
Under review as a conference paper at ICLR 2022

AN ATTENTION-LSTM HYBRID MODEL FOR THE
COORDINATED ROUTING OF MULTIPLE VEHICLES

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement learning has recently shown promise in learning quality solutions in
a number of combinatorial optimization problems. In particular, the attention-based
encoder-decoder models show high effectiveness on various routing problems,
including the Traveling Salesman Problem (TSP). Unfortunately, they perform
poorly for the TSP with Drones (TSP-D), requiring routing a heterogeneous fleet
of vehicles in coordination. In TSP-D, two different types of vehicles are moving
in tandem and may need to wait at a node for the other vehicle to join. State-
less attention-based decoder fails to make such coordination between vehicles.
We propose an attention encoder-LSTM decoder hybrid model, in which the
decoder’s hidden state can represent the sequence of actions made. We empirically
demonstrate that such a hybrid model improves upon a purely attention-based
model for both solution quality and computational efficiency. Our experiments on
the min-max Capacitated Vehicle Routing Problem (mmCVRP) also confirm that
the hybrid model is more suitable for coordinated routing of multiple vehicles than
the attention-based model.

1 INTRODUCTION

Recently, reinforcement learning has yielded promising results on various combinatorial optimization
problems (Bengio et al., 2020). Routing problems are important combinatorial optimization problems
with diverse practical applications, including delivery and courier services, ride-sharing, and logistics.
Deep reinforcement learning-based approaches have also been shown to work well on routing
problems (Vinyals et al., 2015; Bello et al., 2016; Khalil et al., 2017; Nazari et al., 2018; Kool et al.,
2018) such as the Traveling Salesman Problem (TSP) and the Capacitated Vehicle Routing Problem
(CVRP).

These deep reinforcement learning-based approaches are attractive not only because they show good
performance on various benchmarks, but also because they can be easily adapted for new problems.
As their name suggests, deep reinforcement learning (Mnih et al., 2013) methods are based on deep
neural networks (LeCun et al., 2015). Deep neural networks tend to require less problem-specific
engineering, and thus the same neural network architecture is often observed to perform well across
many tasks. In contrast, traditionally best-performing routing algorithms are highly specific to a
problem they are designed to solve, and it is nontrivial to extend them for an application to a new
problem.

Indeed, Kool et al. (2018) have shown that the same attention-based encoder-decoder model performs
well across six routing problems, including TSP and CVRP with little problem-specific modifications
on the model. Their Attention Model (AM) is a variant of the Transformer model (Vaswani et al.,
2017), which has been particularly successful across domains, demonstrating high performance
across many natural language processing (Devlin et al., 2018; Raffel et al., 2019) as well as computer
vision (Dosovitskiy et al., 2020) tasks.

In this paper, we demonstrate that AM loses its strong competency in routing multiple vehicles in
coordination, although AM is the state-of-the-art end-to-end learning method for single-vehicle
routing problems. While AM is shown to be effective for CVRP, which involves multiple routes,
it still only considers a single vehicle; the objective of CVRP—to minimize the total distance
traveled—enables AM to route a single vehicle multiple times to obtain multiple routes. Hence,
no coordination among multiple vehicles is considered in AM. We consider routing problems to

1

Under review as a conference paper at ICLR 2022

minimize the makespan, the time when the last vehicle returns to the depot. Such problems require
coordination among vehicles. Our aim is to devise an end-to-end reinforcement learning approach
that can learn heuristic solutions by considering interdependence among vehicles.

1.1 THE TRAVELING SALESMAN PROBLEM WITH DRONE (TSP-D)

In particular, we consider the Traveling Salesman Problem with Drone, or TSP-D (Agatz et al.,
2018), where a drone and a truck are routed together to deliver customer orders. While the truck
visits customers, the drone can also deliver a customer, flying off from and back to the truck. The
recent progress in drone technology has made the routing of heterogeneous vehicles a problem of
practical importance. A tandem of the drone and truck allows reducing transportation costs, where
the high speed of drones combined with the large storage capacity of trucks enables to efficiently
serve customers (Macrina et al., 2020). Similarly, the combination of drones and ships/planes are
used for surveillance and rescue operations to detect targets (Otto et al., 2018). TSP-D is not just
limited to the truck-drone combination, but also applicable or extensible to coordinated routing of
other heterogeneous vehicles, such as a truck and any mobile robot for urban delivery and a human
order-picker and a mobile robot assistant in warehouses. See Chung et al. (2020) for other related
drone routing problems, such as the flying sidekick TSP (Murray & Chu, 2015).

The development of efficient computational methods for TSP-D (Agatz et al., 2018; Poikonen et al.,
2019; Roberti & Ruthmair, 2021; Vásquez et al., 2021) is still in its infancy, while highly efficient
exact and heuristic optimization methods exist for TSP. Exact optimization approaches for TSP-D
suffer from long computational time and are typically limited to smaller than 40-node problems.
Some heuristic optimization approaches can also take several minutes to a few hours to produce
quality solutions for large-scale problems. In this paper, we aim to develop a reinforcement learning
approach for TSP-D, which is as competitive as fast heuristic optimization methods.

The main challenge of TSP-D stems from the simultaneous decision-making for a heterogeneous
fleet of vehicles and strong interdependency among them. Unlike TSP or CVRP, where the decision
is made for only one vehicle for a tour or multiple sequential tours, TSP-D requires route decisions
for two different vehicles in coordination. The existing literature in reinforcement learning to route
a single agent or a fleet of homogeneous vehicles in a multi-agent setting does not fit the nature of
such heterogeneous vehicle routing problems. For instance, models to route a single truck or drone
only handle cases when there is a single agent which interacts with an environment and does not
generalize into the presence of several vehicles in the same environment. In contrast, in routing a
heterogeneous fleet of vehicles, the interdependency among vehicles is a critical consideration since
the capacity of one vehicle to fulfill customer orders is dependent on the interaction with the other
vehicle. This, in effect, has a strong impact on the routing decisions of both vehicles.

1.2 CONTRIBUTIONS

In addressing the above-outlined challenges, our main contributions are two-fold. First, we provide
TSP-D as a Markov Decision Process (MDP) so that reinforcement learning can be developed and
applied. While MDP formulations for TSP only involve customer nodes, an MDP formulation for
TSP-D should be able to capture the in-transit status of vehicles and remaining times to reach the
next node, to express the state spaces of coordinated drone-truck routing adequately. Our MDP
formulation is comprehensive and distinct from the dynamic programming (DP) approach of Bouman
et al. (2018), which combines three DP problems sequentially to obtain the final formulation. This
makes their DP formulation hard to use in end-to-end reinforcement learning approaches.

Second, we present an Attention-LSTM Hybrid Model (HM) for efficient routing of multiple vehicles
taking into account required interactions between vehicles. Our HM consists of an attention-based
encoder to encode a highly connected graph and an LSTM-based decoder that stores the routing
history of all vehicles. Using a single decoder to route all vehicles allows passing information about
the routing decisions of vehicles to each other, thus promoting efficient interaction. In training the
hybrid model, we rely on a central controller, which observes an entire graph to route all vehicles.

We show that HM outperforms the AM consistently and provides a flexible end-to-end framework,
as competitive as existing heuristic methods for TSP-D. We demonstrate the effectiveness of the
proposed approach through computational experiments using both synthetic and real data. We also

2

Under review as a conference paper at ICLR 2022

test HM and compare it with AM in solving the min-max CVRP (mmCVRP), whose objective is
to minimize the makespan by routing multiple capacitated vehicles to serve all customers. TSP-D
and mmCVRP share a similar objective function form, and simultaneous routing becomes critical
for vehicle coordination. We show that HM has the potential to be effective in coordinated routing
problems in various applications.

2 THE PROBLEM DEFINITION AND FORMULATION

We define TSP-D formally and propose a Markov Decision Process (MDP) formulation.

