
Learning Intractable Multimodal Policies with
Reparameterization and Diversity Regularization

Ziqi Wang Jiashun Liu Ling Pan∗

Hong Kong University of Science and Technology

Abstract

Traditional continuous deep reinforcement learning (RL) algorithms employ deter-
ministic or unimodal Gaussian actors, which cannot express complex multimodal
decision distributions. This limitation can hinder their performance in diversity-
critical scenarios. There have been some attempts to design online multimodal
RL algorithms based on diffusion or amortized actors. However, these actors
are intractable, making existing methods struggle with balancing performance,
decision diversity, and efficiency simultaneously. To overcome this challenge, we
first reformulate existing intractable multimodal actors within a unified framework,
and prove that they can be directly optimized by policy gradient via reparameteri-
zation. Then, we propose a distance-based diversity regularization that does not
explicitly require decision probabilities. We identify two diversity-critical domains,
namely multi-goal achieving and generative RL, to demonstrate the advantages of
multimodal policies and our method, particularly in terms of few-shot robustness.
In conventional MuJoCo benchmarks, our algorithm also shows competitive perfor-
mance. Moreover, our experiments highlight that the amortized actor is a promising
policy model class with strong multimodal expressivity and high performance. Our
code is available at https://github.com/PneuC/DrAC

1 Introduction

Figure 1: Motivational exam-
ples. A multimodal policy
with maximized diversity can
achieve multiple goals and en-
able robustness against envi-
ronmental changes.

Despite the remarkable progress in reinforcement learning (RL) for
continuous control and decision-making tasks [23, 55, 43], learning
multimodal policies remains challenging [20, 33, 48]. However,
most state-of-the-art RL algorithms predominantly employ determin-
istic or unimodal Gaussian policies [29, 39, 11, 14], which limits
their ability to capture the complex, multimodal decision distribu-
tions. However, real-world applications can have multiple goals,
making multimodality and decision diversity essential [13, 28, 41],
where unimodal policies can be brittle to perturbations in the environ-
ment. For example, given a navigation task in a maze with multiple
valid paths, unimodal policies typically converge to a single shortest
route, creating a critical vulnerability – when this route becomes ob-
structed during deployment, such policies fail catastrophically [26].
In contrast, a multimodal policy with high decision diversity can
learn varied navigation strategies, allowing it to adapt when faced
with unexpected obstacles. In zero-sum games, strategic diversity
that requires multimodal policies is also critical for agents to main-
tain robustness against adaptive opponents [31]. Additionally, RL

∗Correspondence to: Ling Pan (lingpan@ust.hk)

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/PneuC/DrAC

has been applied to generative tasks in recent years [1], where multimodal policies can potentially
improve the diversity of generated objects with less harm to quality [50].

The main challenge of learning expressive multimodal policies lies in their intractability. Existing
online RL algorithms that train multimodal policies are typically based on the maximum-entropy RL
framework [14]. However, entropy regularization encourages policies to be more uniform, but do not
specifically prefer multimodality. Meawhile, computing entropy requires an analytical expression of
decision probability, which is not directly applicable to intractable actors. Some prior works attempt
to mitigate this problem with a workaround that employs tractable but less expressive multimodal
actors [32, 2, 50], sacrificing expressivity. Another line of research leverages Stein variational
gradient descent (SVGD) as a gradient estimator [13] or as a sampler that directly samples actions
from the value distribution learned by the critic [33]. However, we empirically observe that it either
underperforms traditional algorithms or incurs significant computation costs. Besides, there have
been some online RL algorithms training diffusion actors [53, 36, 48], but to our best knowledge, only
the diffusion actor-critic with entropy regulator (DACER) [48] takes decision diversity into account
among these algorithms. DACER controls diversity by scaling an additional unimodal Gaussian noise
instead of optimizing diversity through gradients w.r.t. the actor’s parameters.

In this paper, we propose a novel diversity-regularized RL framework to address the aforementioned
challenge. First, this paper shows that existing multimodal actors can be viewed as a combination of
a parameterized mapping function with a fixed latent random distribution, which we call stochastic-
mapping actors. We then highlight that the policy gradient of any stochastic-mapping actor can be
estimated via the reparameterization trick, without accessing the gradient of decision probabilities.
This provides a general methodology to optimize intractable stochastic-mapping actors. Secondly,
we propose a distance-based diversity regularization instead of entropy, which does not explicitly
require the decision probability. Combining with the policy regularization theorems [48], we develop
a novelty actor-critic algorithm named Diversity-regularized Actor Critic (DrAC). Main contributions
of this paper are summarized as follows

1. We formulate a class of actors named stochastic-mapping actors, bridge policy gradient and
intractable stochastic actors via reparameterization trick. This formulation serves as a useful
tool for understanding and designing multimodal RL models and algorithms.

