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ABSTRACT

Autoencoders have emerged as popular methods for unsupervised anomaly detec-
tion. Autoencoders trained on the normal data are expected to reconstruct only
the normal features, allowing anomaly detection by thresholding reconstruction
errors. However, in practice, autoencoders fail to model small detail and yield
blurry reconstructions, which makes anomaly detection challenging. Moreover,
there is objective mismatching that models are trained to minimize total recon-
struction errors while expecting a small deviation on normal pixels and a large
deviation on anomalous pixels. To tackle these two issues, we propose the iter-
ative image inpainting method that reconstructs partial regions in an adaptive in-
painting mask matrix. This method constructs inpainting masks from the anomaly
score of structural similarity. Overlaying inpainting mask on images, each pixel is
bypassed or reconstructed based on the anomaly score, enhancing reconstruction
quality. The iterative update of inpainted images and masks by turns purifies the
anomaly score directly and follows the expected objective at test time. We eval-
uated the proposed method using the MVTec Anomaly Detection dataset. Our
method outperformed previous state-of-the-art in several categories and showed
remarkable improvement in high-frequency textures.

1 INTRODUCTION

Anomaly detection (AD) is the identification task of the rarely happened events or items that differ
from the majority of the data. In the real world, there are many applications, such as the medial
diagnosis (Baur et al., 2018; Zimmerer et al., 2019a), defect detection in the factories (Matsubara
et al., 2018; Bergmann et al., 2019), early detection of plant disease (Wang et al., 2019), and X-Ray
security detection in public space (Griffin et al., 2018). Because manual inspection by humans is
slow, expensive, and error-prone, automating visual inspection is the popular application of artificial
intelligence. In transferring knowledge from humans to machines, there is a lack of anomalous
samples due to their low event rate and difficulty annotating and categorizing various anomalous
defects beforehand. Therefore, AD methods typically take unsupervised approaches that try to learn
compact features of data from normal samples and detect anomalies by thresholding anomaly score
to measure the deviation from learned features. To deal with high-dimensional images and learn
their features, it is popular to use deep neural networks (Goodfellow et al., 2016).

In this work, we focus on the reconstruction-based unsupervised AD. This attempts to reconstruct
only the normal dataset and classify the normal or anomalous data on thresholding reconstruction
errors (An & Cho, 2015). The architectures are based on deep neural networks such as deep au-
toencoders (Hinton & Salakhutdinov, 2006), variational autoencoders (VAEs) (Kingma & Welling,
2013; Rezende et al., 2014), or autoencoders with generative adversarial networks (GANs) (Goodfel-
low et al., 2014). These models compress the high-dimensional information into the data manifold
in lower-dimensional latent space by reconstructing input data under certain constraints for latent
space, such as a prior distribution or an information bottleneck (Alemi et al., 2016).

The reconstruction-based AD approach issue is that autoencoders fail to model small details and
yield blurry image reconstruction. This is especially the case for the high-frequency textures, such
as carpet, leather, and tile (Bergmann et al., 2019). Dehaene et al. (2020) also pointed out that there
is no guarantee of the generalization of their behavior for out-of-samples, and local defects added to
normal images could deteriorate whole images. In the viewpoint of the signal-to-noise ratio (SNR),
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Figure 1: Autoencoder vs. I3AD method (Ours). Autoencoder fails to reconstruct the high-
frequency texture of “carpet” and yields a large residual map. Ours utilizes the residual map as
an inpainting mask and iteratively updates the reconstructed image and the residual map.

it is interpreted that blurry reconstruction makes anomaly signals (reconstruction errors in anomaly
pixels) unclear and increases normal noises (reconstruction errors in normal pixels). Since the SNR
explains the feasibility of AD by thresholding a sample-wise reconstruction error, the low SNR
makes AD challenges.

We point out an additional issue about the gap between optimized function at training and evalu-
ated function at testing. Rethinking our goal in unsupervised AD, it is concluded not to minimize
reconstruction errors merely but to maximize the SNR. Although models are trained to minimize a
sample-wise reconstruction error, they are expected to have a large deviation of anomaly pixels and
a small deviation of normal pixels at testing.

In this paper, we propose I3AD (Iterative Image Inpainting for Anomaly Detection). As Figure 1,
our method utilizes an inpainting model that only encode unmasked regions and reconstruct masked
regions instead of vanilla autoencoders. Once computed reconstruction errors, it is recycled as an
inpainting mask for the next iteration. We show that the iterative update enhances the reconstruction
quality and satisfies the expected objective to maximize the expected SNR at testing. Through exper-
iments and analysis on the MVTecAD dataset shows that our I3AD outperforms existing methods
on nine categories and has ave. +11.6% improvement on texture category.

2 METHODOLOGY

2.1 HIGH-LEVEL IDEA

We think of unsupervised AD using autoencoders. Here, we implicitly assume anomalies show up
in partial regions, and pixels in surrounding regions obey by the distribution of normal datasets.
Therefore, the sample-wise anomaly score based on reconstruction errors is the summation of two
types of pixels: (1) pixels of normal regions (normal noises) and (2) pixels of anomalous regions
(anomaly signals). We expect an ideal model with zero errors on normal regions and distinguishable
per-pixel scores on anomalous regions, leading to the high SNR.

Inheriting vanilla autoencoders’ architecture does not help to resolve the low SNR issue mentioned
by Bergmann et al. (2019) and Dehaene et al. (2020). Indeed, autoencoders are forced to encode
whole images with anomalous pixels of local defects and attempt to decode whole images with
background normal pixels of fine structures. They do not learn their behavior to encode unseen
anomalous pixels. That anomalous information can affect the whole image decoding.
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Figure 2: Model overview of iterative image inpainting method for AD (I3AD). At the training step,
we solve a general image inpainting task in normal datasets. At the testing step, a generator receives
test images with an adaptive mask and only reconstructs masked regions. This adaptive mask is
updated from previous reconstruction results during iterations.

