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Abstract

Creating high-quality scientific figures can be time-consuming and challenging,
even though sketching ideas on paper is relatively easy. Furthermore, recreating
existing figures that are not stored in formats preserving semantic information
is equally complex. To tackle this problem, we introduce DeTixZiry, a novel
multimodal language model that automatically synthesizes scientific figures as
semantics-preserving TikZ graphics programs based on sketches and existing
figures. To achieve this, we create three new datasets: DATikZ,,, the largest TikZ
dataset to date, containing over 360k human-created TikZ graphics; SkeTrcHFIG, a
dataset that pairs hand-drawn sketches with their corresponding scientific figures;
and SciCap++, a collection of diverse scientific figures and associated metadata. We
train DET1kZ1FY on SciCap++ and DATikZ,, along with synthetically generated
sketches learned from SkercHF1G. We also introduce an MCTS-based inference
algorithm that enables DET1kZIFY to iteratively refine its outputs without the
need for additional training. Through both automatic and human evaluation, we
demonstrate that DETikZiry outperforms commercial CLAUDE 3 and GPT-4V in
synthesizing TikZ programs, with the MCTS algorithm effectively boosting its
performance. We make our code, models, and datasets publicly available.!

1 Introduction

Creating high-quality scientific figures is similar to typesetting scientific documents in many ways.
When it comes to typesetting, markup languages like IATEX enjoy widespread popularity, as exemplified
by major machine learning conferences that either mandate or strongly encourage I4TEX-formatted
submissions.? The advantages of using such languages go beyond producing high-quality outputs;
documents expressed as high-level, semantics-preserving programs enhance accessibility, serve
archival purposes, and remain easily editable and human-readable (facilitating language modeling
applications; Moosavi et al., 2021; Lu et al., 2023). Consequently, efforts have been made to recover
this type of information from outputs stored in lower-level vector graphics formats like PDF or SVG,
or raster graphics formats (Desai et al., 2021; Blecher et al., 2024). At the other end of the spectrum,
the versatility of IATEX comes with a steep learning curve, and typesetting can often be challenging
for end users. In response, researchers have been working on assisting authors with certain aspects of
the problem, such as typesetting math based on hand-drawn sketches (Kirsch, 2010; Wu et al., 2020).

Just like documents, scientific figures can also be created using markup languages. A popular example
is the TikZ graphics language (Tantau, 2023), which can be integrated into IZIEX documents, providing
comparable benefits and encountering similar challenges. However, unlike I4TEX, the prospects of
TikZ in research contexts remain largely unexplored. Although the promise of simplifying editing and
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Figure 1: Overview of the DET1kZIFy architecture: A multimodal language model converts sketches
or figures into TikZ programs, which are compiled by a IZIEX engine. This provides a reward signal to
the model via MCTS, allowing it to iteratively refine the output until satisfactory results are achieved.

enabling applications in visual understanding (Masry et al., 2022; Huang et al., 2023) is evident, there
are currently no viable solutions for recovering graphics programs from compiled figures. Moreover,
there is a lack of tools that assist in creating graphics programs, e.g., based on hand-drawn sketches,
despite the clear demand for such approaches on the TgX Stack Exchange (TgX.SE),3 where nearly
10% of all questions revolve around TikZ, making it the most frequently discussed topic on the site.
Addressing this gap could greatly improve the accessibility of existing figures and support researchers
at all levels of programming proficiency when creating new ones, fostering diversity and inclusion.
In response, we introduce DET1kZI1FY, a multimodal language model that automatically synthesizes
TikZ programs for scientific figures and sketches (cf. Figure 1). Our key contributions are as follows:

(i) As part of DET1xZIFY, we introduce (a) DATikZy,, a large TikZ dataset with over 360k
human-created TikZ graphics; (b) SKETCHFIG, a dataset of human-created sketches with
paired scientific figures; and (c) SciCap++, a large meta-dataset of scientific figures and
associated texts.

(i) We train DET1kZ1ry on SciCap++ and DATikZ,,, augmented with synthetic sketches that
mimic SKETcHF1G. We demonstrate that DET1xZ1ry can effectively synthesize TikZ programs
for both existing scientific figures and sketches, outperforming the commercial large language
models (LLMs) GPT-4V and Craubk 3 (OpenAl, 2023b; Anthropic, 2024).

(iii) We also present an inference algorithm based on Monte Carlo Tree Search (MCTS) that is
tailored to graphics programs and allows DET1kZIFY to iteratively refine its own outputs for
a given computational budget, further improving performance without additional training.

2 Related Work

Image-to-IATEX Conversion A closely related task is the translation of mathematical illustrations
into I&TEX markup. In inspirational work, Kirsch (2010) tackle the recognition of single hand-drawn
symbols to find corresponding ISTEX commands. Subsequent works by Deng et al. (2017); Zhang et al.
(2017, 2019); Wu et al. (2020); Wang and Liu (2021) expand on this concept to handle hand-drawn
and scanned math formulas. Suzuki et al. (2003); Wang and Liu (2020); Blecher et al. (2024); Lv et al.
(2023) further extend the scope by extracting I&TEX formulas alongside text from entire documents.

Image Vectorization Similarly, converting (rasterized) figures into TikZ programs can be char-
acterized as a form of image vectorization (Sun et al., 2007; Diebel, 2008; Ganin et al., 2018; Li
et al., 2020; Ma et al., 2022; Zhu et al., 2024). Most existing methods vectorize images into low-level
graphics primitives in the SVG format (Tian and Giinther, 2024). Although this works well for specific
domains like fonts, icons, and emoji (Lopes et al., 2019; Carlier et al., 2020; Reddy, 2021; Rodriguez
et al., 2023b), it does not capture higher-level semantics and does not generalize well to our scientific
context (cf. Appendix E). Closer to our work, Ellis et al. (2018) generate vector representations as
graphics programs based on a limited subset of I&TEX commands. Their approach even handles
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sketches, but their experiments are restricted to a synthetic dataset with only basic shapes of limited
complexity. Belouadi et al. (2024) also generate TikZ programs, but their primary emphasis is on
conditioning the generation on textual descriptions, with images serving only as a secondary input.

Code Generation As TikZ is implemented in the Turing-complete TgX macro system (Erdweg and
Ostermann, 2011), our work is also closely tied to code generation (Xu et al., 2022). Despite continuing
progress in this field (Chen et al., 2021; Li et al., 2022, 2023; Guo et al., 2024; Lozhkov et al., 2024),
most research concentrates on high-resource languages like Python, Java, and JavaScript (Zan et al.,
2023), typically overlooking TgX in evaluations. However, TgX and TikZ may still find their way into
the training data, as demonstrated by the zero-shot ability of some models to understand and generate
code in these languages (Bubeck et al., 2023; Belouadi et al., 2024; Sharma et al., 2024).

3 Datasets

We introduce DATikZ,», to our knowledge, the most com-

prehensive dataset of TikZ graphics to date; SKETcHFIG, the Source  DATwkZyi DATiZy2

first dataset comprising human-created sketches of scientific ~ curated 981 1566
figures; and SciCap++, a large-scale scientific figure dataset ~ TEX.SE 29238 30609
with rich metadata. See Appendix F for examples. arXiv 85656 326450

artificial 1957 1958
DATikZy, DATikZ,; serves as the primary source of TikZ 411 117832 360583

graphics for training DET1kZ1Fy. It is an expanded version
of DATikZ, (Belouadi et al., 2024), incorporating graphics Table 1: Breakdown of the number of
from the same sources, namely curated repositories, TgX.SE, unique TikZ graphics in DATikZ,, com-
arXiv papers, and artificial examples. The key difference pared to its predecessor DATIkZ, ;.

is that DATikZ,, includes all TikZ programs that compile

with TgX Live 2023,4 regardless of whether they have associated captions, which was a requirement
for inclusion in DaTikZ,; but is not needed for DET1xZiry. This approach allows us to create a
dataset that is more than three times as large as its predecessor (cf. Table 1).

