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ABSTRACT

Federated Learning (FL) is a decentralized machine learning method that enables
participants to collaboratively train a model without sharing their private data.
Despite its privacy and scalability benefits, FL is susceptible to backdoor attacks,
where adversaries poison the local training data of a subset of clients using back-
door triggers, aiming to make the aggregated model produce malicious results
when the same backdoor conditions are met by an inference-time input. Exist-
ing backdoor attacks in FL suffer from common deficiencies: fixed trigger pat-
terns and reliance on the assistance of model poisoning. State-of-the-art defenses
based on analyzing clients’ model updates exhibit a good defense performance
on these attacks because of the significant divergence between malicious and be-
nign client model updates. To effectively conceal malicious model updates among
benign ones, we propose DPOT, a backdoor attack strategy in FL that dynam-
ically constructs backdoor objectives by optimizing a backdoor trigger, making
backdoor data have minimal effect on model updates. We provide theoretical jus-
tifications for DPOT’s attacking principle and display experimental results show-
ing that DPOT, via only a data-poisoning attack, effectively undermines state-of-
the-art defenses and outperforms existing backdoor attack techniques on various
datasets.

1 INTRODUCTION

Federated Learning (FL) is a decentralized machine-learning approach that has gained widespread
attention recently. Unlike traditional centralized model training, FL enables model updates to be
computed locally on distributed data, offering enhanced data privacy, reduced communication over-
head, and scalability for a large number of clients. In each round of FL, a central server distributes
a global model to participating clients, each of whom independently trains the model on its local
data, and its model updates are aggregated by the server for updating the global model. Despite its
advantages, FL has been proven susceptible to backdoor attacks (Bagdasaryan et al., 2020). Back-
door attacks in FL involve adversaries manipulating the local models of a subset of clients to learn
backdoor information from poisoned data with triggers, causing the global model, after aggregating
these compromised local models, to produce adversary-desired results when the same trigger con-
ditions are met. In this work, we term clients manipulated by adversaries during local training as
malicious clients, and those unaffected as benign clients.

Existing backdoor attacks in FL present two common deficiencies. First, the patterns of backdoor
triggers are pre-defined by the attacker and remain unchanged throughout the entire attack pro-
cess (Bagdasaryan et al., 2020). Consequently, the optimization objective brought by backdoored
data (backdoor objective) is static and incoherent with the optimization objective of main-task data
(benign objective), resulting in distinct differences in model updates after training. These mali-
cious clients’ model updates are therefore easily canceled out by robust aggregations. Second, many
approaches rely on model-poisoning techniques to enhance the effectiveness of backdoor attacks.
Implementing model-poisoning attacks requires attackers to change the training procedures of a cer-
tain number of genuine clients to make their local training algorithms different from other clients.
However, achieving this condition is challenging, as advanced defense mechanisms (Riege et al.,
2024) have introduced Trusted Execution Environments (TEEs) to ensure the secure execution of
client-side training, making it harder to maliciously modify the training procedure.
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Existing defenses against backdoor attacks in FL rely on a hypothesis that backdoor attacks will
always cause the updating direction of a model to deviate from its original benign objective, be-
cause the backdoor objectives defined by backdoored data cannot be achieved within the original
direction (Fung et al., 2020; Cao et al., 2021). However, the capabilities of backdoor attacks are not
limited to this hypothesis. To counter this hypothesis, adversaries can align the updating directions
of a model with respect to backdoor and benign objectives by strategically adjusting the backdoor
objective. Applying this idea to FL, if the injection of backdoored data has minimal effect on a
client’s model updates, then detecting this client as malicious becomes challenging for defenses
based on analyzing clients’ model updates.

In this work, we propose Data Poisoning with Optimized Trigger (DPOT), a backdoor attack on
FL that dynamically constructs the backdoor objective to continuously minimize the divergence be-
tween clients’ model updates in the backdoored states and the non-attacked states. We construct the
backdoor objective by optimizing the backdoor trigger such that the current round’s global model
exhibits minimal loss on the backdoored data. When the global model becomes more optimized to
the backdoored data, further training on this data will lead to smaller updates to the global model’s
current state. Therefore, when a malicious client’s local dataset is partially poisoned by the opti-
mized trigger while the rest remains benign, the model updates produced on them can be dominated
by benign model updates within a limited number of local training epochs. We provide theoretical
justification that trigger optimization can cause small differences in a client’s model updates be-
tween the non-attacked and backdoored states (in Appendix C). Our experiments demonstrate that
these small differences enable malicious model updates to bypass defenses and integrate into global
models, resulting in backdoored global models.

Without any assistance of model-poisoning techniques, DPOT can be conducted simply by executing
a normal training process on the poisoned local data. To ensure the stealthiness of the trigger, we
constrain its L0-norm by developing two algorithms to separately optimize the placement and values
of trigger pixels. To the best of our knowledge, we are the first to propose algorithms for generating
an optimized trigger with free shape and placement while specifying its exact size.

We evaluated DPOT on four image data sets (FashionMNIST, FEMNIST, CIFAR10, and Tiny Ima-
geNet) and four model architectures including ResNet and VGGNet. We assessed the attack effec-
tiveness of DPOT under a variety of defense conditions, testing it against eleven defense strategies
that are based on analyzing clients’ model updates along with one defense strategy that uses client-
side adversarial training to recover the global model (Zhang et al., 2023). We compared DPOT attack
with three state-of-the-art data-poisoning backdoor attacks that employ fixed-pattern triggers, dis-
tributed fixed-pattern triggers (Xie et al., 2020), and partially optimized triggers (Zhang et al., 2024),
respectively. Using a small number of malicious clients (5% of the total), DPOT outperformed ex-
isting data-poisoning backdoor attacks in effectively undermining defenses without affecting the
main-task performance of the FL system.

2 RELATED WORK

2.1 BACKDOOR ATTACKS IN FL

FL is very vulnerable to backdoor attacks. As training data are privately held by clients, the secu-
rity of data is hard to track and protect. We discussed existing backdoor attacks in FL for image
classification tasks based on their important properties (more details can be found in Appendix B.2).

With vs. Without model poisoning. Backdoor attacks in FL primarily rely on data poisoning, where
attackers embed triggers in local training data and alter labels to train malicious models. Model
poisoning (Fang et al., 2020) is often introduced to strengthen these attacks, by directly manipulating
clients’ model updates or training algorithms. However, it is challenged by the security provided by
Trusted Execution Environments (TEEs), which authenticate and protect client-side training. In
contrast, data poisoning is easier for attackers to conduct and harder to prevent, as clients would
gather data from open, vulnerable sources. DPOT attack only relys on data poisoning.

Static objective vs. Dynamic objective. A static objective in backdoor attack represents a pre-
defined and unchanging objective that is independent to the training system’s status, such as asso-
ciating certain input features or patterns with incorrect predictions. Having static objectives make
malicious model updates easier to detect due to their inconsistency with main-task optimization. In

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

contrast, a backdoor attack that adjusts its objective based on the training system’s status is referred
to as having a dynamic objective. For example, Gong et al. (2022) and Fang & Chen (2023) opti-
mized the trigger pattern based on a hypothesis that maximizing the activation of certain neurons in
the backdoored local model can enhance the attack’s persistence on the global model; however, these
lack theoretical justification and proof-of-concept implementations. Zhang et al. (2024) optimized
triggers specifically for a corner case where the global model is directly trained to unlearn the trig-
ger, but the effectiveness of its triggers in more general FL training scenarios remains unaddressed.
DPOT dynamically adjusts objectives to minimize the impact of backdoored data on model updates,
and is provably effective in general FL training scenarios.

L2-norm vs. L0-norm bounded trigger. Designing effective backdoor triggers requires ensuring
their stealthiness. L2-norm bounds restrict the magnitude of changes added by the trigger, resulting
in subtle perturbations spreading within a single input (Lyu et al., 2023). L0-norm bounds restrict
the number of components (e.g., pixels in an image) that can be replaced by the trigger. L2-norm
bounded triggers require the attacker to access and alter a figure’s values before it is physically
printed for use, and they are easily disrupted and filtered during data preprocessing. An L0-norm
bounded trigger, given its stable shape, consistent values, and compact size, are easier to apply.
However, current works with optimized L0-norm bounded triggers (Zhang et al., 2024; Fang &
Chen, 2023) are still limited by fixing triggers’ shape and placement, reducing their potential for
more effective FL attacks. DPOT optimizes a trigger with an L0-norm constraint, while allowing
flexibility in its shape, placement, and value.

2.2 DEFENSES AGAINST BACKDOOR ATTACKS IN FL

In this work, we focus on defenses that adhere to the privacy-preserving principles of FL originally
introduced by McMahan et al. (2017): clients’ private data are kept local, and their model updates
are not shared with any entities other than the server. For a discussion on additional defenses with
varying privacy-preserving properties, please refer to the Appendix B.3.

In existing defenses, the server and clients are the two subjects commonly considered for imple-
menting defense strategies. For benign clients as the defense subject, the global model of each
round is the input they receive from the FL system. Zhang et al. (2023) proposed using trigger in-
version on the global model and adversarial training on local models to mitigate the impact of the
backdoor trigger. However, its effectiveness against continually evolving optimized triggers remains
unaddressed. For server as the defense subject, clients’ model updates are the input that the server
receives from the FL system. Numerous studies proposed to defend against backdoor attacks by
analyzing clients’ model updates, which can be further classified into the two categories below.

Excluding model updates with outlier values (in certain features). Some existing works presume
that a malicious client’s model updates will exhibit significant differences from those of benign
clients in values or certain features extracted from values. Nguyen et al. (2022) and Fung et al.
(2020) exclude a client’s model updates that have outlier cosine similarity in values to other clients’
model updates. Sharma et al. (2023) and Ozdayi et al. (2021) reduce or penalize the contribution of
model updates that show a certain degree of sign dissimilarity, either on a client-wise or element-
wise basis. Kumari et al. (2023) and Fereidooni et al. (2024) assess the probabilistic distribution
and frequency transformation of clients’ model updates, and eliminate outliers in these features.
Mozaffari et al. (2023) create a sparse space of model updates for clients to vote, and the server
rejects outlier votes and aggregates the rest.