One approach to resolve the issue is a combination of the per-pixel identity function and conditional
autoencoder. Compared to vanilla autoencoders, conditional autoencoders can encode only normal
regions and decode only anomalous regions. The per-pixel identity function could copy the remain-
ing unreconstructed regions. This model architecture is the same as an image inpainting model.
Actually, deep inpainting models are designed by conditional autoencoders that encode unmasked
regions and fill in masked regions under a certain mask matrix (Yu et al., 2019). However, the image
inpainting method for AD falls into the tautology trap that we do not know a perfect inpainting mask
matrix in advance, and detecting anomalous regions is the main goal to achieve.

The key ideas to disentangle this tautology are mask generation by the anomaly score and iterative
update of a mask matrix. Updating the inpainting mask matrix dynamically controls encoding and
decoding information balances with a pixel-wise confidence level of anomaly scores. A generator
gradually receives more information on potentially normal pixels and focuses on the suspected pixels
during iterations. Furthermore, this process not only reduces background noises but also improves
the SNR directly.

2.2 ITERATIVE IMAGE INPAINTING FOR ANOMALY DETECTION

Following the above discussion, we construct our I3AD method by an inpainting generator and a
mask generation module. As a mask generation module, we explain the detail in the next subsection.

Our model overview is depicted in Figure 2. We construct an inpainting generator using conditional
generative adversarial networks (cGANs) (Isola et al., 2017) and train its networks by a general
image inpainting task under a normal dataset. We feed normal images partially hidden by ran-
domly generated masks into generator networks and train them to decode the masked pixels from
the unmasked pixels and corresponding bool mask matrix. A discriminator network distinguishes
generated images from normal images. A generator is rewarded for fooling a discriminator, while
a discriminator is rewarded for detecting the generated images, respectively. This training can be
considered as the two-player min-max game that a generator and a discriminator compete. As a
result, the inpainting model tries to find the optimal point on the loss function as below:

min
G

max
D

Ex∼Pdata(x)[logD(x)]+Ex∼Pdata(x),M∼P (M)[log(1−D(G(x̂ =M � x,M)))],

where x and x̂ are real samples from data distribution Pdata(x) and their masked real samples. �
is an element-wise product. M is the corresponding bool mask matrix generated from the random
distribution P (M). G(x̂,M) is an image inpainting network that takes an incomplete image and
masked matrix. D(x) denotes a binary classifier whether an image is generated or real.
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We borrow and customize Spectral-Normalized Markovian GAN (SN-PatchGAN) architecture fol-
lowing by Yu et al. (2019). The network consists of two networks: a coarse-to-fine generator network
with attention module and gated convolution, and a spectral normalized Markovian (Patch) discrim-
inator network. Our I3AD expects to handle more fine structured masks than usual free-form masks.
Therefore, to better handle more irregular masks, we apply the self-attention module (Zhang et al.,
2018) instead of the contextual attention module originally designed for large rectangular masks as
described in Yu et al. (2018; 2019).

To stabilize the training of GAN, we adapted proposed spectral normalization (Miyato et al., 2018)
for discriminator’s layers. As approximation of objective min-max loss function (Miyato et al.,
2018), we also derived loss functions respectively for generator LG and discriminator LD below:

LG = −Ex∼Pdata(x),M∼P (M)[D
sn(G(x̂ =M � x,M))]

LD = Ex∼Pdata(x)[ReLU(1−Dsn(x))]

+ Ex∼Pdata(x),M∼P (M)[ReLU(1 +Dsn(G(x̂ =M � x,M)))],

where Dsn(x) denotes spectral-normalized discriminator. ReLU is the abbreviation of Rectified
Linear Units activation function, defined by ReLU(x) = max(0, x). For a generator network, we
use a spatially discounted l1 reconstruction loss (Yu et al., 2018).

At the test step, we fix all trainable parameters in the I3AD generator. The I3AD generator re-
ceives test images that are normal or anomalous images and adaptive mask matrices. Mask matrices
are constructed from the pixel-wise reconstruction errors between original images and generated
images at the previous iteration step. Since mask matrices are dynamically updated and shrunken
during iterations, the I3AD generator generates masked regions intensively, leveraging the gradually
increasing information of the surrounding unmasked regions.

2.3 INPAINTING MASK OF STRUCTURAL SIMILARITY (SSIM MASK)

In anomaly segmentation tasks, structural similarity measure (SSIM) index (Wang et al., 2004)
sharply measures the small anomalous change (Bergmann et al., 2018). Details of SSIM calculation
is in Appendix A.

We propose the structural similarity mask (SSIM-Mask) to mask anomalous pixels during test iter-
ations. SSIM-Mask Mi is a binary mask thresholding the pixel-wise SSIM Index between an input
image x0 and the reconstructed image x̃i at ith iteration step, defined as

Mi =

{
1 if ai(x) ≥ u
0 otherwise,

ai(x) = SSIM(x0, x̃i), x̃i = G(x̂i−1,Mi−1)

where u denotes the threshold level for binary classification. After N iterations, we use the N th

SSIM anomaly score aN (x) for AD evaluation.

2.4 MASK INITIALIZATION

We have no mask information at the first iteration step during testing. We use four checkerboard
matrices to initialize masks. Figure 6 shows initialized mask examples. A generator encodes pixels
of test images in white regions and decodes pixels in black boxes. These black regions are mutually
exclusive between four masks and cover target images collectively. Therefore, we combine four
generated images into a single whole reconstruction.

