0, T ].

Since Φ0→t is a diffeomorphism, each Ωk,t is a well-defined measurable set. While the source events
Ωk,0 are disjoint, their images Ωk,t may overlap as the diffusion progresses.
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Event probabilities along the flow. The push-forward nature of the flow ensures that the probability
mass of each event is preserved over time. For any k ∈ {1, 2}:

Pt

(
Ωk,t

)
= Pt

(
Φ0→t(Ωk,0)

)
= P0

(
Ωk,0

)
.

This confirms that {Ωk,t} are valid events with constant probability under their respective marginals
pt at every time t.

Monitoring mixing via cross-fluctuations. Even when the supports of the events, Ω1,t and Ω2,t,
begin to overlap, our cross-fluctuation statistic M(n)

ρ

(
Ω1,t,Ω2,t

)
remains well-defined as it compares

the internal moment structures of the distributions conditioned on these events. A value of |M(n)
ρ |

approaching one marks the moment the two event distributions become structurally indistinguishable,
i.e., the merger time tmerge.

B.2.3 Stochastic–flow formulation for the SDE view

Appendix B.2.2 defined Ωk,t = Φ−1
0→t(Ωk,0) via the deterministic flow Φs→t of the PF-ODE (2.2).

We now show that the same construction works pathwise for the stochastic forward SDE

dxt = − 1
2β(t)xt dt+

√
β(t) dwt,

whose solution map x0 7→ xt depends on the Wiener path ω ∈ Ωprob.

Kunita’s stochastic flow of diffeomorphisms. Let φs,t(ω, ·) : Rd→Rd, 0 ≤ s ≤ t ≤ T, denote
the Kunita flow generated by (2.1) [Kunita, 1990, Ch. 4]. For every fixed ω, the map x 7→ φs,t(ω, x)
is a C1 diffeomorphism and

φs,u(ω, ·) = φt,u

(
ω, φs,t(ω, ·)

)
, 0 ≤ s ≤ t ≤ u ≤ T.

Hence the pathwise inverse φ−1
0,t (ω, ·) exists almost surely.

Given two disjoint data events Ω1,0,Ω2,0 ⊂ Rd set

Ωk,t(ω) := φ−1
0,t

(
ω,Ωk,0

)
, k ∈ {1, 2}.

The map ω 7→ 1Ωk,t(ω)(x) is Ft-measurable (Kunita’s measurability theorem), so Ωk,t is a random
closed set. Its law equals the push-forward of p0 by the SDE:

P{xt ∈ A} = Eω P
{
φ0,t(ω, x0) ∈ A

}
, x0 ∼ p0,

and we again write pt = L(xt).

Annealed cross-fluctuations. Fix n. Because φ−1
0,t (ω, ·) is C1 and p0 has finite n-th moments, the

pathwise conditional expected fluctuation tensor E[F (n)
ρ |Ωk,t(ω)] exists. To obtain deterministic

statistics, we define the annealed conditional expected fluctuation tensor, which we denote E
(n)
k,t , by

averaging its pathwise counterpart over all Wiener paths:

E
(n)
k,t := Eω

[
E[F (n)

ρ |Ωk,t(ω)]
]
.

From this, the annealed normalised cross-fluctuation, M(n)
ann , is the cosine similarity between these

deterministic annealed tensors:

M(n)
ann (Ω1,t,Ω2,t) :=

⟨E(n)
1,t ,E

(n)
2,t ⟩Hn

∥E(n)
1,t ∥Hn∥E

(n)
2,t ∥Hn

.

Since expectation commutes with the inner products and norms, all fluctuation identities remain valid
for these annealed quantities. Thus, all merger-time results proved for the deterministic PF-ODE hold
for the SDE in an expected sense, justifying the use of the same algorithms.
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B.2.4 Fluctuations offer fine-probes into the geometry of data

In this section, we illustrate that the analysis of fluctuations on a diffusion process provides a powerful
probe into the intrinsic geometry of the data itself. Our main tool for this purpose is the following
theorem,

Theorem 8 (Exponential contraction of fluctuations and MST construction) Let ρ be a Lips-
chitz state operator, such that the components of the fluctuation tensor function F (n)

ρ are square
integrable with respect to the invariant measure µ of the diffusion (i.e., F (n)

ρ ∈ L2(µ,Hn)). Let
the evolution be governed by a diffusion semigroup Pt that is self adjoint on L2(µ) and possesses a
spectral gap λ > 0.

Then, for any two initial event distributions µi, µj with densities hi, hj with respect to µ, the distance
between their conditional expected fluctuation tensors decays exponentially:

∥Ei[F (n)
ρ (t)]− Ej [F (n)

ρ (t)]∥Hn
≤ e−λt ∥F (n)

ρ ∥L2(µ,Hn) ∥hi − hj∥L2(µ).

Consequently, since the right-hand side converges to zero as t→ ∞, for any fixed ε > 0, the graph on
events with edges between pairs (Ωi,Ωj) satisfying ∥Ei[F (n)

ρ (t))]− Ej [F (n)
ρ (t))]∥Hn

≤ ε becomes
a complete graph for sufficiently large t. A complete graph on a finite number of vertices always
admits a well-defined minimal spanning tree (MST).

Proof. Before going into the details of the proof, we justify the reasonableness of the theorem’s
core assumptions in the context of a d dimensional Variance-Preserving (VP) SDE used in diffusion
models.

1. Existence of an invariant measure µ: The theorem assumes a stationary distribution µ,
which is clearly satisfied. This distribution for our case is N (0d, Id×d)

2. Self adjointness of the semigroup Pt: The theorem critically relies on the self adjointness of
the semigroup operator Pt on the Hilbert space L2(µ). The VP-SDE process is a reversible
process with respect to its Gaussian invariant measure µ. A fundamental result in the
theory of Markov processes is that reversibility of a process with respect to a measure µ
is equivalent to its generator being self-adjoint in L2(µ), which in turn implies the self
adjointness of the associated semigroup [Bakry et al., 2014].

3. Existence of a spectral gap λ > 0: This is the crucial assumption providing the exponential
decay rate. The VP-SDE process is a textbook example of a system with a spectral gap.

4. Square integrability of the fluctuation tensor F : The proof requires the norm
∥F (n)

ρ ∥L2(µ,Hn) to be finite. The invariant measure µ is Gaussian, meaning its density
decays extremely rapidly (exponentially in ∥x∥2). If the state operator ρ is Lipschitz (a mild
regularity condition), the components of the fluctuation tensor F (n)

ρ will be polynomials in
the state variables. Any polynomial function is square integrable with respect to a Gaussian
measure, making this assumption easily satisfied.

In summary, the VP-SDE process is a prime example for which all assumptions of the theorem hold,
making the conclusion of exponential convergence robust and directly applicable. We now head
towards the main proof.

The proof relies on the consequences of the spectral gap property of the diffusion semigroup Pt.
Let F ≡ F (n)

ρ denote the tensor-valued function on the state space. The difference in conditional
expectations at time t, for initial distributions µi, µj with densities hi, hj with respect to the invariant
measure µ, is a vector in the Hilbert space Hn:

Dij(t) := Ei[F(t)]− Ej [F(t)] =

∫
(PtF)(x)(hi(x)− hj(x)) dµ(x).

