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Abstract

Despite numerous attempts sought to provide empirical evidence of adversarial1

regularization outperforming sole supervision in various inverse problems, the2

theoretical understanding of such phenomena remains elusive. In this study, we3

aim to resolve whether adversarial regularization indeed performs better than sole4

supervision at a fundamental level. To bring this insight into fruition, we study5

vanishing gradient issue, asymptotic iteration complexity and gradient flow in the6

context of sole supervision and adversarial regularization. The key ingredient is a7

theoretical justification supported by empirical evidence of adversarial acceleration8

in gradient descent. In addition, motivated by a recently introduced unit-wise9

capacity based generalization bound, we analyze the generalization error in adver-10

sarial framework. Guided by our observation, we cast doubts on the ability of this11

measure to explain generalization. We therefore leave as open questions to explore12

new measures that can explain generalization behavior in adversarial learning.13

1 Introduction14

At a fundamental level, we study the role of adversarial regularization in supervised learning through15

the lens of theoretical justification. We intend to resolve the mystery of why supervised learning with16

adversarial regularization accelerates gradient updates as compared to sole supervision. In light of17

deeper understanding, we explore several crucial properties pertaining to adversarial acceleration in18

gradient descent.19

In recent years, the research community has witnessed pervasive use of Generative Adversarial20

Networks (GANs) on a wide variety of complex tasks [1, 2, 3, 4]. Among many applications some21

require generation of a particular sample subject to a conditional input. For this reason, there has22

been a surge in designing conditional adversarial networks. In visual object tracking via adversarial23

learning, Euclidean norm is used to regulate the generation process so that the generated mask24

falls within a small neighborhood of actual mask [5]. In photo-realistic image super resolution,25

Euclidean or supremum norm is used to minimize the distance between reconstructed and original26

high resolution image [6, 7]. In medical image segmentation, multi-scale L1-loss with adversarial27

regularization is shown to outperform sole supervision [8].28

The authors of [1] use L1-loss as a supervision signal and adversarial regularization as a continuously29

evolving loss function. Because GANs learn a loss that adapts to data, they fairly solve multitude of30

tasks which would otherwise require hand-engineered loss. The authors of [9] use adversarial loss31

on top of pixel, style, and feature loss to restrict the generated images on a manifold of real data.32

Prior works on this operate under the synonym conditional GAN where a convex composition of33

pixel and adversarial loss is primarily optimized [10, 11, 12]. Karacan et al. [13] use this technique34

to efficiently generate images of outdoor scenes. The authors of [14] combined spatial and Laplacian35

spectral channel attention in regularized adversarial learning to synthesize high resolution images.36
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Furthermore, Emami et al. [15] coalesce spatial attention with adversarial regularization and feature37

map loss to achieve state-of-the-art image to image translation.38

Additionally, the spectral and spatial super resolution based on adversarial regularization [16, 17]39

is proven to achieve faster convergence and better empirical risk compared to purely supervised40

learning [18]. Further, the authors of [6] showed improvement in perceptual quality of high resolution41

images in adversarial setting [19]. Despite superior empirical performance of adversarial regulariza-42

tion in diverse domains, the theoretical understanding of such phenomena remains elusive. So far the43

theoretical analysis suggests that there is a constant that bounds the total empirical risk above [8].44

As a consequence, this inhibits erroneous gradient estimation by the discriminator which apparently45

improves perceptual quality. However, these benign properties of loss surface do not fully explain46

this phenomenon at a fundamental level.47

As per these prior works [17, 8, 16, 19, 20, 21], it is understandable that supervised learning with48

adversarial regularization boosts empirical performance. In addition, this improvement is consistent49

across a wide variety of inverse problems and network configurations. As much beneficial as this50

regularization has been so far, to our knowledge, the theoretical understanding still remains relatively51

less explored. Aiming to bridge this gap, we provide both theoretical and empirical evidence of faster52

convergence due to adversarial regularization.53

2 Preliminaries54

Notations. Let X ⊂ Rdx and Y ⊂ Rdy where dx and dy denote input and output dimensions,55

respectively. The empirical distributions of X and Y are denoted by PX and PY . Given an input56

x ∈ X , f(θ;x) : Rdx → Rdy represents a common neural network architecture with rectified linear57

unit (ReLU) activation for both supervised and adversarial learning. Here, θ denotes the trainable58

parameters of the generator f(θ; .). The discriminator, g(ψ; .) has trainable parameters collected by59

ψ. For g : Rdy → R, ∇g denotes its gradient and ∇2g denotes its Hessian. Given a vector x, ‖x‖60

represents the Euclidean norm. Given a matrix M , ‖M‖ and ‖M‖F represent spectral and Frobenius61

norm, respectively.62

Definition 1. (L-Lipschitz) A function f is L-Lipschitz if ∀θ, ‖∇f(θ)‖ ≤ L.63

Definition 2. (β-Smoothness) A function f is β-smooth if ∀θ,
∥∥∇2f(θ)

∥∥ ≤ β64

Problem Setup. In Wasserstein GAN (WGAN) + Gradient Penalty (GP), the generator cost function65

is given by66

arg min
θ
−Ex∼PX [g (ψ; f (θ;x))] (1)

and the discriminator cost function,67

arg min
ψ

Ex∼PX [g (ψ; f (θ;x))]− Ey∼PY [g (ψ; y)] + λGP Ez∼PZ
[
(‖∇zg (ψ; z)‖ − 1)

2
]
. (2)

Here, PZ represents the distribution over samples along the line joining samples from real and68

generator distribution. Unlike sole supervision, the mapping function fθ(.) in augmented objective69

has access to a feedback signal from the discriminator. Thus, the optimization in supervised learning70

with adversarial regularization is carried out by71

arg min
θ

E(x,y)∼P [l (f(θ;x); y)− g (ψ; f (θ;x))] . (3)

The discriminator cost function remains identical to Wasserstein discriminator as given by equation (2).72

Here, P denotes the joint empirical distribution over X and Y .73

3 Theoretical Analysis74

This section clearly states the assumptions and justifies their fidelity in the context of adversarial75

regularization. The theoretical findings are intended to provide a reasonable justification to multitude76

of tasks that owe the benefits to adversarial training. The technical overview begins with exploiting77

vanishing gradient issue in the near optimal region. It then presents the main results by estimating the78

iteration complexity and sub-optimality gap.79
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3.1 Warm-Up: Mitigating Vanishing Gradient in Near Optimal Region80