2.5 ITERATION STEPS AND STOP CRITERIA

We expect no masked region for normal images and some local masked region for anomalous im-
ages. Therefore, applying iterative inpainting for some samples on the training dataset could esti-
mate iteration steps enough to reduce masks on normal pixels. Since I3AD decodes only masked
regions, Mi+1 will be almost all subset of Mi. Therefore, we could set early stop criteria whether
the difference between Mi and Mi+1 is small against masked regions of Mi.
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3 RESULTS

Table 1: Results for anomaly detection on the MVTecAD dataset, expressed in the AUROC on
sample-wise reconstruction errors for different autoencoders and datasets. We compare the vanilla
L2 and SSIM autoencoders(Bergmann et al., 2018) and their iterative projection method (Dehaene
et al., 2020) as baselines. Bold font is the best AUC in each category and lightblue background
indicates the best method measured by the average AUC on L2 and SSIM anomaly score.

Bergmann et al. (2019) Dehaene et al. (2020) Ours
Autoencoders Iterative projection Inpainting

Model L2AE DSAE L2AE DSAE I3AD
Score L2 SSIM L2 SSIM L2 SSIM L2 SSIM L2 SSIM

Te
xt

ur
es

carpet 0.476 0.531 0.401 0.538 0.447 0.513 0.402 0.449 0.602 0.605
grid 0.947 0.764 0.849 0.665 0.947 0.936 0.891 0.840 0.998 0.947
leather 0.778 0.694 0.720 0.382 0.826 0.831 0.772 0.752 0.823 0.659
tile 0.763 0.706 0.533 0.380 0.810 0.815 0.684 0.662 0.978 0.983
wood 0.939 0.861 0.894 0.875 0.952 0.935 0.915 0.896 0.938 0.936

O
bj

ec
ts

bottle 0.978 0.921 0.966 0.921 0.958 0.980 0.967 0.983 0.966 0.905
cable 0.758 0.827 0.751 0.807 0.564 0.725 0.630 0.717 0.767 0.773
capsule 0.728 0.689 0.738 0.699 0.792 0.803 0.819 0.813 0.708 0.731
hazelnut 0.902 0.841 0.898 0.845 0.956 0.942 0.957 0.912 0.930 0.895
metal nut 0.613 0.569 0.597 0.557 0.583 0.623 0.547 0.590 0.658 0.605
pill 0.825 0.838 0.780 0.818 0.741 0.746 0.721 0.725 0.783 0.780
screw 0.015 0.670 0.264 0.659 0.768 0.773 0.772 0.718 0.980 0.842
toothbrush 0.981 0.886 0.972 0.875 0.989 0.978 0.983 0.975 0.958 0.903
transistor 0.820 0.881 0.818 0.879 0.746 0.813 0.728 0.792 0.864 0.876
zipper 0.873 0.785 0.833 0.755 0.818 0.864 0.772 0.810 0.994 0.998

A
ve

. Texture 0.781 0.711 0.680 0.568 0.796 0.806 0.733 0.720 0.868 0.826
Object 0.749 0.791 0.762 0.782 0.792 0.825 0.790 0.804 0.861 0.831
Total 0.760 0.764 0.734 0.710 0.793 0.818 0.771 0.776 0.863 0.829

3.1 EXPERIMENT CONFIGURATION

We performed experiments with the industrial high-resolution dataset named MVTec Anomaly De-
tection (MVTecAD) (Bergmann et al., 2019). Please see Appendix B for further details on the
dataset. Bergmann et al. (2019) applies different subsampling and evaluations for each model and
each category. Dehaene et al. (2020) resizes 128 × 128 pixels for objects and extract patches of
128 × 128 pixels from resized 512 × 512 pixels for textures. In contrast to these previous works,
we resize all images to 256 × 256 pixels in 15 categories for training and testing, and evaluated all
models by same experiment setting.

I3AD We train an I3AD generator by 500,000 iterations with 10 images per batch. We use two
Adam optimizers (Kingma & Ba, 2014) with learning rates of 0.0001 for the generator and 0.0004
for the discriminator, respectively. Random blushing stroke masks are generated by the algorithm
proposed by Yu et al. (2019). Regarding mask generation, we apply 6 by 6 patched four checker-
board matrices masks initialization. We find the threshold hyperparameter u for a generator to
achieve low L1 reconstruction errors on training normal images. We apply the I3AD method on
samples of training datasets with u set from 0.10 to 0.50 by 0.05. Then, we find a minimal threshold
to achieve small L1 reconstruction errors less than the order of 10 after 10 iteration steps. We apply
30 iterations for test images in all categories.

Baselines As baseline models, we compare two autoencoders that are trained to minimize different
reconstruction loss of L2 and SSIM. Similar to Bergmann et al. (2018), both autoencoder models are
parameterized by the same architecture with latent space dimensionality (set to 100) and optimized
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Figure 3: First row: Normal samples of tile, carpet, transistor, screw, wood, and zipper in MVTecAD
dataset; Second row: anomalous samples from the aforementioned dataset categories; Third row:
Anomaly map by L2 autoencoder (Bergmann et al., 2019); Fourth row: our proposed anomaly map
by our I3AD method. Ground truth is represented by red contour, and each estimated anomaly score
is highlighted by green.

by Adam with the same learning rate (set to 0.0001). These models are trained by 20,000 itera-
tions on 10 images per batch. For the evaluation of iterative projection method, both L2 and SSIM
autoencoders is applied to have additional 50 iterations with step size α = 0.5 and L1 regulation
weight λ = 0.05, same parameter setting with Dehaene et al. (2020).

We compute the Area Under the Receiver Operating Characteristics (AUROC) to get a performance
independent of the determined threshold for evaluation. The AUROC scores on the sample-wise
L2 and SSIM reconstruction errors are computed for anomaly detection, and pixel-wise errors are
computed for anomaly localization. For the SSIM Index, their hyperparameters are selected as
window size 11, α = β = γ = 1, same with Bergmann et al. (2018). All experiments were
performed on a graphics processing unit NVIDIA Quadro RTX 8000 based on a system running
Python 3.7, PyTorch library version 1.5, and CUDA 10.1.