Byzantine-robust aggregation. Some existing works propose aggregating only the most trustwor-
thy model updates to tolerate the presence of malicious clients. Yin et al. (2018) aggregate reliable
model updates element-wise by taking median or trimmed mean, while Blanchard et al. (2017), Cao
et al. (2022), and Pillutla et al. (2022) select and aggregate reliable model updates client-wise.

Analyzing clients’ model updates can effectively defend against backdoor attacks that cause dis-
tinctions between malicious clients’ and benign clients’ model updates. However, when a backdoor
attack can conceal malicious clients’ model updates among benign ones, defenses based on this strat-
egy will struggle (Bagdasaryan et al., 2020). In this work, we show that this goal can be achieved
by dynamically changing the backdoor objectives defined on poison data, so that malicious clients’
model updates are effectively manipulated.
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Figure 1: Overview of DPOT attack process on a FL system within Trusted
Execution Environments (TEEs). In this figure, Client #1, #2, and #3 perform
as the malicious clients while other clients (e.g. Client #n) are benign clients.

(a) FEMNIST

(b) CIFAR10

Figure 2: Data with
DPOT triggers.

3 THREAT MODEL

Attacker’s capability and background knowledge: As shown in Figure 1, we assume that each
FL client—even a malicious one—is equipped with trustworthy training software that conducts cor-
rect model training on the client’s local training data and transmits the model updates to the FL
server. Aligning with the security settings in the state-of-the-art defense work (Riege et al., 2024),
we assume that both the client training pipeline and the FL server, as well as the communication be-
tween them, faithfully serve FL’s main task training and cannot be undetectably manipulated. These
properties would be achievable by executing FL training within Trusted Execution Environments
(TEEs) (Schneider et al., 2022; Riege et al., 2024), for example, by applying cryptographic protec-
tions to the updates (e.g., a digital signatures) to enable the FL server to authenticate the updates as
coming from the TEEs.

The capability of malicious clients in our attack is limited to the manipulation of their local training
data that are input to their training pipelines. In addition, in line with existing works (Lyu et al.,
2023; Zhang et al., 2024; Fang & Chen, 2023; Gong et al., 2022), we do not assume the secrecy of
the global model provided by the FL server, as it would typically need to be accessible outside TEEs
for use in local inference tasks. As such, in each FL round, clients are granted white-box access
to the global model. Originating from initially benign clients that have been compromised, these
malicious clients possess some local training data for the FL main task as background knowledge.

Attacker’s goals: The malicious clients aim to accomplish the following goals.

• Effectiveness. For classification tasks, Attack Success Rate (ASR) is the accuracy of a model in
classifying data embedded with a backdoor trigger into a target label. The DPOT attack aims to
make the post-aggregation global model misclassify data embedded with a trigger, optimized for
the clients’ most recently received global model, into a target label. Our effectiveness goal is for
the global model to achieve an ASR of over 50% in the final round and even maintain an average
ASR of over 50% across all rounds.

• Stealthiness. The stealthiness goal of a backdoor attack is to maintain the Main-task Accuracy
(MA) of the global model at a normal level, ensuring the functionality of the global model on its
main-task data.

4 DPOT DESIGN

4.1 BUILDING A TRIGGER TRAINING DATASET

At the beginning of the DPOT attack, we initially gather all available benign data from the malicious
clients’ local training datasets and assign a pre-defined target label yt to them. We refer to this new
dataset, which associates benign data with the target label, as the trigger training dataset D.

4
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Algorithm 1 Computation for Trigger-pixel Place-
ments
Input: Wg , D, yt, tri size
Output: Et

1: ∀x ∈ D : yx ←Wg(x).
2: L ← 1

|D|
∑

x∈D(yx − yt)
2.

3: ∀x ∈ D : δx ← ∂L
∂x

.
4: δ ← abs(

∑
x∈D δx).

5: δf ← flatten δ into a one-dimensional array.
6: S ← argsort(δf ).
{ Store the sorted indices (descending sort)}

7: Et ← S[: tri size ].
{ Top tri size indices are trigger placements}

8: Et ← transform from one-dimensional indices
to indices for x ∈ D.

9: return Et

Algorithm 2 Optimization for Trigger-pixel Values

Input: Et, Wg , D, yt, niter , γ
Output: Vt

1: for iteration ← 1 to niter do
2: D′ ← D.
3: if iteration = 1 then
4: Vt ← 1

|D′|
∑

x∈D′ x.
5: else if iteration > 1 then
6: ∀x ∈ D′ : x[Et]← Vt[Et].
7: end if
8: ∀x ∈ D′ : yx ←Wg(x).
9: L ← 1

|D′|
∑

x∈D′(yx − yt)
2.

10: ∀x ∈ D′ : δx ← ∂L
∂x

.
11: δ ←

∑
x∈D′ δx.

12: Vt[Et]← (Vt − γ · δ)[Et].
13: end for
14: return Vt

4.2 OPTIMIZING BACKDOOR TRIGGER

Formulating the optimization problem. We generate a new backdoor trigger for each round’s
global model, with the optimization process operating independently across FL rounds. In this part,
we introduce the trigger optimization algorithms within a single round of FL.

In the image classification context, consider the global model Wg as input and all pixels within
an image as the parameter space. Our approach aims to find a subset of parameters that have the
most significant impact in producing the malicious output result (i.e., target label), and subsequently
optimize the values of the parameters in this subset for the malicious objective (i.e., a high ASR).
In the end, the pixels in this subset with their optimized values will serve as a backdoor trigger.
This trigger will increase the likelihood that an image containing it will yield the malicious output
when employing the same model Wg for inference. The optimization objective to resolve the above
problem can be written as formula (1).

min
τ

1

| D |
∑
x∈D

Loss(Wg(x⊙ τ), yt), (1)

where τ represents the backdoor trigger composed of trigger-pixel placements Et and trigger-pixel
values Vt. The objective is to minimize the difference between the target label yt and the output
results of the global model Wg when taking the backdoored images as input, which can be quantified
by a loss function. The symbol ⊙ represents an operator to embed the backdoor trigger τ into a clean
image x, whose definition is further described in (2) of Appendix C. To enhance generalization
performance of the trigger, we optimize it for all images in the trigger training dataset D.

Compute trigger-pixel placements Et. In Algorithm 1, we select pixel locations that contain
the largest absolute gradient values with respect to the backdoor objective (1) as the trigger-pixel
placements. Algorithm 1 takes inputs including the global model Wg , the trigger training dataset
D, the target label yt, and a parameter trisize that specifies the trigger size. The trigger size trisize
determines the number of pixel locations we will choose. The output of the Algorithm 1 is the
trigger-pixel placement information denoted as Et.

Starting from line 1 and line 2, we first calculate the loss of the global model Wg in predicting clean
images in dataset D as the target label yt, where we show Mean Square Error (MSE) as an example
loss function. Next, we compute the gradient of the loss with respect to each pixel in each image and
store the values of gradients in each image x in δx (line 3). After summing up δx per pixel and take
the absolute value of the results, we obtain an absolute gradient value matrix with the same shape
as an individual image in dataset D (line 4). To better describe how we sort elements in δ by their
values, we first flatten δ into a one-dimensional array δf (line 5), and then sort elements in this array
in descending order and store the sorted indices in an array S (line 6). The top trisize number of
indices are the trigger-pixel placements of interest, but before returning these indices, we transform
them from indices for a one-dimensional array to indices for a matrix of an image’s shape in dataset
D (line 7,line 8).
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Optimize trigger-pixel values Vt. In Algorithm 2, we optimize the values of the trigger pixels
defined in Et using a learning-based approach. Algorithm 2 requires the following inputs: the
trigger-pixel placements Et, the global model Wg , the trigger training dataset D, and the target
label yt. Additionally, it uses two training parameters: the number of training iterations niter and
the learning rate γ. The output produced by Algorithm 2 is the trigger-pixel value information
denoted as Vt.

The first step of each iteration is making a copy dataset D′ of D (line 2) so that the optimized trigger
of each iteration can always be embedded into clean data. In the first iteration, we initialize the
trigger-pixel value matrix Vt by taking the mean value of all images in dataset D′ along each pixel
location (line 4). Then, we calculate the loss of the global model Wg in predicting images from D′

as the target label yt (line 8, 9). Next, we compute the gradients of the loss with respect to each
pixel in each image in dataset D′ and store the values of gradients in each image x in δx (line 10).
The gradient matrix δ is obtained by summing up δx along each pixel location (line 11) (but not
need to take the absolute value as Algorithm 1). After that, we use the gradient descent technique
with γ as the learning rate to only update the values of pixels within the trigger-pixel placements Et

(line 12) and assign those new values to the trigger value matrix Vt. For all iterations after the initial
one, we consistently replace pixels within the trigger-pixel placements Et of each image with their
corresponding values in the trigger value matrix Vt (line 6). The steps of line 6 and line 12 ensure
that the only variables influencing the loss result are the pixels specified by Et.

4.3 POISONING MALICIOUS CLIENTS’ TRAINING DATA

The last step of our attack is to poison malicious clients’ local training data using the optimized
trigger τ = (Et, Vt) and its target label yt by a certain data poison rate. The data poison rate can
be specified on a scale from 0 to 1, while smaller data poison rate induces stealthier model updates,
making them more difficult for defenses to detect and filter. In the following, we set the data poison
rate to 0.5 for all experiments.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets and global models: We evaluated DPOT on four classification datasets with non-IID data
distributions: Fashion MNIST, FEMNIST, CIFAR10, and Tiny ImageNet. Table 4 summarizes their
basic information and models we used on each dataset.

Comparisons: As DPOT is exclusively a data-poisoning attack, we compared it with existing
attacks where all the non-data-poisoning components were removed. We compared DPOT with
three existing attacks as described below.

• Fixed Trigger (FT). Following recent research on backdoor attacks on FL (Baruch et al., 2019;
Xie et al., 2020; Cao et al., 2021; Bagdasaryan et al., 2020), we used a global pixel-pattern trigger
with fixed features (values, shape, and placement) for all experiments in this attack category.