This is a Bochner integral of an Hn-valued function against a scalar function. The semigroup Pt is
assumed to be self adjoint on the Hilbert space L2(µ) of scalar functions. This property extends to
the space of tensor-valued functions L2(µ,Hn). We can thus move the action of the semigroup from
the function F to the density difference (hi − hj):

Dij(t) =

∫
F(x) (Pt(hi − hj)) (x) dµ(x).
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We bound the norm of this integral using the Cauchy-Schwarz inequality for Bochner integrals,
followed by the standard Cauchy-Schwarz inequality:

∥Dij(t)∥Hn
≤
∫

∥F(x)∥Hn
|(Pt(hi − hj))(x)| dµ(x)

≤
(∫

∥F(x)∥2Hn
dµ(x)

)1/2(∫
|(Pt(hi − hj))(x)|2 dµ(x)

)1/2

= ∥F∥L2(µ,Hn) ∥Pt(hi − hj)∥L2(µ).

The existence of a spectral gap λ > 0 is equivalent to the following contraction property on the
space of mean-zero functions in L2(µ): for any g ∈ L2(µ) with

∫
g dµ = 0, we have ∥Ptg∥L2(µ) ≤

e−λt∥g∥L2(µ). Since hi and hj are probability densities, their difference g = hi − hj has zero mean.
Applying the contraction property yields:

∥Ei[F(t)]− Ej [F(t)]∥Hn
≤ e−λt ∥F∥L2(µ,Hn) ∥hi − hj∥L2(µ).

The term ∥F∥L2(µ,Hn) ∥hi−hj∥L2(µ) is a constant for any fixed pair of events. The exponential term
e−λt guarantees that the distance converges to zero as t→ ∞. Therefore, for any threshold ε > 0,
there exists a time T such that for all t > T , the distance is less than ε for all pairs (i, j), making the
corresponding graph complete. An MST can always be constructed on a weighted complete graph
using standard algorithms such as Kruskal’s [Kruskal, 1956].

This exponential convergence justifies why we expect mergers to occur and provides a geometric
interpretation of the process: initially distant event structures are pulled together until they collapse
into a single point in the space of moment tensors. The above geometric perspective on the evolution
of event structures has two key implications:

1. Hierarchical refinement. We can progressively refine our analysis by choosing finer
partitions of the initial state space. Starting with broad categories (e.g., animals vs. vehicles),
we can track their mergers, then move to finer sub-partitions (e.g., cats vs. dogs) and track
their subsequent mergers. This allows for probing the system’s dynamics at increasingly
fine resolutions, all on the same underlying data distribution.

2. Connection to manifold learning. Tracking the evolution of the graph Gt on events (where
edge weights are given by the distance ∥Ei[F (n)

ρ ]−Ej [F (n)
ρ ]∥Hn ) is conceptually similar to

algorithms that build neighborhood graphs to learn low-dimensional embeddings. Methods
like t-SNE [van der Maaten and Hinton, 2008] and UMAP [McInnes et al., 2018] also rely
on connecting nearby points (or neighborhoods) to reveal underlying manifold structure.
Our framework can be seen as applying a similar principle in the time domain, tracking how
neighborhoods of events connect and merge as the diffusion process evolves. Exploring this
connection in more detail is a promising direction for future work.

B.2.5 Unbiased monte-carlo estimators for cross fluctuations

Theorem 9 (One-sweep unbiasedness) Let Ω1,0,Ω2,0 ⊆ Ω be disjoint events with probabilities
p1, p2 > 0. Simulate once N i.i.d. forward trajectories {x(i)

t }Tt=0 from the VP process. Let Z(i)
k :=

1Ωk,0

(
x
(i)
0

)
.

First, we form an unbiased estimator for the conditional expected fluctuation tensor itself:

Ê
(n)
k,t :=

1

Npk

N∑
i=1

Z
(i)
k F (n)

ρ (x
(i)
t ), k ∈ {1, 2}, (B.8)

where F (n)
ρ (x

(i)
t ) is the random fluctuation tensor for sample i at time t. This estimator is an average

of tensors and is itself a tensor in Hn.

Next, we define plug-in estimators for the unnormalised cross-fluctuation G(n)
ρ and the within-event

fluctuation magnitude F̂ (2n)
ρ based on these tensor estimators:

Ĝ(n)
ρ (Ω1,t,Ω2,t) := ⟨Ê(n)

1,t , Ê
(n)
2,t ⟩Hn

, (B.9)̂̂
F

(2n)

ρ (Ωk,t) := ∥Ê(n)
k,t ∥

2
Hn
. (B.10)
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The tensor estimator Ê
(n)
k,t is unbiased for the true conditional expected fluctuation tensor

Ek[F (n)
ρ (Ωk,t)]. Consequently, the plug-in ratio estimator for the normalised cross-fluctuation,

M̂(n)
ρ (t) :=

Ĝ
(n)
ρ (Ω1,t,Ω2,t)√̂̂

F
(2n)

ρ (Ω1,t)
̂̂
F

(2n)

ρ (Ω2,t)

=
⟨Ê(n)

1,t , Ê
(n)
2,t ⟩Hn

∥Ê(n)
1,t ∥Hn

∥Ê(n)
2,t ∥Hn

,

is consistent and asymptotically unbiased for the true value M(n)
ρ (Ω1,t,Ω2,t):

E
[
M̂(n)

ρ (t)
]
= M(n)

ρ (Ω1,t,Ω2,t) +O
(
N−1

)
.

Proof. The proof proceeds in three steps, starting with the unbiasedness of the core tensor estimator.

Step 1: Unbiasedness of the tensor estimator Ê(n)
k,t . Fix k ∈ {1, 2}. By the linearity of expectation,

we can move the expectation inside the sum:

EP
[
Ê

(n)
k,t

]
=

1

Npk

N∑
i=1

EP

[
Z

(i)
k F (n)

ρ

(
x
(i)
t

)]
.

For each term in the sum, we condition on the starting point x(i)
0 :

EP

[
Z

(i)
k F (n)

ρ

(
x
(i)
t

)]
=

∫
Rd

1Ωk,0
(x0)p0(x0)EP[F (n)

ρ (xt)|x0] dx0

= pk

(
1

pk

∫
Ωk,0

p0(x0)EP[F (n)
ρ (xt)|x0] dx0

)
= pk Ek[F (n)

ρ (Ωk,t)].

Summing N identical terms gives Npk Ek[F (n)
ρ (Ωk,t)]. Dividing by the Npk prefactor proves that

EP
[
Ê

(n)
k,t

]
= Ek[F (n)

ρ (Ωk,t)].

Step 2: Consistency of plug-in estimators. The estimators Ĝ(n)
ρ and ̂̂F (2n)

ρ are continuous functions

(inner product and squared norm) of the tensor estimator Ê(n)
k,t . Since Ê

(n)
k,t is an average of i.i.d.

random tensors, it is a consistent estimator for its mean by the Law of Large Numbers. By the

continuous mapping theorem [Billingsley, 2012], Ĝ(n)
ρ and ̂̂F (2n)

ρ are therefore consistent estimators

for G(n)
ρ and F̂ (2n)

ρ , respectively.

Step 3: Bias of the ratio estimator. The estimator M̂(n)
ρ (t) is a smooth function of the components of

the estimators Ê(n)
1,t and Ê

(n)
2,t . Each of these components is an average of N i.i.d. random variables.

By the multivariate Central Limit Theorem, the joint distribution of these averages converges to
a normal distribution. The delta method for ratios of random variables then applies directly. A
multivariate second-order Taylor expansion of the cosine similarity function around the true expected
tensor values shows that the linear terms in the bias expansion vanish, and the bias is of order
O(N−1).