3.2 QUALITATIVE AND QUANTITATIVE RESULTS

Table 1 shows the AUROC result for anomaly detection. Table 5 in Appendix E shows the AU-
ROC result for anomaly localization. From both detection and localization, the baselines of vanilla
L2 and SSIM autoencoders perform well for object datasets and challenge the high-frequency tex-
tures such as carpet, leather, tile, or zipper. Despite different resolution from original experiments,
Dehaene et al. (2020)’s approach works and improves AUROC of both localization and detection
on many datasets. However, there remains room to improve in the categories where the base au-
toencoders had a weak result, especially in textures. In anomaly detection, our I3AD outperforms
baselines on nine categories and has ave. +11.1% on textures, ave. +8.85% on objects and ave.
+13.01% in total from vanilla autoencoders.

Figure 3 shows the qualitative results of a baseline L2AE and our I3AD method. Figure 7 in Ap-
pendix G shows the results of the remaining categories. SSIM anomaly score is used for highlight-
ing. Our I3AD has clearly a large improvement in high-frequency categories such as tile, carpet,
and zipper.
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3.3 HYPERPARAMETER SENSITIVITY

In this section, we investigate the hyperparameter sensitivity for the AD results. Compared to typical
inpainting tasks to fill various types of images, the inpainting task for AD is relatively easy only to
learn every single category. Thus, we skip hyperparameters of the inpainting networks and focus on
the hyperparameters regarding mask generation.

Mask initialization We changed the patch size on four checkerboard matrices. Figure 4 showed
that different patch size initialization has performance differences in the first few steps while con-
verging similar results after enough iterations. We verified that no mask initialization generates
anomalous pixels directly and leads to a meaningless result.
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Figure 4: AUC change of different patch-size mask initialization during iteration. Both L2 and
SSIM anomaly scores are computed. (a) average AUC result of each anomaly score, (b) AUC result
measured by L2 (c) AUC result measured by SSIM

Mask generation threshold We determine mask generation threshold u naively from the L1 re-
construction levels on training datasets. Figure 5 shows the AUC score on different threshold se-
lection. Even though the best parameters are unknown and inaccessible from training datasets, we
could find a threshold parameter naively. Moreover, since this fitting does not perform equally across
data categories, mask generation has room to be optimized in semi-supervised approach.
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Figure 5: AUC change of different threshold u for mask generation

Iteration speed We measure the iteration speed for AnoGAN, Iterative Projection, and our I3AD.
Table 2 shows I3AD runs at compatible speed with Iterative Projection method and.

4 RELATED WORKS

We see related works about anomaly detection in this section. Appendix H summarizes the architec-
tures of reconstruction-based approach in unsupervised AD. Appendix I shortly summarizes related
works about image inpainting.

7



Under review as a conference paper at ICLR 2021

models time per image (seconds) iterations iteration batch calculation

AnoGAN 63.4± 13.4 500 back-prop not available
Iterative Projection 0.70± 0.11 50 back-prop not available

I3AD 0.58± 0.01 30 forward available

Table 2: Comparison of iteration speed

Anomaly detection overview Bergmann et al. (2019) introduced the MVTecAD dataset and con-
ducted a thorough evaluation of traditional shallow models and recent state-of-the-art deep neural
networks for unsupervised AD and segmentation tasks. They showed the evaluated methods do not
perform equally across data categories, and there is still room for improvement.

Autoencoders Convolutional autoencoders are commonly used as a base architecture in unsu-
pervised AD. Autoencoders are customized by various reconstruction and regularization losses.
Bergmann et al. (2018) applies SSIM Index as reconstruction loss and anomaly map. Zimmerer
et al. (2019b) shows that loss gradients are useful anomaly scores to improve the AUC score on
unsupervised pixel-wise tumor detection. Zimmerer et al. (2019a) proposes Context-encoding VAE
(ceVAE) for unsupervised AD. Context-encoding (Pathak et al., 2016) is a special class of denoising
autoencoders (Vincent et al., 2010) to learn inpainting random masks instead of additive Gaussian
noise denoising.

Both context-encoding and our I3AD solve inpainting task during training. Motivation and usage are
different during testing. Since context-encoding is a data augmentation for feature learning, model
architecture is used as vanilla autoencoders. On the other hand, our I3AD uses inpainting masks and
encodes the unmasked regions during testing. The iterative process realizes conditional encoding
and decoding to estimate unknown masks.

VAEs VAEs is a class of autoencoders to constrain lower-dimensional latent space by Kullback-
Leibler divergence, allowing us to conduct anomaly detection by the reconstruction errors and es-
timated likelihood. On the other hand, Nalisnick et al. (2018); Shafaei et al. (2018); Hendrycks
et al. (2018) provide evidence that deep generative models might fail to assign a high likelihood for
the out-of-distribution dataset. Several approaches such as training an auxiliary dataset of outliers
(Hendrycks et al., 2018), training a background model (Ren et al., 2019), and Likelihood Regret
score by fine-tuning test images Xiao et al. (2020), are proposed to mitigate this issue. Since VAEs
tend to generate blur images, vanilla autoencoders are popular for local defect detection. Indeed,
Matsubara et al. (2018) showed the KL divergence term deteriorates the anomaly sensitivity and
proposes to use only reconstruction term for anomaly map. Baur et al. (2018) uses VAEs for un-
supervised anomaly segmentation in brain MR scans, and the improvement from autoencoders to
VAEs was limited.