Assumption 1. The mapping function f(θ;x) is L-Lipschitz in θ.81

Assumption 2. The loss function l(p; y) where p = f(θ;x) is β-smooth in p.82

Assumption 1 is a mild requirement that is easily satisfied in near optimal region. Different from83

standard smoothness in optimization, it is trivial to justify Assumption 2 by relating it to a quadratic84

loss function as followed by most in practice.85

Lemma 1. Suppose Assumption 1 and Assumption 2 hold. If ‖θ − θ∗‖ ≤ ε, then86 ∥∥∇θE(x,y)∼P [l (f(θ;x); y)]
∥∥ ≤ L2βε.87

Proof. Refer to Appendix D.1. Lemma 1 provides an upper bound on the expected gradient over88

empirical distribution P in near optimal region. As the intermediate iterates (θ) move closer to the89

optima (θ∗), i.e. ε→ 0, the gradient norm vanishes in expectation. This essentially resonates with the90

intuitive understanding of gradient descent. From another perspective, the issue of gradient descent91

inherently resides in near optimal region. We therefore ask a fundamental question: can we attain92

faster convergence without loosing any empirical risk benefits? The following sections are intended93

to shed some light in this direction.94

Lemma 2. Suppose Assumption 1 holds. For a differentiable discriminator g(ψ; y), if ‖g − g∗‖ ≤ δ,95

where g∗ , g(ψ∗) denote optimal discriminator, then ‖−∇θEx∼PX [g (ψ; f (θ;x))]‖ ≤ Lδ.96

Proof. Refer to Appendix D.2. Lemma 2 indicates that the expected gradient of purely adversarial97

generator does not produce erroneous gradients in the near optimal region, suggesting well behaved98

composite empirical risk [8].99

Theorem 1. Let us suppose Assumption 1 and Assumption 2 hold. If ‖θ − θ∗‖ ≤ ε and ‖g − g∗‖ ≤100

δ, then
∥∥∇θE(x,y)∼P [l (f(θ;x); y)− g (ψ; f (θ;x))]

∥∥ ≤ (L2βε+ Lδ
)
.101

Proof. Refer to Appendix D.3. To focus more on the empirical success of adversarial regular-102

ization, we study simple convex-concave minimax optimization. It will certainly be interest-103

ing to borrow some ideas from the vast minimax optimization literature in various other set-104

tings [22, 23, 24, 25]. According to Theorem 1, the expected gradient of augmented objec-105

tive does not vanish in the near optimal region, i.e. ‖∆θ‖ → Lδ as ε → 0. In the current106

setting, the estimated gradients of l(θ) and −g(θ) at any instant during the optimization pro-107

cess are positively correlated. Thus, the gradients of augmented objective is lower bounded by108 ∥∥∇θE(x,y)∼P [l (f(θ;x); y)− g (ψ; f (θ;x))]
∥∥ ≥ ∥∥∇θE(x,y)∼P [l (f(θ;x); y)]

∥∥. The upper and109

lower bounds of the intermediate iterates justify non-vanishing gradient in near optimal region.110

Having proven the contribution of discriminator in mitigating vanishing gradient, it seems natural to111

wonder whether adversarial regularization improves the iteration complexity, which we discuss in the112

following Section 3.2.113

3.2 Main Results: Asymptotic Iteration Complexity114

In this section, we analyze global iteration complexity of both sole supervision and adversarial115

regularization [26, 27]. We restrict our analysis to a deterministic setting. For a deterministic116

sequence of parameters {θk}k∈N, the complexity of {θk}k∈N for a function l(θ) is defined as117

Tε
(
{θk}k∈N , l

)
:= inf {k ∈ N | ‖∇l (θk)‖ ≤ ε} .

For a given initialization θ0, risk function l and algorithm Aφ, where φ denotes hyperparameters118

of training algorithm, such as learning rate and momentum coefficient, Aφ [l, θ0] denotes the se-119

quence of iterates generated during training. We compute iteration complexity of an algorithm class120

parameterized by p hyperparameters, A = {Aφ}φ∈Rp on a function class, L as121

N (A,L , ε) := inf
Aφ∈A

sup
θ0∈{Rh×dx ,Rdy×h},l∈L

Tε (Aφ [l, θ0] , l) .

We derive the asymptotic bounds under a less restrictive setting as introduced in [26]. The new122

condition is weaker than commonly used Lipschitz smoothness assumption. Under this condition,123

the authors of [26] aim to resolve the mystery of why adaptive gradient methods converge faster.124

We use this theoretical tool to study the asymptotic convergence of sole supervision and adversarial125
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regularization in near optimal region. To circumvent the tractability issues in non-convex optimization,126

we follow the common practice of seeking an ε-stationary point, i.e. ‖∇l (θ)‖ < ε. We start by127

analyzing the iteration complexity of gradient descent with fixed step size. In this regard, we build on128

the assumptions made in [26]. To put more succinctly, let us recall the assumptions.129

Assumption 3. The loss l is lower bounded by l∗ > −∞.130

Assumption 4. The function is twice differentiable.131

Assumption 5. ((L0, L1)-Smoothness). The function is (L0, L1)-smooth, i.e. there exist positive132

constants L0 and L1 such that
∥∥∇2l (θ)

∥∥ ≤ L0 + L1 ‖∇l (θ)‖.133

Theorem 2. Suppose the functions in L satisfy Assumption 3, 4 and 5. Given ε > 0, the iteration134

complexity in sole supervision is upper bounded by O
(

(l(θ0)−l∗)(L0+L1L
2βε)

ε2

)
.135

Proof. Refer to Appendix D.4.136

Corollary 1. Using first order Taylor series, the upper bound in Theorem 2 becomes O
(
l(θ0)−l∗
hε2

)
.137

Proof. Refer to Appendix D.5.138

Assumption 6. (Existence of useful gradients) For arbitrarily small ζ > 0, the norm of the gradients139

provided by discriminator is lower bounded by ζ, i.e. ‖∇g (ψ; f (θ;x))‖ ≥ ζ.140

Assumption 6 requires discriminator to provide useful gradients until convergence. This is a valid141

assumption in convex-concave minimax optimization problems. It is trivial to prove this in the inner142

maximization loop under concave setting. In other words, the stated assumptions are mild and derived143

from prior analysis for the sole pupose of mathematical simplicity. Keeping this in mind, we analyze144

the global iteration complexity in adversarial setting.145

Theorem 3. Suppose the functions in L satisfy Assumption 3, 4 and 5. Given Assumption 6 holds,146

ε > 0 and δ ≤
√
2εζ
L , the iteration complexity in adversarial regularization is upper bounded by147

O
(

(l(θ0)−l∗)(L0+L1L
2βε)

ε2+2εζ−L2δ2

)
.148

Proof. Refer to Appendix D.6.149

Corollary 2. Using first order Taylor series, the upper bound in Theorem 3 becomes O
(
l(θ0)−l∗
hε2+hζε