Remark 10 All computations rely on the same set of N forward trajectories. The primary computa-
tional step is to compute and store the random fluctuation tensors {F (n)

ρ (x
(i)
t )} for each sample and

time step, from which all other quantities can be derived.

B.3 Framework connections, extensions, and interpretation

B.3.1 Mixing time of isotropic Gaussians under Brownian diffusion

We quantify how long the forward VP–SDE (2.1) needs to forget an isotropic sub-Gaussian input and
become ε-close (in total variation) to its Gaussian limit. Write

J(t) = exp
(
− 1

2

∫ t

0

β(s) ds
)
,
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the deterministic attenuation factor from (2.4).

Proposition 11 (Mixing time for sub-Gaussian data) Let y ∈ Rd have i.i.d. mean-zero, unit-
variance components that are σ2-sub-Gaussian: Pr(|yi| > t) ≤ 2e−t2/2σ2

. Evolve y with the
VP–SDE (2.1) and denote L(xt) = pt. For every ε∈ (0, 1) the ε-mixing time

tmix(ε) := inf
{
t ≥ 0 : dTV

(
pt,N (0, Id)

)
≤ ε
}

satisfies

J
(
tmix(ε)

)
≤ 2

d

(
1 +O

(
σ2 log 1

ε

))
, and J

(
tmix(e

−1)
)
= Θ(d−1).

Proof. Step 1: tails of the input. Sub-Gaussianity yields E∥y∥22 = d and Var ∥y∥22 ≤ Cd (for
C = C(σ)). Bernstein’s inequality Vershynin [2018] gives ∥y∥22 = d±O(

√
d) w.h.p.

Step 2: second moment under the SDE. Conditioned on y, E∥xt∥22 = J(t)2∥y∥22 + d
(
1− J(t)2

)
, so

averaging produces E∥xt∥22 = d+ J(t)2O(
√
d).

Step 3: bounding χ2. Pinsker’s inequality Cover and Thomas [2006] gives d2TV ≤ 1
2χ

2. For Gaussians
with equal means, χ2 = (detΣ)−1/2 exp

(
1
2 tr(I −Σ−1)

)
− 1. With Σ = J(t)2Id + (1− J(t)2)Id,

d2TV(pt,N ) ≤ 1
2d

J(t)4

1− J(t)2
(
1 +O(d−1/2)

)
.

Step 4: solve for J(t). Setting the rhs to ε2 and solving yields the claimed bound.

Closed form for a linear schedule. With β(t) = β0 + (βT − β0)t/T ,

J(t) = exp
(
− 1

2β0t−
1
4 (βT − β0)

t2

T

)
.

Taking ε = e−1 in Theorem 11, log J(tmix) ≃ − log d+ log 2, so tmix solves a quadratic. For the
DDPM defaults (β0, βT , T ) = (10−4, 0.02, 1000):

tmix + 0.0995 t2mix = 5000 log
(
d/2
)
.

Data dimension Pred. tmix/T Obs. i⋆/T
3× 32× 32 (CIFAR-10) 0.602 0.60
1× 28× 28 (MNIST) 0.543 0.60
4× 32× 32 (ImageNet latents) 0.614 0.70

Table 8: Theoretical mixing index vs. empirical convergence index.

Table 8 shows theory versus measured convergence indices; the Θ(d−1) scaling persists on real data.

Thus, it is possible to estimate the mixing time for sub-gaussian data analytically, in fact due to
concentration bounds on high-dimensional sub-gaussians Vershynin [2018] it could be shown that
the above time manifests physically as a symmetry breaking transition, leading to an estimate
consistent with Raya and Ambrogioni [2024] for spherically symmetric distributions and in Biroli
et al. [2024] for gaussian mixtures. Interestingly, ImageNet latent representations align closely
with these theoretical estimates. We hypothesise that this occurs because the compressed space
corresponds to the latent space of a Variational Autoencoder (VAE) trained to approximate a Gaussian
distribution, potentially making these latents effectively sub-Gaussian. Verification of this hypothesis
and related questions remains future work.

B.3.2 Higher-order fluctuations as a proof of concept

To make higher-order analysis computationally tractable, we transition from analyzing the full rank-n
fluctuation tensor F (n)

ρ to analyzing the moments of a corresponding scalar-valued random variable.
This simplification is equivalent to assuming the components of the state vector are i.i.d. and studying
the dynamics of a single component. This bypasses tensor computations and allows us to work with
scalar moments.
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Under this assumption, we can track the scalar moment identity:

µ̂
(n)
i (t) = J(t)n µ̂

(n)
i (0) +

(
1− J(t)n

)
µ̂
(n)
N ,

where µ̂(n)
i (t) is the n-th centered moment for class i at time t. For the Gaussian limit, Isserlis’/Wick’s

theorem[Isserlis, 1918, Wick, 1950] can be applied because the components are treated as jointly
Gaussian. The theorem states that higher-order moments of a Gaussian are polynomials in the
variance, and odd moments are zero. This rule lets us draw the higher-order generative diagrams in
Figures 3-4. Compared with the second-order diagram, high-order curves fan out more widely at
early times—evidence that non-linear features dominate, but they collapse sooner, consistent with the
rapid J(t)n decay.
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B.3.3 Centred kernel alignment (CKA)

Kernel alignment measures how similarly two Gram matrices embed the same data. ForK,L ∈ Rn×n

the uncentred score is the cosine in Rn2

[Cristianini et al., 2001]:

A(K,L) =
⟨K,L⟩F

∥K∥F ∥L∥F
, ⟨K,L⟩F :=

∑
ij

KijLij .

Because A reacts to mean shifts, Cortes et al. [2012] introduced centred kernel alignment

Ac(K,L) := A
(
HKH,HLH

)
, H := In − 1

n11
⊤.

Ac is invariant to any feature-space translation and, for linear kernels, to orthogonal mixing and
isotropic scaling.

CKA for covariance kernels. Section 4.2 sets K̃ = Σi,t, L̃ = Σj,t. For symmetric matrices

⟨K̃, L̃⟩F =

d∑
m=1

λi,t,m λj,t,m, (B.11)

∥K̃∥2F =

d∑
m=1

λ2i,t,m, ∥L̃∥2F =

d∑
m=1

λ2j,t,m, (B.12)

where {λi,t,m} are the eigenvalues of Σi,t and mutatis mutandis for {λi,t,m}. Under the VP flow
they contract as λi,t,m = λi,0,mJ(t)

2 +
(
1 − J(t)2

)
[Biroli et al., 2024]. The largest eigenvalue

dominates once J(t)2 ≪ λi,0,2/λi,0,1, so

Ac

(
Σi,t,Σj,t)

)
↑ 1 ⇐⇒ λi,t,1 ≃ λj,t,1.

Therefore tracking the top eigenvalues λi,t,1, λj,t,1 gives an efficient proxy for merger of Ωi,t and
Ωj,t in Section 4.2.
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B.3.4 Structural regularity bounds fluctuations

This section provides a more rigorous justification for the Fluctuation adaptation lemma from
Section 4.5, which posits that structurally similar distributions exhibit similar fluctuation dynamics.
The premise is the Fourier regularity condition from Eq. (4.7), stating that the L2 distance between the
characteristic functions (CFs) of the source and target-style distributions is small: ∥p̂0 − p̂⋆∥L2 ≤ δ.
The challenge is to show that this integral bound on the CFs implies a bound on the fluctuation
tensors, which are determined by pointwise derivatives of the CFs at the origin.