• Distributed Fixed Trigger (DFT). DBA (Xie et al., 2020) proposed to slice a global pixel-pattern
trigger into several parts and distributes them to malicious FL clients for data poisoning. The
Attack Success Rate measures the effectiveness of this global trigger on the global model.

• A3FL Trigger A3FL (Zhang et al., 2024) proposed to adversarially optimize a trigger’s value
using a local model that continuously unlearns the optimized trigger information. The shape and
placement of the A3FL trigger are fixed during optimization. Comparison results between DPOT
and A3FL attacks are shown in Appendix E.1.

The visualization of various trigger types on different datasets are demonstrated in Appendix F.

Defenses: We evaluated backdoor attacks in FL systems employing different state-of-the-art de-
fense strategies against backdoor attacks. We selected defenses that have open-sourced their proof-
of-concept code to ensure accurate implementation of their proposed ideas. Here we present the
evaluation results against ten defense strategies that rely solely on server-side execution; these de-
fenses are described in Appendix D.1. In addition, evaluation results of defenses requiring client-
side execution, Flip (Zhang et al., 2023) and FRL (Mozaffari et al., 2023), are given in Appendix E.2
and Appendix E.3 due to space limitations.
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Evaluation metrics: We considered three metrics to evaluate the effectiveness and stealthiness of
backdoor attacks when confronted with different defense strategies. To evaluate the effectiveness of
the DPOT attack, we tested the post-aggregation global model using poisoned data with a trigger
optimized for the clients’ most recently received global model.
• Final Attack Success Rate (Final ASR). This metric quantifies the proportion of backdoored

test images that were misclassified as the target label by the global model at the end of training.
In order to reduce the testing error caused by noise on data or model so as to maintain the fairness
of comparison, we tested ASR on the global models of the last five rounds and took their mean
value as the Final ASR.

• Average Attack Success Rate (Avg ASR). Since the attack cycle of DPOT spans just a single
round, we introduced Avg ASR to assess the average attack effectiveness across all rounds during
the FL process. The implication of a high Avg ASR of an attack is that this attack had consistently
significant effectiveness during the whole FL process, ensuring a high Final ASR no matter when
the FL process ended.

• Main-task Accuracy (MA). We evaluate this metric by testing the accuracy of a global model on
its clean main-task test dataset. A backdoor attack is seen to be stealthy if its victim model does
not show a noticeable reduction in MA compared to the benign model.

FL training configurations: Please see details of FL training settings in Appendix D.2.

Attack configurations: Table 5 shows the default settings of DPOT attack for experiments.

• Trigger size. The number of pixels that a backdoor trigger can alter is specified by the trigger size
attribute. Selection of trigger sizes for various datasets are discussed in Appendix D.3.

• Round. We determine the number of training rounds for each dataset by measuring the conver-
gence time on an FL pipeline using FedAvg as the aggregation rule. Convergence is considered
achieved when the test accuracy on the main task stabilizes within a range of 0.5 percentage points
over a period of five consecutive rounds of training.

• Number of clients. The number of clients varies across different datasets due to a balance between
our available computational resources and the size of the datasets/models. All clients participate
in the aggregation for each round of FL training.

• MCR. Malicious Client Ratio (MCR) is a parameter defining the proportion of compromised
clients compared to the total number of clients in each-round aggregation. We consider 5% as the
default MCR (for FL systems having 50 clients, 2 of them are malicious clients).

• Local data poison rate. It indicates the proportion of data manipulated by a backdoor attack
relative to the total data available on each malicious client.

5.2 EXPERIMENTAL RESULTS

5.2.1 REPRESENTATIVE RESULTS

In this section, we present the performance of DPOT attack against ten defense methods and compare
our results with two widely-used data-poisoning attacks.

The effectiveness of an attack is measured using the ASR metric, as shown in Figure 3. Results in-
dicate that the DPOT attack consistently achieves a final ASR exceeding 50% across all considered
defense methods, regardless of the dataset’s characteristics such as imgae size and number of im-
ages. Additionally, the DPOT attack also exhibits a considerable average ASR in attacking different
defenses, indicating its malicious effect on each-round global model. The stealthiness of an attack
is assessed using the MA metric, as indicated in Table 8. We established a baseline MA for each
defense method on every dataset by measuring the final MA achieved in an attack-free FL training
session employing the respective defense. Upon comparing the baseline MA of various defenses
to that of FedAvg, we observed that certain defenses, such as Multi-Krum on most of datasets and
FLAME on Tiny ImageNet, failed to achieve similar convergence performance as FedAvg under
the same training conditions. Defenses with deficient baseline MA are less likely to be adopted
in practice. The results presented in Table 8 indicate that the DPOT attack successfully maintains
the MA of victim global models within a ±2 percentage-point difference range compared to the
corresponding baseline MA values. In comparison to FT and DFT attacks, the DPOT attack demon-
strates superior attack effectiveness in compromising existing defenses. As illustrated in Figure 3,
the DPOT attack consistently demonstrates a higher Final ASR compared to FT and DFT attacks
and also achieves a significantly better Average ASR.
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Figure 3: Representative results on four different datasets are provided. The attack settings corre-
spond to the default settings outlined in Table 5.

5.2.2 ANALYSIS OF THE DPOT WORKING PRINCIPLES

In this section, we analyzed the attack effectiveness of each component of the DPOT attack’s work-
ing principles and report evidence that it effectively conceals malicious clients’ model updates,
thereby getting them integrated into the global models through aggregation.

In the i-th round, DPOT generates a trigger τ (i) by optimizing its shape, placement and values to
make the global model of this round Wg

(i) achieve a maximum ASR. However, what we were truly
interested in is its ASR on the global model after the i-th round aggregation, which is the next-round
global model denoted as Wg

(i+1). The attack effectiveness of the trigger τ (i) on the global model
Wg

(i+1) stems from two factors:

1. Trigger Optimization: Trigger optimization using Wg
(i) results in an improvement of the trig-

ger’s ASR on Wg
(i+1) due to the small difference between Wg

(i+1) and Wg
(i).

2. Aggregation of Backdoored Model Updates: Model updates that were trained on data partially
poisoned by τ (i) exhibit small differences from those were trained on data without poisoning.
Therefore, they bypassed defenses and made Wg

(i+1) incorporate backdoored model parameters.

In the following, we explain how we designed experiments to study the impact of each factor, and
analyzed the experiment results.

Experiment design: To assess the attack effectiveness solely brought by Trigger Optimization, we
eliminated any effects produced by data poisoning. Specifically, we set all clients in the FL system
to be benign, ensuring that the next-round global model, denoted as W̃

(i+1)
g , aggregated benign

model updates only. In the meantime, we still collected data from a certain number of clients and
optimized a trigger τ̃ (i) for W̃ (i)

g . Then, we tested W̃
(i+1)
g on a testing dataset in which all images

are poisoned with the trigger τ̃ (i) to obtain an ÃSR. This ÃSR evaluates the attack effectiveness
achieved by the current-round optimized trigger τ (i) on the next-round global model W̃ (i+1)

g , which
does not contain any model updates learned from backdoor information.

To assess the attack effectiveness brought by Aggregation of Backdoored Model Updates, we in-
troduced malicious clients into the FL system and therefore the global model, denoted as Ẅ

(i+1)
g ,

was allowed to aggregate model updates submitted by malicious clients. In this system, malicious
clients partially poisoned their local training data (aligning with default settings in Table 5) using
the trigger τ̈ (i) that was optimized for Ẅ

(i)
g , and then conducted their local training. We tested
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the Ẅ
(i+1)
g on the testing dataset that was also poisoned by τ̈ (i) to obtain an ¨ASR. We evaluated

the attack effectiveness of Aggregation of Backdoored Model Updates by measuring the increase in
ASR compared to the previous setting, calculated as ( ¨ASR− ÃSR). This metric reveals how much
the malicious clients’ model updates influenced the global model Ẅ (i+1)

g to achieve a higher ASR
compared to W̃

(i+1)
g .

Table 1: ASR under different attacking conditions. ÃSR assesses the attack effectiveness of “Trig-
ger Optimization” alone, while ¨ASR assesses the combined effectiveness of both “Trigger Opti-
mization” and “Aggregation of Backdoored Model Updates”.

FedAvg Median Trimmed
Mean RobustLR RFA FLAIR FLCert FLAME FoolsGold Multi-

Krum
Fashion MNIST

Final ÃSR 58.8 57.9 31.6 70.2 78.0 42.2 49.6 38.0 54.2 60.6
¨ASR 97.7 97.8 94.4 99.2 97.7 85.3 95.2 71.1 98.9 99.9

Avg ÃSR 45.1 38.2 29.7 47.2 46.4 36.2 39.7 26.2 50.3 45.4
¨ASR 69.1 61.7 56.0 62.8 62.0 50.1 57.9 43.4 68.5 63.6

FEMNIST

Final ÃSR 54.0 18.0 24.2 28.8 18.9 23.0 27.7 34.7 57.0 31.7
¨ASR 99.7 95.4 95.2 99.3 98.3 88.7 97.1 99.2 99.6 99.7

Avg ÃSR 28.6 17.5 25.6 27.3 13.4 29.6 34.6 35.7 43.7 28.7
¨ASR 92.9 81.2 84.3 93.0 95.9 72.7 86.7 86.1 95.2 92.0

CIFAR10

Final ÃSR 55.6 56.6 55.6 60.1 57.4 54.1 48.7 28.1 35.5 49.7
¨ASR 100 100 100 100 100 62.3 99.2 59.8 100 100

Avg ÃSR 50.9 48.7 40.9 47.3 46.1 45.9 46.7 51.0 35.6 36.1
¨ASR 98.5 96.1 88.6 98.6 97.8 50.7 88.3 56.1 98.5 98.7

Experiment results: Table 1 shows results of ÃSR and ¨ASR over 10 different defense methods.
We used same settings as in Table 5 for testing ¨ASR, and kept the size of trigger training dataset
consistent when testing ÃSR.