2.1 TSP-D DEFINED

In TSP-D, we consider a complete graph G consisting of the set of nodes N = {1, 2, ..., N}. Node
1 is a depot representing a warehouse, where a single truck equipped with a single drone is loaded
with customer orders. Then truck and drone must serve N − 1 customers whose locations are known.
When the distance from node i to node j is di,j , the traverse time from node i to node j for truck
and drone is denoted by τ tri,j and τdri,j , respectively, where we assume τdri,j ≤ τ tri,j for all i, j ∈ N .
Without loss of generality, we let the speed of truck and drone be 1 and α ≥ 1, respectively, so that
di,j = τ tri,j = ατdri,j . A typical value of α used in the literature is 2.

The objective of TSP-D is to complete serving all customers and return to the depot in a minimal
time, while the truck and the drone are subjected to joint routing constraints. The cost of each TSP-D
solution is the makespan, not the total travel time. Each customer can be served either by a truck or
a drone. We allow the drone to serve only a single customer per launch due to the limited delivery
capacity. For simplicity, we allow the drone to fly for an unlimited distance, which is a standard
assumption. Only customer nodes and the depot can be used to launch, recharge, and load the drone.
Figures E.6 and E.7 show examples of TSP-D routes. Figure 1 shows a simple example and explains
the MDP formulation proposed in the next section.

2.2 AN MDP FORMULATION OF TSP-D

To route both the drone and the truck in a shared urban environment, we assume that a central
controller observes the entire graph and makes routing decisions for both the drone and the truck. We
formalize this problem as a Markov Decision Process (MDP) with discrete steps.

The state of the MDP is represented by the following variables. First, Vt ⊆ N represents the set
of nodes visited by any vehicle up to step t. ctrt and cdrt denote the current destination node of the
truck and the drone respectively. If the truck (or the drone) is in transit between two nodes at step t,
then ctrt (or cdrt) is set as the destination node of the vehicle. Or, if the truck (or the drone) is exactly
located at a node, ctrt (or cdrt) is set as the node index. By design, as we explain below, at least one
vehicle will be located at a node at each step. rtrt and rdrt represent the remaining times to arrive at
destinations ctrt and cdrt respectively. When the truck (or the drone) is located at a node, rtrt = 0 (or
rdrt = 0). Then, st := (Vt, ctrt , cdrt , rtrt , rdrt) represents the state. At step 0, vehicles are located at
node 1. Therefore, V0 = {1}, ctr0 = 1, cdr0 = 1, rtrt = 0, rdrt = 0 and s0 = ({1}, 1, 1, 0, 0).

At each step, the central controller determines the next destination of the truck atrt ∈ N and that of
the drone adrt ∈ N . We cannot change the destination of a vehicle which is in transit from one node
to another. When the drone is in transit, i.e. rdrt > 0, we restrict adrt = cdrt . Analogously, atrt = ctrt if
the truck is in transit. For convenience, we refer to at := (atrt , a

dr
t) as the action at step t.

Now let us discuss the state dynamics. The next step occurs when either of the vehicles arrives at
a node. Let r̂trt = rtrt + τctrt ,atrt and r̂drt = rdrt + τcdrt ,adrt be “updated” versions of rtrt and rdrt right
after the action is selected, with the convention τi,i = 0 for any i ∈ N . Then, the time taken until the
next step, which happens when at least one vehicle arrives at the destination, will be the minimum of
the two. We denote this as Ct := min(r̂trt , r̂

dr
t). The remaining time is updated as rtrt+1 = r̂trt − Ct,

rdrt+1 = r̂drt − Ct. The set of visited nodes is updated as Vt+1 = Vt ∪ {avt | rvt+1 = 0, v ∈ {tr,dr}}.
Also, cvt+1 = avt for v ∈ {tr,dr}.
Let T be the index of the step when both the drone and the truck return back to the depot after serving
all customers. Technically, we can define the value of T as infinity if the controller fails to serve all

3

Under review as a conference paper at ICLR 2022

1
s0 = ({1}, 1, 1, 0, 0)
a0 = (2, 2)

s6 = ({1, 2, 3, 4, 5, 6, 1}, 1, 1, 0, 0)
a6 = (1, 1)

2
s1 = ({1, 2}, 2, 2, 0, 0)
a1 = (4, 3)

4
s3 = ({1, 2, 3, 4}, 4, 4, 0, 0)
a3 = (6, 5)

6
s5 = ({1, 2, 3, 4, 5, 6}, 6, 6, 0, 0)
a5 = (1, 1)

3
s2 = ({1, 2, 3}, 4, 3, τtr

2,4 − τ
dr
2,3, 0)

a2 = (4, 4)

5
s4 = ({1, 2, 3, 4, 5}, 6, 5, τtr

4,6 − τ
dr
4,5, 0)

a4 = (6, 6)

Figure 1: An example of TSP-D with state st := (Vt, ctrt , cdrt , rtrt , rdrt) and action at = (atrt , a
dr
t) on

six nodes: black, grey and white nodes represent a depot, customers served by drone and customers
served by truck respectively. Solid and dashed lines correspond to drive and fly arcs respectively. The
drone and the truck traverse together from the depot to the first customer. Then drone is launched to
serve the second customer, while the truck traverses to serve the third customer. At this node, the
drone reunites with the truck to be launched to serve the next customer. Drone and truck reunite after
at the last customer location and traverse back together to the depot.

customers and return vehicles. Then, our cost function (negative reward) is the total time spent in the
system, or the makespan:

C =

T∑
t=0

Ct. (1)

3 THE ATTENTION-LSTM HYBRID MODEL

Following Vinyals et al. (2015), we aim to learn a probabilistic routing policy πθ as a product of
conditional probabilities

πθ(a1,a2, . . . ,aT |G) =

T∏
t=1

pθ(at|st), (2)

where pθ is a function parameterized by θ. Then, we employ policy gradient methods (Williams,
1992) to learn θ.

A series of research (Vinyals et al., 2015; Khalil et al., 2017; Nazari et al., 2018; Kool et al., 2018)
has shown that using neural networks for modeling pθ is a viable approach. In particular, Kool
et al. (2018) demonstrated that AM, which leverages several layers of multi-head attention to learn
representations of nodes, outperforms previous models, which rely on simpler representation models,
for example, the model from Nazari et al. (2018) which uses a single layer of single-head attention.
This observation was consistent across several classes of routing problems and also with findings in
natural language processing (Vaswani et al., 2017; Devlin et al., 2018).

At each step of prediction, however, the decoder of AM conditions only on the current location of
the vehicle and the current state of nodes and ignores the sequence of actions it has made in the past
(see Appendix B for details). Such conditional independence is sensible for single-vehicle routing
problems in which the ordering of past actions is irrelevant for future actions. However, we argue it is
not well-suited for problems like TSP-D requiring coordination among multiple vehicles. For such
coordination, we propose a hybrid model (HM) that also uses multi-head attention for encoding as
in AM but leverages LSTM hidden states for decoding in order to address dependencies between
subsequent actions. Since in TSP-D, the relative locations of the drone and the truck is a key piece of
information for coordinated routing, LSTM’s ability to store past decisions in its hidden states will be
more effective than stateless attention-based decoders. The model by Nazari et al. (2018) also utilizes
an LSTM-based decoder for single-vehicle routing problems such as CVRP, but AM outperforms the
Nazari et al. Model (NM). We argue that our HM is suitable for coordinated routing by combining
AM’s encoder and NM’s decoder with additional features.

The overall structure of HM is shown in Figure 2. We formally describe HM below.