The bridge between these two concepts is provided by the Sobolev Embedding Theorem [Adams and
Fournier, 2003]. This theorem connects a function’s average smoothness, measured by its Sobolev
norm ∥f∥Hs , to its pointwise smoothness, such as the boundedness of its derivatives. However, the
Sobolev norm, ∥g∥2Hs =

∫
(1 + |ξ|2)s|g(ξ)|2 dξ, is stronger than the standard L2 norm due to the

frequency-weighting factor (1+ |ξ|2)s. Therefore, a small L2 norm does not automatically guarantee
a small Sobolev norm. To bridge this gap, we must introduce a more explicit regularity assumption
on the style transfer process itself:

Assumption: The style transfer transformation Tstyle is assumed to be sufficiently regular such that the
difference in characteristic functions, g(ξ) = p̂0(ξ)− p̂⋆(ξ), not only has a small L2 norm but also
has rapidly decaying high-frequency content. Formally, this means there exists a constant K such
that ∥g∥Hs ≤ K∥g∥L2 for the required Sobolev order s. This assumption holds if, for instance, the
style transfer primarily modifies low-to-mid frequency components of the distribution, a common
case for artistic stylisation that preserves core structures.

With this assumption, the argument is complete. The Sobolev Embedding Theorem can now be
directly applied:

|Dαg(0)| ≤ C∥g∥Hs ≤ CK∥g∥L2 ≤ CKδ.

This step guarantees that the difference between each individual scalar component of the correspond-
ing moment tensors is bounded by O(δ). This component-wise bound is then extended to a norm on
the entire fluctuation tensor. The conditional expected fluctuation tensor, E0,Ω[F (n)

ρ ], is an element of
the Hilbert space Hn of rank-n tensors. Let ∆F = E0,Ω[F (n)

ρ ]−E⋆,Ω⋆ [F (n)
ρ ] be the difference tensor.

The squared Frobenius norm of this tensor is the sum of the squared magnitudes of its components:
∥∆F∥2Hn

=
∑

j |(∆F )j|2. Since we established that each component is bounded, |(∆F )j| ≤ Cjδ,
the norm of the full tensor is also bounded:∥∥∥E0,Ω[F (n)

ρ ]− E⋆,Ω⋆ [F (n)
ρ ]
∥∥∥
Hn

≤ C ′
nδ.

Finally, since the normalised cross-fluctuation M(n)
ρ is defined as the cosine of the angle between

these tensors in the Hilbert space Hn, it is a continuous function of its tensor arguments [Conway,
1990]. Therefore, a small perturbation in the input tensors, bounded by O(δ), leads to a corre-
spondingly small change in the value of M(n)

ρ . This ensures that the merger times are stable under
the stylistic transformation, rigorously justifying the use of a schedule computed on the source
distribution for the zero-shot style transfer task.

B.3.5 Extending the framework to certain non Markovian samplers

For a non Markovian latent chain the marginal pi depends on the entire future tail
{pi+1, pi+2, . . . , pn}. Hence the pull–back Ωk,0 7→ Ωk,i is well defined only if every conditional
kernel beyond step i is known. This hurdle disappears when the latent family belongs to a natural
exponential family (NEF).

Tail statistic Markovisation. An NEF on Rd has densities pθ(x) = h(x) exp
(
⟨θ, T (x)⟩ −A(θ)

)
,

with sufficient statistic T and log-partition function A. For an independent sequence {Xi}ni=1 drawn
from an NEF, define the tail statistic

Gi :=

n∑
t=i

T (Xt), i = 1, . . . , n.

The Pitman–Koopman–Darmois theorem gives
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Theorem 12 (Tail statistic Markov property Pitman, 1936)

(i) If {Xi} are i.i.d. from an NEF, the conditional sequence {L(Xi | Gi)}ni=1 is first-order Markov.

(ii) Conversely, if a statistic sequence {Gi} makes {L(Xi | Gi)} Markov for all n, then the
marginals must form an NEF.

Thus the random vector Gi captures all future information relevant at step i.

Injecting the tail statistic into fluctuations. Fix disjoint initial events Ω1,0,Ω2,0. Condition on
Gi = g and apply the deterministic PF-ODE of Appendix B.2.2 inside the fibre {Xi | Gi = g}:

Ωk,i(g) :=
{
x ∈ Rd : φ−1

0→i(g, x) ∈ Ωk,0

}
, k ∈ {1, 2}.

Because the conditioned kernels are Markov (Theorem 12), this construction mirrors the purely
Markovian case. The pathwise cross-fluctuation M(n)

ρ

(
Ω1,i(g),Ω2,i(g)

)
is the cosine similarity

between the conditional expected fluctuation tensors for a given g. Averaging over the law of Gi

yields the annealed cross-fluctuation:

M(n)

ρ (Ω1,i,Ω2,i) :=

∫
M(n)

ρ

(
Ω1,i(g),Ω2,i(g)

)
dPGi

(g).

Every algebraic identity from the main framework now carries over to this tail-averaged counterpart.
A merger is detected when |M(n)

ρ | → 1. Star-DDPM Okhotin et al. [2023] is a recent work that uses
a similar formulation to obtain non Markovian diffusion generative models.

Thus, whenever a non Markovian diffusion admits a finite-dimensional tail statistic—a property
guaranteed for exponential-family latents—conditioning on that statistic restores the Markov property
and lets the fluctuation framework operate unchanged. Identifying broader classes of tail markovizable
samplers is a promising direction for future work.

B.3.6 Phases of diffusion model dynamics

We analyze diffusion model dynamics by distinguishing between two types of phase transitions.
Our approach is inspired by discretisation based analyses in physics [Kogut, 1983], but we treat
the system’s discrete nature, its time steps and finite precision—as a fundamental property, not a
computational artifact. This leads us to differentiate between:

(1) Thermodynamic. A discontinuity in the n-th classical derivative of a system-wide property,
(Φ(n)), at some time t0 (assuming (Φ ∈ Cn)). Such transitions, studied in the continuum limit,
are typically exclusive, meaning at most one can occur for the whole system at a given time
[Biroli et al., 2024].

(2) Lattice. For a given step size τ > 0, if there exists a discontinuity threshold ϱdisc > 0 such that
for the n-th finite differences from the left (LD(n)

τ Φ) and right (RD(n)
τ Φ), the below inequality

holds, then the observable Φ undergoes a lattice transition at step t0 of order n.

∥LD(n)
τ Φ(t0)− RD(n)

τ Φ(t0)∥ ≥ ϱdisc.

Lattice transitions include thermodynamic ones in the limit τ → 0 but are generally non-exclusive.

Our core observable for detecting these transitions is the absolute normalised cross-fluctuation,
|M(n)

ρ |. This quantity measures the cosine similarity of the conditional expected fluctuation tensors
of two evolving events. A merger signifies that these tensors have aligned, i.e., |M(n)

ρ | → 1. Our
merger time i⋆ is precisely a lattice transition point for this observable, defined by our chosen merger
distance threshold ε (as in Eq. (3.1)).

Theorem 13 The merger event detected by M̃(n)
ρ as defined by our merger distance threshold ε in

Eq. (3.1) constitutes a lattice transition at the merger time i⋆.