Adversarial training Adversarial training is one approach to generate high-resolution images.
Schlegl et al. (2017) proposed AnoGAN, which utilizes GANs for unsupervised AD. We do not
know a random noise to generate an anomalous-free image close to a targeted image. AnoGAN
finds a latent noise sample by iterative update under minimizing the reconstruction errors and the
semantic similarity of a discriminator’s outputs. Since there was a drawback of long runtime for
this calculation, several studies had efforts to reduce its runtime. ADGAN (Deecke et al., 2018)
updates the input images and the generator’s parameters. Several studies propose to train an encoder
network to find an expected random noise from an input image. Their architectures are similar to
autoencoders or VAEs with an adversarial term (here referred to as ”AEGAN” and ”VAEGAN”)
(Larsen et al., 2016; Dumoulin et al., 2017; Donahue et al., 2017). Their difference is around train-
ing processes and loss terms. Efficient-GAN (Zenati et al., 2018) adopted ALI training (Dumoulin
et al., 2017) that The discriminator receives the joint pair of latent features and images. GANomaly
(Akcay et al., 2018) combines three losses about L1 loss between images, L2 encoder loss between
latent features, and adversarial loss. f-AnoGAN (Schlegl et al., 2019) trains an encoder and a gen-
erator separately. They examined three architectures regarding loss terms and showed that ”izif”
architecture best performed of them. Venkataramanan et al. added attention expansion loss for
unsupervised and weakly-supervised AD.
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Skip-connection Skip-connection is another approach to model small details. U-Net (Ron-
neberger et al., 2015) is widely applied for cardiac MR, brain tumors, and abdominal CT in su-
pervised segmentation tasks. Akçay et al. (2019); Sabokrou et al. (2018) replace autoencoder by
U-Net with AEGAN for unsupervised anomaly detection. Skip-GANomaly (Akçay et al., 2019)
inherits GANomaly and uses the same loss terms and anomaly scores. AVID (Sabokrou et al., 2018)
is trained as same as vanilla AEGANs. It applies Fully convolutional neural networks (FCNs) for
a discriminator to capture the regional information and define each region’s regularity likelihood.
Oktay et al. (2018) added attention modules into U-Net to be specific to local regions and tested 3D
abdominal CT scans.

We tested U-Net architecture for the MVTecAD dataset and verified several models by switching
U-Net’s four skip-connections on or off. As a result, We faced learning of trivial identity function,
and anomalous pixels are reconstructed if models have first or second skip-connection close to input
images. I3AD is considered as an application of per-pixel skip-connections that only transport high
convinced regions as normal pixels from anomaly score.

Iterative methods In addition to the aforementioned iterative methods such as Likelihood Regret,
AnoGAN, and ADGAN, Dehaene et al. (2020) proposed the iterative projection method on trained
autoencoders to make blurred images clear at testing time. It iteratively updates an input sample’s
pixels to minimize reconstruction errors under the constraint on the distance from the original image.

Dehaene et al. (2020)’s method has underlying autoencoders that encode and decode the whole
image with back-propagation update. Our I3AD has an underlying of conditional autoencoders
with forwarding iterations. Thus, our approach efficiently updates high-resolution pixels and avoids
reconstructing complex patterns in background normal pixels.

we summarize where differentiates previous AD methods and our proposed method below.

• Though aforementioned autoencoder-base methods encode and decode whole images,
I3AD encodes unmasked regions and decodes masked regions.

• Skip connection passing whole images potentially leads to trivial function. I3AD could
learn per-pixel skip-connections where connects local regions the model assigns a high
possibility as normal pixels.

• Previous iterative methods used to minimize total reconstruction errors. I3AD targets to
minimize the reconstruction errors on normal pixels and maximize ones on anomalous
pixels. It attempts to fill in the gap of train and test objectives on unsupervised AD.

• Previous iterative methods require back-propagation with long iteration steps. Ours only
uses forward iteration and efficiently updates high-resolution pixels.

5 DISCUSSIONS AND FUTURE WORKS

As future works, our I3AD should leverage GAN’s unsupervised AD technique. For example, like
AVID, a PatchGAN discriminator score could be useful to generate iterative masks. I3AD could be
tested on different inpainting models. The coarse-to-fine network with an attention module has a
remarkable performance, requiring a large network structure. To reduce the model parameters for
speeding up the inference and saving hardware costs, Sagong et al. (2019) proposes weight sharing
on coarse and fine generator networks while maintaining performance.

6 CONCLUSION

In high-resolution images, autoencoders fail to model small details, which yields blurry image re-
constructions. This is especially the case for high-frequency textures, such as carpet, leather, and
tile. To tackle this issue, we propose the iterative image inpainting method to reconstruct partial re-
gions adaptively. Our method utilizes the structural similarity measure for inpainting regions, which
modifies their structural difference and enhances their reconstruction quality iteration steps. Our
method outperforms state-of-the-art results on several categories in MVTecAD datasets and shows
an especially large improvement in the texture categories.
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Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. Adversarial feature learning. International
Conference on Learning Representations (ICLR 2017), 2017.

Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Olivier Mastropietro, Alex Lamb, Martin Ar-
jovsky, and Aaron Courville. Adversarially learned inference. International Conference on
Learning Representations (ICLR 2017), 2017.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural infor-
mation processing systems, pp. 2672–2680, 2014.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1.
MIT Press, 2016.

Lewis D Griffin, Matthew Caldwell, Jerone TA Andrews, and Helene Bohler. “unexpected item in
the bagging area”: Anomaly detection in x-ray security images. IEEE Transactions on Informa-
tion Forensics and Security, 14(6):1539–1553, 2018.

Dan Hendrycks, Mantas Mazeika, and Thomas Dietterich. Deep anomaly detection with outlier
exposure. arXiv preprint arXiv:1812.04606, 2018.

Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data with neural
networks. science, 313(5786):504–507, 2006.

Satoshi Iizuka, Edgar Simo-Serra, and Hiroshi Ishikawa. Globally and locally consistent image
completion. ACM Transactions on Graphics (ToG), 36(4):1–14, 2017.

10



Under review as a conference paper at ICLR 2021

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with
conditional adversarial networks. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 1125–1134, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, Hugo Larochelle, and Ole Winther. Autoen-
coding beyond pixels using a learned similarity metric. In International conference on machine
learning, pp. 1558–1566. PMLR, 2016.