4

Under review as a conference paper at ICLR 2022

Multi-Head
Attention

L ×

x1

Multi-Head
Attention

xN

…

…

…

…

…

…

…

…

Encoder

Add

Feed-Forward

Batch-Norm

Add

Batch-Norm

Add

Feed-Forward

Add

Batch-Norm

Input Embedding
(Feed-Forward)

Input Embedding
(Feed-Forward)

hL1 hL
N

…

hL
i LSTM

c̃t

h̄

h̃t

Attention

pθ(at |st)

× T

Decoder

at

<latexit sha1_base64="As5p6P7Yb8lStACfpZCqm9bF2Vw=">AAACWnicbVDLSsNAFJ3GV62P1sfOzWARXJVEi7osuHFZwT6gDWUyvdHBySTM3Kgl9Evc6kcJfoyTmIVtvTBwOOc+zpwgkcKg635VnLX1jc2t6nZtZ3dvv944OOybONUcejyWsR4GzIAUCnooUMIw0cCiQMIgeL7N9cELaCNi9YCzBPyIPSoRCs7QUpNGfRwxfOJMZv35JMP5pNF0W25RdBV4JWiSsrqTg8rleBrzNAKFXDJjRp6boJ8xjYJLmNfGqYGE8Wf2CCMLFYvA+FnhfE7PLDOlYaztU0gL9u9ExiJjZlFgO3OfZlnLyX+1nNEmNFakq+rU5OeWvGF442dCJSmC4r/WwlRSjGkeHJ0KDRzlzALGtbC/o/yJacbRxruwXcErviG82QNnK3zhuGZj9pZDXQX9i5Z31Wrft5udThl4lZyQU3JOPHJNOuSOdEmPcJKSd/JBPivfjuNsOzu/rU6lnDkiC+Uc/wDm0bc8</latexit>Vt

∼

action

traverse
time

visited
nodes

<latexit sha1_base64="izQ3FPLkpxyTGGO7UmND/XiwMF4=">AAACZ3icbVDLSgMxFE3HV62PVgURRIgWwYWUGRF1WXDjsoLVQqeUTOaOBjOZIbmjlqErv8atfo2f4F+YabuwrRdCDufk5p57glQKg677XXIWFpeWV8qrlbX1jc1qbWv73iSZ5tDmiUx0J2AGpFDQRoESOqkGFgcSHoLn60J/eAFtRKLucJBCL2aPSkSCM7RUv3bgB4kMzSC2V+4jy4b9XJz6QSYl4LBfq7sNd1R0HngTUCeTavW3Smd+mPAsBoVcMmO6nptiL2caBZcwrPiZgZTxZ/YIXQsVi8H08tEeQ3psmZBGibZHIR2xfztyFpvCqn0ZM3wys1pB/qsVjDaRsSKdV0NTjJvxhtFVLxcqzRAUH1uLMkkxoUWMNBQaOMqBBYxrYbej/IlpxtGGPfW7gld8Q3ibHjCmR4YrNmVvNtN5cH/W8C4a57fn9WZzkneZ7JMjckI8ckma5Ia0SJtw8k4+yCf5Kv04VWfX2Rs/dUqTnh0yVc7hL4ZzvU8=</latexit>⌧i,•

policy

inputs

Mean

graph
encoding

node
encoding

Batch-Norm

Figure 2: An Encoder-Decoder structure of Attention-LSTM Hybrid model (HM).

Encoder Given a graph with a set of nodes N , we have coordinates of each node in R2. Let
xn = (xn, yn) ∈ R2 represent coordinates for node n ∈ N . To embed such a fully connected graph
we start from the initial embeddings of the nodes using linear transformation:

h0
n = W0xn + b0 ∀n ∈ N , (3)

where W0 and b0 are learnable parameters. These initial embeddings of nodes {h0
n : n ∈ N} are

then passed through L number of attention layers. Each attention layer, l, consists of two sublayers: a
multi-head attention layer and a fully connected feed-forward layer, described in Appendix A.

Decoder Given the encoder outputs as embeddings of each node in the graph, we denote by h the
graph encoding computed as the mean of the embeddings of all the nodes in a graph. Then to select
an action for a decision taker (either the drone or truck), we pass to the LSTM the embedding of the
last node selected by the decision taker denoted as hLi where i represents the current location:

h̃
′
t+1, c̃

′
t+1 = LSTM(hLi , (h̃t, c̃t)). (4)

Here h̃t and c̃t correspond to the hidden and cell states at time t. We apply dropout to the output of
LSTM with probability p:

h̃t+1 = Dropout(h̃
′
t+1, p), c̃t+1 = Dropout(c̃′t+1, p). (5)

Then we pass the hidden state of the LSTM to attention along with the graph embedding and the
traveling time from the current location of a decision taker, similar to Bogyrbayeva et al. (2021), to
speed up training and improve the performance. The attention vector is calculated as follows:

ai,· = v>a tanh

(
Wa[h; h̃t+1;Wdτ i,·]

)
, (6)

where i represents the current location of a decision taker, τ i,· is the vector of the traverse times from
the current node to all other nodes in a graph, and va,W

a, and Wd are trainable parameters with
dimensions dh. The resulting attention vector is ai,· and ai,j denotes its element. Then the attention
is passed through softmax to produce the probabilities of visiting the next node as follows:

pθ(a
v
t = j|st) =


exp(ai,j)∑

j′∈N\Vt exp(ai,j′)
: j ∈ N \ Vt,

0 : j ∈ Vt,
(7)

5

Under review as a conference paper at ICLR 2022

Learner

Evaluate
Cost

Copy
Parameters C(θ1)

…

Network(θ)

Environment

Update Rollout

Workers (1,…, m)

Evaluate
Cost

C(θm)

Replace parameters

<latexit sha1_base64="2O5LenW9AMRsb55t/yDtpRGAwWc=">AAACfnicbVDBTttAEJ24tIWUtqE9clkRFVGJpjaKKJdKkbhwpBIBJBxF6/U4WdhdW7vjQmT5R/o1vZY/4G9YhxxKwpNWenpvZnbmJYWSjsLwoRW8Wnv95u36Rvvd5vsPHztbn85dXlqBQ5Gr3F4m3KGSBockSeFlYZHrROFFcnPc+Be/0TqZmzOaFTjSfGJkJgUnL407/bg0qfeRquuf0X4s0pzcvq6rmPCOKm4nWhpW18d7MU2R+Li6rr+OO92wF87BVkm0IF1Y4HS81TqI01yUGg0JxZ27isKCRn48SaGwbselw4KLGz7BK08N1+hG1fy8mn3xSsqy3PpniM3V/zsqrp2b6cRXak5Tt+w14oteo1iXOW+yVTd1zXdLu1F2NKqkKUpCI55Wy0rFKGdNuiyVFgWpmSdcWOmvY2LKLRfkM3423eAt3TUZ16vyfOG2TzlaznSVnB/0osNe/1e/Oxgs8l6HbdiBPYjgBwzgBE5hCAL+wF/4B/cBBLvBt+D7U2nQWvR8hmcIjh4B1r/Ffw==</latexit>

argmin
j=1, · · · ,m

C(✓ j)

Figure 3: Overview of distributed RL training for HM: each of multiple workers executes rollout
with different training instances, updates its parameters, and evaluates costs. The learner replaces its
network parameters with the ones from the best worker.

so that we do not allow nodes to be revisited by either vehicle. Conceptually, RL policies shall learn
the constraint if it is needed. However, we empirically found from preliminary experiments that
preventing vehicles from revisiting nodes improves the efficiency of training and does not degrade
the quality of final solutions. Hence, we disallow revisiting in all our experiments. See Appendix E.2
for further discussion on revisiting.

Distributed RL Training The proposed model determines the probability distribution, πθ(VT |G),
which, given a graph, produces the sequence of nodes to be visited by the drone and truck. In TSP-D,
we aim to minimize the makespan C in (1). We define the training objective function as follows:

J(θ|G) = Eπθ(VT |G)[(C − b(G)) log πθ(VT |G)], (8)

where b(G) is a baseline for variance reduction. We use a critic network to estimate b(G), while an
actor network is used to learn the policy πθ; hence we can compute the gradients ∇θJ(θ|G) using
the REINFORCE algorithm (Williams, 1992).

To accelerate the training of HM, we can take the advantage of parallelization. We modified the A2C
algorithm to obtain Distribute-and-Follow Policy Gradient (DFPG) to stabilize the final performance
of the proposed method at the convergence point (see Figure C.5). To achieve scalable efficiency and
reduced variance, DFPG selects gradients of the best performing worker when updating the central
learner’s weights as shown in Algorithm C.1. We generate multiple parallel workers of an RL agent
with the same network parameters copied from the central learner. Each worker performs a rollout
with a batch of episodes of different data instances. Then the network parameters of the workers
are updated by gradient using the advantage function as a baseline (see Algorithm C.2). Next, we
evaluate the updated network parameters of each worker with the shared validation instances. Finally,
we select the worker whose performance is the best among the other workers in a greedy manner
where the central learner copies the network parameters from the best worker as shown in Figure 3.