Proof. Consider two initially disjoint events Ω1,0,Ω2,0 ⊂ Ω0. Let i⋆ denote the merger time given by
Eq. (3.1). From the topological equivalence proved in Theorem 4, there exists a constant ϑ > 0 such
that at the merger, ∣∣|M(n)

ρ (Ω1,i⋆ ,Ω2,i⋆)| − 1
∣∣ ≤ ϑ.
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By selecting a suitable merger distance threshold ε > 0 in the metric dn(·, ·) used in Eq. (3.1), we
can ensure ϑ < 1/2. Let our observable be Φ(i) = |M(n)

ρ (Ω1,i,Ω2,i)|. It follows that Φ(i⋆) ≥ 1−ϑ.
Due to the hypercontractivity of the underlying Brownian motion, the structural similarity between
events is monotonically increasing, hence Φ(i) is monotonically increasing in i. This monotonicity
implies that for a discrete step size τ , the rate of approach to the merger is bounded. For the n-th
order finite differences, this can be shown to satisfy:

RD(n)
τ

(
Φ(i⋆)

)
≤ ϑ

τn
, and LD(n)

τ

(
Φ(i⋆)

)
≥ 1− ϑ− Φ(i⋆ − nτ)

τn
.

The key insight is that the jump into the merged state is a finite, discrete event. Applying the reverse
triangle inequality to the difference in the finite derivatives gives:∥∥LD(n)

τ (Φ(i⋆))− RD(n)
τ (Φ(i⋆))

∥∥ > 0,

which establishes the existence of a lattice transition at the merger time, by demonstrating a non-zero
jump in the finite differences, which can be thresholded by a chosen εdisc. Notice that as this relies on
finite τ and ϑ, this transition is not necessarily thermodynamic.

Thermodynamic phases from prior works. For class-conditioned VP diffusion, Biroli et al.
[2024] proved two thermodynamic boundaries tu→s (unbiased → speciation) and ts→c (speciation
→ condensation):

unbiased [0, tu→s) ⊂ speciation (tu→s, ts→c) ⊂ condensation (ts→c, T ].

Relation of class conditional lattice mergers to thermodynamic phases. For two classes k ̸= ℓ
define the centred cross-fluctuation Mkℓ(t) ((4.5) in Section 4.2). Its ε-merger time is

tlatkℓ (ε) := inf{t ≥ 0 : Mkℓ(t) ≥ 1− ε}, ε ∈ (0, 1).

Lemma 14 (Merger times lie inside the speciation phase) For all k ̸= ℓ and ε ∈ (0, 1),

tu→s < tlatkℓ (ε) ≤ ts→c.

Proof. Unbiased phase. If t < tu→s then pk,t = pl,t, so Mkℓ(t) = 1; no upward crossing can occur.

Condensation phase. For t > ts→c each covariance (4.3) satisfies λmax(Σk,t) ≤ e−c(t−ts→c) [Biroli
et al., 2024, Prop. 4]. Using (B.12), 1−Mkℓ(t) = O(e−c(t−ts→c)); hence Mkℓ(t) ≥ 1− ε for all
large t. No new crossing can start after ts→c.

Speciation phase. Because a crossing cannot start before tu→s or after ts→c, any merger time must
lie in (tu→s, ts→c].

The phase spectrum. Figure 5(a) details the spectrum of phases revealed by our lattice approach.
For any choice of ϵ > 0, the system can be characterised by the number of merger events required to
connect all events in a partition. The plot visualises a sequence of distinct states:

i. Unrealizable thermodynamic phase ϵ = 0: An unattainable limit which admits only a single
possible merger at t→ ∞.

ii. Unrealizable phase (0 < ϵ < ϵmin): Below the computational precision limit, a maximal
number of K potential mergers exist, but they are not observable.

iii. Realizable plateau (ϵmin ≤ ϵ < ϵstart): The system is observable and the threshold allows for
maximum number of mergers possible.

iv. Staircase phase (ϵstart ≤ ϵ < ϵend): As ϵ increases, it becomes less sensitive to the structural
differences between events. The single macro-state of "maximum potential mergers" splits
into a spectrum of fine-grained states, visualised as a downward staircase. Each step is a
lattice transition where the number of distinct merger events required to connect the class graph
decreases.

v. Saturated phase (ϵ ≥ ϵend): The threshold is so large that a single overarching rule merges all
events. The system becomes a singleton for discrimination purposes, losing all distinguishing
power.
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Figure 5: Conceptual visualisation of lattice transition dynamics. (a) The phase diagram illustrates how
the number of merger events changes with the threshold ϵ. Adopting a lattice perspective reveals a spectrum of
distinct phases: an unrealizable thermodynamic phase at ϵ = 0 which admits a single speciation transition, an
unrealizable region below the system’s precision limit, a realizable plateau of maximum potential mergers, a
staircase of sequential transitions where the system "splits" into fine-grained merger states, and a final saturated
state. (b) The feasibility frontiers visualise the trade-off between merger time t∗ and threshold ϵ. The relationship
is analogous to an uncertainty principle, where higher-order fluctuations merge faster, shifting their feasibility
frontiers to the left.
Feasibility and uncertainty. Figure 5(b) visualises a fundamental trade-off in our framework.
To precisely identify a merger (small ϵ), one must observe the system for a long time (large t∗).
Conversely, to detect a merger quickly (small t∗), one must accept a lenient threshold (large ϵ). This
relationship, which holds for any fluctuation tensor, is analogous to an uncertainty principle. For the
specific, practical case where the state operator is the identity, ρ(x) = x, the plot shows an additional
phenomenon: higher-order fluctuations (n) merge faster. This is because when analyzing the data
vectors directly, high-order statistics capture fine-grained details that are more fragile and are erased
more quickly by the diffusion process. The layered shading illustrates how the "feasible region" of
detectable mergers expands as one moves to higher orders at any given time for this specific choice
of ρ.

Thus, lattice transitions give a fine-grained view inside the most relevant operational regimes of
standard diffusion models, which are invisible to purely classical criteria.
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C Experimental details and further results

C.1 Compute and reproducibility

We conducted all experiments using a single Nvidia A100 GPU and provided sample code for
reproducibility. Our implementation builds on open-source code from Hugging Face (diffusers
library) and publicly available code from Kynkäänniemi et al. [2024], Li et al. [2023], Peebles and
Xie [2022]. Our method is plug-and-play, requiring simple hyperparameter adjustments for these
techniques without any major code modifications. For zero-shot style transfer (Section 4.5), we used
the Img2Img transfer pipeline in diffusers (Meng et al. [2021], Rombach et al. [2022]), fixing the
VP/DDPM schedule and adjusting the strength parameter.

Baseline experiments using grid search were computationally intensive, typically requiring 24–48
hours of GPU time. Fluctuation computations (Section 3) were primarily constrained by covari-
ance matrix calculations and eigendecompositions. These can be efficiently optimised using multi-
processing, though we used a single-process approach in this work. Our method is directly compatible
with any standard implementation of the baselines. Preliminary small-scale experiments verified our
theoretical framework but were excluded from the final paper.

C.2 Convergence of data

We present images visualizing the normality tests as stated in Section 4.1
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Figure 7: Normality test p-values for the DDPM schedule

C.3 Class-conditional generation

We compare two guidance schedules:

1. a grid-search baseline that follows Interval Guidance (IG) [Kynkäänniemi et al., 2024] with
a single dataset-level interval found by brute force9;

2. our merger-aware schedule, in which each class k receives its own window
(
tstart,k, tend,k

)
derived from fluctuation theory (Sections 4.1 and 4.2).