The results of ÃSR in Table 1 show that different defense methods resulted in very different ÃSR

even for the same learning task of a dataset. The reason for the variance of ÃSR is the gap between
Wg

(i) and W̃
(i+1)
g were different when implementing different defense methods. According to

recent studies (Lyu et al., 2023; Zhang et al., 2024), if the gap between consecutive rounds of global
models in an FL system is smaller, Trigger Optimization will be more effective in its attack. The
results of ¨ASR in Table 1 show that the presence of malicious clients’ model updates consistently
enhances ASR compared to ÃSR across all defense methods on different datasets. We consider this
enhancement as an evidence of the statement that the attack effectiveness of DPOT comes from both
Trigger Optimization and Aggregation of Backdoored Model Updates, with the latter one playing a
critical role in producing a high ¨ASR.

A general hypothesis made by the state-of-the-art defenses against backdoor attacks in FL is that
malicious clients’ model updates have a distinct divergence from benign clients’ model updates.
However, as indicated by the results in Table 1, DPOT effectively conceals the model updates from
malicious clients amidst those of benign clients, eluding detection and filtering by state-of-the-art
defenses. Consequently, defenses formulated based on this broad hypothesis will inherently struggle
to defend against DPOT attacks.

5.2.3 IMPACT OF MALICIOUS CLIENT RATIO (MCR)

In this section, we evaluated the impact of different Malicious Client Ratios (MCR) on the attacking
performance of DPOT attack. We assumed that the number of malicious clients in the FL system
should be kept small (≤ 30%) for practical reasons. We varied the MCR across four different
settings (0.05, 0.1, 0.2, and 0.3) while keeping other settings consistent with those in Table 5. We
experimented over 10 different defenses on the learning tasks of the CIFAR10 datasets and compare
DPOT’s results with FT and DFT.

Tables 2 presents the evaluation results of attack effectiveness. DPOT exhibited a dominant advan-
tage over FT and DFT when the MCR is small (0.05 and 0.1). However, this advantage diminished

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 2: The effects of malicious client ratio on the effectiveness of different attacks (CIFAR10).

Final ASR Average ASR

MCR 0.05 0.1 0.2 0.3 0.05 0.1 0.2 0.3
Ours FT DFT Ours FT DFT Ours FT DFT Ours FT DFT Ours FT DFT Ours FT DFT Ours FT DFT Ours FT DFT

FedAvg 100 100 93 100 100 100 100 100 100 100 100 100 99 88 50 99 96 88 99 99 92 99 100 97
Median 100 81 72 100 100 97 100 100 100 100 100 100 96 47 42 97 79 63 99 97 82 99 98 93

Trimmed Mean 100 95 38 100 100 99 100 100 100 100 100 100 89 59 23 98 82 69 99 94 85 99 99 92
RobustLR 100 100 100 100 100 100 100 100 100 100 100 100 99 94 87 99 98 94 99 99 98 99 99 99

RFA 100 100 98 100 100 100 100 100 100 100 100 100 98 81 55 99 95 90 99 99 97 99 99 98
FLAIR 62 15 10 58 25 9 67 27 22 82 33 40 51 14 10 64 24 9 68 24 16 84 42 30
FLCert 99 93 34 100 100 95 100 100 100 100 100 100 88 60 21 98 87 60 98 94 83 99 99 91
FLAME 60 19 17 52 18 51 50 16 16 55 19 16 56 18 14 66 19 34 53 19 16 70 23 43

FoolsGold 100 100 94 100 100 100 100 100 100 100 100 100 98 88 53 99 97 87 99 99 95 99 99 98
Multi-Krum 100 100 100 100 100 100 100 100 100 100 100 100 99 99 83 99 100 98 98 100 99 99 100 100

Table 3: The effects of trigger size on the effectiveness of different attacks (CIFAR10).

Final ASR Average ASR

Trigger Size 9 25 49 100 9 25 49 100
Ours FT DFT Ours FT DFT Ours FT DFT Ours FT DFT Ours FT DFT Ours FT DFT Ours FT DFT Ours FT DFT

FedAvg 100 94 49 100 100 93 100 100 91 100 100 77 95 60 28 99 88 50 99 90 59 99 93 52
Median 97 23 12 100 81 72 100 95 25 100 99 46 66 21 12 96 47 42 98 66 17 99 82 29

Trimmed Mean 98 51 14 100 95 38 100 99 43 100 100 74 71 29 13 89 59 23 99 74 27 99 79 44
RobustLR 100 100 100 100 100 100 100 100 98 100 100 99 95 91 69 99 94 87 99 94 77 99 95 82

RFA 100 100 99 100 100 98 100 100 100 100 100 98 93 79 56 98 81 55 99 81 71 99 90 73
FLAIR 27 14 14 62 15 10 89 22 15 99 24 14 24 14 13 51 14 10 84 22 15 98 16 13
FLCert 99 38 14 99 93 34 100 88 51 100 100 49 78 26 13 88 60 21 99 59 23 99 78 33

FLAME 21 18 12 60 19 17 100 12 11 100 33 31 35 17 12 56 18 14 84 17 11 90 31 24
FoolsGold 100 100 43 100 100 94 100 100 98 100 100 81 93 72 23 98 88 53 99 94 69 99 94 55

Multi-Krum 100 100 15 100 100 100 99 100 100 100 100 100 99 99 11 99 99 83 99 99 95 99 99 97

with increasing MCR, indicating that when a sufficient number of malicious clients present in FL,
even FT and DFT can achieve respectable ASR against certain defense strategies. In most cases,
the ASR for all attacks continued to rise as the MCR increased, with the exception of FLAME.
Results obtained with FLAME indicate that the number of malicious clients did not significantly
impact its defense effectiveness. Table 9 presents the Main-task Accuracy results for each experi-
ment considered in this section. All MA results for different attacks remain similar to the baseline
MA, indicating the correct implementation of each attack.

5.2.4 IMPACT OF TRIGGER SIZE

Trigger Size, determining how many pixels in an image we can alter, is an important parameter for
DPOT attack. Larger trigger size generally results in a better optimization performance. However, it
is essential to strike a balance because an excessively large trigger size will make a trigger obscure
important details of images, making the trigger easier to perceive by humans. In this section, we
assessed the impact of different trigger sizes on the performance of different attacks. We explored
trigger sizes across four different settings (9, 25, 49, and 100) while maintaining other settings in
accordance with those outlined in Table 5.

Tables 3 shows that DPOT maintained a significant advantage in ASR over FT and DFT across
various trigger sizes, ranging from small to large. According to the results, we found that FT and
DFT did not benefit from larger trigger sizes in achieving higher ASR when encountering with ro-
bust aggregations that have advanced defense effectiveness, such as FLAIR and FLAME. A possible
explanation on that is when malicious model updates were trained on data poisoned with larger FT
or DFT triggers, they exhibited greater divergence from benign model updates, making them more
susceptible to detection and filtering by defense mechanisms. In contrast, DPOT demonstrated a
continuous improvement in ASR as the trigger size increased. Table 10 presents the Main-task
Accuracy results for each experiment considered in this section. Results in it indicate all backdoor
attacks achieved their stealthiness goals during attacking.

6 CONCLUSION

In this work, we proposed DPOT, a novel backdoor attack method relying solely on data poisoning
in federated learning (FL). DPOT dynamically adjusts the backdoor objective to conceal malicious
clients’ model updates among benign ones, enabling global models to aggregate them even when
protected by state-of-the-art defenses.
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clients before the data is input into their training phase. Therefore, our work can be extensively used
to evaluate future FL systems for security purposes.

B ADDITIONAL RELATED WORKS

B.1 FEDERATED LEARNING (FL)

The Federated Learning (McMahan et al., 2017) (FL) training process involves four main steps:
1) Model Distribution: A central server distributes the most recent global model to the participating
clients. 2) Local Training: Each client independently trains the global model on its local training
dataset and obtains a local model. 3) Model Updates: Each client calculates the parameter-wise
difference between its local model and the global model, referred to as model updates, and then
sends them to the central server. 4) Aggregation: The central server aggregates clients’ model
updates to create a new global model. This entire process, consisting of step 1 to 4, constitutes a
global round. The FL system repeats these steps for a certain number of rounds to obtain a final
version of the global model.

B.2 BACKDOOR ATTACKS IN FL

Backdoor
Attacks
in FL



With
model

poisoning



Static objective
(fixed trigger)


Semantic trigger: Bagdasaryan et al. (2020)
Edge-case backdoor: Wang et al. (2020)
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Figure 4: An overview of related works on backdoor attacks in FL.

FL is easily suffered from backdoor attacks. As training data are privately held by clients, the
security of data is hard to track or protect. Adversaries can inject backdoors into the global model
simply by compromising a few vulnerable client devices and poisoning their data with backdoor
triggers. To date, many variations of backdoor attacks targeting FL have emerged, and we summarize
those specific to image classification tasks in Figure 4.

With model poisoning v.s. Without model poisoning

The foundation of backdoor attacks in FL is through data poisoning - attackers embed backdoor
triggers into the local training data of certain clients and change the ground-truth labels of the in-
fected data to malicious labels. As a result, clients’ local models trained on the poisoned data will
be backdoored, and consequently, the global model that aggregates these backdoored models will
also be backdoored.

A standalone data poisoning is found challenging to succeed when employing some types of triggers.
Therefore, many works introduce model poisoning to assist backdoor attacks in FL. Model poison-
ing aims to either directly manipulate clients’ model updates or indirectly achieve this by changing
their local training algorithms. Three main approaches in model poisoning were widely adopted in
existing attacks: 1) Scaling based (Bagdasaryan et al., 2020; Sun et al., 2019; Xie et al., 2020; Gong
et al., 2022). Attackers amplify malicious model updates generated from backdoored models before
clients send them to the server. These malicious updates can overpower the aggregation results,
causing the global model to quickly incorporate backdoors. However, this approach is vulnerable to
defenses that exclude outlier model updates from the aggregation. 2) Constraint based (Bagdasaryan
et al., 2020; Lyu et al., 2023). Attackers change clients’ local training algorithms by adding extra
constraints to their loss functions, giving backdoored models specific characteristics, such as being
less distinguishable from benign models. 3) Projection based (Zhang et al., 2022; Baruch et al.,
2019; Wang et al., 2020; Fang & Chen, 2023). Attackers constrain backdoor implementation to
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bounded model parameters: by clipping parameter values or using Projected Gradient Descent,
backdoor models are L2-norm bounded to a chosen model state; by selectively updating a subset of
parameters, they are L0-norm bounded to a chosen state.