SkeTcHF1G To create realistic synthetic sketches of scientific figures in DATixZ,,, we rely on
examples of real human-created sketches. TEX.SE is a suitable source for collecting these, as users
often illustrate their questions with sketches, and the answers provide the desired figure. We semi-
automatically extract these figure-sketch pairs by first ranking all questions on the site that contain
images based on their similarity to the string “a sketch of a scientific figure” using a multimodal
vision encoder (Zhai et al., 2023). We retain the ones with high similarity scores, manually filter for
true positives, and align them with the best matching figure provided in the answers. In total, we
collect 549 figure-sketch pairs this way. As we also want to use this dataset for evaluation (cf. §6), we
ensure that for a subset of these sketches, no code provided in the answers is included in DATikZy,.

SciCap++ Beyond TikZ graphics, there is a much larger pool of figures where the underlying source
is not available. Existing datasets that collect such figures frequently come with rich metadata, such
as captions, OCR tokens, and paragraphs that mention the figures (Hsu et al., 2021; Karishma et al.,
2023; Rodriguez et al., 2023a). Since such high-level descriptions are useful for pretraining (cf. §4;
Liu et al., 2023b), we collect these datasets and merge them with the subset of figures in DATixZ,»
that have captions. This results in over 734k figure-text pairs, more than twice the size of DATIkZ,,.

4 The DET1kZ1rYy Model

Building on previous work (Liu et al., 2023b,a; Dai et al., 2023; McKinzie et al., 2024), we build
DEeTixZ1Fy by combining a pretrained vision encoder with a pretrained language model (cf. Figure 1),
where the vision encoder receives figures or sketches as input images, and the language model
generates corresponding TikZ programs as output. We focus on code language models that have been
pretrained on TiX, as this prior knowledge may be helpful for our task. All the models we end up using
follow the LLAMA architecture (Touvron et al., 2023): CopeLLAMA (Roziere et al., 2023) has likely
been trained on TEX code from arXiv (Touvron et al., 2023), as has been TINYLLAMA (Zhang et al.,

4https://tug.org/texlive
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2024), while DEEPSEEK (code variant; Guo et al., 2024) was trained on TgX code from GitHub. For the
vision encoder, we use SIGLIP (Zhai et al., 2023), which has been trained on OCR annotations (Chen
et al., 2023c) and demonstrates state-of-the-art understanding of text-rich images (Tong et al., 2024;
Chen et al., 2023b), a crucial skill for our task. We then condition the LLMs on SicLIP’s patch
embedding vectors. To reduce the prompt length, we concatenate adjacent patch embeddings (Chen
et al., 2023a). A feed-forward layer with dimensions 2dg,cLip X L LM Serves as a connector, mapping
image features of dimension ds;sLip to the LLM word embedding space of dimension dppm.

Model Training We experiment with different model sizes: TiINyLLAMA | |; and DEEPSEEK| 35
with approximately 1 billion parameters, and CobELLAMA7; and DEepSEEky; with 7 billion
parameters. When referring to specific variants of DETikZiry, we use the names DET1kZiry-TL 15,
DEeTikZ1rY-DS| 35, DET1kZ1FY-CL74, and DET1kZ1FY-DS7;, respectively. For all models, we use the
SoViTy4gow variant of SIGLIP as the vision encoder. Following Liu et al. (2023b,a), we first pretrain
the connector while keeping other model parameters frozen. We pretrain for one epoch on SciCap++
with AbaMW (Loshchilov and Hutter, 2019), a batch size of 256, a learning rate of 1e—3, and a cosine
learning rate decay with a 3% warmup ratio. Next, we unfreeze the language model (keeping the
vision encoder frozen) and fine-tune on examples from DATikZ,, that fit within a 2048 token context
window. We use a batch size of 128, a learning rate of 4e—5, and train for three epochs.

Synthetic Sketches When training DET1kZ1rYy on DaTikZ,,, we randomly replace figures with
synthetic sketches 50% of the time. Sketches are generated on the fly, meaning that each time a figure
is sampled as a sketch, a different synthetic sketch will be generated. Creating realistic sketches
requires high-level image manipulation methods that go beyond traditional transformations like
zooming or cropping. We, therefore, adopt INsTRUCT-P1x2P1x (Brooks et al., 2023), a model capable
of diversely editing images based on human instructions. We chose this model due to its remarkable
zero-shot performance in generating synthetic sketches during our initial experiments. By then
fine-tuning the model on SkeTcHFIG, we further improve its performance (cf. §7 and Appendix C).

5 Iterative Refinement with Monte Carlo Tree Search

Due to the inherent probabilistic nature of language models, generating valid TikZ programs during
inference can be a challenging task. The generated code may not always comply with the syntactic and
semantic rules of TgX and TikZ, potentially leading to compilation errors. While constrained decoding
algorithms can assist in guiding models towards generating valid programs (Ugare et al., 2024,
Poesia et al., 2022; Scholak et al., 2021), these approaches are limited to programming languages
defined by context-free grammars (CFGs). However, TgX and TikZ are not defined by CFGs (Erdweg
and Ostermann, 2011), rendering these methods ineffective for our purpose. Moreover, even if the
generated code compiles successfully, fidelity errors such as misaligned elements, inconsistent scaling,
repetitions, or mislabeling may only become apparent in the rendered output.

Despite these challenges, which make it difficult to guide DET1xZiry based on intermediate states,
we can still analyze completed outputs in a straightforward manner (e.g., by examining compiler
diagnostics or comparing rendered outputs to the input image), allowing us to make informed decisions
during subsequent sampling iterations. This concept of making decisions based on random sampling
of the search space forms the core of Monte Carlo Tree Search (MCTS; Coulom, 2007). By integrating
DEeTixZiry with MCTS and adapting the standard MCTS algorithm to our problem domain, we can
iteratively steer DET1kZ1ry towards more promising regions of the output space (cf. Figure 1). In the
following, we outline our fundamental approach, with further extensions discussed in Appendix D.

5.1 Integrating MCTS into DETikZ1rY

MCTS is a versatile search algorithm that has been successfully applied to various domains, including
board games (Silver et al., 2016, 2017), procedural content generation (Kartal et al., 2016a,b;
Summerville et al., 2015), and more recently, guiding language models to achieve long-term
goals (Brandfonbrener et al., 2024; Zhang et al., 2023b; Chaffin et al., 2022). The algorithm
incrementally builds a search tree and repeatedly runs simulations until an exit condition is met or a
computational budget is exhausted. In our context, at depth 7, each node’s state consists of # lines of
TikZ code, and edges represent continuations for generating the next line. Initially, MCTS starts with
only an empty root node and then iteratively performs the following four steps (cf. Figure 2):
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Figure 2: An example of the four steps of an MCTS simulation: The selection policy (i) reaches a
green backtracking node (normal nodes are blue), causing new nodes from the rollout (ii) to be added
to the parent node during expansion (iii). The reward is backpropagated (iv) accordingly.