We observed that DFPG accelerates the training of AM, but only a slight improvement over AM
trained with REINFORCE is shown at the final epoch. Hence, we apply the REINFORCE algorithm
for training AM as suggested in Kool et al. (2018) for a fair comparison.

4 COMPUTATIONAL EXPERIMENTS

We empirically demonstrate the strength of HM against AM and strong heuristics for TSP-D.

4.1 TRAINING AND EVALUATION CONFIGURATIONS

Data Generation. We generate two sets of datasets for TSP-D from different types of locations. In
random locations dataset, we randomly sample x and y coordinates of each node from a uniform
distribution over [1, 100]× [1, 100], with the exception of the depot node which is distributed over
[0, 1] × [0, 1]. This makes the depot always located at the corner. While such a uniform sampling

6

Under review as a conference paper at ICLR 2022

is standard in the TSP-D literature, we create a new dataset named Amsterdam for more realistic
experiments, from the dataset originally used in Haider et al. (2019). See Appendix D for the details.1

Baselines. Even though there is a surge of studies proposing the combination of learning methods
with optimization heuristics to solve routing problems outlined in Mazyavkina et al. (2021), to
analyze our neural architecture choice for HM, we compare against AM (Kool et al., 2018), which
is the state-of-the-art end-to-end learning algorithm for routing problems. Also, since our HM is
built upon AM’s encoder, AM is a natural choice for comparison. We also compare against heuristic
optimization algorithms from the operation research literature, namely ‘TSP-ep-all’ (Agatz et al.,
2018) and ‘divide-and-conquer heuristic’ (DCH) (Poikonen et al., 2019). The TSP-ep-all heuristic
starts with an initial TSP tour, then partitions the TSP tour into nodes to be served by drone and truck,
followed by local search and exchange algorithms for the TSP tour and subsequent partitionings.
On the other hand, the DCH of Poikonen et al. (2019) splits the TSP tour into several subgroups
and partition nodes in each subgroup using a branch-and-bound algorithm. When we use DCH,
we apply TSP-ep-all to partition each subgroup instead of branch-and-bound. In particular, we use
DCH/g, which divides all nodes into subgroups so that each subgroup has g nodes. While g = 10 was
originally used in Poikonen et al. (2019), we also test with g = 25. As g increases the solution time
and quality increase. Note that, when g = N , the DCH/N is identical to TSP-ep-all. We implemented
TSP-ep-all and DCH/g in Julia 1.5 (Bezanson et al., 2017), while the initial TSP tours are obtained
by the Concorde TSP Solver (Applegate et al., 2001).

Decoding Strategies. There are two methods by which we sample solutions from the trained hybrid
model. In the first method called greedy, we always select nodes with the highest probabilities to visit
at each time step. In the second method, called sampling, we sample multiple solutions independently
from the trained model according to (2). Then, we select the minimal-cost sample as the solution.

Solution times. We measure the inference time of the benchmark dataset using an Nvidia A100
GPU and AMD EPYC 7452 32-Core Processor for HM and AM. For heuristic methods, Intel Xeon
E5-2630 2.2 GHz CPU is used. Each TSP-D benchmark dataset for each size consists of 100 instances.
For HM greedy and AM greedy, instances are evaluated not in a batch but one by one in a sequence
on the GPU. Heuristic methods use the same strategy but using a single thread of the CPU instead
of a GPU. For HM sampling, denoted by HM (s), we make s copies of each instance and sample
solutions for all s copies in a batch on the GPU. AM sampling is executed in the same way as HM
sampling. AM (4800), however, could not run in a full batch for N = 100 in Table 1 on a single GPU
with the memory of 40GB. Therefore, we split the sample size of 4800 into 4600 and 200 to obtain
AM (4800) results. For N = 100, because TSP-ep-all takes more than 3 hours for each instance, we
do not report the results. Note that we do not intend to compare the solutions times of the heuristics
and the learning methods directly; rather, we aim to understand the trends. We report the average
time for a single instance.

Other experiment details, including hyperparameters, are provided in Section D.

4.2 RESULTS ON TSP-D

We evaluate HM on 10 instances of 11-node graphs from Agatz et al. (2018), for which optimal
solutions are already known. Although HM generates solutions sequentially without backtracking,
it can find routes that are close to optimal routes. The greedy decoding from HM shows a 0.93%
optimality gap, while the sampling strategy reduces the optimality gap to 0.69%. Figures E.6 and
E.7 visualize the optimal solutions reported in the literature and the solution produced by HM with
greedy decoding.

HM outperforms AM consistently by a large margin, and this trend signifies as the problem size
increases. For example, for N = 100 in the random location datasets shown in Table 1, HM
(greedy) has the gap of 3.64%, when AM (greedy) has the gap of 18.03% when compared to the
best performing method. Figures 4(a)–(c) show the increasing advantage of HM (greedy) over AM
(greedy) as N grows. This demonstrates that recurrent hidden states we introduce in HM are crucial
for complex coordination between vehicles that larger problem instances require.

HM provides superb scalability as well as solid performance, comparable to or exceeding the best
heuristic method. While the performance and speed of HM (greedy) lie between DCH/10 and

1The code will be shared with the public after the review process.

7

Under review as a conference paper at ICLR 2022

Table 1: TSP-D results on Random locations dataset. Averages and standard deviation of 100 problem
instances. ‘Cost’ refers to the average cost value (1), where the small numbers represent the standard
deviation. ‘Gap’ is the relative difference to the average cost of the best algorithm for the setting (23).
‘Time’ is the average solution time of the algorithm for a single instance.

N = 20 N = 50 N = 100

Method Cost Gap Time Cost Gap Time Cost Gap Time

TSP-ep-all 281.62±18.05 0.02% (0.8s) 397.21±20.19 0.43% (4m) - - (>3h)
DCH/10 292.23±19.00 3.79% (0.1s) 420.51±23.98 6.32% (0.2s) 570.74±20.61 4.80% (0.3s)
DCH/25 - - 404.78±22.03 3.57% (6.0s) 548.23±22.36 0.66% (11.0s)

AM (greedy) 294.88±24.44 4.74% (0.1s) 439.21±28.09 11.01% (0.2s) 642.82±25.12 18.03% (0.5s)
HM (greedy) 285.59±18.24 1.44% (0.1s) 408.51±18.78 3.29% (0.3s) 564.42±22.03 3.64% (0.5s)

AM (4800) 285.06±18.14 1.25% (1.0s) 411.50±20.02 4.01% (4.0s) 603.46±19.52 10.82% (11.2s)
HM (100) 282.65±17.71 0.40% (0.1s) 399.11±17.59 0.87% (0.4s) 550.01±19.49 1.00% (0.9s)
HM (1200) 281.90±17.45 0.13% (0.3s) 396.80±17.10 0.29% (1.9s) 546.28±18.99 0.32% (5.4s)
HM (2400) 281.75±17.47 0.08% (0.7s) 396.16±17.08 0.13% (3.0s) 545.32±19.02 0.14% (10.0s)
HM (4800) 281.53±17.35 0.00% (1.1s) 395.65±17.00 0.00% (5.0s) 544.55±19.01 0.00% (18.2s)

0 20 40 60 80 100
Instance number

5

0

5

10

15

%
 D

iff
. o

f C
os

t t
o

TS
P

-e
p-

al
l (a) N = 20

AM (greedy)
HM (greedy)

0 20 40 60 80 100
Instance number

10

0

10

20

30

%
 D

iff
. o

f C
os

t t
o

D
C

H
/2

5

(b) N = 50
AM (greedy)
HM (greedy)

0 20 40 60 80 100
Instance number

0

10

20

30
%

 D
iff

. o
f C

os
t t

o
D

C
H

/2
5

(c) N = 100
AM (greedy)
HM (greedy)

0 5 10 15
seconds

540

560

580

600

620

640

be
nc

hm
ar

k
co

st

(d) N = 100
AM (greedy)
AM (sampling)
DCH
HM (greedy)
HM (sampling)

Figure 4: [(a), (b), (c)] AM (greedy) vs. HM (greedy). The percentage difference to TSP-ep-all
(N = 20) or DCH/25 (N = 50, 100) is reported for each instance. The dashed and solid lines
represent the mean values of AM and HM, respectively; [(d)] DCH/g vs. AM (s) vs. HM (s) for
various g and s values. The average cost to the solution time is reported.