Guilin Liu, Fitsum A Reda, Kevin J Shih, Ting-Chun Wang, Andrew Tao, and Bryan Catanzaro.
Image inpainting for irregular holes using partial convolutions. In Proceedings of the European
Conference on Computer Vision (ECCV), pp. 85–100, 2018.

Takashi Matsubara, Ryosuke Tachibana, and Kuniaki Uehara. Anomaly machine component detec-
tion by deep generative model with unregularized score. In 2018 International Joint Conference
on Neural Networks (IJCNN), pp. 1–8. IEEE, 2018.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization
for generative adversarial networks. arXiv preprint arXiv:1802.05957, 2018.

Eric Nalisnick, Akihiro Matsukawa, Yee Whye Teh, Dilan Gorur, and Balaji Lakshminarayanan. Do
deep generative models know what they don’t know? arXiv preprint arXiv:1810.09136, 2018.

Ozan Oktay, Jo Schlemper, Loic Le Folgoc, Matthew Lee, Mattias Heinrich, Kazunari Misawa,
Kensaku Mori, Steven McDonagh, Nils Y Hammerla, Bernhard Kainz, et al. Attention u-net:
Learning where to look for the pancreas. Medical Imaging with Deep Learning (MIDL 2018),
2018.

Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and Alexei A Efros. Context
encoders: Feature learning by inpainting. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2536–2544, 2016.

Jie Ren, Peter J Liu, Emily Fertig, Jasper Snoek, Ryan Poplin, Mark Depristo, Joshua Dillon, and
Balaji Lakshminarayanan. Likelihood ratios for out-of-distribution detection. In Advances in
Neural Information Processing Systems, pp. 14680–14691, 2019.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and
approximate inference in deep generative models. arXiv preprint arXiv:1401.4082, 2014.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedi-
cal image segmentation. In International Conference on Medical image computing and computer-
assisted intervention, pp. 234–241. Springer, 2015.

Mohammad Sabokrou, Masoud Pourreza, Mohsen Fayyaz, Rahim Entezari, Mahmood Fathy, Jürgen
Gall, and Ehsan Adeli. Avid: Adversarial visual irregularity detection. In Asian Conference on
Computer Vision, pp. 488–505. Springer, 2018.

Min-cheol Sagong, Yong-goo Shin, Seung-wook Kim, Seung Park, and Sung-jea Ko. Pepsi: Fast
image inpainting with parallel decoding network. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 11360–11368, 2019.
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A ANOMALY SCORE OF STRUCTURAL SIMILARITY (SSIM INDEX)

For AD, some per-pixel error measure such as Lp-distance is utilized as anomaly score. The struc-
tural similarity (SSIM) metric (Wang et al., 2004) could be also employed to capture perceptual
similarity(Bergmann et al., 2018; 2019). The SSIM Index defines a structural similarity measure
between twoK×K image patches p and q, taking into account their similarity in luminance l(p, q),
contrast c(p, q), and structure s(p, q):

SSIM(p, q) = l(p, q)αc(p, q)βs(p, q)γ ,

where α, β, γ ∈ R are hyperparameters. From the patches’ mean intensities µp, µq , the patches’
variances σp, σq , and their covariance σpq , the three measures are defined as

l(p, q) =
2µpµq + c1
µ2
p + µ2

q + c1
, c(p, q) =

2σpσq + c2
σ2
p + σ2

q + c2
, s(p, q) =

2σpq + c2
2σpσq + c2

.

The constants c1 and c2 ensure numerical stability and are typically set to c1 = 0.01 and c2 = 0.03.
By substituting three measures under equally weighting α = β = γ = 1, the SSIM Index is derived
by

SSIM(p, q) =
(2µpµq + c1)(2σpq + c2)

(µ2
p + µ2

q + c1)(σ2
p + σ2

q + c2)
.

We have that SSIM(p, q) ∈ [−1, 1], and SSIM(p, q) = 1 if and only if p and q are identical.

B MVTEC ANOMALY DETECTION DATASET

We performed experiments with the industrial dataset named MVTec Anomaly Detection
(MVTecAD) (Bergmann et al., 2019). It contains 5,354 high-resolution color images of ten different
objects and five texture categories. All image resolutions are set in the range between 700×700 and
1024× 1024 pixels. It splits 3,629 images for training and validation and 1,725 images for testing.
At test time, there are 467 defect-free images and 1,258 defect images. This dataset includes 73
different defect types, such as defects on the object’s surface, structural defects, or the absence of
certain parts. These anomalies are manually generated to produce realistic anomalies as they would
occur in real-world industrial inspection scenarios. Bergmann et al. (2019) use several resolution for
objects and textures on each model. As AnoGAN, both training and testing images are zoomed to
128× 128 pixels for object categories. For textures, 128× 128 patches are extracted from zoomed
512 × 512 pixels. As L2 and SSIM autoencoders, they reconstruct patches of 128 × 128 pixels for
textures and of 256× 256 pixels for objects.
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C ANOMALY LOCALIZATION

Table 3: Results for anomaly localization on the MVTecAD dataset, expressed in the AUROC
on pixel-wise reconstruction errors for different autoencoders and datasets. Same as anomaly
detection, we compare the vanilla L2 and SSIM autoencoders(Bergmann et al., 2018) and their
iterative projection method (Dehaene et al., 2020) as baselines. Bold font is the best AUC in each
category and lightblue background indicates the best method measured by the average AUC on L2

and SSIM anomaly score.