Selection Each simulation starts at the root node and successively selects child nodes based on a
selection policy until a leaf node is reached. The policy determines which parts of the tree should
be explored further, balancing the exploitation of high-value regions and exploration of less-visited
areas. Following previous work, we use Upper Confidence Trees (UCT; Kocsis and Szepesvari, 2006)
as our selection policy, iteratively selecting the successor node i that maximizes the formula

S Vs [
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where V; ; € [~1, 1] is the estimated value of i at the jth visit, n; and n,(;) are the visit counts at i
and its parent p(i), respectively, and c is a coefficient that controls the degree of exploration.

Rollout Once a leaf node is selected, we utilize DET1xZ1FY as a rollout policy. By conditioning it
on the node’s state, we continue to sample TikZ code until the end-of-sequence token is encountered.
This so-called rollout is then stored for reuse in the subsequent steps.

Expansion Next, the tree is expanded by adding nodes from the rollout as new leaf nodes. While
most implementations add only one node (i.e., one line of TikZ code) per simulation, computing
rollouts with LL.Ms is computationally expensive. Therefore, inspired by MCTS for real-time

settings (Soemers et al., 2016), we instead add multiple nodes. Specifically, we add /|r| — d; new
nodes, where |r| is the number of lines in rollout » and d; is the depth of the old leaf node /. This
approach allows our tree to grow quickly in early simulations while converging to the standard case
in the long run. To enable the tree to grow in multiple directions, we also introduce backtracking
nodes (Brandfonbrener et al., 2024). For each added node i, we add a backtracking node as a sibling
that mirrors the parent node p(i). When a backtracking node is expanded, its descendants are added
to p(i), ensuring that the backtracking node remains a leaf. This enables a practically infinite search
space anywhere in the tree while still maintaining a bounded branching factor.

Backpropagation Finally, we calculate the value for rollout 7 using a predefined reward function (cf.
§5.2) and backpropagate it to every node i on the path from the root node to the newly added nodes
by appending it to V; .. We also increment the visit counts n; for the same nodes. For backtracking
nodes, only the visit counts are updated. Finally, we check any exit conditions. If MCTS terminates,
we return the TikZ program of the rollout that achieved the highest value.

5.2 Reward Functions

We explore two distinct reward functions to guide the search process. The first reward function utilizes
compiler diagnostics to identify documents that compile successfully. The second reward function
provides a visual signal based on perceptual image similarity, which, in addition, helps find TikZ
programs that better match the input image. We explore further reward functions in Appendix D.

Compiler Diagnostics The diagnostics-based reward function is based on analyzing the log file
from compiling the generated TikZ program. We assign rewards according to the error state and
whether an output file was produced. The reward function is defined as follows:
1 if the code compiles without issues,
Vi,; =4 0 if the code compiles with recoverable errors, 2)
—1 if compilation fails due to a fatal error.



Reference Figures Synthetic Sketches

Models MTET CBLEUT TEDJ' DSIMT SSIMT KID.L AVGT MTET CBLEUT TEDl DSIMT SSIMT KIDJ{ AVGT

Cravpe3 |51.812  0.111 57.389 64.896 83.372 17.822 0.148 50.156 0.024 59.731 59.102 73.954 29.541 0.189
GPT-4V  61.975 0.286 57.178 69.741 86.215 6.714 0.612 54.126 0.024 60.298 61.98 75.687 33.203 0.15
DT-TL;;, 88.03 1.168 58.815 65.538 84.161 15.747 0.207 90.597 0.502 60.202 60.585 77.947 21.851 0.454
DT-DS 3, 83.771 1.336 57.661 68.659 86.079 11.536 0.572 87.446 0.541 60.112 62.756 79.097 17.334 0.642
DT-CL;, 88.593 1.477 56.893 72.315 87.466 8.301 0.869 91.221 0.555 59.563 65.118 79.717 12.207 0.941
DI-DS;, 82.366 1.815 57.227 73.01 88.323 5.951 0.965 89.299 0.69  59.693 65.198 80.207 12.207 0.965

Table 2: System-level scores for output-driven inference (DET1kZ1FY abbreviated as DT). Bold and
underlined values indicate the best and second-best scores for each metric column, respectively. Cell
shading reflects the relative score magnitudes across input types. Arrows indicate metric directionality.

Self-Assessed Perceptual Similarity (SELFS1M) SeLES1M computes the reward as the perceptual
similarity (Zhang et al., 2018) between the input image and the compiled output figure. We hypothesize
that DET1kZIFY itself can assess this similarity, enabling the model to guide its own search process.
To achieve this, we encode both images into embedding vectors using DET1xZ1Fy’s vision encoder
and calculate SELFSIM as their cosine similarity (Fu et al., 2023; Hessel et al., 2021). In cases where
compilation fails, we assign a reward of -1. In §7, we demonstrate that SELFS1™ correlates well with
human judgments and outperforms other baseline methods.

6 Experiments

Before training on DaTikZ,,, we extract 1k samples to serve as our test set for an automatic
evaluation and additionally generate synthetic sketches. Addressing data leakage from pretraining to
testing, we only include items created after the cut-oft date of CopELLAMA and exclude repositories
that may have been used in training DEEPSEEK. We also use an n-gram matching algorithm to
prevent cross-contamination with our train split (OpenAl, 2023a). For a human evaluation involving
real, human-created sketches, we also select 100 items from SkercHF1G that do not overlap with
DATikZy, (cf. §3). Across all models, we set the temperature to 0.8 and the exploration coefficient ¢
to 0.6. We provide examples of real and synthetic sketches as well as generated outputs in Appendix F.

Baselines Given CLAUDE 3 and GPT-4V’s potential for our task (cf. §2), we use them as baselines.
Similar to DET1kZ1FY, we instruct these models to generate TikZ programs for given images. However,
as proprietary chatbots, they often mix code and natural language (Zhang et al., 2023c; Belouadi
et al., 2024) and do not expose the internals needed to compute SELFS1™M. This makes it impractical
to apply our MCTS-based refinement algorithm, which is designed for code-only outputs and open
models. Instead, we compare our approach to equivalent chat-oriented refinement methods, i.e., we
use Self-Refine as an alternative to diagnostics-based MCTS and Visual Self-Refine as an alternative
to SELFS1M-based MCTS (Madaan et al., 2023; cf. Appendix C for additional inference details). In
Appendix E, we also explore SVG as an alternative to TikZ but find it less effective for our domain.

6.1 Automatic Evaluation

We introduce two inference tasks to automatically evaluate our models on the test split of DATikZ, ;.
During output-driven inference (OI), we employ the diagnostics-based reward and use successful
compilation as an early exit condition (we consider compilation successful if an output artifact is
produced). For time-budgeted inference (TT), we use the more fine-grained SELFS1M-based reward and
continue from OI until a computational budget of 10 minutes is exhausted (cf. Brandfonbrener et al.,
2024), investigating the extent of achievable improvement. We report results for the two use cases
where either (rasterized) reference figures or (synthetic) sketches serve as model inputs (cf. §1). Due
to high inference costs, we only evaluate commercial CLAUDE 3 and GPT-4V in OI using Self-Refine,
leaving TI with Visual Self-Refine for human evaluation. We evaluate the following properties:

Code Similarity To measure the similarity between generated and reference TikZ programs, we use
CrysTALBLEU (cBLEU), a variant of BLEU optimized for evaluating code (Eghbali and
Pradel, 2023; Papineni et al., 2002), and the TgX Edit Distance (TED), our adapted version
of the Extended Edit Distance (Stanchev et al., 2019) combined with a TgX tokenizer.