)
.150

Proof. Refer to Appendix D.7. Since 2εζ − L2δ2 ≥ 0, the supervised learning with adversarial151

regularization has a tighter global iteration complexity compared to sole supervision. In a simplified152

setup, one can easily verify this hypothesis by following the proof using first order Taylor’s approx-153

imation as given by Corollary 1 and 2. In this case, hζε > 0 ensures tighter iteration complexity154

bound. This result is significant because it improves the convergence rates fromO
(

1
ε2

)
toO

(
1

ε2+εζ

)
.155

Notice that for a too strong discriminator, Assumption 6 does not hold. For a too weak discriminator,156

‖g − g∗‖ ≤ δ does not hold when δ is arbitrarily small. In these cases, the generator does not receive157

useful gradients from the discriminator to undergo accelerated training. However, for a sufficiently158

trained discriminator, i.e. ‖g − g∗‖ ≤ δ ≤
√
2εζ
L , the adversarial regularization accelerates gradient159

updates. Notably, both the empirical risk and iteration complexity benefit from this provided the160

discriminator and generator are trained alternatively as typically followed in practice1.161

4 Discussion162

In this study, we investigated the reason behind slow convergence of purely supervised learning in163

near optimal region, and how adversarial regularization circumvents this issue. Further, we explored164

several crucial properties at this juncture of understanding the role of adversarial regularization165

in supervised learning. Particularly intriguing was the genericness of these theorems around the166

central theme. To make a fair assessment, standard theoretic tools were employed in all the theorems.167

In theoretical analysis, the asymptotic iteration complexity, gradient flow, provable convergence168

guarantee and the analysis of generalization error provided further insights to the empirical findings169

of adversarial regularization as reported in copious literature.170

1Refer to Appendix for further analysis and experimental results.
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A More Related Works275

A.1 Adversarial Regularization276

The notion of adversarial regularization has also been studied in Reinforcement Learning (RL). The277

authors of [20] use adversarial learning with expert regularization to learn a predictive policy that278

allows to drive in simulated dense traffic. In [21], the authors use RL agent controlled GAN along279

with L2-distance between global feature vectors to convert noisy, partial point cloud into high-fidelity280

data. In medical image analysis, a 3d conditional GAN along with L1-distance is used to super281

resolve CT scan imagery [28].282

A.2 Accelerated Gradients283

The idea of accelerated training has long been studied. An elegant line of research focuses on284

variance reduction that aims to address stochastic and finite sum problems by averaging the stochastic285

noise [29, 30]. Among momentum based acceleration, much theoretical progress has been made to286

accelerate any smooth convex optimization [31, 32]. Further, many efforts have been made towards287

changing the step size across iterations based on estimated gradient norm [33, 34, 35].288

B More Theoretical Analysis289

B.1 Main Results: Sub-Optimality Gap290

Here, we analyze the continuous time gradient flow in both approaches. In this analysis, we define291

each iterate, θ(t) at a continuous time, t. The optimal set of parameters is denoted by θ∗. The sub-292

optimality gap of generator and discriminator are defined by κ(t) = κ(θ(t)) := l (θ(t))− l (θ∗) and293

π(t) = π(θ(t)) := g (θ∗)− g (θ(t)), respectively. In adversarial setting, l(.) is a convex downward294

and g(.) is a convex upward function. For clarity, we first analyze the gradient flow in sole supervision295

using common theoretic tools and then extend this analysis to adversarial regularization.296

Theorem 4. In purely supervised learning, the sub-optimality gap at the average over all iterates in297

a trajectory of T time steps is upper bounded by298

O

(
‖θ(0)− θ∗‖2

2T

)
.

Proof. Refer to Appendix D.8.299

Theorem 5. In supervised learning with adversarial regularization, the sub-optimality gap at the300

average over all iterates in a trajectory of T time steps is upper bounded by301

O

(
‖θ(0)− θ∗‖2

2T
− π

(
1

T

∫ T

0

θ(t)dt

))
.

Proof. Refer to Appendix D.9.302

According to Theorem 4 and 5, the distance to optimal solution decreases rapidly in augmented303

objective when compared with purely supervised objective. Since sub-optimality gap is a non-negative304

quantity and π
(

1
T

∫ T
0
θ(t)dt

)
≥ 0, adversarial regularization has a tighter sub-optimality gap. The305

tightness is controlled by the sub-optimality gap of adversary, π(.) at the average over all iterates in306

the same trajectory. Also, these theorems do not require all iterates to be within the tiny landscape307

of optimal empirical risk. The genericness of these theorems provides further evidence of better308

empirical risk in adversarial regularization.309

B.2 Main Results: Provable Convergence310

In this section, we analyze the convergence guarantee of the minimax adversarial training under311

strongly-convex-strongly-concave and smooth nonconvex-nonconcave criteria. In this regard, we312

assume finite α-moment of estimated stochastic gradients as the unbounded variance has a profound313

impact on optimization process [36, 37]. At each iteration k = 1, . . . , T , we denote unbiased314
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stochastic gradient by gk = g(θk) := ∇l(θk, ξ) − ∇g(θk, ξ), where ξ represents stochasticity.315

Here, we analyze rates for global clipping. Similar analyses can also be made for coordinate-wise316

clipping [36].317

Assumption 7. (Existence of α-moment) Suppose we have access to gradients at each iteration.318

There exist positive real numbers α ∈ (1, 2] and G > 0, such that E [‖g(θ)‖α] ≤ Gα for all θ.319

Theorem 6. (Strongly-convex-strongly-concave convergence) Suppose Assumption 7 holds. Let320

l (θk) , l (θk)− g (θk) is a µ-strongly convex function. Let {θk} be the sequence of iterates obtained321

using global clipping on SGD with momentum β = 0. Define the output to be k-weighted combination322

of iterates: θ̄ =
∑T
k=1 kθk−1∑T
k=1 k

. If adaptive clipping τk = Gk
1
αµ

1
α and step size ηk = 5

2µ(k+1) , then323

the output iterate θ̄ satisfies324

E
[
l
(
θ̄
)]
− l (θ∗) ≤ O

(
G2 (µ (T + 1))

2−2α
α −

(
g (θ∗)− E

[
g
(
θ̄
)]))

.