Bergmann et al. (2019) Dehaene et al. (2020) Ours
Autoencoders Iterative projection Inpainting

Model L2AE DSAE L2AE DSAE I3AD
Score L2 SSIM L2 SSIM L2 SSIM L2 SSIM L2 SSIM

Te
xt

ur
es

carpet 0.598 0.736 0.579 0.733 0.596 0.768 0.581 0.750 0.809 0.850
grid 0.741 0.817 0.719 0.815 0.719 0.859 0.705 0.841 0.959 0.987
leather 0.739 0.758 0.775 0.730 0.735 0.812 0.779 0.923 0.833 0.938
tile 0.513 0.513 0.564 0.509 0.529 0.581 0.566 0.603 0.630 0.788
wood 0.650 0.652 0.647 0.661 0.664 0.767 0.656 0.740 0.665 0.776

O
bj

ec
ts

bottle 0.886 0.924 0.883 0.931 0.884 0.930 0.875 0.926 0.923 0.950
cable 0.773 0.779 0.800 0.793 0.740 0.822 0.710 0.784 0.819 0.795
capsule 0.839 0.919 0.815 0.898 0.843 0.914 0.819 0.909 0.733 0.854
hazelnut 0.934 0.971 0.929 0.967 0.911 0.949 0.893 0.928 0.664 0.756
metal nut 0.857 0.855 0.854 0.850 0.861 0.898 0.860 0.894 0.515 0.526
pill 0.871 0.911 0.859 0.917 0.881 0.916 0.866 0.916 0.649 0.725
screw 0.824 0.974 0.870 0.974 0.834 0.975 0.877 0.975 0.852 0.959
toothbrush 0.935 0.970 0.935 0.968 0.941 0.978 0.940 0.976 0.946 0.969
transistor 0.817 0.867 0.802 0.862 0.831 0.875 0.852 0.889 0.596 0.651
zipper 0.739 0.741 0.739 0.750 0.727 0.860 0.726 0.857 0.854 0.962

A
ve

. textures 0.648 0.695 0.657 0.690 0.649 0.757 0.657 0.771 0.779 0.868
objects 0.847 0.891 0.849 0.891 0.845 0.912 0.842 0.905 0.755 0.815
total 0.781 0.826 0.785 0.824 0.780 0.860 0.780 0.861 0.763 0.832
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D ADDITIONAL COMPARISON BETWEEN GAN MODELS (1)

Table 4: Results for anomaly detection on the MVTecAD dataset, expressed in the AUROC
on sample-wise reconstruction errors for different autoencoders and datasets. We compared
AnoGAN (Deecke et al., 2018), f-AnoGAN (Schlegl et al., 2019), and AEGAN that is the base
architecture for several models (Zenati et al., 2018; Akcay et al., 2018). Bold font is the best AUC
in each category and lightblue background indicates the best method measured by the average AUC
on L2 and SSIM anomaly score. We also test L2+LD anomaly scores that combines reconstruction
errors and discriminator features as mentioned in Deecke et al. (2018).

Model AnoGAN f-AnoGAN AEGAN I3AD
Score L2 SSIM L2 SSIM L2 + LD L2 SSIM L2 + LD L2 SSIM

Te
xt

ur
es

carpet 0.360 0.399 0.311 0.512 0.433 0.488 0.565 0.132 0.602 0.605
grid 0.661 0.517 0.451 0.733 0.236 0.937 0.826 0.942 0.998 0.947
leather 0.393 0.298 0.385 0.271 0.288 0.648 0.290 0.624 0.823 0.659
tile 0.627 0.476 0.724 0.514 0.735 0.540 0.410 0.591 0.978 0.983
wood 0.820 0.779 0.940 0.849 0.905 0.933 0.875 0.930 0.938 0.936

O
bj

ec
ts

bottle 0.839 0.722 0.829 0.690 0.294 0.965 0.910 0.892 0.966 0.905
cable 0.660 0.636 0.611 0.623 0.565 0.785 0.849 0.704 0.767 0.773
capsule 0.491 0.538 0.548 0.608 0.205 0.557 0.566 0.470 0.708 0.731
hazelnut 0.632 0.617 0.579 0.684 0.436 0.761 0.739 0.507 0.930 0.895
metal nut 0.460 0.478 0.354 0.429 0.467 0.634 0.653 0.572 0.658 0.605
pill 0.549 0.543 0.756 0.729 0.690 0.700 0.642 0.485 0.783 0.780
screw 0.227 0.415 0.226 0.496 0.419 0.142 0.192 0.041 0.980 0.842
toothbrush 0.708 0.775 0.622 0.644 0.550 0.981 0.931 0.461 0.958 0.903
transistor 0.641 0.623 0.866 0.901 0.897 0.866 0.901 0.773 0.864 0.876
zipper 0.587 0.506 0.695 0.566 0.291 0.901 0.780 0.875 0.994 0.998

A
ve

. textures 0.572 0.494 0.562 0.576 0.519 0.709 0.593 0.644 0.868 0.826
objects 0.580 0.585 0.609 0.637 0.481 0.729 0.716 0.578 0.861 0.831
total 0.577 0.555 0.593 0.617 0.494 0.722 0.675 0.600 0.863 0.829

We compared GAN based anomaly detection and localization models. We use same network ar-
chitecture for our I3AD model and there is only difference that input images are masked or not.
AnoGAN takes 500 iterations at test time to find latent random noise. f-AnoGAN has two training
steps and an encoder is optimized after training the generator.
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E ADDITIONAL COMPARISON BETWEEN GAN MODELS (2)

Table 5: Results for anomaly localization on the MVTecAD dataset, expressed in the AUROC on
pixel-wise reconstruction errors for different autoencoders and datasets. We compared AnoGAN
(Deecke et al., 2018), f-AnoGAN (Schlegl et al., 2019), and AEGAN that is the base architecture for
several models (Zenati et al., 2018; Akcay et al., 2018). Bold font is the best AUC in each category
and lightblue background indicates the best method measured by the average AUC on L2 and SSIM
anomaly score.