Model poisoning requires attackers to modify certain clients’ local training procedures. However,
with the introduction of Trusted Execution Environments (TEEs) by state-of-the-art defense mech-
anisms (Riege et al., 2024), client-side execution for training can be authenticated and secure, thus
increasing the difficulty of conducting model poisoning. In contrast, data poisoning is easier to
conduct and harder to prevent since clients may collect their local data from open resources where
attackers can also get access to and make modifications.

Static objective v.s. Dynamic objective

If a backdoor attack has a specified and unchanging objective that is independent to the training sys-
tem’s status, we refer to this as a static objective. For instance, Semantic trigger as backdoor (Bag-
dasaryan et al., 2020) aims to associate certain features from input that is unrelated to the main
training tasks with an attacker-chosen output, causing the model to make incorrect predictions on
those inputs; Edge-case backdoor (Wang et al., 2020) selects data that share certain commonalities
but are from the tail end of the input data distribution as the backdoored input, causing the model to
mispredict them; Artificial trigger as backdoor (Sun et al., 2019; Zhang et al., 2022; Baruch et al.,
2019; Xie et al., 2020) embeds a few pixels forming a specific artificial pattern into the input, leading
the model to mispredict any input containing this pixel pattern. In FL, since the static objectives of
backdoor attacks are inconsistent with the optimization objectives defined by the main-task data, ma-
licious models will exhibit distinct differences in their model updates compared to benign models,
making them easy to detect.

In contrast to a static objective, a backdoor attack that adjusts its objective based on the training
system’s status is referred to as having a dynamic objective. By adjusting its objective, a backdoor
attack is expected to achieve greater effectiveness. Several approaches have been proposed in recent
attack studies to attempt to accomplish this. For example, Model-dependent attack (Gong et al.,
2022) and F3BA (Fang & Chen, 2023) optimized the trigger pattern based on a hypothesis that
maximizing the activation of certain neurons in the backdoored local model can enhance the attack’s
persistence on the global model, which is however lack of theoretical evidence and proof-of-concept
codes; A3FL (Zhang et al., 2024) optimized triggers specifically for a corner case in FL training,
where the global model is directly trained to unlearn the trigger, but the effectiveness of A3FL
triggers in more general FL training scenarios remains unaddressed.

L2-norm bounded optimized trigger v.s. L0-norm bounded optimized trigger

A critical consideration in designing backdoor triggers is ensuring their stealthiness when applied
to input data, resulting in a substantial disparity between human perception and the backdoored
model’s interpretation. Existing dynamic objective attacks achieve this by constraining the opti-
mized triggers’ L2-norm or L0-norm bounds.

An L2-norm bound on a trigger or perturbation means that the total magnitude of the changes intro-
duced by the backdoor is limited. This makes the perturbation subtle, ensuring it doesn’t drastically
alter the input data. For example, CerP (Lyu et al., 2023) generates optimized perturbations of the
same size as a data point for each round and adds them to clients’ local data to induce their local
models learn to misclassify the perturbed data to a specified target label.

An L0-norm bound restricts the number of components (e.g., pixels in an image) that can be altered
by the trigger. This constraint ensures that the trigger is sparse, meaning it only affects a small
portion of an input data. For example, optimized triggers in Model-dependent attack (Gong et al.,
2022), F3BA (Fang & Chen, 2023), and A3FL (Zhang et al., 2024) all consist of a small number of
pixels arranged in a square shape and are placed in a fixed corner location on the data to poison.

An L2-norm bounded trigger is less practical for real-world data poisoning because it spreads
changes across many pixels, requiring the attacker to access and alter a figure’s values before it
is physically printed for use. Additionally, these small perturbations are easily disrupted by data
preprocessing techniques that filter out unnecessary noise. In contrast, an L0-norm bounded trigger
is easier to apply to data (e.g., a sticker on an image) due to its stable shape, consistent values, and
compact size. However, existing works in optimizing L0-norm bounded triggers are limited by fix-
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ing their shapes and placements and only updating triggers’ values, which fails to fully leverage the
potential of optimized triggers for attacking FL.

Clean-label attacks

Clean-label attacks (Shafahi et al., 2018) involve manipulating input data with subtle perturbations
while keeping labels unchanged. Although this assumption aligns with scenarios like Vertical Fed-
erated Learning (Liu et al., 2024) (VFL), where participants possess vertically partitioned data with
labels owned by only one participant, our study does not consider VFL as our attack scenario. Fur-
thermore, we focus on examining the effects of different backdoor triggers on hiding malicious
model updates rather than their imperceptible characteristics. Therefore, discussions of clean-label
attacks are beyond the scope of our work.

B.3 DEFENSES WITH DIFFERENT PRIVACY-PRESERVING PROPERTIES

Recent defense works have introduced several unconventional FL pipelines aimed at enhancing the
security of FL against various types of attacks. These novel architectures provide different levels of
privacy protection and often require additional techniques (e.g., Secured Multi-party Computation)
to ensure privacy for FL clients. In light of these privacy considerations, we have chosen to focus our
analysis on the conventional FL structure that was originally proposed in the concept of Federated
Learning (McMahan et al., 2017). Although defenses built on newly proposed FL structures fall
outside the scope of our main comparison, we offer a discussion of these related works in this
section.

Clients’ private data were shared to the server: Some approaches allow the server to have access
to a small portion of main-task data shared by clients. To mitigate backdoor attacks, server-side de-
fense strategies use this data to either independently train a model and use its updates as a reference
for each round of aggregation (e.g., FLTrust (Cao et al., 2021)), or to validate clients’ model updates
and eliminate those with abnormal outputs (e.g., SSDT (Mo et al., 2024), SHERPA (Sandeepa et al.,
2024)). However, both of these methods still rely on analyzing clients’ model updates, making them
vulnerable to backdoor attacks with dynamic objectives that conceal malicious updates. FedREde-
fense (Xie et al., 2024) detects and filters out artificial model updates by reconstructing distilled data
shared by clients, but this approach is not effective against backdoor attacks where malicious clients
genuinely train their models on poisoned local data rather than fabricating artificial updates.

Clients’ model updates were shared to each other: Some approaches propose allowing clients
to share their model updates with one another, rather than just with the server. CrowdGuard (Riege
et al., 2024) and FLShield (Kabir et al., 2024) suggest that a subset of clients validate other clients’
model updates using their own data, assuming that malicious clients’ updates would produce ab-
normal outputs on benign data. However, this hypothesis fails when malicious clients’ updates are
indistinguishable from non-backdoored updates, a state that can be achieved through backdoor at-
tack with optimized triggers. Fang et al. (2024) proposed a decentralized FL framework without a
central server, where clients exchange model updates and apply Byzantine-robust aggregation using
their own updates as a reference. Like other defenses that rely on analyzing clients’ model updates,
this approach is also vulnerable to backdoor attacks with optimized triggers.

C THEORETICAL ANALYSIS

In this section, we delve into the reasons behind DPOT’s ability to successfully bypass state-of-the-
art defenses, and analyze the improvements of an optimized trigger generated by our algorithms in
assisting backdoor attacks, compared to a fixed trigger.

We use a linear regression model to explain the intuition of this work. Consider a regression problem
to model the relationship between a data sample and its predicted values. We define x ∈ D1×n,
where D is a convex subset of R as a data sample, and the vector ŷ ∈ R1×m as its target values. The
model β ∈ Rn×m that makes xβ = ŷ is what we want to solve.

For any given data x, a backdoor attack is aiming to make the model β fit both the benign data
point (x, ŷ) and the corresponding malicious data point (xt, yt). We use yt ∈ R1×m to represent the
backdoor target values and specify that yt ̸= ŷ. xt ∈ D1×n is the data x embedded with a trigger τ
by the following operation.

xt = x(In − Et) + VtEt, (2)
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where Vt ∈ D1×n is a vector storing the trigger τ ’s value information, and Et ∈ {0, 1}n×n is a
matrix identifying the trigger τ ’s location information. Et specifies the location and shape of the
trigger, defined as Et = diag(d1, d2, ..., dn), di ∈ {0, 1}, where

∑n
i=1 di = k. Here, k defines

the number of entries in the original x that we intend to alter. The abbreviation diag(·) stands for a
diagonal matrix whose diagonal values are specified by its arguments. In is an n×n identity matrix.

Definition C.1. (Benign Loss and Benign Objective) Let x ∈ D1×n be a benign data sample,
ŷ ∈ R1×m be the predicted value of x, and β ∈ Rn×m be the prediction model. The loss to evaluate
the prediction accuracy of β on the benign regression is

L(x, ŷ) =∥ xβ − ŷ ∥22 . (3)

The optimization objective to solve for β for this benign task is

min
β

L(x, ŷ). (4)

Definition C.2. (Backdoor Loss and Backdoor Objective ) Let xt be a backdoored data sample
embedded with a trigger τ(Vt, Et, yt). Let β ∈ Rn×m be the prediction model. The loss to evaluate
the prediction accuracy of β on the backdoor regression is

L(xt, yt) =∥ xtβ − yt ∥22 . (5)

The optimization objective to solve for β for the backdoor task that considers both benign data and
backdoor data is

min
β

(1− α)L(x, ŷ) + αL(xt, yt), 0 ≤ α ≤ 1. (6)

The FL global model learns backdoor information only when it integrates malicious clients’ model
updates that were trained for the backdoor objective. Due to the implementation of robust aggre-
gation, backdoor attackers have to ensure their model updates have limited divergence from those
trained on benign data to avoid being filtered out by defense techniques. We term this intention as
the concealment objective.

To formulate the above problem, we use gradients of optimizing the benign objective (Gbn ) and
gradients of optimizing the backdoor objective (Gbd ) with respect to a same model β to represent
model updates of a benign client and a malicious client respectively. We then use cosine similarity
as a metric to evaluate the difference between Gbn and Gbd , since it is a widely used metric in the
state-of-the-art defenses Cao et al. (2021); Nguyen et al. (2022); Sharma et al. (2023); Fung et al.
(2020) to filter malicious model updates.