325

Proof. Refer to Appendix D.10.326

Observe that when we eliminate adversarial regularization and set α = 2, we recover exactly the327

SGD rate, i.e., O
(
G2

µT

)
[37]. Thus, adversarial regularization does converge under strongly-convex-328

strongly-concave criterion. However, it is determined by the convergence of the inner maximization329

loop in minimax optimization.330

Theorem 7. (Nonconvex-nonconcave convergence) Suppose Assumption 3.1 and 3.2 hold. Let331

l (θk) , l (θk)−g (θk) is a possible L-smooth function and {θk} be the sequence of iterates obtained332

using global clipping on SGD with momentum, β = 0. Given constant clipping τk = G (ηkL)
−1
α and333

constant step size ηk =
(
Rα0 L

2−2α

G2Tα

) 1
3α−2

, where R0 = l(θ0)− l(θ∗), the sequence {θk} satisfies334

1

T

T∑
k=1

E
[
‖∇l (θk−1)‖2

]
≤ O

(
G

2α
3α−2

(
R0L

T

) 2α−2
3α−2

− 1

T

T∑
k=1

E
[
‖∇g(θk−1)‖2

])
.

335

Proof. Refer to Appendix D.11.336

By setting α = 2 and discarding adversarial acceleration, we obtain the standard SGD rate, O
(
G√
T

)
.337

It is important to heed the fact adversarial regularization converges under nonconvex-nonconcave338

criterion as well. To this end, we have established that augmented objective is guaranteed to converge339

under strongly-convex-strongly-concave and nonconvex-noncave criteria provided the assumptions340

are satisfied. These convergence guarantees provide additional insights to our understanding of341

adversarial regularization in practice. It is necessary to hightlight the fact that such analysis is far342

from being conclusive. While this paper studies minimax optimization under nonconvex-smooth343

settings, it will be interesting to derive convergence guarantees under nonconvex-nonsmooth settings.344

B.3 Main Results: Generalization Error345

Motivated by the role of over-parametrization in generalization [38, 39, 40], we study the general-346

ization behavior of adversarial regularization. We use Rademacher complexity to get a bound on347

generalization error. Since it depends on hypothesis class, we use a set of restricted parameters of348

trained networks to get a tighter bound on generalization. The restricted set of parameters is defined349

as350

W =
{

(V,U) |V ∈ Rdy×h, U ∈ Rh×dx , ‖vi‖ ≤ αi,
∥∥ui − u0i∥∥ ≤ βi} ,

where i = 1, 2, . . . , h. Here, vi ∈ Rdy and ui ∈ Rdx denote vector representation of each neuron in351

the top layer and hidden layer, respectively. Thus, the restricted hypothesis class becomes352

FW = {V [Ux]+| (V,U) ∈ W} ,
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where [.]+ represents ReLU activation. For any hypothesis class F , let l o F denote the composition353

of loss function and hypothesis class. The following generalization bound holds for any f ∈ FW354

over m training samples with probability 1− δ.355

E(x,y)∼D [l o f ] ≤ 1

m

m∑
i=1

l (f(x); y) + 2RS (l o FW) + 3

√
ln(2/δ)

2m
,

whereRS(H) is the Rademacher complexity of a hypothesis classH with respect to training set S.356

RS (H) =
1

m
Eξi∈{±1}m

[
sup
f∈H

m∑
i=1

ξif(xi)

]
.

Relative Generalization Error: We define relative generalization error as357

egen,r =

(
E(x,y)∼D [l o f ]− 1

m

m∑
i=1

l (f(x); y)

)
×N∗.

To be consistent with [40] while studying generalization, we assume l(f(θ;x); y) be a locally K-358

Lipschitz function, i.e. given y ∈ Y , ‖∇l(f(θ;x); y)‖ ≤ K, ∀ θ. Using K-Lipschitz property of359

loss function l in Lemma 9 of [40], one can easily prove that the Rademacher complexity of l o FW360

is bounded as361

RS (l o FW)

≤
2K
√
dy

m

h∑
j=1

αj

(
βj ‖X‖F +

∥∥u0jX∥∥2)

≤
2K
√
dy√

m
‖α‖2

‖β‖2
√√√√ 1

m

m∑
i=1

‖xi‖22 +

√√√√ 1

m

m∑
i=1

‖U0xi‖22

 .

Adapted to current setting, the generalization error becomes362

O
(∥∥U0

∥∥
2
‖V ‖F +

∥∥U − U0
∥∥
F
‖V ‖F +

√
h
)
.

Next, we empirically verify the required assumptions and corresponding theoretical results.363

C Experiments364

This section contains empirical results to support the theoretical findings on sole supervision and365

adversarial regularization.366

C.1 Training Details367

The majority of the experiments are conducted on two layer neural networks with ReLU activation368

function. For completeness however, we experiment with practical neural network architectures.369

We do not use weight decay, dropout or normalization in these networks. We experiment on both370

MNIST and CIFAR10 datasets. We use SGD with momentum 0.9, batch size 64 and fixed learning371

rate of 0.01 for MNIST and CIFAR10. We use mean square error of 0.001 for MNIST and 0.02 for372

CIFAR10 as our convergence criteria. We train on both datasets for a maximum of 1000 epochs, or373

until convergence. In these settings, we train 13 architectures on both datasets in which the number374

of hidden units (h) range from 23 to 215. We use PyTorch to design all these experiments. All375

parameters are initialized with uniform distribution.376

9
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Figure 1: Comparison of gradient updates between supervised (sup) and augmented (aug) objective
in the hidden layer (left) and top layer (right) on MNIST.
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Figure 2: Comparison of gradient updates between supervised and augmented objective as observed
in the hidden layer on MNIST.

C.2 Experimental Results377

C.2.1 Results on MNIST378

Figure 1 provides empirical evidence of the vanishing gradient issue and how adversarial regular-379

ization helps circumvent this. In all the experimented architectures, the spectral norm of gradients380

estimated by purely supervised objective is smaller than adversarial learning. This is consistent with381

the theoretical analysis in Section 3. The main reason for such non-vanishing gradient is the feedback382

signal from discriminator. Further, we observe that the rate of convergence is at least as good as sole383

supervision, as marked by ? in Figure 1.384

Figure 5 offers experimental support to better empirical risk in adversarial setting. We observe the385

significance of near optimal region, i.e. ε with 32 hidden units in Figure 5. Since the expressive386

power of such networks is very small in both approaches, evidently neither meets the convergence387

criteria. However, as the capacity increases the supervised cost, which is common in both approaches,388

guides them to a tiny landscape around optimal risk and thereby, it satisfies the condition of Theorem389

1. Under this circumstance, the optimal empirical risk attained by augmented objective can be390

provably better than sole supervision as predicted by our theory. Figure 5 and 4 supports this theory as391

augmented objective consistently achieves better performance either by risk or by rate of convergence392

for networks with sufficient expressive power.393

As shown in Figure 2 and 3, the estimated gradient in SGD+momentum vanishes within the tiny394

landscape of optimal empirical risk. Further, the adversarial regularization accelerates gradient395

updates and attains minimal empirical risk compared to sole supervision. It is evident from Figure 4396

where we observe this particular phenomenon across a wide variety of architectures.397

Furthermore, we compare the optimal empirical risk and iteration complexity with different number398

of hidden units in Figure 6. One can infer from Figure 6 (a) (left) that the value of ε in Theorem 1399

is approximately equal to 0.0052. The number of epochs required to attain optimum in adversarial400

learning is always less than or equal to supervised learning, which validates our theorems.401

2The value of ε is more relevant to the present body of analysis as it performs the inverse mapping in practical
scenarios. Moreover, it is not hard to estimate δ where discriminator acts as the mapping function.
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Figure 3: Comparison of gradient updates between supervised and augmented objective as observed
in the top layer on MNIST.
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Figure 4: Comparison of optimal empirical risk on MNIST.