Table 2: TSP-D results on the Amsterdam dataset. Averages of 100 problem instances.

N = 10 N = 20 N = 50

Method Cost Gap Time Cost Gap Time Cost Gap Time

TSP-ep-all 2.02±0.23 0.00 % (0.0s) 2.35±0.21 0.00 % (0.7s) 3.26±0.22 0.00 % (4m)
DCH/10 - - 2.49±0.24 5.70 % (0.1s) 3.55±0.25 8.88 % (0.2s)
DCH/25 - - - - 3.37±0.22 3.24 % (4.9s)

AM (greedy) 2.16±0.29 6.69 % (0.1s) 2.61±0.32 10.94 % (0.1s) 4.06±0.43 24.30 % (0.2s)
HM (greedy) 2.08±0.26 2.84 % (0.1s) 2.50±0.26 5.96 % (0.1s) 3.50±0.28 7.31 % (0.2s)

AM (4800) 2.08±0.25 2.92 % (0.4s) 2.44±0.23 3.59 % (0.8s) 3.72±0.34 13.95 % (3.0s)
HM (100) 2.05±0.25 1.47 % (0.1s) 2.41±0.24 2.31 % (0.1s) 3.36±0.25 3.01 % (0.3s)
HM (1200) 2.05±0.25 1.09 % (0.2s) 2.39±0.23 1.57 % (0.2s) 3.33±0.24 1.99 % (1.4s)
HM (2400) 2.04±0.24 0.89 % (0.2s) 2.39±0.23 1.39 % (0.6s) 3.32±0.24 1.73 % (2.2s)
HM (4800) 2.04±0.24 0.92 % (0.4s) 2.38±0.23 1.27 % (0.8s) 3.31±0.24 1.58 % (3.8s)

Table 3: mmCVRP results with three vehicles. Averages of 128 problem instances.

N = 20 N = 30

Method Cost Gap Time Cost Gap Time

OR-Tools 4,086.99±471.78 0.00 % (1.0s) 4,871.06±453.74 7.26 % (1.0s)
AM (greedy) 4,396.11±535.81 7.56 % (0.1s) 4,939.37±473.15 8.76 % (0.2s)
HM (greedy) 4,298.83±523.19 5.18 % (0.1s) 4,779.27±488.44 5.24 % (0.2s)
AM (1200) 4,142.74±478.88 1.36 % (14.3s) 4,574.05±420.01 0.01 % (27.6s)
HM (1200) 4,129.41±496.54 1.04 % (11.4s) 4,541.45±429.89 0.00 % (25.2s)

8

Under review as a conference paper at ICLR 2022

DCH/25, the batch sampling approach using HM produces the best performance, as shown in Table
1, without increasing the solution time as much as TSP-ep-all. HM’s scalability is comparable to
DCH/25, but HM outperformed DCH/25 in terms of the average cost. Figure 4(d) also illustrates
HM (sampling) is more effective than DCH and AM (sampling). No direct comparison of solution
time between DCH and HM (sampling) is possible, although HM (sampling) shows high efficiency
in our experiments. As DCH can be also run in parallel on multiple CPU threads, the speed of DCH
can be further boosted. However, such parallelization for DCH is not as straightforward as in batch
sampling on GPU.

The above observations are consistent in the real Amsterdam dataset in Table 2: HM provides
better solutions than AM. For N = 50, AM (greedy) and HM (greedy) had gap of 24.30% and
7.31 %, respectively, compared to the TSP-ep-all solutions. AM (sampling) and HM (sampling)
show the same pattern. However, the best solutions are found by TSP-ep-all in the Amsterdam
dataset, while HM (sampling) still outperforms DCH. When customer locations follow non-uniform
distributions, the performances of AM and HM seem to deteriorate, which is consistent with the
finding of Bogyrbayeva et al. (2021).

4.3 ADDITIONAL RESULTS ON MMCVRP

While our main focus is TSP-D, we also test performances of HM and AM in mmCVRP to demon-
strate that HM can generalize to other multi-vehicle routing problems. TSP-D concerns the routing of
heterogeneous vehicles (the drone is faster than the truck), whereas mmCVRP is about the routing of
homogeneous vehicles (all vehicles are at the same speed and of the same capacity). In both cases,
we aim to minimize the makespan to finish all jobs. The results in Table 3 demonstrate that HM
provides competitive results with OR-Tools to solve the mmCVRP, while AM was not as competitive.
The details of the experiments are provided in Appendix D.

4.4 PERFORMANCES ON TSP

While HM outperforms AM for TSP-D, the opposite is true for TSP. Our experiments on TSP in
Appendix E.4 compare AM, HM, and NM. Note that NM also uses an LSTM decoder for routing
problems. For TSP, the performances of the two LSTM-decoder models tend to behave similarly.
The LSTM decoder seems not as effective as the attention-based decoder of AM for routing a single
vehicle in TSP. This may be because the LSTM decoder puts unnecessary focus on the past decisions,
while the current vehicle’s location and the depot location are the only relevant information in TSP.
AM uses only that information as an input to the decoder. However, the LSTM decoder is more
effective in the coordinated routing of multiple vehicles as in TSP-D and mmCVRP since it can
“memorize” the past decisions made for other vehicles.

5 DISCUSSION

This study proposed a new end-to-end learning model that can learn coordinated routing of multiple
vehicles. Our method applies to both heterogeneous and homogeneous fleet cases, as shown in TSP-D
and mmCVRP, respectively. Compared to other learning methods to solve the routing problems, the
proposed model efficiently deals with the coordination of multiple vehicles and achieves comparable
or better performances as strong optimization heuristics methods. This is because the LSTM-based
decoder of the proposed model stores the decisions of other vehicles to make better-informed decisions
compared to stateless attention-based models. Moreover, in contrast to optimization heuristics that
solve TSP-D and mmCVRP tailored to the specifics of each problem, the proposed model solves both
problems with the same hyperparameters and input structures. The proposed model, however, does
not perform as strongly in TSP.

Searching for a universal architecture that efficiently solves both TSP and TSP-D will be an important
direction for future research. Such a universal architecture will solve a broad class of routing problems
arising in various logistics services including heterogeneous fleets and multiple echelons of service
vehicles. Identifying architectures and training algorithms robust to variations in distributions of
customer locations will be another important direction. It is unclear how such variations would
impact the performances of end-to-end learning methods. Understanding its impact will be critical
for real-world applications.

9

Under review as a conference paper at ICLR 2022

REPRODUCIBILITY STATEMENT

We provided the details of our implementations in the appendix. After the review process, we will
also archive our code for learning and heuristic algorithms, benchmark instance datasets, and the
results we obtained and share them openly with the public.

REFERENCES

Niels Agatz, Paul Bouman, and Marie Schmidt. Optimization approaches for the traveling salesman
problem with drone. Transportation Science, 52(4):965–981, 2018.

David Applegate, Robert Bixby, Vašek Chvátal, and William Cook. TSP cuts which do not conform
to the template paradigm. In Computational Combinatorial Optimization, pp. 261–303. Springer,
2001.

Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial
optimization with reinforcement learning. arXiv preprint arXiv:1611.09940, 2016.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial optimization:
a methodological tour d’horizon. European Journal of Operational Research, 2020.

Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. Julia: A fresh approach to
numerical computing. SIAM Review, 59(1):65–98, 2017.

Aigerim Bogyrbayeva, Sungwook Jang, Ankit Shah, Young Jae Jang, and Changhyun Kwon. A rein-
forcement learning approach for rebalancing electric vehicle sharing systems. IEEE Transactions
on Intelligent Transportation Systems, Accepted:1–11, 2021.