Gbn and Gbd are computed by

Gbn =
∂L(x, ŷ)

∂β
, (7a)

Gbd =
∂((1− α)L(x, ŷ) + αL(xt, yt))

∂β
. (7b)

The concealment objective is
max CosSim(Gbn , Gbd). (8)

The optimization objective used in DPOT attack is

min
Vt,Et

∥ (x(In − Et) + VtEt)β − yt ∥22 . (9)

Proposition C.1. Given a model β and a data sample x with its benign predicted value ŷ and a
backdoor predicted value yt, the optimization of objective (9) is a guarantee of the optimization of
objective (8).

Proof. The gradient of benign loss (3) with respect to β is

gbn =
∂L(x, ŷ)

∂β
= 2xT (xβ − ŷ).
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The gradient of backdoor loss (5) with respect to β is

gbd =
∂L(xt, yt)

∂β
= 2xT

t (xtβ − yt)

Gradients Gbn and Gbd defined by (7a) and (7b) can be written as

Gbn = gbn.

Gbd = (1− α)gbn + αgbd.

The cosine similarity between Gbn and Gbd is

CosSim(Gbn, Gbd) =
gbn · ((1− α)gbn + αgbd)

| gbn | · | (1− α)gbn + αgbd |

=
gbn · (gbn + α

1−αgbd)

| gbn | · | gbn + α
1−αgbd |

One sufficiency to maximize CosSim(Gbn, Gbd) is to minimize the distance between gbn and gbn+
α

1−αgbd, which is

∆d =| gbn − (gbn +
α

1− α
gbd) |

=
α

1− α
| gbd | .

Since α is a constant, minimizing ∆d is equivalent to minimizing | gbd |, which is bounded by

0 ≤| gbd |=| 2xT
t (xtβ − yt) |≤ 2 | eT | · | xtβ − yt |,

where eT ∈ R1×n consists of the largest edge of the domain of xt, e.g. 1T if considering normal-
ization.

Thus, the optimization objective is to decrease | gbd | by minimizing its upper bound.

min | xtβ − yt |,

which can be achieved by

min
Vt,Et

∥ (x(In − Et) + VtEt)β − yt ∥22 .

Proposition C.1 offers a theoretical justification for DPOT’s ability to prevent malicious clients’
model updates from being detected by a commonly used metric considered in state-of-the-art de-
fenses. In Proposition C.2 and Proposition C.3, we demonstrate that an optimized trigger (τ̂ ) gener-
ated by learning the parameters of a given model β is more conducive to achieving the concealment
objective compared to a trigger (τf ) with fixed value, shape, and location.

Proposition C.2. For any fixed trigger τf (Vt, Et, yt) with specified trigger value Vt, trigger location
Et, and predicted value yt, there exists an optimal backdoor trigger τ̂(V̂t, Et, yt) that has the same
Et and yt but optimizes its Vt with respect to a model β, which can result in a smaller or equal
backdoor loss on model β compared to τf .

Proof. With a specified location Et and predicted value yt, the optimization objective for minimiz-
ing backdoor loss is

f = min
Vt

∥ (x(In − Et) + VtEt)β − yt ∥22

Since Vt ∈ D1×n where D is a convex domain and ∂2f
∂V 2

t
⪰ 0 for any Vt ∈ D1×n, f : D1×n → R is

a convex function. Thus, there exists an optimal value V̂t for the objective function f in the domain
D1×n.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Proposition C.3. For any fixed trigger τf (Vt, Et, yt) with specified trigger value Vt, trigger location
Et, and predicted value yt, there exists a backdoor trigger τ̂(V̂t, Êt, yt) that has the same yt, but
optimizes the Vt and Et with respect to a model β, which can result in a smaller or equal backdoor
loss on model β compared to τf .

Proof. Assume the value of data x before embedding a trigger is [x1, x2, ..., xn]. If an entry location
in x is able to reduce the backdoor loss of β by optimizing its entry value more effectively than
any individual entry location within Et, we incorporate this location into Êt. After constructing
a Êt, we optimize value of entries within Êt to obtain the optimized trigger τ̂ . We are going to
prove that constructing the trigger location Êt in this way results in the optimized trigger τ̂ always
outperforming the fixed trigger τf in terms of backdoor loss.

We use k to represent the number of trigger entries that have been embedded into x. Assume the
trigger value Vt is composed of [v1, v2, ..., vn].

When k = 0, the backdoor loss is

L(x, yt)k=0 =∥ xβ − yt ∥22 .

When k = 1, we calculate a location of interest i by taking the largest absolute gradient of the
L(x, yt)k=0 with respect to all entry locations in x,

i = argmax | ∂L(x, yt)k=0

∂xi
| .

If the entry location i is inside of Et, according to Proposition C.2, there exists an optimal entry
value v̂i resulting in a smaller or equal backdoor loss compared to vi. In this case, we save i as one
of entry location in Êt.

If the entry location i is outside of Et, we have the following observation:

For any entry location j inside of Et, we already know

| ∂L(x, yt)k=0

∂xi
|≥| ∂L(x, yt)k=0

∂xj
| .

We use Gradient Descent optimization algorithm to decrease loss by updating the entry value of the
selected location with a constant step size ∆v. When the selected location is i, the updated loss
L(xi, yt)k=1 will be

L(x{i}, yt)k=1 = L(x, yt)k=0 −
∂L(x, yt)k=0

∂xi
∆v,

and when the selected location is j, it is

L(x{j}, yt)k=1 = L(x, yt)k=0 −
∂L(x, yt)k=0

∂xj
∆v.

It can be found that
L(x{i}, yt)k=1 ≤ L(x{j}, yt)k=1.

Therefore, i is a better entry location in reducing backdoor loss compared to j when we constrain
the updating step size ∆v being static. After repeating the optimization step iteratively, if we finally
find the optimal entry value v̂i resulting in a smaller backdoor loss compared to v̂j , then it must also
outperform the fixed value vj in Vt according to Proposition C.2. If so, we save i as one of entry
location in Êt. Otherwise, we save j as one of location in Êt.

By recursively operating the procedures across k = 2, 3, ..., we will finally construct a Êt in which
every entry location is proved to contribute a better attack performance than entry locations defined
in Et.
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Table 4: Dataset description

Dataset #class #img img size Model #params
Fashion MNIST 10 70k 28× 28 grayscale 2 conv 3 fc ∼1.5M

FEMNIST 62 33k 28× 28 grayscale 2 conv 2 fc ∼6.6M
CIFAR10 10 60k 32× 32 color ResNet18 ∼11M

Tiny ImageNet 200 100k 64× 64 color VGG11 ∼35M

Table 5: Default settings

Trigger Size Round Number of Clients MCR Local Data Poison Rate
Fashion MNIST 64 300 100

0.05 0.5FEMNIST 25 200 100
CIFAR10 25 150 50

Tiny ImageNet 64 100 50

D EXPERIMENTAL SETUP

D.1 DESCRIPTIONS OF DEFENSES

We implement our attack on FL systems integrated with 9 different defense strategies and provide a
brief introduction for each of them:

FedAvg (McMahan et al., 2017), a basic aggregation rule in FL, computes global model updates
by averaging all clients’ model updates. Despite its effectiveness on the main task, it is not robust
enough to defend against backdoor attacks in the FL system.

Median (Yin et al., 2018), a simple but robust alternative to FedAvg, constructs the global model
updates by taking the median of the values of model updates across all clients

Trimmed Mean (Yin et al., 2018), in our implementation, excludes the 40% largest and 40% small-
est values of each parameter among all clients’ model updates and takes the mean of the remaining
20% as the global model updates.

Multi-Krum (Blanchard et al., 2017) identifys an honest client whose model updates have the
smallest Euclidean distance to all other clients’ model updates and takes this honest client’s model
updates as the global model updates. Despite its robustness to prevent the FL system from being
compromised by a minor number of adversaries, Multi-Krum is not able to ensure the convergence
performance of the FL system on its main task when the data distribution of clients is highly non-IID.

RobustLR (Ozdayi et al., 2021) adjusts the aggregation server’s learning rate, per dimension and
per round, based on the sign information of clients’ updates.

RFA (Pillutla et al., 2022) computes a geometric median of clients’ model updates and assigns
weight factors to clients depending on their distance from the geometric median. Subsequently, it
computes the weighted average of all clients’ model updates to generate the global model updates.

FLAIR (Sharma et al., 2023) assigns different weight factors to clients according to the similarity
of the coefficient signs between client model updates and global model updates of the previous
round, and then takes the weighted average of all clients’ model updates to form the global model
updates. FLAIR requires the knowledge of exact number of malicious clients existing in the FL
system.

FLCert (Cao et al., 2022) randomly clusters clients, calculates the median of model updates within
each cluster, incorporates them into the previous round’s global model, and derives the majority
inference outcome from these cluster-updated global models as the final inference result for the
entire FL system. In our implementation, we cluster clients into 5 groups, use FLCert inference
outcome for testing the Attack Success Rate, and employ Median as the aggregation rule for updating
the global model in each round.
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FLAME (Nguyen et al., 2022) first clusters clients’ model updates according to their cosine simi-
larity to each other, and then aggregates the clipped model updates within the largest cluster as the
global model updates.

FoolsGold (Fung et al., 2020) reduces aggregation weights of a set of clients whose model updates
constantly exhibit high cosine similarity to each other.

D.2 FL TRAINING CONFIGURATIONS

The FEMNIST dataset (Caldas et al., 2019) provides each client’s local training data with a naturally
non-IID guarantee. For Fashion MNIST, CIFAR10, and Tiny ImageNet datasets, we distributed
training data to FL clients using the same method introduced by FLTrust (Cao et al., 2021), where
we set the non-IID bias to be 0.5.

For all datasets training experiments, we used SGD optimization with CrossEntropy loss. In the
experiments on Tiny ImageNet, we set the mini-batch size to 64, while for the other datasets, we set
it to 256. Each FL client trained a global model for nepoch = 5 local epochs with its local data in
one global round.