C.2.2 Results on CIFAR10402

These theorems are also verified on CIFAR10 dataset. As shown in Figure 6 (right), supervised403

learning with adversarial regularization performs better than sole supervision both in terms of optimal404

empirical risk and rate of convergence. Here, we find ε to be approximately equal to 0.06.405

Similar to our analysis on MNIST, we also observe vanishing gradient issue on CIFAR10 which is406

shown in Figure 7 and 8. Figure 9 illustrates how model capacity correlates with empirical risk and407

thereby, satisfies the condition of Theorem 1. Across a wide variety of architectures, we verify that408

supervised learning with adversarial regularization can be better than sole supervision both in terms409

of optimal empirical risk and iteration complexity as predicted by our theory. As shown in Figure 9,410

though both methods start with almost same initial empirical risk, augmented objective traverses411

through a shorter path and attains minimal risk upon convergence.412

C.2.3 Results on Various Network Configurations413

To study the impact of these findings on more realistic scenarios, we experiment on various network414

configurations. As shown in Figure 10 and 11, the issue of vanishing gradient is persistent across these415

experimented configurations. Furthermore, the discussion on adversarial acceleration is also supported416

by Figure 12. In addition, Table 1 shows that the proposed hypothesis: adversarial regularization417

achieves tighter ε-stationary point at an optimal rate holds under practical circumstances. More418

specifically, we observe accelerated gradient updates not only in two layer ReLU networks, but419

also in deep MLP with exponential linear activations, convolution layers, skip connections, dense420

connections, L1 regularized networks, and L2 regularized networks. Thus, augmented objective owes421

its performance benefits to adversarial learning at a fundamental level.422
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Figure 5: Comparison of optimal empirical risk on MNIST.
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Figure 6: Comparison on MNIST (left) and CIFAR10 (right). (a) Optimal empirical risk. (b) Iteration
Complexity. Adversarial regularization attains tighter ε-stationary point at an optimal rate.
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Figure 7: Comparison of gradient updates between supervised and augmented objective as observed
in the hidden layer on CIFAR10.
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Figure 8: Comparison of gradient updates between supervised and augmented objective as observed
in the top layer on CIFAR10.

C.3 Results on Generalization Error423

The generalization trend in sole supervision is shown in Figure 13(a) and 13(c). As per equation (B.3),424

the combined measure of Frobenius norm of top layer, i.e. ‖V ‖F and distance from initialization of425

hidden layer, i.e.
∥∥U − U0

∥∥
F

explains the generalization gap on MNIST and CIFAR10. We verify426

this measure in our experimental setting and study whether it can explain generalization in adversarial427

learning. Note that adversarial learning and sole supervision share exactly same mapping function (f ),428

learning algorithm (SGD+momentum) and empirical data distribution (S). Thus the generalization429

bound, which is derived for a purely supervised objective, is expected to explain the generalization430
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Figure 10: Comparison of gradient updates between supervised and augmented objective as observed
in the first layer on MNIST. (a) Multi-Layer Perceptron. (b) Exponential Activation. (c) Residual
Network. (d) Dense Network.

error in adversarial learning with expert regularization. However, as shown in Figure 13(b) and 13(d),431

this bound does not fully explain the generalization error observed in adversarial learning.432

In Figure 14, we observe that the relative generalization error of adversarial regularization can be433

better than sole supervision. This is feasible for a network with sufficient expressive power to achieve434

near optimal convergence.435
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Figure 11: Comparison of gradient updates between supervised and augmented objective as observed
in the last layer on MNIST. (a) Multi-Layer Perceptron. (b) Exponential Activation. (c) Residual
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Table 1: Hypothesis Testing on Various Network Configurations

Architecture No. Layer Activation No. ResBlock No. DenseBlock No. Epoch
Sup

No. Epoch
Aug Hypothesis

MLP-Deep 6 ELU 2 0 391 55 X
CNN-ResNet 6 ReLU 2 0 215 41 X
CNN-DenseNet 6 ReLU 2 1 163 39 X
CNN-DenseNet-L1 6 ReLU 2 1 1000 39 X
CNN-DenseNet-L2 6 ReLU 2 1 155 39 X
CNN-ResNet-AvgPool 6 ReLU 2 0 109 29 X

(log scale)
2

(log scale)
2

(log Scale)
2

(log Scale)
2

MNIST

CIFAR10

(a) (b)

(c) (d)

Figure 13: Generalization error on MNIST and CIFAR10.

D Technical Proofs436

D.1 Proof of Lemma 1437

Using Jensen’s inequality,438 ∥∥∇θE(x,y)∼P [l (f(θ;x); y)]
∥∥2 ≤ E(x,y)∼P

[
‖∇θl (f(θ;x); y)‖2

]
≤ E(x,y)∼P

[
‖∇pl (p; y)∇θf(θ;x)‖2

]
,where p = f(θ;x)

≤ E(x,y)∼P

‖∇pl (p; y)‖2 ‖∇θf(θ;x)‖2︸ ︷︷ ︸
Cauchy-Schwarz inequality


≤ L2E(x,y)∼P

[
‖∇pl (p; y)‖2

]
Let p = f(θ;x) and q = f(θ∗; y). Using β-smoothness and L-Lipschitz property, we get439

‖∇pl (p; y)‖ − ‖∇ql (q; y)‖ ≤ ‖∇pl (p; y)−∇ql (q; y)‖ ≤ β ‖p− q‖ ≤ βL ‖θ − θ∗‖ .

Since ‖θ − θ∗‖ ≤ ε,440 ∥∥∇θE(x,y)∼P [l (f(θ;x); y)]
∥∥2 ≤ L2E(x,y)∼P

[
(‖∇ql (q; y)‖+ Lβε)

2
]
.
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Figure 14: Relative generalization. (a) MNIST. (b) CIFAR10.