Reference Figures Synthetic Sketches
Models MSTT CBLEUT TED¢ DSIMT SSIMT KID.L AVGT MSTT CBLEUT TEDJ' DSIMT SSIMT KIDJ' AVGT
DT-TL; s 33.775 -0.011 —-2.001 +8.704 +5.561 —12.146 0.128 35.975 +0.094 -0.628 +5.82 +3.026 +0.854 0.014

DT-DS;3s 29.975 —0.028 —1.303 +8.464 +5.108 —8.728 0.531 32.429 +0.061 —0.504 +5.573 +2.685 +5.493 0.22
DT-CL7;  25.124 +0.07 —1.351 +7.797 +4.93 —-4.868 0.876 26.219 +0.073 -0.468 +5.079 +2.455 +5.493 0.681
DT-DS7, 24.145 -0.073 —1.542 +6.974 +3.893 —-0.946 0.76 26.195 +0.054 —0.696 +4.887 +2.241 +1.099 0.994

Table 3: System-level scores for time-budgeted inference, displaying relative changes for metrics
shared with output-driven inference (Table 2; colored green for improvements and red for declines) and
absolute scores for independent metrics. Bold and underlined values indicate the best and second-best
absolute scores for each metric column, respectively. Arrows indicate metric directionality.

Image Similarity In addition to SELFSM (SSim), which can also be used as a metric, we report
DreamSmm (DSivm; Fu et al., 2023), a fine-tuned metric for perceptual similarity. We also
compute the Kernel Inception Distance (KID X 103; Binkowski et al., 2018), which assesses
the overall quality of generated figures by comparing their distribution with the distribution
of reference figures. These metrics are always computed by comparing the generated figures
to the reference figures, regardless of what the model receives as input.

Average Similarity We also compute the arithmetic mean of the min-max normalized scores of
each code and image similarity metric (AVG). While this aggregate measure may not capture
every nuance, it serves as a useful summary statistic of each model’s relative performance.

Efficiency For OI, we compute the Mean Token Efficiency (MTE) as the 10% winsorized mean
of the ratio of the number of tokens in the final TikZ program to the total number of
tokens generated to arrive at that program. For TI, we instead compute the Mean Sampling
Throughput (MST), measuring the throughput of unique TikZ graphics for the given budget.

Results Table 2 presents the system-level metric scores for OI. As expected, the scores for reference
figures are, on average, 38% higher than those for synthetic sketches, but similar patterns emerge across
both input types. DET1xZiry-CL7; and DET1xkZ1iry-DS7; consistently outperform all other models,
achieving AVG scores of 0.869 & 0.965 for figures and 0.941 & 0.965 for sketches, respectively. In
contrast, GPT-4V reaches AVG scores of only 0.612 and 0.15, placing it in competition with the
smaller 1b models: for figures, GPT-4V surpasses DET1kZiry-TL 15 and DET1kZ1FY-DS; 35, which
achieve scores of 0.207 and 0.572, respectively. However, these smaller models outperform GPT-4V
on sketches, where they achieve scores of 0.454 and 0.642. CLAUDE 3 trails behind all our models, with
an AVG of only 0.148 and 0.189. When examining individual similarity metrics, DETikZiry-DS7;,
the top-performing DET1xZ1rYy model overall, surpasses GPT-4V, the best baseline, by more than
3pp (percentage points) on average for DREaMSiM and SELFS1M, while maintaining a noticeably
lower KID. In terms of cBLEU, GPT-4V, and CLAUDE 3 only reach 6.5-18.5% of the performance
achieved by the lowest-scoring DETixZiry model (DETikZiry-TL ;). The differences in TED are
less pronounced, possibly due to the influence of boilerplate code, which cBLEU inherently ignores.

For efficiency, all DET1xZ1ry models demonstrate an MTE of 82-91%, indicating that only 1-2 out of
10 inference runs require a second simulation to generate a compilable TikZ program. Interestingly,
the model size does not seem to particularly influence this score, with the pretraining setup appearing
to be the key factor instead. For instance, DET1xZiry-TL 5 and DET1xZiry-CL7; share a similar
pretraining setup and exhibit comparable MTE values, as do DET1kZiry-DS 35 and DET1kZiry-DS7;.
We can further observe that (i) MTE is generally higher for sketches compared to figures, and (ii)
for figures, the MTE of similarly pretrained models is inversely correlated with their scores on other
metrics. These phenomena likely stem from models making fewer mistakes when the input is less
detailed or when their understanding of it is limited—a finding that aligns well with other studies (Tong
et al., 2024). Compared to DET1xZiFy, CLAUDE 3 and GPT-4V perform considerably worse, with an
MTE of only 50-62%. Notably, for these models, 98.5% of the items already compile after the initial
Self-Refine step, meaning that this inefficacy primarily originates from the natural language texts
surrounding the code and that Self-Refine is nearly equivalent to regular sampling-based inference.

The results for DET1ixZ1ry on TI are presented in Table 3. Remarkably, increasing the computational
budget for MCTS improves nearly all metrics for both reference figures and sketches as input
without requiring access to any additional knowledge. The improvement with sketches is particularly
noteworthy, as it demonstrates that the refinement process enhances the desired properties even when
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Figure 3: Bivariate distributions of BWS scores (higher is better) using kernel density estimation (left)
and log-linear regression over T1 reward scores for different generation strategies over time (right).

the model input type differs from the one used for evaluation. The 2.2-5.6pp increase of SELFS1™ for
all models is not surprising since it serves as the reward signal we optimize, but DREamStm and TED
also increase by 4.9-8.7pp and 0.5-2pp, respectively, demonstrating the efficacy of our approach.
While KID improves by 1-12.1 points with reference figures, it drops by 0.9-5.5 points with sketches.
We believe this is because sketches often omit minor details, such as axis tick labels, which is reflected
more in the output of the TI models, biasing their overall output distributions. Therefore, we consider
the substantial improvement of metrics capturing instance-level similarities to be more important. For
cBLEU, we observe only minor changes (less than +0.1pp), aligning with findings that BLEU-based
metrics become less effective as performance increases (Ma et al., 2019). The MST and AVG reveal
that, although 1b models produce more unique outputs within the time frame compared to their larger
7b counterparts (30-36 vs. 24.1-26.2), they still fail to close the overall gap in performance, with
AVG scores ranging between 0.014-0.531 compared to 0.681-0.994 for 7b models.

Overall, all DET1xZ1ry models are capable of generating compilable outputs with reasonable efficiency.
Upon examination of these outputs, it becomes evident that the 7b models, particularly DET1xZ1Fy-
DS7;, consistently outperform both CLaupE 3 and GPT-4V, whose performance is more comparable
to the 1b range. Increasing the computational budget for DET1xZiry further improves performance.