Paul Bouman, Niels Agatz, and Marie Schmidt. Dynamic programming approaches for the traveling
salesman problem with drone. Networks, 72(4):528–542, 2018.

Sung Hoon Chung, Bhawesh Sah, and Jinkun Lee. Optimization for drone and drone-truck combined
operations: A review of the state of the art and future directions. Computers & Operations
Research, pp. 105004, 2020.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image
is worth 16x16 words: Transformers for image recognition at scale. In International Conference
on Learning Representations, 2020.

Zulqarnain Haider, Hadi Charkhgard, Sang Won Kim, and Changhyun Kwon. Optimizing the
relocation operations of free-floating electric vehicle sharing systems. Available at SSRN, 2019.

Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial
optimization algorithms over graphs. Advances in Neural Information Processing Systems, 30:
6348–6358, 2017.

Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! In
International Conference on Learning Representations, 2018.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436–444,
2015.

Giusy Macrina, Luigi Di Puglia Pugliese, Francesca Guerriero, and Gilbert Laporte. Drone-aided
routing: A literature review. Transportation Research Part C: Emerging Technologies, 120:102762,
2020.

Nina Mazyavkina, Sergey Sviridov, Sergei Ivanov, and Evgeny Burnaev. Reinforcement learning for
combinatorial optimization: A survey. Computers & Operations Research, pp. 105400, 2021.

10

Under review as a conference paper at ICLR 2022

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Chase C Murray and Amanda G Chu. The flying sidekick traveling salesman problem: Optimization
of drone-assisted parcel delivery. Transportation Research Part C: Emerging Technologies, 54:
86–109, 2015.

Mohammadreza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takác. Reinforcement
learning for solving the vehicle routing problem. In Advances in Neural Information Processing
Systems, pp. 9839–9849, 2018.

Alena Otto, Niels Agatz, James Campbell, Bruce Golden, and Erwin Pesch. Optimization approaches
for civil applications of unmanned aerial vehicles (UAVs) or aerial drones: A survey. Networks, 72
(4):411–458, 2018.

Laurent Perron and Vincent Furnon. OR-Tools, 2019. URL https://developers.google.
com/optimization/.

Stefan Poikonen, Bruce Golden, and Edward A Wasil. A branch-and-bound approach to the traveling
salesman problem with a drone. INFORMS Journal on Computing, 31(2):335–346, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. arXiv preprint arXiv:1910.10683, 2019.

Roberto Roberti and Mario Ruthmair. Exact methods for the traveling salesman problem with drone.
Transportation Science, 55(2):315–335, 2021.

David W Scott. Multivariate Density Estimation: Theory, Practice, and Visualization. John Wiley &
Sons, 2015.

Sebastián A Vásquez, Gustavo Angulo, and Mathias A Klapp. An exact solution method for the tsp
with drone based on decomposition. Computers & Operations Research, 127:105127, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. arXiv preprint arXiv:1706.03762, 2017.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. arXiv preprint
arXiv:1506.03134, 2015.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau,
Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt,
Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric
Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas,
Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris,
Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0
Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature
Methods, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 8(3-4):229–256, 1992.

11

https://developers.google.com/optimization/
https://developers.google.com/optimization/

Under review as a conference paper at ICLR 2022

A THE HYBRID MODEL

This section describes the encoder presented in Figure 2 in detail. A multi-head attention (MHA)
layer takes as an input the output of the previous layer (either output from the initial embedding or
the output of the previous attention layer) and passes messages between nodes. In particular, for each
input to MHA we compute the values of q ∈ Rdq ,k ∈ Rdq ,v ∈ Rdv or queries, keys and values
respectively by projecting the input hn:

qn = WQhn, kn = WKkn, vn = WV hn ∀n ∈ N , (9)

where WQ,WK ,WV are trainable parameters with sizes (dk × dh), (dk × dh), and (dv × dh),
respectively. From keys and queries we compute compatibility between nodes i and j as follows
since we consider the fully connected graph:

ui,j =
q>i kj√
dk

∀i, j ∈ N . (10)

We use compatibility ui,j to compute the attention weights, ai,j ∈ [0, 1] using softmax:

ai,j =
euij∑
j′ e

u
i,j
′ . (11)

Then a message received by node n is a convex combination of messages received from all nodes:

h
′

n =
∑
j

an,jvj . (12)

Instead of using a single head, we use a multi-head attention with head size M , which allows passing
different messages from other nodes. Then after computing messages from each head using (11), we
can combine all massages coming to node n as follows:

MHAn(h1, . . . ,hN) =

M∑
m=1

WO
mh

′

nm. (13)

The output of the MHA sublayer along with skip connection is passed through Batch Normalization:

ĥ
l

n = BNl(hl−1n + MHAn(hl−11 , . . . ,hl−1N)). (14)

The output of Batch Normalization then passed through a fully connected feed-forward (FF) network
with ReLU activation function. We again apply skip connection and batch normalization to the output
of FF.

hln = BNl(ĥ
l

n + FFl(ĥ
l

n)), (15)
where

FFl(ĥ
l

n)) = Wff,1 · ReLU(W ff,0ĥ
l

n + bff,0) + bff,1. (16)

12

Under review as a conference paper at ICLR 2022

B THE ATTENTION MODEL

The attention model presented in Kool et al. (2018) consists of the multi-head attention encoder and
decoder. While both HM and AM use multi-head attention to encode a graph structure, they differ in
the decoder. AM’s decoder takes as an input the embedding of the graph and the embeddings of the
first (depot) and the last node of a decision taker at time t.

hc = [h,hLf ,h
L
i], (17)

where h is a graph embedding defined as the mean of the embeddings of all the nodes, hLf and hLi
are the embedding of the first and last nodes at time t. Initially, when t = 0, the last and first nodes
refer to the depot.

Later the context node hc is used to compute a single query while embeddings of all nodes are used
to compute keys and values:

qc = WQhc, kn = WKhLn , vn = WV hLn ∀n ∈ N, (18)

whereWQ,WK ,WV are trainable parameters and from keys and the query we compute compatibility
between nodes i and c using the following formula and masking nodes that cannot be visited at the
current time step:

uc,n =
qTc kn√
dk

∀n if n is not masked. (19)

We again use a multi-head attention mechanism as in Encoder and follow steps shown in equations
10-12. We do not use skip connection and batch normalization for the output of MHA.

To compute logits, the final output of MHA, qc is passed through a single-head attention, where the
compatibility with only a context node is calculated:

uc,n = C tanh

(
qTc kj√
dk

)
∀n if n is not masked. (20)

The final probabilities of visiting the next nodes are computed through softmax:

pn =
euc,n∑
n′ e

u
c,n
′ ∀n ∈ N if n is not masked. (21)

For masked nodes, the probabilities are set to zero.

13

Under review as a conference paper at ICLR 2022

C DISTRIBUTED TRAINING ALGORITHMS

Algorithm C.1: Distribute-and-Follow Policy Gradient
1 Generate a set of K multiple parallel workers, Ω = {ω1, . . . , ωK}.
2 Initialize actor and critic networks parameters {θa1 , . . . , θaK}, {θc1, . . . , θcK} of A.
3 Set the maximum number of epochs, Mepochs

4 for epochs = 1 to Mepochs do
5 Initialize an empty list of validation rewards R
6 for k = 1 to K do . in parallel
7 Initialize network gradients dθak ← 0, dθck ← 0
8 Bk ∼ DataGenerator(ρ)
9 Call Rollout(ωk, Bk)

10 Rk ← Evaluate(ωk)
11 Append Rk to R
12 j ← arg min

1≤j≤K
(R)

13 for k = 1 to K do . in parallel
14 θak ← θaj
15 θck ← θcj

Algorithm C.2: Rollout
Input: Batch of data B with a number of episodes denoted Mepis, a worker id k. Set the

maximum number of steps denoted, T
1 Initialize reward R
2 Initialize LSTM initial state (h̃0, c̃0)
3 x0, mask0 ← ENV.RESET(B)
4 for t=0 to T do
5 atr

t , (h̃t′ , c̃t′)← πθak (xtr
t , masktr

t , (h̃t, c̃t))

6 adr
t , (h̃t, c̃t)← πθak (xdr

t , maskdr
t , (h̃t′ , c̃t′))

7 xt+1, maskt+1, Ct ← ENV.STEP(atr
t , a

dr
t)

8 R← R− Ct
9 Calculate b(x0; θck) using critic

10 dθak ← 1
Mepis

∑Mepis
m=1(Rm − bm(xm0 ; θck))∇θak log πθak

11 dθck ← 1
Mepis

∑Mepis
m=1∇θck(Rm − bm(xm0 ; θck))2

0 1 2 3 4
epochs 1e7

550

600

650

700

750

800

be
nc

hm
ar

k
co

st

HM, N = 100, Synthetic data

HM (REINFORCE)
HM (A2C)
HM (DFPG)

0 100 200 300 400 500
hours

550

600

650

700

750

800

be
nc

hm
ar

k
co

st

HM, N = 100, Synthetic data

HM (REINFORCE)
HM (A2C)
HM (DFPG)

Figure C.5: Benchmark cost curve comparison between A2C and DFPG on 100-node graphs from
the environment without revisiting. Synthetic data refers to 100 benchmark instances used in Table 1.