Model AnoGAN f-AnoGAN AEGAN I3AD
Score L2 SSIM L2 SSIM L2 SSIM L2 SSIM

Te
xt

ur
es

carpet 0.553 0.576 0.487 0.504 0.571 0.695 0.809 0.850
grid 0.537 0.548 0.561 0.532 0.777 0.863 0.959 0.987
leather 0.624 0.712 0.557 0.721 0.798 0.754 0.833 0.938
tile 0.544 0.508 0.536 0.513 0.539 0.495 0.630 0.788
wood 0.598 0.629 0.657 0.655 0.627 0.617 0.665 0.776

O
bj

ec
ts

bottle 0.775 0.796 0.773 0.772 0.880 0.922 0.923 0.950
cable 0.711 0.754 0.684 0.723 0.741 0.739 0.819 0.795
capsule 0.778 0.859 0.740 0.869 0.857 0.913 0.733 0.854
hazelnut 0.885 0.946 0.849 0.955 0.884 0.955 0.664 0.756
metal nut 0.747 0.733 0.738 0.749 0.849 0.854 0.515 0.526
pill 0.805 0.883 0.692 0.752 0.872 0.922 0.649 0.725
screw 0.789 0.925 0.786 0.898 0.857 0.947 0.852 0.959
toothbrush 0.873 0.931 0.881 0.925 0.925 0.956 0.946 0.969
transistor 0.704 0.768 0.814 0.843 0.814 0.843 0.596 0.651
zipper 0.710 0.734 0.702 0.727 0.734 0.743 0.854 0.962

A
ve

. textures 0.571 0.594 0.560 0.585 0.662 0.685 0.779 0.868
objects 0.778 0.833 0.766 0.821 0.841 0.879 0.755 0.815
total 0.709 0.753 0.697 0.742 0.782 0.815 0.763 0.832
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F MASK INITIALIZATION

2 by 2 patched masks

4 by 4 patched masks

6 by 6 patched masks

Figure 6: Mask initialization in test iteration step. Images are masked by four masks that includes
X by X patched boxes.

A conditional generator in I3AD encodes unmasked pixels and decodes masked pixels. More spe-
cially, it decodes whole pixels and uses spatial discounted reconstruction loss to learn to decode only
for the masked region. Therefore

as conditional-encoding autoencoder Pathak et al. (2016) During test iterations, the generative model
needs the initialized mask at the first iteration step. To cover whole images and segment a few
batches, we split images into X by X patches and aggregated them into four masks.
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G QUALITATIVE RESULT

Normal Anomalous L2AE I3AD (Ours)L2AE-grad

Figure 7: Other qualitative results
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H ARCHITECTURE COMPARISON

Base Architecture Model Name

Generator  
(Decoder)

Discri-
minatorZ

Encoder Generator  
(Decoder)

Discri-
minator

Image

Encoder Decoder

Image (Z)
AutoEncoder  

SSIM-AutoEncoder 
DAE 
VAE  

Gradient anomaly scores*  
ceVAE (context-encoding)

AnoGAN

AEGAN / VAEGAN*  
AnoVAEGAN 
f-AnoGAN 

Efficient-GAN (ALI)  
GANomaly 
CAVAE

(Z)

Backprop Iteration

Discri-
minatorU-Net AVID 

Skip-GANomaly

Generator  
(Decoder)

Discri-
minatorZ ADGAN

Backprop Iteration

Image

U-Net

Image

Attention U-Net

Conditional 
Encoder

Conditional 
Decoder

Discri-
minator

Masked Image

I3AD 
(Ours)

Forward Iteration

Encoder Decoder

Image Z
Likelihood Regret

Backprop Iteration

*Referred to as these names in this paper

Encoder Decoder

Image (Z)

Iterative projection*

Backprop Iteration

Figure 8: Architecture comparison
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We summarize the base model architecture used in recent reconstruction based approach. This is
not an all-inclusive list and several studies proposed additional losses and modules with different
anomaly score measures in the above base architectures.
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I IMAGE INPAINTING RELATED WORKS

Image inpainting (a.k.a. image completion or image filling) is one of the Image-to-Image trans-
lation tasks to cover damaged, deteriorating, or missing parts from remaining parts or alternative
contents guided by users. In computer vision, recently, there is much research about the approach
based on feed-forward generative models with convolutional networks, especially using conditional
generative adversarial networks (cGANs)(Isola et al., 2017).

Iizuka et al. (2017) proposed the model with global and local consistency to handle high-resolution
images. To handle irregular masks, Liu et al. (2018) proposed a partial convolution layer that the
weights in the convolutional layers are re-normalized by the number of valid pixels from the mask
matrix. To produce higher-quality image inpainting, Yu et al. (2018) proposed two-stage architecture
with coarse and refinement networks and a contextual attention module in a refinement network. The
contextual attention module captures long-range spatial dependencies between masked regions and
their surroundings, allowing models to fill large rectangular masks. To handle free-form masks, (Yu
et al., 2019) proposed the gated convolution that extends the partial convolution and works pixel
normalization and mask updates as trainable weights in neural network layers.

J ANALOGY OF SSIM-MASK WITH PARTIAL CONVOLUTION LAYER

In inpainting task, the convolutional layer in a generator network assigns the weight balanced on
both valid pixels in unmasked region and invalid pixels in masked region. (Liu et al., 2018) proposed
partial convolution layer to adapt an irregular shaped mask and re-normalize the dependence of valid
pixels. It is computed by the following equations:

O =

{
W ∗ (X � M

sum(M) ) if sum(M) > 0

0 otherwise,

where let W be the convolution filter weights for the convolution layer, X be the feature values for
the sliding window, M be the corresponding binary mask, and Ox,y be the output features. The
corresponding binary mask M has also the rule-based update in each layer following by

M l+1 =

{
1 if sum(M l) > 0
0 otherwise.

Our I3AD passes through the forward model iteratively, which is interpreted as a very deep gener-
ative model. Our SSIM-Mask corresponds to a kind of partial convolutions, which extends to the
non-linear structural similarity rule.
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