6.2 Human Evaluation

To further assess the quality of the generated figures, we perform a human evaluation on SKETcHFIG
using Best-Worst Scaling (BWS; Louviere et al., 2015; Kiritchenko and Mohammad, 2016, 2017). In
this process, for each reference figure, we present annotators with a tuple of generated figures and ask
them to identify the most and least perceptually similar figure. We then transform this data into scores
ranging from -1 (poor) to 1 (excellent) by calculating the difference between the proportion of times a
figure is selected as the best and the proportion of times it is chosen as the worst (Orme, 2009). To
keep the workload manageable, we focus on the most promising DETixZiry model (DET1xZiry-DS7;)
and the strongest baseline (GPT-4V). Building upon the automatic evaluation, we assess these models
in the OI and TI configurations, using either reference figures or human-created sketches as input.
For each input type, we engage six unique expert annotators (cf. Appendix B for more details).

Results Figure 3 (left) shows kernel density estimates for the computed BWS scores, revealing
intriguing findings that are consistent across input types. In contrast to the automatic evaluation,
DeTixZiry-DS7; performs worse (mean score u = —0.32) than GPT-4V (u = 0.09) in OI. This
could be attributed to the fact that TgX.SE, the sole source of SkercHF1G, emphasizes minimum
working examples, a type on which GPT-4V particularly excels (Belouadi et al., 2024). However,
when we increase the computational budget, as in DET1xkZiry-DS7; (TI), it not only improves over OI
results (u = 0.39; in line with automatic evaluation) but also surpasses GPT-4V in both configurations
by a considerable margin. Interestingly, GPT-4V’s performance in TI (u = —0.16) is lower than
its performance in OI, indicating that GPT-4V (TI) struggles to refine its own outputs effectively
and quickly deteriorates. Overall, this demonstrates how difficult it is for models to refine their own
outputs and highlights the effectiveness of our MCTS-based approach.



7 Analysis

In this section, we delve deeper into our methodologies and evaluation strategies. We also demonstrate
that our models are not affected by memorization of the training data, as shown in Appendix E.

Correlating Humans and Metrics To assess the reliability
of our human evaluation results, we investigate the agreement
between annotators. To this end, we calculate the split-half ~ LPIPS 0.231 0.642
reliability (SHR; Kiritchenko and Mohammad, 2017) by randomly ~ DISTS 0.326 0.642
splitting our annotations into two subsets, computing BWS scores ~ DSmm 0.427 0.954
for each subset, and measuring their correlation with Spearman’s p. ~ SSIM 0.441 0.642
The SHR values of 0.66 for images and 0.68 for sketches indicate ] ]
a moderate to strong correlation between annotators, supporting 1able 4: Correlations of image
the validity of our human evaluation results. Motivated by these ~similarity metrics with humans at
findings, we explore whether metrics that also assess perceptual —the segment and system level.

similarity (i.e., SELFS1M and DREaAMSIM) correlate with these human judgments. We again calculate
Spearman’s p and show the average correlations (David M. Corey and Burke, 1998) at the segment and
system level in Table 4. For comparison, we also include the popular LPIPS and DISTS metrics (Zhang
et al., 2018; Ding et al., 2020). At the segment level, SELFS1m outperforms all other metrics, which is
remarkable considering it is the only untrained metric. Segment-level performance is particularly
important for fine-grained reward functions, justifying our choice of SELFS1™ in our MCTS algorithm.
At the system level, DREAMS1M performs the best, showcasing its strength in evaluation settings.

Metric Segment System

Synthetic Sketch Quality We also assess the quality of our synthetic sketches by measuring their
congruence coefficient (Lorenzo-Seva and ten Berge, 2006) with real sketches. We embed human-
created figure-sketch pairs from SkeTcHF1G using S1GLIP, subtract each sketch embedding from the
corresponding figure embedding to obtain /ocal sketch vectors, and perform a single-component
Principal Component Analysis to derive a global sketch vector (Zou et al., 2023). We repeat this
process for synthetic sketches generated for the test split of DaTikZ,, and compare the global vectors
using cosine similarity. Base INsTRUuCT-P1x2Pix generates synthetic sketches with a congruence
coefficient of 0.66, which increases to 0.7 after fine-tuning. These results demonstrate a high
correlation with human-created sketches, suggesting that our generated sketches are of good quality.

MCTS Convergence To gain insights into the long-term characteristics of our MCTS algorithm,
we visualize the trends in achieved TI reward scores over time in Figure 3 (right) and compare them
to conventional sampling-based inference. As expected, sampling does not lead to improvements over
time due to the absence of a feedback loop. In contrast, MCTS consistently improves throughout the
entire time frame, and even at the end of our budget of 10 minutes, it does not appear to converge,
suggesting potential additional gains for larger budgets. Apart from this, MCTS is not only more
effective but also faster. With an average MST of 25.17, compared to 18.7 for sampling, our MCTS
algorithm generates considerably more unique TikZ programs within the same amount of time.

8 Conclusion

In this work, we showcase the potential of DETikZiFy in generating TikZ programs for two practical
use cases. First, it can convert existing figures from lower-level formats into TikZ, paving the way
for semantic image editing and downstream tasks (Zhang et al., 2023a). Second, it can develop
hand-drawn sketches into TikZ graphics, which could aid researchers in creating high-quality scientific
illustrations. In both cases, DETikZiry substantially outperforms the commercial LLMs GPT-4V
and CLaUDE 3 despite its presumably much smaller size. We hope that our datasets (DATixZ,,
SketrcHFIG, and SciCap++), our method for generating synthetic sketches, and our MCTS-based
inference algorithm will pave the way towards future research on graphics program synthesis and
bolster the cause of open science. Potential concerns and limitations are addressed in Appendix A.

Looking ahead, we plan to extend our approach to other graphics languages, such as MetaPost or
PSTricks (Hobby, 2014; Van Zandt, 2007). We also intend to explore alternatives to perceptual
similarity as an MCTS reward signal, including per-pixel measures and point cloud metrics (Wang
and Bovik, 2009; Wu et al., 2021). Furthermore, we aim to investigate reinforcement learning from
reward functions, for example, using Direct Preference Optimization (Rafailov et al., 2023).
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A Limitations

In this work, we compare openly available models with proprietary systems that lack transparency
in their training details and internal workings and whose performance is not stable over time. This
inevitably limits the fairness and reproducibility of our experiments. Nevertheless, under these
adverse conditions, our open models and methods demonstrate favorable performance. Users should
be aware, however, that our models might inherit biases, flaws, or other limitations present in the
training data, potentially leading to discrepancies between expected results and generated outputs.
Moreover, malicious actors could misuse our models to produce misinformation and fake science.

Another important consideration is that the public release of DATikZ,, does not include some TikZ
programs from our internal version due to licensing restrictions. These programs are distributed
under the arXiv.org perpetual, non-exclusive license, which prohibits redistribution. Nonetheless, we
provide our dataset creation scripts alongside usage instructions, enabling anyone to reproduce the
full version of DATixZ,, independently. The remaining TikZ programs in DaTikZ,, are licensed
under Creative Commons attribution licenses,’ the GNU Free Documentation License,® or the MIT
license,” and their respective terms and conditions apply. Regarding artificially created examples,
OpenAl’s terms of use restrict the use of their services for creating competing products, limiting this
subset of DATikZ,, to non-commercial applications.?

B Annotator Demographics

Our annotator team consists of eleven experts with extensive research experience in science and
technology. The team comprises one male faculty member, two female PhD students, seven male
PhD students, and one male research assistant from another institution. We chose to work exclusively
with expert annotators based on the findings of Belouadi et al. (2024), which demonstrated that crowd
annotators often lack the necessary research background to produce reliable annotations.