For training Fashion MNIST and FEMNIST datasets, we used a static local learning rate (lr ) of
0.01. For training the larger and more complicated datasets such as CIFAR10 and Tiny ImageNet,
we applied the learning rate schedule technique following the instructions in the related machine
learning works (He et al., 2016; Simonyan & Zisserman, 2015) to boost DNN models’ performance.

D.3 SELECTION OF TRIGGER SIZES

We defined trigger size for different datasets according to the following three criteria. First, a trigger
of the defined trigger size should not be able to cover important details of any images and lead
humans to misidentify the images from their original labels. To show that we follow this criteria,
we demonstrated poisoned images from different datasets that are embedded with DPOT triggers, as
shown in Figure 2 and 11. Second, on basis of the first criterion, we adjust trigger size to match the
image size and the feature size of different datasets. Specifically, if a dataset contains images with
high resolution (large image size), then a large trigger size is needed to effectively match it (Tiny
ImageNet vs. CIFAR10). If images in a dataset contain large visual elements or patterns, then a large
trigger size is needed to effectively match it (Fashion MNIST vs. FEMNIST). Third, we found that
when using models with deep model architectures or having large number of parameters, a small
trigger size is sufficient for conducting DPOT attack (CIFAR10 vs. Fashion MNIST).

D.4 EXPERIMENT ENVIRONMENT AND CODE

We conducted all the experiments on a platform with multiple NVIDIA Quadro RTX 6000 Graphic
Cards having 24 GB GPU memory in each chip and an Intel(R) Xeon(R) Gold 6230 CPU @2.10GHz
having 384 GB CPU memory. We implemented all the algorithms using the PyTorch framework.
We will open-source this project after its publication.

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 COMPARISON TO A3FL TRIGGER

Table 6: Comparison results with A3FL attack on CIFAR10.

FedAvg Median Trimmed
Mean

Robust-
LR RFA FLAIR FLCert FLAME Fools-

Gold
Multi-
Krum

Final A3FL 48.9 32.9 35.0 46.2 24.7 13.2 39.0 13.7 46.9 33.4
ASR Ours 100 100 100 100 100 62.3 99.2 59.8 100 100

Average A3FL 38.1 24.0 23.5 40.7 23.8 12.5 28.4 32.1 38.0 29.5
ASR Ours 98.5 96.1 88.6 98.6 97.8 50.7 88.3 56.0 98.5 98.7

MA A3FL 70.6 69.1 69.9 71.2 70.2 70.7 69.9 70.1 70.8 62.8
Ours 70.7 69.1 70.4 70.1 70.7 70.6 70.0 70.3 71.0 63.0

In this section, we compared the performance of DPOT attack with the A3FL (Zhang et al., 2024)
attack. We implemented the A3FL attack by faithfully replicating the attacker’s actions as designed
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by A3FL, with reference to their open-source project. We evaluated the effectiveness of A3FL attack
against 10 defense strategies within our FL configurations and attack settings (refer to Table 5).

The results in Table 6 demonstrate that our attack achieved significantly higher ASR values in both
the final and average metrics compared to the A3FL attack. This suggests that the optimized triggers
generated using our algorithms are more effective in compromising FL global models through data
poisoning compared to those generated using A3FL’s techniques. Additionally, we observed that
the ASR results of A3FL were even worse than those of FT and DFT (as shown in Figure 3) in
our experiment settings. This implies that dynamically changing the backdoor objective may not
enhance the effectiveness of backdoor attacks compared to maintaining a static backdoor objective
if it can not align to the benign objective effectively.

E.2 EVALUATION OF DPOT ATTACK AGAINST FLIP (ZHANG ET AL., 2023)

Flip (Zhang et al., 2023) is a client-side defense strategy where benign clients perform trigger inver-
sion and adversarial training using their local data to recover the global model from backdoors. In
this section, we evaluate the effectiveness of the DPOT attack against the Flip defense. We imple-
mented the DPOT attack by modifying the data preparation approach in Flip’s open-source project,
replacing it with the method used in this work, and injecting our data-poisoning algorithms into a
subset of clients. Additionally, as DPOT is a pure data-poisoning attack, we removed any additional
steps in their project specified to malicious clients but not existed in benign clients’ training, to en-
sure consistency between malicious clients and benign clients in FL training. We selected Fashion
MNIST as the main-task dataset for our evaluation and directly adopted Flip’s default experiment
settings provided in their project - the total number of clients was 100 and 4% of them were mali-
cious clients; the aggregation rule was set to FedAvg; the global model’s parameters were initialized
by a pre-trained state. The size of DPOT trigger was set to 64, consistent with our default attacking
settings.

We compared the performance of the DPOT attack under two attack patterns provided by Flip’s
project: 1) Single shot: Each of the 4 malicious clients conducts a one-time attack at the beginning
of training. 2) Continuous: All 4 malicious clients continuously execute the attack algorithms in
every round during training.

Figure 5 shows the performance of the DPOT attack on an FL system using Flip as its defense,
measured by the Attack Success Rate (ASR). In the single-shot attack pattern, DPOT maintains a
stable ASR of around 15% across all training rounds, exceeding the random guess accuracy of 10%
for the 10-class dataset. In the continuous attack pattern, DPOT achieves a significant ASR, peaking
at 80.03% during training and stabilizing around 40%, which is higher than the single-shot pattern.
These results indicate that Flip is vulnerable to optimized triggers with varying appearances across
different rounds, because recovering from backdoors is an after-effect strategy which is unable to
stop new and distinct backdoors from injecting into the model.

Figure 6 illustrates the global model’s performance on the main task data when using Flip as a
defense while under DPOT attack. We observed that employing Flip reduces the global model’s
main-task performance compared to not using it. In our baseline experiment on Fashion MNIST,
with the same data distribution and aggregation rule (FedAvg), the model achieved an 86.7% MA.
However, Flip’s global model achieved only 82.8% MA at its best by the end, even with pre-trained
model initialization. Additionally, under continuous attack by the DPOT trigger, the global model’s
MA further declined compared to the less frequent attack pattern. This raises concerns about Flip’s
ability to maintain stable and normal performance on the main task while effectively defending
against attacks.

E.3 EVALUATION OF DPOT ATTACK AGAINST FRL (MOZAFFARI ET AL., 2023)

FRL (Mozaffari et al., 2023) is a defense strategy where the server sparsifies the value space of model
updates, allowing clients to vote on the most effective model updates based on their local data. The
server then aggregates only the accepted votes while rejecting outliers to construct the global model.
In this section, we evaluate the effectiveness of the DPOT attack against the FRL defense. Similar
to the experiment on Flip, we implemented our attack on FRL’s open-source project by injecting
our data-poisoning algorithms into a portion of clients’ execution and removing any inconsistent
steps that distinguished malicious clients from benign ones during training. We used FRL’s default
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Figure 5: Global model’s Attack Success Rate
under DPOT attack when employed Flip as de-
fense strategy. (Fashion MNIST)
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Figure 6: Global model’s Main-task Accuracy
under DPOT attack when employed Flip as de-
fense strategy. (Fashion MNIST)

settings, in which only 2% of clients were malicious, and tested our attack on the CIFAR10 dataset
as the main training task.

Table 7 presents the performance results of the DPOT attack on an FL system employing FRL as
the defense method. The ASR of DPOT (92.5%) is significantly higher than that of other backdoor
attack approaches tested and discussed in FRL’s paper. This indicates that FRL, which relies on
analyzing clients’ model updates, is vulnerable to our attack. The evaluation results also demonstrate
that the DPOT attack is more advanced than backdoor attacks with static objectives when targeting
the FRL defense strategy.

Table 7: Comparison results on CIFAR10.

Attacks ASR
Semantic backdoor attacks 49.2
Artificial backdoor attacks 0

Edge-Case backdoor attacks 64.6
DPOT backdoor attacks 92.5

E.4 EFFECTS OF THE SCALING-BASED MODEL POISONING TECHNIQUES ON ATTACKS

(a) Final ASR
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Figure 7: Comparison results of different attacks when employing the scaling-based model poison-
ing technique to undermine FLAME defense (implemented on the FEMNIST dataset).

In this section, we removed the TEEs assumption and conducted experiments to examine the ef-
fects of employing scaling-based model poisoning techniques on the attack performance of DPOT,
FT, and DFT. By incorporating the model poisoning technique, our implementation of FT and DFT
pipelines aligns more closely with the attack strategies introduced in state-of-the-art backdoor at-
tacks on FL (Bagdasaryan et al., 2020; Xie et al., 2020).

Our experiments were designed within an FL system utilizing FLAME as its aggregation rule and
FEMNIST dataset as its main training task. We adjusted the scaling factors, used to scale malicious
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clients’ model updates, to be 0.5, 1, 3, 9, 33, and 129 respectively. Figures 7a and 7b illustrate the
results of Final ASR and Avg ASR of various attacks in response to different scaling factors.

We observed that when the scaling factor is 1, all DPOT, FT, and DFT pipelines exhibit compa-
rable and high ASR against FLAME defense. However, as the scaling factor increases, FLAME
demonstrates robust defense performance, significantly reducing the ASR of every attack pipeline.
Despite this mitigation, DPOT shows greater resilience in attack effectiveness compared to FT and
DFT. The optimized trigger generated by our algorithms retains intrinsic attack effects on the global
model even without successful data-poisoning techniques. When the scaling factor is reduced to
0.5, malicious model updates are expected to be stealthier, yet their contributions to the aggregated
global model are also mitigated, resulting in reduced ASR for all attack pipelines compared to when
the scaling factor is 1.

E.5 MAIN-TASK ACCURACY RESULTS

Table 8 lists the Main-task Accuracy of each experiment in getting results in Figure 3. Table 8
demonstrates that for different datasets used as the main tasks, global models under various attacks
maintained a comparable level of Main-task Accuracy to the baselines with no attacks (“None”),
indicating that all types of backdoor attacks successfully achieved their stealthiness goals.