Upon substituting optimality condition, i.e. ‖∇ql (q; y)‖ = 0, the above expression simplifies to441 ∥∥∇θE(x,y)∼P [l (f(θ;x); y)]
∥∥ ≤ L2βε.

This completes the proof of the theorem. �442

D.2 Proof of Lemma 2443

Using similar arguments from Appendix D.1,444

‖−∇θEx∼PX [g (ψ; f (θ;x))]‖2 ≤ Ex∼PX
[
‖∇θg (ψ; f (θ;x))‖2

]
≤ Ex∼PX

[
‖∇pg (ψ; p)‖2 ‖∇θf (θ;x)‖2

]
, where p = f (θ;x)

≤ L2Ex∼PX
[
‖∇pg (ψ; p)‖2

]
≤ L2Ex∼PX

[
(‖∇pg (ψ; p)‖+ δ)

2
]

≤ L2δ2

Taking square root, ‖−∇θEx∼PX [g (ψ; f (θ;x))]‖ ≤ Lδ, which finishes the proof. �445

D.3 Proof of Theorem 1446

By applying triangle inequality after simplification,447 ∥∥∇θE(x,y)∼P [l (f(θ;x); y)− g (ψ; f (θ;x))]
∥∥ ≤ ∥∥∇θE(x,y)∼P [l (f(θ;x); y)]

∥∥+
∥∥−∇θE(x,y)∼P [(ψ; f (θ;x))]

∥∥
≤ L2βε+ Lδ (Lemma 1 and Lemma 2),

which completes the statement of the theorem. �448

D.4 Proof of Theorem 2449

We parameterize the path between θk and θk+1 as following:450

γ(t) = tθk+1 + (1− t)θk∀t ∈ [0, 1]. (4)

By fixed step gradient descent, the iterate θk+1 = θk − hk∇l(θk). Using Taylor’s expansion,451

l (θk+1) = l (θk) +∇l (θk) (θk+1 − θk) +
1

2
(θk+1 − θk)

T ∇2l (θk) (θk+1 − θk)

= l (θk)− hk ‖∇l (θk)‖2 +
1

2
(θk+1 − θk)

T ∇2l (θk) (θk+1 − θk) , (∵ θk+1 − θk = −hk∇l(θk)) .
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Using Cauchy-Schwarz inequality and integrating over parameterized curve γ(t),452

l (θk+1) ≤ l (θk)− hk ‖∇l (θk)‖2 +
1

2
‖(θk+1 − θk)‖

∥∥∇2l (θk) (θk+1 − θk)
∥∥

≤ l (θk)− hk ‖∇l (θk)‖2 +
1

2
‖(θk+1 − θk)‖2

∫ 1

0

∥∥∇2l (γ(t))
∥∥ dt.

We know by Assumption 5453 ∥∥∇2l (θ)
∥∥ ≤ L0 + L1 ‖∇l (θ)‖ .

Then using descent rule and arguments of Theorem 1, we obtain the following inequality:454

l (θk+1) ≤ l (θk)− hk ‖∇l (θk)‖2 +
h2k ‖∇l (θk)‖2

2

∫ 1

0

(L0 + L1 ‖∇l (γ(t))‖) dt

≤ l (θk)− hk ‖∇l (θk)‖2 +
h2k ‖∇l (θk)‖2

2

∫ 1

0

(
L0 + L1L

2βε
)
dt

≤ l (θk)− hk ‖∇l (θk)‖2 +
h2k ‖∇l (θk)‖2

(
L0 + L1L

2βε
)

2
.

Let us choose hk = 1
L0+L1L2βε . Now,455

l (θk+1) ≤ l (θk)− hk ‖∇l (θk)‖2

2

≤ l (θk)− ‖∇l (θk)‖2

2 (L0 + L1λM)
.

Assume that it takes T iterations to reach ε-stationary point, i.e., ε ≤ ‖∇l (θk)‖ for k ≤ T . By a456

telescopic sum over k,457

T−1∑
k=0

l (θk+1)− l (θk) ≤ −Tε2

2 (L0 + L1λM)

=⇒ T ≤
2 (l(θ0)− l∗)

(
L0 + L1L

2βε
)

ε2
.

Therefore, we get458

sup
θ0∈{Rh×dx ,Rdy×h},l∈L

Tε (Ah [l, θ0] , l) = O

(
(l(θ0)− l∗)

(
L0 + L1L

2βε
)

ε2

)
which finishes the proof. �459

D.5 Proof of Corollary 1460

Using the arguments made in the proof of Theorem 2 and first-order Taylor’s expansion, we get461

l (θk+1) = l (θk)− hk ‖∇l (θk)‖2

≤ l (θk)− hkε2.
By telescopic sum,462

T−1∑
k=0

l (θk+1)− l (θk) ≤ −Thkε2

=⇒ T ≤ (l (θ0)− l∗)
hkε2

.

So,463

sup
θ0∈{Rh×dx ,Rdy×h},l∈L

Tε (Ah [l, θ0] , l) = O
(

(l (θ0)− l∗)
hε2

)
which finishes the proof. �464
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D.6 Proof of Theorem 3465

Recall that the target function l(θ) remains identical in both settings except for additional cost of466

discriminator over generator in augmented objective. In this setting, the parameters are updated as467

θk+1 = θk − hk∇ (l (θk)− g (ψ; f (θk;x))) . (5)

Using Taylor’s expansion, the triangle and Cauchy-Schwarz inequality as in Appendix D.4, we obtain468

l (θk+1) ≤ l (θk)− hk ‖∇l (θk)‖2 − hk ‖∇l (θk)‖ ‖∇g (ψ; f (θk;x))‖+
h2k ‖∇ (l (θk)− g (ψ; f (θk;x)))‖2

2

∫ 1

0

∥∥∇2l(γ(t))
∥∥ dt.

By Assumption 5 and 6,469

l (θk+1) ≤ l (θk)− hk ‖∇l (θk)‖2 − hk ‖∇l (θk)‖ ζ +
h2k ‖∇l (θk)−∇g (ψ; f (θk;x))‖2

2

∫ 1

0

(L0 + L1 ‖∇l(γ(t))‖) dt.

Upon simplification using arguments of Appendix D.4 and applying Minkowski’s inequality,470

l (θk+1) ≤ l (θk)− hk ‖∇l (θk)‖2 − hk ‖∇l (θk)‖ ζ +
h2k

(
‖∇l (θk)‖2 + ‖∇g (ψ; f (θk;x))‖2

)
2

(L0 + L1λM) .