C Additional Training & Inference Details

In this section, we provide supplementary information on the training and inference procedures for all
our models. For training and inference of our local DETixZiry models, we utilize a compute node
equipped with four Nvidia A40 GPUs and 448 gigabytes of RAM. We access CLAUDE 3 and GPT-4V
through their respective official API endpoints.

C.1 DeTikZiry

Complementing the information provided in §4, our 1b models require approximately two days
of fine-tuning on our hardware. For the 7b models, we employ optimizer state and gradient
partitioning (Rajbhandari et al., 2020) to accommodate them within the available resources, resulting
in an extended training time of 21 days. Generating sketches for the training runs takes an additional
1.5 days, but since we cache our sketches, these costs are incurred only once. Output-driven inference
takes 4—8 hours, depending on the model and input type, and time-budgeted inference extends the
runtime by a further 1.5 days.

C.2 InstrUCT-P1X2PI1X

As SkercHFIG with only 549 examples may be considered too small for fine-tuning InsTRUCT-P1x2P1x,
we augment our training data with 4000 additional sketches of natural images (Sangkloy et al., 2016;
Lietal., 2019) and 2000 synthetic sketches of scientific figures generated with base INsTRUCT-P1x2P1x.
We then oversample SKeETcHFIG at a 5:1 ratio and, following Paul (2023), train for 15k steps with a
batch size of 8 and a learning rate of 5e—5. We select “turn it into a doodle” as our initial prompt,
which also appears in INsTRUCT-P1x2P1x’s pretraining dataset and demonstrates the most promising
zero-shot performance.

Shttps://creativecommons.org/licenses
Shttps://www.gnu.org/licenses/fdl-1.3.en.html
"https://opensource.org/license/mit
8https://openai.com/policies/terms-of-use
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C.3 CrLaubk 3 & GPT-4V

Building upon the experiments described in §6, we derive all our Self-Refine prompts from the
official examples provided by Madaan et al. (2023) for generating TikZ programs, with only minor
modifications. In particular, we employ the following prompt template in the initial step of both
Self-Refine and Visual Self-Refine, substituting “sketch” or “picture” as appropriate:

This is a [ sketch | picture ] of a scientific figure. Generate
LaTeX code that draws this scientific figure using TikZ. Ensure
that the LaTeX code is self-contained and does not require any
packages except TikZ-related imports. Don't forget to include
\usepackage{tikz}! I understand that this is a challenging task,
so do your best. Return your result in a "~ "latex code block.

[ N N

We then extract the first IATEX code block from the generated text. In the rare cases where GPT-4V
incorrectly classifies input images as unsafe, we add a small amount of Gaussian noise to the image
pixels to bypass the issue. If compilation fails due to a fatal error (which occurs in only 1.5% of all
cases) without producing an output artifact, we repeatedly use the following prompt template until all
issues are resolved, replacing <code> with the generated code and <error> with the corresponding
error message:

Given the error message:

}
2 <error>

3 And the problematic code:

4 " latex

5 <code>

e

7 First, identify the issue based on the error message. Then,
s determine the cause of the error in the code. Finally, propose
9 and implement a solution. Return the fixed code ina * " "latex code

block.

o

For Visual Self-Refine, we additionally use the following prompt template to visually refine the output.
Since we provide two input images (the initial figure or sketch and the current output), we label one as
“Input” and the other as “Reference”. CLAUDE 3’s API has a built-in mechanism for labeling images,
while for GPT-4V, we embed the labels directly into the images:

T latex
<code>

}
2

3

4 This is the TikZ/LaTeX code for the scientific figure shown in the
5 picture labeled "Input". Can you improve it to better resemble
6 the provided reference [ sketch | picture ]? First, analyze the
7 "Input" picture to understand its components and layout. Then,
s consider how the scientific figure can be enhanced to more closely
9 match the reference [ sketch | picture ]. Finally, rewrite the
10 TikZ code to implement these improvements, making the image more
11 similar to the reference. Ensure that the LaTeX code is self-
12 contained and does not require any packages except TikZ-related
13 imports. Don't forget to include \usepackage{tikz}! Return your
14 result in a ~ " " latex code block.

Following the findings of Madaan et al. (2023), we visually refine for a maximum of four iterations,
as they observe diminishing returns beyond that point, and it helps reduce inference costs. Although
this means that in most cases, we terminate before the 10-minute timeout is reached (cf. §6.1),
we believe this is a sensible decision, as we observe that GPT-4V is unable to visually refine its
outputs successfully in any case. We hypothesize that this limitation is due to general-purpose chat
models requiring too much explicit context for this task. These models receive the entire previously
generated code as input, along with two input images and a complex textual prompt, which may be
too challenging for them to process effectively. Preliminary experiments with more elaborate prompts
did not seem to mitigate the subpar performance, likely due to this reason.
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D Further Details on MCTS

In this section, we discuss several extensions to our MCTS algorithm that aim to improve its
performance and efficiency. We also explain alternative reward functions that we experimented with
but ultimately found less effective than our chosen approaches.

D.1 MCTS Enhancements

Building on our base MCTS implementation, we introduce several enhancements, namely dynamic
rescaling of visual rewards, node deduplication, and preemptive stopping of faulty rollouts.

Dynamic Rescaling One challenge when using SELESIM is that MCTS expects values to be in the
range of [—1, 1], while deep encoders often work with a much narrower range in practice (Hessel
et al., 2021; Zhang et al., 2020). Furthermore, this range may vary depending on whether the input
image is a real figure or a sketch. To address this discrepancy, we propose dynamically min-max
normalizing the visual reward scores whenever they are (re)computed, ensuring that MCTS always
operates on the full range. The modified reward formula is as follows:

e s i Vi # — 1 and max(V;) # min(Vi \{-1}),

Vij=10 if V; ; # —1 and max(V; ;) = min(V; .\{-1}), 3)
-1 otherwise.

Node Deduplication During a rollout for a backtracking node, it is possible to generate code that
already exists elsewhere in the tree (i.e., in siblings and their descendants). To prevent the duplication
of nodes, we always merge identical node states before adding any nodes to the tree.

Preemptive Stopping If the code generated in a rollout cannot be compiled due to a fatal error,
we record the rollout, including the state in which the faulty line of code was first introduced. If the
same (intermediate) state is sampled again during subsequent rollouts, we know that the completed
output will fail to compile. In such cases, we preemptively abort the rollout and reuse the previously
recorded rollout for the remainder of the simulation. To further prevent continuations from faulty
code, during the expansion phase, we only add nodes to our tree whose node states do not contain any
lines of code with fatal errors.

D.2 Additional Reward Functions

Taking inspiration from popular machine translation metrics (Belouadi and Eger, 2023; Zhao et al.,
2019, 2020; Song et al., 2021), which compute the Earth Mover’s Distance (EMD; Rubner et al.,
1998; Kusner et al., 2015) between word embeddings, we also explore with measuring perceptual
image similarity as the EMD between SiGLIP’s image patch embeddings. Given the distance matrix
D, where D; j = cos(x;,y;) and x, y are the patch embedding vectors of the input and output images
of simulation j with lengths |x| and |y|, respectively, EMD is defined as follows:

s s F D x| Iy] sl g1

S22 E Y with mi =1 P = o

EMD(x,y) = Xl <Dyl 7 , with II?;I(}ZZFL]'DI'J S.t. Vi,j ley_| F; = L_ “4)
i=1 ~j=1"1J i=1 j=1 j=1 sJ |x]

Wedefine V; ; = 2 tanh(— EMD(x,y))+1 € [-1, 1] if compilation produces any output. If compilation
fails, we set the reward to -1. We empirically tune the hyperparameter on which layer to extract the
patch embeddings using the perceptual similarity dataset of scientific figures from Belouadi et al.
(2024). We find that extracting embeddings after the 24th layer yields the best results. However, when
evaluated on our data, this reward function achieves a segment-level correlation of only 0.431 (cf. §7),
which is lower than for SELFS1M while being computationally more expensive. Consequently, we do
not employ this reward function in further experiments.