Interval guidance baseline. Let w>0 be the classifier-free guidance Ho and Salimans [2022b]
(CFG) weight, and let T be the full diffusion horizon. During reverse sampling we switch CFG on
only for t ∈ (tend,c, tstart,c):

Algorithm 2 Interval Guidance (class c)

Require: latent xT ∼N (0, I), CFG weight w
1: for t = T − 1, . . . , 0 do
2: if tend,c < t < tstart,c then
3: xt←CFGw(xt+1, c)
4: else
5: xt←CFG0(xt+1, c)
6: end if
7: end for
8: return x0

Hyper-parameters and Grid-search baseline. Following Peebles and Xie [2022] we set w = 1.5
for DiT-XL/2. Stable Diffusion requires stronger guidance; we use a fixed w ∈ [3.5, 4.5] per dataset.
For every dataset we sweep

tend,c ∈ {0.1T, 0.2T, . . . , 0.8T}, tstart,c ∈ {0.2T, . . . , T},

under the constraint tstart,c > tend,c, yielding 44 admissible pairs. On ImageNet the best pair is
(0.8T, 0.2T ) (lowest FID); MNIST and CIFAR-10 select (0.6T, 0.1T ) and (0.7T, 0.1T ), respectively.

9In Kynkäänniemi et al. [2024], it is argued that a class-level or even a sample-level search is preferable.
However, both of these settings require at least 103 − 106× the baseline compute, making them infeasible for
us. Our primary objective is to demonstrate that leveraging finer hierarchical levels can compensate for compute
limitations. Specifically, we reason that for class-level brute-force search, it is more practical to consider the
transitions of a fine-grained hierarchy derived from the representations of a semi/self-supervised learning model
Chen et al. [2020], Grill et al. [2020], He et al. [2021]. A theoretical backing for the same is found in Theorem 8.
We leave such an extension to future work. We note that asymptotically, our method converges to the same
output as a per-sample-level grid search, as ultimately each data sample can be treated as a distinct singleton
event Ωk,0.
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For Stable Diffusion we replace FID by CLIP similarity and obtain (0.8T, 0.1T ) for both ImageNet
and Oxford-IIIT Pet. One exhaustive sweep on DiT-XL/2 costs 4100 GFLOPs× 50 000 samples×44
configs ≈ 9.0 PFLOPs; five repeats per pair multiply the cost five-fold. Results for Imagenet, MNIST
and CIFAR are in Table 2 in the main paper while that for Imagenet and Oxford-IIITPets using
Stable Diffusion is in Table 9. Note that for the case of Imagenet, identical intervals are used for both
settings as the empirical forward process trajectory is independent of the model choice.

Merger-aware schedule (ours). For each class k, tstart,k = i⋆, tend,k = tmerge,k, where i⋆ is the
global convergence index (Section 4.1) and tmerge,k is the first t at which M (2)

ρ

(
Ωk,t,Ωℓ,t

)
= 1 for

some ℓ ̸= k (Section 4.2). No search is required; windows differ automatically across classes.

Model/Dataset CLIP Similarity (↑) Precision (↑) Recall (↑) Density (↑) Coverage (↑)
SD (Imagenet, IG baseline) 0.26± 0.03 0.75± 0.04 0.18± 0.02 0.80± 0.05 0.30± 0.03
SD (Imagenet, IG Ours) 0.31± 0.02 0.78± 0.02 0.23± 0.01 0.88± 0.03 0.34± 0.02
SD (OxfordIIITPet, IG baseline) 0.28± 0.02 0.79± 0.03 0.21± 0.03 0.84± 0.06 0.33± 0.05
SD (OxfordIIITPet, IG Ours) 0.34± 0.03 0.81± 0.01 0.26± 0.04 0.89± 0.01 0.36± 0.02

Table 9: Class conditional generation using Stable Diffusion

Generative diagrams. Figure 13 plots the leading eigenvalues λmax

(
Σk,t

)
of the class covariances

Σk,t for ImageNet, CIFAR-10, and MNIST, highlighting merger points (proofs in Appendix B.3.3).
Additional zoom-ins for ImageNet appear in Figure 12. For long-tail datasets used in Section 4.3,
analogous diagrams are given in Figures 14a and 14c. We also plot the subplots for the 10 classes for
Imagenet and OxfordIIITPet, having the greatest magnitude of principal eigenvalues in Figure 9.

a SD output for prompt “Siamese Cat”

b SD output for prompt “British Shorthair”

c SD output for prompt “Golden Retriever”

d SD output for prompt “German Shepherd”

Figure 8: Stable-Diffusion samples for four Oxford-IIIT-Pet classes, generated with naïve interval
guidance (top of each column) versus our method (bottom).
Figure 11 compares ImageNet samples from our merger-aware IG with the grid-search baseline, using
a guidance weight of 4.5 for visual clarity; Figure 8 does the same for Oxford-IIIT Pet under Stable
Diffusion. Our method yields crisper details and fewer artefacts—despite eliminating ≈ 9 PFLOPs
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of search for Imagenet. Thus, class-wise guidance windows obtained from cross-fluctuation mergers
can match or exceed the quality of an exhaustive dataset-level search, while slashing computational
cost by orders of magnitude.
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Figure 9: Merger transitions are upper-bounded by those of the ten classes with the largest principal-
eigenvalue magnitudes in their covariance matrices.

ε Merge prob. (t = 0) FID (↓)
200 0.027 3.06±0.19
100 0.013 2.86±0.15
80 0.010 2.92±0.17
67 0.009 2.90±0.11
20 0.002 2.88±0.14

Table 10: Effect of the MAE threshold ε (ImageNet).
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Figure 10: Eigenvalue-difference distributions and their associated merge-probability curves for
ImageNet and Oxford-IIIT-Pet.
To understand the sensitivity of the parameter ε, we plot the distribution of the difference in eigenval-
ues (CDF) and evolution of merge probabilities for different choices of ε (Figure 10). Our default
choice ε = 100 has a merge probability ≈ 0.01 at t = 0. We show corresponding FIDs in Table 10.
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a Naive interval guidance for Imagenet b Our optimised interval guidance for Imagenet

c Naive interval guidance for Imagenet d Our optimised interval guidance for Imagenet

e Naive interval guidance for Imagenet f Our optimised interval guidance for Imagenet

g Naive interval guidance for Imagenet h Our optimised interval guidance for Imagenet

i Naive interval guidance for Imagenet j Our optimised interval guidance for Imagenet

Figure 11: Visual Comparison of guidance for the Imagenet dataset [Deng et al., 2009, Ryu, 2024].
All samples were originally generated in 512× 512 resolution.
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Figure 12: Merger-transition subplots for ImageNet (ten classes shown in two parallel columns).
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Figure 13: Merger–transition measure obtained from the intersection time of the principal eigenvalues
of the class-covariance matrices.
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Figure 14: Merger–transition measures obtained from the intersection times of the principal eigen-
values for iNaturalist and CUB-200. The bottom row shows that the classes with the ten largest
eigenvalue magnitudes upper-bound all other transitions.
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C.4 Rare-class generation

Interpolation-based interval guidance. In Section 4.3 we observed that augmenting Algorithm 2
with an interpolation correction—akin to ILVR [Choi et al., 2021]—gives the best fidelity for CUB-
200 and iNaturalist-2019. The full procedure is listed in Algorithm 3; it differs from standard Interval
Guidance only in lines 5–7.