Table 9 lists the global model’s Main-task Accuracy of each experiment in getting results in Table 2.
Table 2 evaluates the impact of different malicious client ratios on the attack effectiveness of various
attacks when using the CIFAR10 as the main-task dataset. Table 9 demonstrates that the performance
of global models on Main-task data is not affected by changes in the malicious client ratio, indicating
that the stealthiness goals of all backdoor attacks were achieved. “None” represents the baseline MA
results with no attack present during FL training.

Table 10 lists the global model’s Main-task Accuracy of each experiment in getting results in Table 3.
Table 3 evaluates the impact of different trigger sizes on the attack effectiveness of various attacks
when using the CIFAR10 as the main-task dataset. Table 10 demonstrates that the performance of
global models on Main-task data is not affected by changes in the trigger sizes, indicating that the
stealthiness goals of all backdoor attacks were achieved. “None” represents the baseline MA results
with no attack present during FL training.
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Table 8: The Main-task Accuracy (MA) of global models in getting representative results in Figure 3.
”None” represents no attack existing in the FL training.

MA Tiny ImageNet Fashion MNIST FEMNIST CIFAR10
None Ours FT DFT None Ours FT DFT None Ours FT DFT None Ours FT DFT

FedAvg 43.9 43.5 43.0 43.3 86.7 87.3 86.7 86.8 82.2 81.4 83.3 82.3 70.3 70.7 70.4 71.4
Median 40.6 40.2 40.6 38.6 86.0 85.8 86.6 86.3 80.4 81.5 79.8 79.9 70.2 69.1 69.8 69.7

Trimmed Mean 40.8 40.4 40.1 40.6 86.4 85.8 86.4 86.3 80.2 81.7 81.3 81.2 69.4 70.4 70.2 70.8
RobustLR 44.1 42.7 42.9 43.2 86.5 86.8 86.6 86.9 81.8 82.5 81.9 82.6 70.4 70.1 70.3 70.5

RFA 43.6 43.0 43.0 43.0 86.4 86.0 87.1 87.1 83.0 80.7 81.0 80.8 70.4 70.7 70.3 70.8
FLAIR 43.6 42.6 41.8 42.1 86.1 84.9 85.2 84.4 81.5 80.7 80.6 79.7 70.3 70.6 71.0 70.4
FLCert 40.3 40.2 39.7 39.7 86.2 85.9 86.0 86.8 81.3 80.9 81.5 81.0 69.6 70.0 69.8 70.4
FLAME 29.9 28.7 29.2 28.9 86.4 86.4 86.4 86.7 81.8 80.2 80.7 81.0 70.1 70.3 70.9 70.9

FoolsGold 43.1 43.2 43.5 43.2 86.6 87.1 86.8 87.3 83.4 82.7 83.0 81.8 70.4 71.0 71.2 71.7
Multi-Krum 30.7 27.7 27.7 26.4 86.2 85.9 86.0 87.0 79.9 80.4 79.6 80.2 61.4 63.0 63.2 60.8

Table 9: The Main-task Accuracy (MA) of global models under different attacks at varying mali-
cious client ratios. (CIFAR10).

MCR 0.05 0.1 0.2 0.3
None Ours FT DFT Ours FT DFT Ours FT DFT Ours FT DFT

FedAvg 70.3 70.66 70.37 71.37 70.03 71.04 70.13 69.9 70.39 71.18 70.25 70.69 70.24
Median 70.21 69.06 69.76 69.71 69.32 69.17 70.12 68.23 69.05 68.87 68.49 68.47 67.82

Trimmed Mean 69.43 70.42 70.24 70.84 69.9 69.17 69.78 69.33 69.19 69.8 69.23 68.83 68.02
RobustLR 70.35 70.10 70.35 70.48 70.58 70.42 69.90 70.31 70.56 70.43 70.05 69.11 69.22

RFA 70.42 70.69 70.27 70.77 70.35 70.44 70.16 70.72 70.33 69.56 70.09 69.72 69.37
FLAIR 70.25 70.62 71.04 70.42 69.80 71.45 70.89 71.85 71.20 71.16 71.26 69.74 70.99
FLCert 69.6 69.95 69.76 70.42 69.44 69.44 69.45 69.28 69.25 69.73 68.54 69.06 68.24
FLAME 70.14 70.28 70.93 70.85 69.62 70.87 71.01 70.71 70.4 70.58 69.19 71.45 70.52

FoolsGold 70.42 71.02 71.19 71.68 70.71 71.32 71.27 70.45 70.38 70.82 70.12 69.97 69.97
Multi-Krum 61.38 62.98 63.16 60.80 61.44 62.89 62.09 59.38 61.26 63.70 60.28 64.02 62.96

Table 10: The Main-task Accuracy (MA) of global models under different attacks with varying
trigger sizes. (CIFAR10).

Trigger Size 9 25 49 100
None Ours FT DFT Ours FT DFT Ours FT DFT Ours FT DFT

FedAvg 70.3 70.88 70.72 71.25 70.66 70.37 71.37 70.77 71.35 70.94 69.92 70.71 71.15
Median 70.21 68.31 70.04 68.69 69.06 69.76 69.71 69.95 70.54 70.56 69.88 70.30 70.86

Trimmed Mean 69.43 69.75 70.13 70.19 70.42 70.24 70.84 69.42 70.17 69.79 69.67 70.26 70.68
RobustLR 70.35 70.48 70.95 69.48 70.10 70.35 70.48 70.79 70.08 70.27 70.39 69.73 69.86

RFA 70.42 70.45 70.16 71.00 70.69 70.27 70.77 70.56 70.19 70.62 70.52 69.22 70.77
FLAIR 70.25 70.79 70.67 70.58 70.62 71.04 70.42 70.84 69.96 71.03 71.17 70.65 70.28
FLCert 69.6 69.88 69.64 69.87 69.95 69.76 70.42 67.77 69.83 70.08 68.81 70.81 70.41

FLAME 70.14 70.07 71.24 70.19 70.28 70.93 70.85 69.87 71.20 70.68 67.24 71.06 70.75
FoolsGold 70.42 70.4 72.1 70.09 71.02 71.19 71.68 70.66 70.75 71.38 69.84 71.06 71.64

Multi-Krum 61.38 62.86 64.65 58.90 62.98 63.16 60.80 58.23 60.16 64.04 63.03 61.64 63.33
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F VISUALIZATION OF TRIGGERS

(a) Training Data (b) Training Data (c) Test Data

Figure 8: FT trigger on Tiny ImageNet data. Training Data 8a and 8b are from different malicious
clients. Test Data 8c is used to test ASR.

(a) Training Data (b) Training Data (c) Test Data

Figure 9: DFT trigger on Tiny ImageNet data. Training Data 9a and 9b are from different malicious
clients. Test Data 9c is used to test ASR.

(a) Training Data (b) Training Data (c) Test Data

Figure 10: DPOT trigger on Tiny ImageNet data. Training Data 10a and 10b are from different
malicious clients. Test Data 10c is used to test ASR.

F.1 DIFFERENT TYPES OF TRIGGER ON IMAGES

We displayed different types of triggers on images from the Tiny ImageNet dataset in Figures 10, 8,
and 9. The pattern of the FT trigger remains consistent across all datasets. The DFT triggers shown
in Figure 9 are the same as those used for images from the CIFAR10 dataset, while for the Fashion
MNIST and FEMNIST datasets, DFT triggers appear in black.

F.2 DPOT TRIGGERS ON IMAGES FROM DIFFERENT DATASETS.

We displayed DPOT triggers generated for images from different dataset in Figure 11. Our triggers
are in a small size that could not obscure important details of any images.

F.3 A3FL TRIGGER ON IMAGES OF CIFAR10

In Figure 12, we showed triggers generated by A3FL’s methods on images from CIFAR10.
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Fashion MNIST FEMNIST CIFAR10 Tiny ImageNet

Figure 11: DPOT triggers on images from different datasets.

Figure 12: A3FL
trigger on images
from CIFAR10.

F.4 TRIGGER EVOLUTION DURING TRAINING

In Figure 15 and Figure 16, we demonstrated how DPOT trigger changes during the FL training.

In Figure 15, we showed one screenshot of the trigger on a blank background in the same size of
the cifar10’s figure for every ten global rounds. These trigger screenshots were collected during a
DPOT attacking experiment that trains ResNet18 as the global model on the CIFAR-10 dataset, with
Trimmed Mean used as the aggregation rule. Figure 13 displays the Main-task Accuracy and Attack
Success Rate of the global model over 150 global rounds in this experiment.

Similarly, in Figure 16 we showed one screenshot of the trigger on a blank background in the same
size of the Tiny ImageNet’s figure for every ten global rounds. These trigger screenshots were col-
lected during a DPOT attacking experiment that trains VGG11 as the global model on the Tiny Im-
ageNet dataset, with Trimmed Mean used as the aggregation rule. Figure 14 displays the Main-task
Accuracy and Attack Success Rate of the global model over 100 global rounds in this experiment.

According to Figure 15 and Figure 16, the DPOT trigger does not change drastically over rounds;
instead, it develops gradually and coherently. Since the DPOT trigger is optimized based on the
global model’s parameters, and the global model is in turn influenced by malicious model updates
backdoored by the DPOT trigger, the DPOT trigger and the global model form a Markov chain.
During training, as the global model evolves coherently and gradually, the states of the DPOT trigger
evolve as well in the same pattern.
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Figure 13: Global model’s accuracy in experi-
ment of getting trigger screenshots in Figure 15.
(CIFAR10, ResNet18)
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Figure 14: Global model’s accuracy in experi-
ment of getting trigger screenshots in Figure 16.
(Tiny ImageNet, VGG11)
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(a) Round 10 (b) Round 20 (c) Round 30 (d) Round 40 (e) Round 50

(f) Round 60 (g) Round 70 (h) Round 80 (i) Round 90 (j) Round 100

(k) Round 110 (l) Round 120 (m) Round 130 (n) Round 140 (o) Round 150

Figure 15: (CIFAR10, ResNet18) DPOT triggers on different rounds.

(a) Round 10 (b) Round 20 (c) Round 30 (d) Round 40 (e) Round 50

(f) Round 60 (g) Round 70 (h) Round 80 (i) Round 90 (j) Round 100

Figure 16: (Tiny ImageNet, VGG11) DPOT triggers on different rounds.
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