E Additional Experimental Results & Analyses
In Table 5, we evaluate LIVE (Ma et al., 2022), a state-of-the-art method for generating SVG, to

contrast with our TikZ-based approach. In Figure 4, we additionally investigate the extent to which
our models memorize the training data.
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Reference Figures Synthetic Sketches

Models DSmm;  SSimy KID, DSy SSimy KID,

LIVE 57.078 69.253 324.219 49.455 64.998 416.016
CLAUDE 3 64.896 83.372 17.822 59.102 73.954  29.541
GPT-4V 69.741 86.215 6.714 6198  75.687  33.203

DeTikZ1ry-TL; 1, =~ 65.538 84.161 15.747 60.585 77.947  21.851
DeTikZ1ry-DS; 3, |+ 68.659 86.079  11.536 62.756 79.097  17.334
DEeT1xZ1ry-CL7, 72.315 87.466 8301 65.118 79.717  12.207
DET1xZ1Fy-DS7, 73.01  88.323 5.951 65.198 80.207 12.207

Table 5: System-level scores for LIVE, an SVG-generating model, compared with TikZ-based models
from output-driven inference. Scores for TikZ-based models are copied from Table 2 for easy
reference. Bold and underlined values indicate the best and second-best scores for each metric column,
respectively. Cell shading reflects the relative score magnitudes across input types. Arrows indicate
metric directionality.

E.1 Comparing TikZ and SVG

Since LIVE generates SVG code instead of TikZ, we

do not report cBLEU and TED scores. Additionally, s
because it optimizes Bézier curves rather than gen-  80% //
erating tokens, we exclude MTE, leaving only the >
image similarity metrics DREAMST™M, SELESIM, and ~ 60%
KID. Table 2 shows that LIVE underperforms all

other models in our evaluation. On reference figures, 4,
it scores over 7.8pp and 14.1pp lower than the worst
baseline model on DREAMS1™M and SELFS1M, respec-
tively, and its KID is more than 18 times higher. This
subpar performance can be attributed to the complex-
ity of scientific figures saved as SVGs. While we use 0%

LIVE in its default configuration, generating eight 1-gram 3-gram 5-gram 7-gram 9-gram
paths with four segments each, our scientific figures

consist of over 110 paths on average with an arbi- pjoure 4: Proportion of generated code n-
trary number of segments, not counting deduplicated grams with n € [1,10] that are novel (i.e.,
paths, which LIVE cannot detect. Although we could ot present in the training data). Results for
theoretically configure LIVE to generate more paths, puman-created code are included as a reference
this would linearly increase inference time, quickly  point for comparison.

becoming intractable. LIVE already requires over 18

hours to complete the test set for one input type, whereas DET1kZ1ry-CS7; (OI), for example, takes
less than 5 hours. Furthermore, since LIVE attempts to vectorize the input directly without semantic
interpretation, it performs even worse on synthetic sketches. We conclude that SVG, and, by extension,
models that generate SVG, are not well-suited for our problem domain and objectives.

Human
DET1kZ1FY-DS 35
DEeT1kZirY-DS74

+ CLAUDE 3
GPT-4V

20%

E.2 Memorization

Memorization of training data is a common concern in language models (McCoy et al., 2023; Carlini
et al., 2023; Raunak and Menezes, 2022; Meehan et al., 2020). To assess the extent of this issue in
our models, we calculate the n-gram novelty (McCoy et al., 2023). Specifically, we determine the
proportion of n-grams, with n € [1, 10], in the model-generated TikZ programs that are not present
in the training data. We perform this analysis on the test split of DATikZ,, for our baselines and
DeepSeek-based DET1kZ1Fy models conditioned on reference figures, as well as human-generated
code, as shown in Figure 4. All models initially exhibit similar novelty and are slightly less novel
than humans for n < 7. However, starting from n = 7, all models except DET1kZ1ry-DS; 35 surpass
human novelty, with more than 80% of all model-generated n-grams being novel for n >= 8. This
phenomenon of models becoming more novel than humans is commonly observed and is considered
an indicator that language models are not significantly affected by memorization (McCoy et al.,
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2023; Belouadi et al., 2024). Interestingly, for larger n-grams, DET1kZ1ry-DS7; demonstrates higher
novelty than its smaller counterpart, suggesting that despite its larger capacity, it does not overfit and
generalizes well. The most novel models are GPT-4V and CLAUDE 3, possibly because they were not
trained on DATikZ,, and might have been trained on data that has been prepared differently.

F Examples

To provide a better understanding of our work, we present a variety of examples in this section.
Table 6 displays exemplary figures and real sketches from SkeTcHF1G, while Table 7 shows figures
and synthetic sketches from DaTikZ,,. Additionally, Table 8 presents sample outputs generated by
our systems during our human evaluation campaign. Figure 5 provides a closer look at generated code.

When comparing the real sketches in Table 6 to their corresponding reference figures, it becomes
evident that the sketches often contain less detail. For instance, sketches may lack colors or grids
and feature less precise lines. Moreover, the handwritten nature of the sketches can sometimes make
the text within them harder to read. These characteristics are also present in the synthetic sketches
shown in Table 7. However, the problem of illegible text is more pronounced in these sketches, as
generating readable text remains a common challenge for image generation models (Borji, 2023).
While the text may still retain its meaning in a hidden way (Daras and Dimakis, 2022), this could lead
to hallucinated text in the generated TikZ programs. Nonetheless, we believe that this aspect can still
be advantageous for end users, as it enables them to quickly add scribbles to indicate the desired text
placement. By doing so, DETikZiFy can generate code for the overall structure and layout, allowing
users to easily modify and replace the text afterward.

The randomly selected generated figures from our human evaluation (cf. §6.2) shown in Table 8
corroborate our quantitative findings. DET1kZ1ry-DS7; (TT) demonstrates the best overall performance
and shows the least amount of fidelity errors, confirming the effectiveness of our SELFS1M-based
MCTS refinement algorithm. However, we still observe some inconsistencies, such as in layout
and axes labeling, although to a lesser extent compared to DET1xZiry-DS7; (OI) and GPT-4V. We
attribute the prevalence of this problem partly to our focus on perceptual similarity rather than, e.g.,
pixel-level similarity, which allows the models greater flexibility in interpreting the general semantics
of the input figures and sketches. While optimizing pixel-level similarity could be an alternative
approach, we argue that perceptual similarity can serve as a more meaningful measure, especially
when considering sketches. We believe that real users who provide rough sketches of unfinished ideas
will find the generated outputs that interpret and refine their concepts to be inspirational. However,
we acknowledge the potential benefits of exploring more rigorous similarity measures and plan to
investigate this in future research. Interestingly, GPT-4V occasionally generates outputs that may
not be appropriate in a scientific context, such as mistakenly embedding a smiley face in the fourth
example. Instead of resolving such issues, GPT-4V (TI) further emphasizes these details, distancing
the output from the actual reference.