Using hk = 1
L0+L1L2βε , we get471

l (θk+1) ≤ l (θk)− hk ‖∇l (θk)‖2

2
− hk ‖∇l (θk)‖ ζ +

hk ‖∇g (ψ; f (θk;x))‖2

2

≤ l (θk)− hk ‖∇l (θk)‖2

2
− hk ‖∇l (θk)‖ ζ +

hkL
2δ2

2
, (from Lemma 2).

Assuming T iterations to reach ε-stationary point, i.e., ε ≤ ‖∇l (θk)‖ for k ≤ T . By a telescopic472

sum over k,473

T−1∑
k=0

l (θk+1)− l (θk) ≤
−T

(
ε2 + 2εζ − L2δ2

)
2 (L0 + L1L2βε)

=⇒ T ≤
2 (l(θ0)− l∗)

(
L0 + L1L

2βε
)

ε2 + 2εζ − L2δ2
.

Therefore, we obtain474

sup
θ0∈{Rh×dx ,Rdy×h},l∈L

Tε (Ah [l, θ0] , l) = O
(

(l(θ0)− l∗) (L0 + L1λM)

ε2 + 2εζ − δ2M2

)
which finishes the proof. �475

D.7 Proof of Corollary 2476

Using the arguments made in the proof of Theorem 3 and first-order Taylor’s approximation, we get477

l (θk+1) = l (θk)− hk ‖∇l (θk)‖2 − hk ‖∇l (θk)‖ ‖∇g (ψ; f (θk;x))‖
≤ l (θk)− hkε2 − hkεζ.

By telescopic sum,478

T−1∑
k=0

l (θk+1)− l (θk) ≤ −Thkε2 − Thkεζ

=⇒ T ≤ (l (θ0)− l∗)
hkε2 + hkεζ

.

Therefore,479

sup
θ0∈{Rh×dx ,Rdy×h},l∈L

Tε (Ah [l, θ0] , l) = O
(

(l (θ0)− l∗)
hε2 + hεζ

)
which finishes the proof. �480
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D.8 Proof of Theorem 4481

In sole supervision, the parameters are updated by dθ(t)
dt = −∇l(θ(t)). We define distance to optimal482

solution as r2(t) = 1
2 ‖θ(t)− θ

∗‖2. Now differentiating both sides, we get483

dr2(t)

dt
=

〈
dθ(t)

dt
, θ(t)− θ∗

〉
= 〈−∇l(θ(t)), θ(t)− θ∗〉 .

Using convexity and integrating over all iterates in a trajectory of T time steps,484

1

T

∫ T

0

dr2(t)

dt
dt ≤ 1

T

∫ T

0

−κ(t)dt

=⇒ 1

T

(
r2(T )− r2(0)

)
≤ − 1

T

∫ T

0

κ(t)dt

=⇒ 1

T

∫ T

0

κ(θ(t))dt ≤ r2(0)

T
.

By Jensen’s inequality,485

κ

(
1

T

∫ T

0

θ(t)dt

)
≤ 1

T

∫ T

0

κ(θ(t))dt.

Therefore, κ
(

1
T

∫ T
0
θ(t)dt

)
= O

(
‖θ(0)−θ∗‖2

2T

)
which finishes the proof. �486

D.9 Proof of Theorem 5487

In supervised learning with adversarial regularization, the parameters are updated by dθ(t)
dt =488

−∇l(θ(t)) +∇g(θ(t)). Using arguments of Appendix D.8, we obtain489

dr2(t)

dt
= 〈−∇l(θ(t)), θ(t)− θ∗〉+ 〈∇g(θ(t)), θ(t)− θ∗〉 .

Since l(.) is a convex downward and g(.) is a convex upward function, we get490

1

T

∫ T

0

dr2(t)

dt
dt ≤ − 1

T

∫ T

0

κ(t)dt− 1

T

∫ T

0

π(t)dt

=⇒ 1

T

(
r2(T )− r2(0)

)
≤ − 1

T

∫ T

0

κ(t)dt− 1

T

∫ T

0

π(t)dt

=⇒ 1

T

∫ T

0

κ(θ(t))dt ≤ r2(0)

T
− 1

T

∫ T

0

π(θ(t))dt.

Now, using Jensen’s inequality on both κ(.) and π(.)491

κ

(
1

T

∫ T

0

θ(t)dt

)
= O

(
‖θ(0)− θ∗‖2

2T
− π

(
1

T

∫ T

0

θ(t)dt

))
which finishes the proof. �492

D.10 Proof of Theorem 6493

For simplicity, let us denote the bias bk = E [ĝk]−∇l(θk).494

‖θk − θ∗‖2 = ‖θk−1 − ηkĝk−1 − θ∗‖2

= ‖θk−1 − θ∗‖2 − 2ηk〈θk−1 − θ∗, ĝk−1〉+ η2k ‖ĝk−1‖
2

= ‖θk−1 − θ∗‖2 − 2ηk〈θk−1 − θ∗,∇l(θk−1)〉 − 2ηk〈θk−1 − θ∗, bk−1〉+ η2k ‖ĝk−1‖
2

≤ ‖θk−1 − θ∗‖2 − 2ηk〈θk−1 − θ∗,∇l(θk−1)〉+ 2ηk ‖θk−1 − θ∗‖ ‖bk−1‖︸ ︷︷ ︸
By Cauchy-Schwarz inequality

+ η2k ‖ĝk−1‖
2

≤ ‖θk−1 − θ∗‖2 − 2ηk〈θk−1 − θ∗,∇l(θk−1)〉+ ηk

(
‖θk−1 − θ∗‖2 + ‖bk−1‖2

)
︸ ︷︷ ︸

By AM-GM inequality

+ η2k ‖ĝk−1‖
2
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By µ-strong convexity, it is required that there exist positive constants µ such that for all (x, y),495

l(y) ≥ l(x) + 〈y − x,∇l(x)〉+ µ
2 ‖y − x‖

2. Using strong-convexity at θk−1 and θ∗, we get496

‖θk − θ∗‖2 ≤ ‖θk−1 − θ∗‖2 − 2ηk (l(θk−1)− l(θ∗))− ηkµ ‖θk−1 − θ∗‖2 + ηk

(
‖θk−1 − θ∗‖2 + ‖bk−1‖2

)
+ η2k ‖ĝk−1‖

2

≤ ‖θk−1 − θ∗‖2 (1− ηkµ+ ηk)− 2ηk (l(θk−1)− l(θ∗)) + ηk ‖bk−1‖2 + η2k ‖ĝk−1‖
2
.