14

Under review as a conference paper at ICLR 2022

D IMPLEMENTATION DETAILS FOR TSP-D

A critic network for HM. The architecture of the critic network has similarities to the actor network,
except we do not use recurrent neural networks. The goal of the critic network is to estimate the
total time needed to serve all the customers and return back to the depot, which is achieved through
embedding the initial state of the graph. In particular, we embed x and y coordinates of the nodes
through element-wise projections with 1D convolution networks whose outputs are passed through
attention followed by feed-forward networks. Python 3.8 and PyTorch 1.5 are used.

Data generation for the Amsterdam dataset. To identify potential demand locations for urban mo-
bility and logistics services, we used an electric-vehicle (EV) parking location dataset in Amsterdam,
used in Haider et al. (2019). As EVs are usually parked on the urban streets, next to the curbside
chargers, these locations reflect where potential customers are located. For a detailed description of
the dataset, refer to Haider et al. (2019). We randomly pick depot and customer nodes from the entire
Amsterdam dataset to create various problem instances. We use the Amsterdam dataset for evaluation
only and generate the training data on the fly using kernel density estimation. In particular, we
estimate probability density functions of x and y coordinates of the customer nodes using Gaussian
kernels. We deploy the Gaussian-KDE library of SciPy (Virtanen et al., 2020) that selects bandwidth
using the Scott’s Rule (Scott, 2015).

AM Implementation for TSP-D. To have a fair comparison between AM of Kool et al. (2018) and
our HM, we tried several state representations of TSP-D for AM. The state representation of TSP
used in AM is inappropriate to solve TSP-D because the routing decisions of the drone and the truck
are strongly interconnected in TSP-D. There are mainly two challenges in the state representation
of TSP-D: (i) we need to pass information about previously selected nodes either by drone or truck;
and (ii) we also need to promote coordination between the drone and truck routing through passing
information about their current transitions in a graph.

The first challenge also exists with TSP, which AM has resolved through the masking scheme. Instead
of passing information about already selected nodes as a state, AM prohibits selecting such nodes and
only uses the current location as part of the state representation. To address the second challenge, we
tried to pass the current transitions of the drone and truck in a context node of a decoder (discussed in
Appendix B). In particular, we passed the encoded current location information of a decision taker
along with the encoded version of the selected node of the counterpart to compute the context node
as follows:

hc = [h,hLi ,h
L
j] (22)

where h is a graph embedding defined as the mean of the embeddings of all the nodes, hLi and hLj
are the embedding of the last action of a decision taker and the last action of the counterpart at time t.
Initially, when t = 0, the last actions of both vehicles refer to the depot.

We also tried passing the convex combinations of hLj and hLi . Also, we tried to inject the distances
between nodes in the encoder through additive and linear attention. However, from the experimental
studies, we observed that passing the encoded nodes information of the current location of the
decision taker and the last selected node of a counterpart in a context node produced the best training
rewards. Therefore, we selected such state representation and used the masking scheme similar to
Kool et al. (2018), to prevent visiting already selected nodes.

Hyperparameters. We use 128 instances of data generated on the fly per epoch to train HM. We
use 3 layers in the encoder and 8 attention heads. We initialize all the encoder parameters using
Uniform(1/

√
d, 1/
√
d), with d the input dimension. In the decoder, we initialize the LSTM hidden

and cell states with zeros and apply dropout with p = 0.1. Embedding dimensions are set to 256
for TSP-D with uniformly distributed graphs and 128 for other experiments. We use dh = 128 to
compute attention in the decoder. We use the constant learning rate set to 10−4. For AM we used the
same hyperparameters as in Kool et al. (2018).

Gap. In all the experiments, we use the following formula to report the relative gap between two
solution methods:

Gap =
Z − Z∗
Z∗

× 100%, (23)

where Z is the average cost of a solution method and Z∗ is the average cost of the best-performing
solution method. The best-performing solution method is selected based on the average cost.

15

Under review as a conference paper at ICLR 2022

E ADDITIONAL EXPERIMENTS

E.1 PERFORMANCES ON THE TSP-D EXACT SOLUTION BENCHMARK INSTANCES

Agatz et al. (2018) provide 10 instances of size N = 11 with exact optimal solutions, available
at https://github.com/pcbouman-eur/TSP-D-Instances. We provide the perfor-
mance of HM greedy and HM sampling on these benchmark instances in Table E.4. On average, the
optimality gap of HM greedy and HM sampling is 0.93% and 0.69%, respectively.

The detailed routes are provided in Figures E.6 and E.7. Note that in Instances 6 and 10, the two
routes are not identical, but both are optimal. This is because the objective in TSP-D is to minimize
the makespan, not the total distance traveled.

Table E.4: The objective values of the optimal solutions and Hybrid Model solutions on TSP-D with
11 nodes.

Instance Optimal HM (greedy) (Gap) HM (1200) (Gap)

1 221.19 223.41 (1.00%) 223.41 (1.00%)
2 205.76 205.76 (0.00%) 205.76 (0.00%)
3 192.96 193.99 (0.53%) 193.99 (0.53%)
4 241.26 241.26 (0.00%) 241.26 (0.00%)
5 248.14 249.85 (0.69%) 248.82 (0.67%)
6 217.69 217.69 (0.00%) 217.69 (0.00%)
7 237.34 240.47 (1.32%) 237.34 (0.00%)
8 214.77 226.64 (5.53%) 225.36 (4.93%)
9 256.34 256.83 (0.19%) 256.83 (0.19%)

10 227.90 227.90 (0.00%) 227.84 (0.00%)

mean 226.33 228.38 (0.93%) 227.84 (0.69%)

E.2 DISTRIBUTED TRAINING ALGORITHMS FOR TSP-D WHEN REVISITING IS ALLOWED

In Instance 9 of Figure E.7, the exact optimal solution revisits node 9. This is an important observation
made by Agatz et al. (2018). To learn the true optimal solutions, we need to allow revisiting nodes in
the simulator.

Allowing revisiting nodes makes training of both AM and HM significantly slower, as it induces
much larger action spaces. AM even did not train smoothly in our experiments. When revisiting
nodes is allowed, as in Instance 9 in Figure E.7, we compared the performances of training algorithms
in Figure E.8. We observe that there are no significant gains from using A2C in the environment with
revisiting allowed. The proposed DFPG method shows more stable learning curves with the best
performance. This result demonstrates that DFPG has the potential to be useful in various routing
problems with very large action spaces.

However, in this paper, we did not allow revisiting nodes, because our experiments showed not much
gain in the performance on average when compared to the results with no revisiting allowed. For
example, the HM solution for Instance 9 without revisiting has a gap of 0.19% only.

E.3 DETAILS OF THE MMCVRP EXPERIMENTS

We have a set of nodes representing customer locations and a depot. Each customer has known
demand, which a fleet of vehicles must satisfy and return back to a depot in a minimal time. Each
customer can be served by exactly one vehicle. The routing decisions of vehicles are restricted by
their capacity to carry the load. We compare HM against OR Tools (Perron & Furnon, 2019) to solve
mmCVRP. We implemented the mmCVRP simulator using Julia 1.5 and interfaced it with Python
using pyjulia available at https://github.com/JuliaPy/pyjulia. For both N = 20 and
N = 30, we used three vehicles. We use the same set of hyperparameters for both TSP-D and
mmCVRP.