Algorithm 3 Interpolation-based interval guidance (class c)

Require: • xT ∼N (0, I) latent to be denoised
• x̂0∼p0 with shape(xT ) = shape(x̂0) class-c exemplar
• guidance weights CFGw, CFG0

• interpolation schedule η = {ηt}T−1
t=0 , where 0 ≤ ηt ≤ 1

1: for t = T − 1, . . . , 0 do
2: if tstart,c < t < tend,c then ▷ guidance window
3: xt ← CFGw(xt+1, c)
4: x̂t ← FWD(x̂0, t)
5: xt ← ηt xt + (1− ηt) x̂t

6: else
7: xt ← CFG0(xt+1, c)
8: end if
9: end for

10: return x0

Note that in Algorithm 3, CFGw applies classifier-free guidance with strength w; CFG0 disables
conditioning. FWD(x̂0, t) generates the forward-noised version of the exemplar at step t. The convex
update in line 5 nudges the current latent towards the exemplar’s trajectory, counteracting class drift.

Choosing the interpolation schedule η. Because guidance corrections are most valuable late in
the reverse chain, we derive ηt from the noise schedule βt: ηt = s(βt/maxu<T βu), 0 < s ≤ 1.
The scale factor s is found by a binary search over [10−4, 10−2]: larger values degrade sharpness,
while smaller ones have negligible impact.
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Figure 15: Comparison of eigenvalue-difference distributions and merge-probability curves for
iNaturalist vs. CUB200.
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Experimental settings. For all runs, we fix ϵ = 5 on iNaturalist and ϵ = 2 on CUB-200 when
computing merger statistics. Figures 14a and 14c visualise per-class merger probabilities, with
complementary CDF and eigenvalue trajectories in Figures 15a to 15d. Top-10 eigenvalue plots
appear in Figures 14b and 14d. Qualitative comparisons between Algorithm 3 and naïve Stable
Diffusion, using identical random seeds, is given in Figures 16 and 17.

a Original SD Image b Original SD Image c Original SD Image

d Conditioning Image 1 e Conditioning Image 2 f Conditioning Image 3

g New SD Image 1 h New SD Image 2 i New SD Image 3

Figure 16: Visual comparison of generation algorithms for stable diffusion for the iNaturalist class
prompt “clouded leopard walking”.

a Original SD Image b Original SD Image c Original SD Image

d Conditioning Image 1 e Conditioning Image 2 f Conditioning Image 3

g New SD Image 1 h New SD Image 2 i New SD Image 3

Figure 17: Visual comparison of generation algorithms for stable diffusion for the CUB-200 prompt
“pine warbler.”
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C.5 Zero-shot classification

In Li et al. [2023], a pretrained class-conditional diffusion network fθ is repurposed as a classifier by
averaging softmax logits over forward-diffused replicas of the query image. We keep that spirit but
(i) restrict the average to the class-specific guidance window [ tstart,λ, tstop,λ] identified in Section 4.2,
and (ii) attach an importance weight w(t) to every timestep t. Setting w(t) = 1/T and the bounds
tstart,λ = 0, tstop,λ = T recovers the estimator of Li et al. [2023].

Throughout this section, Λ = {1, . . . ,K} is the label set; εn
iid∼ N (0, Id) are noise seeds (n =

1, . . . , N ); FWDt(x, ε) denotes the forward map that produces the noisy latent zt at step t; w(t)≥0
is a probability mass on the integer interval [tstart,λ, tstop,λ].

Algorithm 4 Zero-shot class probability pλ(z)

Require: query z∼p0, class label λ ∈ Λ, time window tstart,λ ≤ t ≤ tstop,λ, weights {w(t)} summing to 1,
noise seeds {εn}Nn=1

1: pλ ← 0
2: for t = tstart,λ, . . . , tstop,λ do
3: for n = 1, . . . , N do
4: zt ← FWDt(z, εn)

5: sλ ← −
∥∥fθ(zt, εn, λ)− εn

∥∥2

6: pλ ← pλ +
w(t)

N

exp(sλ)∑
µ∈Λ exp

(
−∥fθ(zt, εn, µ)− εn∥2

)
7: end for
8: end for
9: return pλ

Let αt be the signal coefficient of the VP process (2.4). The signal-to-noise ratio is SNR(t) =
α2
t /(1− α2

t ). We consider three discrete weight laws: Uniform: w(t) = 1/(tstop,λ − tstart,λ + 1).
Inverse-SNR: w(t) ∝ SNR(t)−1 with tstart,λ = 0. Truncated inverse-SNR: same as previous but
restricted to t ≥ 20 (empirically, very early steps degrade performance as the score model is not
exact at these time scales [Chen et al., 2022a, Karras et al., 2022]). We fix N = 250 for all of our
experiments following Li et al. [2023].

C.5.1 Binary classification via linear probes

To understand why non-uniform weights help, we study binary accuracy along the forward chain
with no diffusion model involved. Pick two ImageNet classes {λ, µ} at random and sample
min{card(λ), card(µ), 10000} number of images for each class. At each step t, we extract the
noisy embedding zt (VP schedule) and train a linear MLP on 80% of the embeddings; the rest forms
the test set. We repeat the experiment 20 times and report mean± s.d.

Figure 18 shows that test accuracy rises sharply and peaks near the merger time of λ and µ, after which
it is not defined since the embeddings corresponding to λ, µ become practically indistinguishable.
Averaging the accuracies with the three weight laws yields the means in Table 11; using the single
best t (the merger time) achieves the highest score but is undefined for the multi-class case, however,
the general trend for the other strategies that are valid for the multi-class setting remains the same.

Weighting strategy Avg. binary accuracy ↑
Uniform 0.72± 0.03
Inverse-SNR 0.79± 0.06
Trunc. inv. SNR 0.82± 0.04
Merge-time probe 0.90± 0.02

Table 11: Binary accuracy for random ImageNet pairs.

Each forward step convolves the data with a Gaussian kernel, progressively smoothing non-linear
features. Just before the classes merge, the representation is simpler yet still separates the two
manifolds, making linear decision boundaries easiest to learn. This explains why inverse-SNR
weighting, which emphasises mid-to-late timesteps—beats uniform weighting, and provides an
additional reason why further truncation gives a small extra gain. Thus, merger-aware weighting
focuses the zero-shot estimator on the most discriminative region of the diffusion trajectory, narrowing
the accuracy gap to dedicated representation learners such as CLIP.
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Figure 18: Linear-probe accuracy through the forward diffusion process. Later timesteps hold greater
discriminative information between the two classes.
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C.6 Zero-shot style transfer

In [Meng et al., 2021] the parameter tstop,z is estimated by a grid search over the interval
0.1T, 0.2T, . . . , T for an entire dataset for each style which we follow for our baseline imple-
mentation using the PSNR metric. tstop,z estimated in this way for both datasets were observed to lie
in the range 0.3T, 0.4T, 0.5T across styles. For our implementation tstop,z is estimated class-wise as
the smallest merger time of the class(es) to which z belongs.