Lemma 3. Suppose Assumption 7 holds for any g(θ) and α ∈ (1, 2]. With global clipping parameter497

τ ≥ 0, the variance and bias of the estimator ĝ are upper bounded as:498

E
[
‖ĝ(θ)‖2

]
≤ Gατ2−αand ‖E [ĝ(θ)]−∇l(θ) +∇g(θ)‖2 ≤ G2ατ2−2α.

499

One can easily prove this using Lemma 2 of [36]. Upon rearranging, taking expectation of both500

sides, and using Lemma 3,501

E [l(θk−1)]− l(θ∗) ≤ E
[(

η−1k − µ+ 1

2

)
‖θk−1 − θ∗‖2 −

η−1k
2
‖θk − θ∗‖2

]
+

1

2
G2ατ2−2α +

ηk
2
Gατ2−α.

Let us choose η−1
k −µ+1

2 = k − 1 and η−1
k

2 = k + 1. After simplification, ηk = 5
2µ(k+1) . Now,502

substitute τk = Gk
1
αµ

1
α , ηk = 5

2µ(k+1) and multiply k both sides. Thus,503

kE [l(θk−1)]− kl(θ∗) ≤ E
[
k(k − 1) ‖θk−1 − θ∗‖2 − k(k + 1) ‖θk − θ∗‖2

]
+
G2k

2−α
α µ

2−2α
α

2

[
5

2

(
k

k + 1

)
+ 1

]
.

Since k
k+1 < 1 for k = 1, . . . , T , we get504

kE [l(θk−1)]− kl(θ∗) ≤ E
[
k(k − 1) ‖θk−1 − θ∗‖2 − k(k + 1) ‖θk − θ∗‖2

]
+

7G2k
2−α
α µ

2−2α
α

4
.

Taking telescopic sum over k = 1, . . . , T , we obtain505

T∑
k=1

kE [l(θk−1)]− l(θ∗)

T∑
k=1

k ≤ E
[
−T (T + 1) ‖θT − θ∗‖2

]
+

7G2µ
2−2α
α

4

T∑
k=1

k
2−α
α .

Using
∑T
k=1 k

2−α
α ≤

∫ T+1

0
k

2−α
α dk ≤ (T + 1)

2
α ,506

T∑
k=1

kE [l(θk−1)]− l(θ∗)
T (T + 1)

2
≤ 7G2µ

2−2α
α

4
(T + 1)

2
α .

Now, dividing both sides by T (T+1)
2 and using T−1 ≤ 2(T + 1)−1 for T ≥ 1,507 ∑T

k=1 kE [l(θk−1)]∑T
k=1 k

− l(θ∗) ≤ 7G2µ
2−2α
α (T + 1)

2−2α
α .

By Jensen’s inequality,508

E

[
l

(∑T
k=1 kθk−1∑T
k=1 k

)]
− l(θ∗) ≤ O

(
G2 (µ(T + 1))

2−2α
α

)
Substituting l (θ) = l (θ)− g (θ), we get509

E
[
l
(
θ̄
)]
− l(θ∗) ≤ O

(
G2 (µ(T + 1))

2−2α
α −

(
g (θ∗)− E

[
g
(
θ̄
)]))

,

which finishes the proof. �510

20



D.11 Proof of Theorem 7511

The notations of l and bk follow from Appendix D.10. Using L-smooth property of l, we get512

l (θk) ≤ l (θk−1) + 〈∇l (θk−1) , θk − θk−1〉+
L

2
‖θk − θk−1‖2

≤ l (θk−1) + 〈∇l (θk−1) ,−ηkĝk−1〉+
η2kL

2
‖ĝk−1‖2

≤ l (θk−1)− ηk| ‖∇l(θk−1)‖2 − ηk〈∇l(θk−1), bk−1〉+
η2kL

2
‖ĝk−1‖2

≤ l (θk−1)− ηk| ‖∇l(θk−1)‖2 + ηk ‖∇l(θk−1)‖ ‖bk−1‖︸ ︷︷ ︸
By Cauchy-Schwarz inequality

+
η2kL

2
‖ĝk−1‖2

≤ l (θk−1)− ηk| ‖∇l(θk−1)‖2 +
ηk
2

(
‖∇l(θk−1)‖2 + ‖ bk−1‖2

)
︸ ︷︷ ︸

By AM-GM inequality

+
η2kL

2
‖ĝk−1‖2

Taking expectation of both sides,513

E [l(θk)− l(θk−1)] ≤ E
[
−ηk

2
‖∇l(θk−1)‖2

]
+
ηk
2
G2ατ2−2α +

η2kL

2
Gατ2−α.

Upon rearranging and taking telescopic sum over k = 1, . . . , T , we obtain514

1

T

T∑
k=1

E
[
‖∇l(θk−1)‖2

]
≤

2η−1k
2

(l(θ0)− l(θ∗)) +G2ατ2−2α + ηkLG
ατ2−α.

By choosing τ = G (ηkL)
−1
α ,515

1

T

T∑
k=1

E
[
‖∇l(θk−1)‖2

]
≤

2η−1k R0

T
+ 2G2 (ηkL)

2α−2
α .

Let us choose ηk =
(
Rα0 L

2−2α

G2Tα

) 1
3α−2

. Thus,516

1

T

T∑
k=1

E
[
‖∇l(θk−1)‖2

]
≤ 4G

2α
3α−2

(
R0L

T

) 2α−2
3α−2

Now, substituting l(θ) = l(θ)− g(θ), we get517

1

T

T∑
k=1

E
[
‖∇l(θk−1)‖2 + ‖∇g(θk−1)‖2 − 2〈∇l(θk−1),∇g(θk−1)〉

]
≤ 4G

2α
3α−2

(
R0L

T

) 2α−2
3α−2

.

Since the gradients received from l(θ) and g(θ) are negatively correlated at any instant during the518

optimization process, the above expression simplifies to519

1

T

T∑
k=1

E
[
‖∇l(θk−1)‖2 + ‖∇g(θk−1)‖2 + 2 ‖∇l(θk−1)‖ ‖∇g(θk−1)‖

]
≤ 4G

2α
3α−2

(
R0L

T

) 2α−2
3α−2

.

Therefore,520

1

T

T∑
k=1

E
[
‖∇l(θk−1)‖2

]
+

1

T

T∑
k=1

E
[
‖∇g(θk−1)‖2

]
≤ 4G

2α
3α−2

(
R0L

T

) 2α−2
3α−2

.

Upon simplification,521

1

T

T∑
k=1

E
[
‖∇l(θk−1)‖2

]
≤ O

(
G

2α
3α−2

(
R0L

T

) 2α−2
3α−2

− 1

T

T∑
k=1

E
[
‖∇g(θk−1)‖2

])
which finishes the proof. �522
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