16

https://github.com/pcbouman-eur/TSP-D-Instances
https://github.com/JuliaPy/pyjulia

Under review as a conference paper at ICLR 2022

Instance Optimal Solution HM Greedy

1
2

3

4

5

6

7

8

9

10

11

1

Cost = 221.19

2
3

4

5

6

7

8

9

10

11

1

Cost = 223.41 (Gap = 1.00%)

2
2

3

4

5

6
7

8

9
10

111

Cost = 205.76

2

3

4

5

6
7

8

9
10

111

Cost = 205.76 (Gap = 0.00%)

3

2

3
4

56

7

8

9

10

11

1

Cost = 192.96

2

3
4

56

7

8

9

10

11

1

Cost = 193.99 (Gap = 0.53%)

4

2

3

4 5

6

7

8

9

10

11

1

Cost = 241.26

2

3

4 5

6

7

8

9

10

11

1

Cost = 241.26 (Gap = 0.00%)

5
2

3

4

5

6

7

8

9

10

11

1

Cost = 248.14

2

3

4

5

6

7

8

9

10

11

1

Cost = 249.85 (Gap = 0.69%)

Figure E.6: Routing examples: optimal vs. HM greedy (Instances 1 to 5). Node 1 is the depot, the
solid line is the truck route, and the dashed line is the drone route.

17

Under review as a conference paper at ICLR 2022

Instance Optimal Solution HM Greedy

6 2

3

4

5

6

7

8
910

11

1

Cost = 217.69

2

3

4

5

6

7

8
910

11

1

Cost = 217.69 (Gap = 0.00%)

7

2

3

4
5

6

7

8

9

10

11

1

Cost = 237.34

2

3

4
5

6

7

8

9

10

11

1

Cost = 240.47 (Gap = 1.32%)

8

2

3

4

5

6

7 8

9

10

11

1

Cost = 214.77

2

3

4

5

6

7 8

9

10

11

1

Cost = 226.64 (Gap = 5.53%)

9

2

3

4

5

6
7

8

9
10

11

1

Cost = 256.34

2

3

4

5

6
7

8

9
10

11

1

Cost = 256.83 (Gap = 0.19%)

10 2

3
4

5

6

7
8

9

10

11

1

Cost = 227.90

2

3
4

5

6

7
8

9

10

11

1

Cost = 227.90 (Gap = 0.00%)

Figure E.7: Routing examples: optimal vs. HM greedy (Instances 6 to 10). Node 1 is the depot, the
solid line is the truck route, and the dashed line is the drone route.

18

Under review as a conference paper at ICLR 2022

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
episodes 1e7

220

230

240

250

260

270

280

290

300

be
nc

hm
ar

k
co

st

HM, N = 11, Optimality instances, revisiting allowed

HM (REINFORCE)
HM (A2C)
HM (DFPG)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
episodes 1e7

220

230

240

250

260

270

280

290

300

be
nc

hm
ar

k
co

st

HM, N = 11, Synthetic data, revisiting allowed

HM (REINFORCE)
HM (A2C)
HM (DFPG)

0 5 10 15 20 25 30
hours

220

230

240

250

260

270

280

290

300

be
nc

hm
ar

k
co

st

HM, N = 11, Optimality instances, revisiting allowed

HM (A2C)
HM (DFPG)

0 5 10 15 20 25 30
hours

220

230

240

250

260

270

280

290

300

be
nc

hm
ar

k
co

st

HM, N = 11, Synthetic data, revisiting allowed

HM (A2C)
HM (DFPG)

Figure E.8: Benchmark cost curves of HM with REINFORCE, A2C, and DFPG on 11-node graphs
from the environment that allows revisiting. Optimality instances refer to 11-node instances from
Agatz et al. (2018). Synthetic data refers to 100 benchmark instances used in Table 1. Top figures
represent benchmark costs over the number of episodes. Bottom figures compare benchmark costs
over wall-clock time.

Data generation. We generate the random data for mmCVRP by sampling x, y coordinates of the
customer locations using Uniform(0, 1). We randomly assign customer demand at each node with
integer values ranging between 1 and 9. We set the capacity of each vehicle as follows:

Q =

⌈
1.2/m

∑
n∈N

Dn

⌉
, (24)

where Di is demand at node i, and m is the number of vehicles. We computed the traveling time
between nodes as follows:

τi,j =
⌊
2000dij

⌋
∀i ∈ N , j ∈ N , (25)

where di,j is the Euclidean distance between nodes i and j.

HM implementation for mmCVRP. We embed a graph exactly as in TSP-D. However, in the
decoder, we also pass information about the remaining capacity of a vehicle. In particular, for each
node i, we compute expected capacity if it is visited by a decision taker at time t: Q′t = Qt −Dt

i for
all i ∈ N , where Qt is a capacity of a decision taker at time t and Dt

i is demand at node i at time t.
Then we use a vector of expected remaining capacities Q′t to compute attention in decoder:

ai,· = v>a tanh

(
Wa[h; h̃t+1;WdQ′t]

)
, (26)

AM implementation for mmCVRP. To compute the context node for mmCVRP, we use the
embeddings of the current node of a decision taker and embeddings of the nodes selected by other
nodes. In particular, in the presence of m vehicles in mmCVRP, we will have:

hc = [h,hLi ,h
L
j1 ...h

L
jm−1

,WdQt] (27)

19

Under review as a conference paper at ICLR 2022

where hLi is embedding of a node i selected by a decision taker and hLjm−1
is a embedding of a node

j selected by a vehicle m− 1. In computing the context node, we also use the remaining capacity of
a decision taker Qt at time t.

E.4 PERFORMANCES ON TSP INSTANCES

We compare the performance of AM, HM, and the RL model by Nazari et al. (2018) for TSP. We call
the Nazari et al. model NM. We generate random location instances with the same method as Kool
et al. (2018) and Nazari et al. (2018). While we implemented AM and HM for TSP by ourselves,
we use the result reported by Nazari et al. (2018) for NM. Random location instances are generated
using the same rule. The result is presented in Table E.5.

HM for TSP is similar to TSP-D, except we pass a distance vector, di,·, from the current location of
an agent i to other nodes as follows in computing attention in decoder:

ai,· = v>a tanh

(
Wa[h; h̃t+1;Wddi,·]

)
. (28)

Table E.5: TSP results on random locations. Average over 10,000 problem instances are reported.
Cost refers to the cost function (1). Gap is the relative difference to the cost of the best algorithm for
the setting.

N = 20 N = 50 N = 100

Method Cost Gap Cost Gap Cost Gap

Concorde 3.83 0.00 % 5.69 0.00 % 7.76 0.00 %
AM (greedy) 3.84 0.29 % 5.79 1.67 % 8.10 4.38 %
AM (sampling) 3.83 0.07 % 5.72 0.48 % 7.95 2.34 %
HM (greedy) 3.88 1.38 % 6.00 5.39 % 8.54 9.93 %
HM (sampling) 3.84 0.39 % 5.86 2.92 % 8.11 4.45 %

NM (greedy) 3.97 6.08 8.44

20

	Introduction
	The Traveling Salesman Problem with Drone (TSP-D)
	Contributions

	The Problem Definition and Formulation
	TSP-D Defined
	An MDP Formulation of TSP-D

	The Attention-LSTM Hybrid Model
	Computational Experiments
	Training and Evaluation Configurations
	Results on TSP-D
	Additional Results on mmCVRP
	Performances on TSP

	Discussion
	The Hybrid Model
	The Attention Model
	Distributed Training Algorithms
	Implementation Details for TSP-D
	Additional Experiments
	Performances on the TSP-D Exact Solution Benchmark Instances
	Distributed Training Algorithms for TSP-D when Revisiting is Allowed
	Details of the mmCVRP Experiments
	Performances on TSP Instances