Algorithm 5 Zero-shot Style Transfer
Require: query z∼p0, noise seed ϵn, maximum time tstop,z

1: ztstop,z ← FWDtstop,z (z, εn)
2: return z∗ ← BWDθ,tstop,z (ztstop,z )

We use open-source fine-tuned stable diffusion models available on Hugging Face for all of our
experiments. These models are trained on the artistic styles of Studio Ghibli Miyazaki and Ghibli
[2014], Van Gogh Roojen [2019] and the styles of the animation game Elden Ring Software and
Entertainment [2022] and series Arcane Production and Games [2021]10. Note that some samples
from the OxfordIIITPet Dataset may be randomly censored by the automatic filter present in these
models. We observed that this happens mostly for dog images, where some breeds have samples with
their mouth open. This can be mitigated to some extent by center cropping and realigning; however,
if preprocessing fails, we discard such images.Table 5 in Section 4.5 of the main paper has results
for the Studio Ghibli and Van Gogh styles while Table 12 has results for the Elden Ring and Arcane
styles.

Style Elden Ring Arcane
Models/Metrics PSNR (↑) MSE (↓) PSNR (↑) MSE (↓)
SD Edit (OxfordIIITPets) 24.19± 0.72 0.09± 0.006 25.17± 0.42 0.09± 0.005
Ours (OxfordIIITPets) 28.14± 0.69 0.03± 0.002 28.35± 0.72 0.03± 0.006
SD Edit (AFHQv2) 26.08± 0.37 0.06± 0.003 26.49± 0.34 0.05± 0.004
Ours (AFHQ v2) 27.56± 0.37 0.04± 0.009 28.23± 0.18 0.03± 0.001

Table 12: Style Transfer results for Elden Ring and Arcane styles

Visual results are in Figures 19 and 20 for the AFHQv2 and OxfordIIITPet datasets, respectively. We
also show visual proof of our core assumption from Section 4.5 elaborated in Appendix B.3.4 through
visual plots of the evolution of the fourier transforms through the forward process of images mainly
differing only in style, in Figure 21. Here we set a gap of 0.1T between the two images. These plots
empirically show that for images differing only in style but with the same essential structure, their
fourier transforms are close and this fact extends to their noised versions as well due to the nonlinear
decay in Brownian Motion (Appendix B.3.3).

10Disclaimer: All referenced trademarks, copyrighted characters, and original artworks remain the property of
their respective owners. Algorithm 5 was utilised for research purposes only and is not intended for commercial
use or to infringe upon the intellectual property rights of the original creators.
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Figure 19: Zero Shot Transfer results on AFHQ v2
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Figure 20: Zero Shot Transfer results on OxfordIIITPet
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Figure 21: Fourier transforms and decay in Fourier spectra are close for structurally similar data
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D Limitations and future work

Modelling assumptions. Our analysis is built on three structural premises: (i) a variance–preserving
(VP) noise schedule, (ii) isotropic Brownian perturbations, and (iii) the Fourier-regularity bound of
(4.7). These hold for the canonical SDE/ODE pairs [Song et al., 2021, Ho et al., 2020], but have not
yet been extended to non-VP schedules (e.g. EDM [Karras et al., 2022]) or to anisotropic diffusions.
Relaxing any of the three assumptions remains open.

Moment truncation. Empirically, the first few centered moments suffice to expose the phase
boundaries, yet difficult data (heavy-tailed, multimodal) may demand higher orders. Reliable
estimation of tensor moments beyond order four is computationally expensive and lacks sharp
concentration inequalities.

Memory overhead. Computing covariances Σk,t ∈ Rd×d for many classes incurs O(Kd2) mem-
ory. Random projections, sketching, or block-diagonal approximations could mitigate this without
degrading detection power.

Modalities beyond 2-D images. All experiments target natural images. How merger-based guid-
ance interacts with 3-D diffusion, video or audio, or with text diffusion is unexplored.

Training-time usage. We use cross-fluctuations post hoc. Injecting merger times into the loss—
as a curriculum on noise levels or as a regulariser enforcing class separation—may accelerate or
stabilise training; we leave this to future work.

E Related work

Statistical physics of diffusion models Thermodynamic transitions in diffusion models have been
studied in prior work, such as Raya and Ambrogioni [2024], which identifies a mixing time transition
akin to ours in Section 4.1, but for a narrow class of initial distributions. This is similar to the
Curie-Weiss transition in ferromagnetic systems Kivelson et al. [2024], with an analytical estimate.
We provide an alternative derivation of this dependency for a broader class of sub-Gaussian data in
Appendix B.3.1, but our approach in Section 4.1 is more general, relying solely on the assumption that
the supports of the data and the isotropic Gaussian are essentially disjoint. Biroli and Mézard [2023],
Biroli et al. [2024] extend Raya and Ambrogioni [2024] by modeling data as a Gaussian mixture and
show three distinct phases in a class-conditional setup similar to Section 4.2. Our framework further
builds on these ideas in Appendix B.3.6, where we showcase a general framework relying on discrete
lattice transitions more common in quantum systems.

Fast sampling for diffusion models. DDIM [Song et al., 2020], IDDPM [Nichol and Dhariwal,
2021], DPM-Solver [Lu et al., 2022], and EDM [Karras et al., 2022] reduce the reverse step count;
early-exit criteria such as ours are orthogonal and in principle could be combined with any of them.
We leave such extensions to future work. As discussed earlier, the occurrence of this criterion has
also been demonstrated by [Raya and Ambrogioni, 2024, Biroli and Mézard, 2023, Biroli et al.,
2024] through a different analysis based on symmetry breaking of a potential function; we show that
our framework extends such considerations in Appendix B.3.6.

Theoretical lenses on diffusion. Hyper-contractivity [Saloff-Coste, 1994, Chen et al., 2022a],
mixing-time bounds [Levin and Peres, 2017], and classical coupling [Aldous and Fill, 2002] traces
back to Markov-chain theory. We recast these ideas as cross-fluctuation mergers, bridging discrete
and continuous settings in Appendix B.1.4.

Conditional guidance. Score distillation [Poole et al., 2022], ILVR [Choi et al., 2021], classifier-
free guidance [Ho and Salimans, 2022a], and Interval Guidance (IG) [Kynkäänniemi et al., 2024]
dominate conditional generation. Our merger-aware IG trims the interval search from per-sample to
per-class with no extra hyper-parameters with details in Section 4.2 and Appendix C.3

Zero-shot classification using diffusion networks. Li et al. [2023] showed diffusion backbones
encode class information. Importance weighting by intermediate times with a cutoff at merger times
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boosts their zero-shot accuracy at equal compute (Section 4.4). We also demonstrate that near the
merger times, the diffusion process demonstrates near-perfect discriminability Appendix C.5.1.

Rare-class synthesis. Long-tail generation typically relies on fine-tuning [Bansal et al., 2023,
Samuel et al., 2024]. Our fluctuation-based guidance is tuning-free and alleviates the mode dropping
at inference time by utilizing optimised IG based guidance (Section 4.3, Appendix C.4)

Zero-shot style transfer using diffusion models The intriguing property of style transfer by
learning a trained VP-SDE only on the target style after utilizing the forward process to corrupt inputs
from the source style was initially shown in Meng et al. [2021] and has become standard practice
across setups Rombach et al. [2022]. To our knowledge, we are the first to provide a theoretical
foundation for this approach in terms of Fourier regularity that manifests in observed transitions
(Section 4.5, Appendix B.3.4) while showing that setting the noising parameter based on merger
times can boost fidelity (Section 4.5,Appendix C.6)
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