Figure 5 provides a side-by-side comparison of the generated TikZ programs corresponding to the first
row in Table 8. DET1kZ1ry-DS7; demonstrates its ability to utilize advanced abstractions and control
flow statements, generating code that is free of compile-time errors in both OI and TI configurations.
On the other hand, GPT-4V (OI) incorrectly uses a non-existent arrow tip kind stealth' in lines 9
and 10, resulting in recoverable compile-time errors. GPT-4V (TI) contains the same error in line 8
and introduces additional errors in lines 16 and 26, where the * symbol would have to be removed
from the loop lists for successful expression evaluation.
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Table 6: Representative examples of reference figures paired with real sketches from the SkercuF1G
dataset.
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Reference Figures Synthetic Sketches
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Table 7: Illustrative examples of reference figures and corresponding synthetic sketches from the
subset of the DATikZ,, dataset that is licensed for redistribution.
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Input GPT-4V (OI) GPT-4V (TI) DET1kZiry-DS7, (OI) DETikZiry-DS7, (TT)

o

Tx line

cp
Generic bipol&

i
GENERIC
BIPOLES

Table 8: Alternating rows of randomly selected reference figures and real sketches (first column)
alongside corresponding scientific figures generated by GPT-4V models and DET1kZiry-DS7; in

output-driven (OI) and time-budgeted (TI) configurations (columns 2—4), taken from our human
evaluation campaign (cf. §6.2).
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\documentclass[border=3pt, tikz] {standalone}
\usepackage{tikz-3dplot}
\begin{document}

\tdplotsetmaincoords{70}{110}

\def\n{12}
\def\h{2}

\begin{scope}[tdplot_rotated_coords,canvas is
y=0]
\draw[-latex] (\h,0) -- (\h,1);
\draw[-latex] (0,0) -- (1,0);
\foreach \i in {0,...,\n}
{
\draw[thick] (\i*\h/\n,0) circle[radius=1];
}
\end{scope}

\foreach \i in {1,...,\n}
{

Qh*¥\i/\n,\h,\i/\n+1/\n);
}

\begin{scope}[tdplot_rotated_coords,canvas is
\draZl??itex] 0,0) -- (1,0);

\foreach \i in {0,...,\n}

¢ \draw[thick] (\i*\h/\n,0) circle[radius=1];
iend{scope}

\draw[-latex] (0,0,0) -- (1,0,0) node[pos=1.1]
\draw[-latex] (0,0,0) -- (0,1,0) node[pos=1.1]
\draw[-latex] (0,0,0) -- (0,0,1) node[pos=1.1]
\end{tikzpicture}

\tdplotsetrotatedcoords{0}{20}{70} %<- rotated coords

\begin{tikzpicture}[tdplot_main_coords,line join=round]
\pgfkeys{/pgf/number format/.cd,precision=2,fixed}

\draw[-latex, thick,brown] (\h*\i/\n,\h,\i/\n) --

\end{document } DeTikZiry-DS7; (OI)

xz plane at

xz plane at

{$x$3;
{$ys$};
{$2$};

\documentclass[tikz,border=3.14mm] {standalone}
\usepackage{tikz-3dplot}
\usetikzlibrary{arrows.meta,bending}

\begin{document}

\tdplotsetmaincoords{703}{110}
\begin{tikzpicture}[tdplot_main_coords, thick]
\draw[-{Latex[bend]}] (0,0,0) -- (3,0,0) node[pos=1.1]{$x$};
\draw[-{Latex[bend]}] (0,0,0) -- (0,3,0) node[pos=1.1]{$y$};
\draw[-{Latex[bend]}] (0,0,0) -- (0,0,3) node[pos=1.1]{$z$};
\foreach \X [remember=\X as \LastX (initially 0)] in {1,...,9}
{\begin{scope}[canvas is xy plane at z=\LastX/2]

\draw circle[radius=2];

\ifnum\X=1

\draw[-{Latex[bend]},orange,shorten >=-1pt]

circle[radius=1.8];

\else

\draw[orange, shorten >=-1pt] circle[radius=1.8];

\fi
\end{scope}}
\end{tikzpicture}
\end{document}

DEeTikZiry-DS7; (TI)

\documentclass[tikz,border=10pt]{standalone}
\usepackage{tikz}
\usepackage{amsmath}

\begin{document}
\begin{tikzpicture}[scale=1.5]
% Styles for arrows
\tikzset{axis/.style={thick,->,>=stealth'}
\tikzset{vector/.style={thick,->,>=stealth

% Draw helix
\foreach \t in {0,10,...,360} {

plot ({\x/360%4},{sin(\x)},{cos(\x)})
}

% Draw axis

\usetikzlibrary{arrows.meta,decorations.markings}

\draw[domain=\t:\t+10, smooth,variable=\x,black]

\draw[axis] (0,0,0) -- (5,0,0) node[anchor=north
east]{$x$};
\draw[axis] (0,0,0) -- (0,2,0) node[anchor=north
west]{$z$};
\draw[axis] (0,0,0) -- (0,0,-2) node[anchor=south]{$y$};
% Draw vectors
\foreach \t in {0,40,...,320} {
\draw[vector] ({\t/360%4},{sin(\t)},{cos(\t)}) --
++({cos(\t)*0.3}, {sin(\t)*0.3},0);
}
\end{tikzpicture}
\end{document}

3

',orange}}

GPT-4V (OI)

\documentclass[tikz,border=10pt]{standalone}
\usepackage{tikz}
\usetikzlibrary{3d,calc,arrows.meta}

\begin{document}
\begin{tikzpicture}[scale=1.5]
% Styles for axes and vectors
\tikzset{axis/.style={thick,->,>=stealth'}}
\tikzset{vector/.style={thin,->,>=latex,orange}}
\tikzset{helix/.style={line width=1mm, black,
-{Triangle[width=3mm, length=3mm]}}}

% Define the number of turns for the helix
\def\turns{3}

% Draw helix with arrowheads
\foreach \t in {5,10,...,\turns*360} {
\draw[helix] ({(\t-5)/360%4},{sin(\t-5)}, {cos(\t-5)})
-- ({\t/360*4}, {sin(\t)}, {cos(\DI}D);
}

% Draw axes

\draw[axis] (0,0,0) -- (4*\turns+1.5,0,0)
node[anchor=west]{$x$};

\draw[axis] (0,0,0) -- (0,1.5,0) node[anchor=south]{$y$};

\draw[axis] (0,0,0) -- (0,0,1.5) node[anchor=east]{$z$};

% Draw normal vectors

\foreach \t in {0,45,...,\turns*360} {
% Calculate the normal vector components
\pgfmathsetmacro{\dx}{-sin(\t)*0.5}
\pgfmathsetmacro{\dy}{cos(\t)*0.5}
\pgfmathsetmacro{\dz}{0}

% Draw the normal vector
\draw[vector] ({\t/360%4},{sin(\t)},{cos(\t)}) --
++(\dx, \dy,\dz);
}
\end{tikzpicture}

\end{document} GPT-4V (TI)

Figure 5: TikZ programs generated by DET1kZ1ry-DS74 (top) and GPT-4V (bottom) corresponding
to the figures in the first row of Table 8. Lines with compile-time errors are highlighted in yellow.
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