2. We propose a learning framework with a distance-based diversity regularization, which
simultaneously optimizes expected return and decision diversity without requiring explicit
access to decision probabilities.

3. We identify two domains where multimodality and diversity are critical, and conduct
comprehensive experiments, including performance in standard MuJoCo benchmarks. In
addition to justifying the advantages of multimodal policies and our algorithm, we also
present new insights on multimodality and diversity.

2 Related Works

Policy Diversity in RL Decision diversity (or randomness) is an essential ingredient of online
deep RL algorithms [29, 11, 14], which not only enforces exploration but also reduces variance [11].
Some research has shown that decision diversity can improve sample efficiency or final performance
regarding expected return [16, 34, 19, 54, 6]. Furthermore, diversity can serve in pretraining.
Eysenbach et al. proposed that training policies with only a diversity objective can discover useful
skills and serve as an effective pretraining method [9]. Ying et al. pretrain diffusion actors with
intrinsic reward to discover diverse behaviors and fine-tune diffusion actors to fast generalize to
downstream tasks [56]. Besides, Zhang et al. propose an algorithm to find varied policies for the same
task [57]. Kumar et al. train multiple policies with diverse behaviors, and highlight that diversity is
the key to ensuring few-shot robustness in out-of-distribution scenarios [26].

Another category of research on policy diversity in RL considers diversity as an independent objective
distinguished from reward. An emerging topic called quality-diversity RL aims at learning a set of
policies that cover a task-specified behavior space as completely as possible, and maximizing the
quality of each policy at the same time [17, 51, 52]. RL is also applied in generative tasks, including
code generation, music generation, artificial intelligence for science, and game content generation
[1]. Some of these generative tasks treat diversity as an essential need besides quality. For example,
Popova et al. formulate drug design as a Markov decision process (MDP) rewarded by a predictive

2

model to generate diverse new chemical structures [35]. Wang et al. leverage diversity-driven
ensemble RL to generate diverse game levels with high quality [50].

Learning Multimodal Policies An early attempt in online multimodal RL is soft Q-learning (SQL)
[13]. It proposes the maximum-entropy RL framework with an amortized actor. As the actor loss
in maximum-entropy RL is a KL-divergence, SQL leverages SVGD to estimate the gradient of the
actor loss. Stein soft actor-critic (S2AC) [33] views the entropy-regularized critic as an energy that
directly samples actions based on it via SVGD. To improve inference speed, S2AC proposes to
train an additional amortized actor that mimics the SVGD sampler. However, our experiments show
that SQL performs poorly in many benchmarks, including MuJoCo, while training S2AC is much
more memory-hungry and slower. Huang et al. propose a model-based RL method learning through
evidence lower bound to train multimodal actors [20]. To our best knowledge, a fast and effective
algorithm to train an amortized actor was absent prior to our work.

Another line of multimodal RL builds upon diffusion actors. There has been a lot of work investigating
offline RL based on diffusion actor [58, 49, 24, 4, 3], but online methods have been a few. Specifically,
Yang et al. [53] apply approximated policy improvement to generate target actions and train the
diffusion actor to match the target actions. Psenka et al. [36] train the diffusion actor by matching
the score-based structure with the action gradient of the Q-function. Ren et al. model the diffusion
process as a low-level MDP and train the diffusion actor through a two-stage policy gradient [37].
Consistency policy methods have been demonstrated feasible to train diffusion actors online [7, 5].
Wang et al. propose DACER, an online RL algorithm with entropy regulator to train diffusion actor
[48], taking decision diversity into consideration by automatically tuning the scale of an additional
action noise. In addition, Ying et al. pre-train a Gaussian actor with intrinsic reward [56] to collect
trajectories, and then fine-tune a diffusion actor in downstream tasks. Li et al. cluster the trajectories
explored by learning with intrinsic rewards to discover modes, then utilize behavior cloning to train a
diffusion actor [28]. Jain et al. propose an energy-based training method for diffusion actors [22].
Ishfaq et al. employ a diffusion model to generate synthetic training samples [21].

There has also been some work on leveraging tractable multimodal policy models [38, 50]. Mazoure et
al. leverage normalizing flow to improve exploration [32]. Wang et al. represent decision distribution
by Gaussian mixture model to generate diverse game levels [50]. However, these models may be
weaker in expressivity compared with intractable models.

3 Preliminaries

3.1 Deep Reinforcement Learning

Deep reinforcement learning [41] aims at optimizing a policy π powered by deep learning to solve an
MDP. An MDP involves a state space S, an action space A, a reward function r(·, ·) : S ×A 7→ R,
and a transition dynamics modeling the transition probability from one state to another given an
action. Specifically, this paper focuses on the continuous action space. At each time step t, the
policy observes a state St ∈ S to determine a decision distribution π(·|St) and draw an action
At ∈ A from π(·|St), and then receives a reward signal Rt = r(St, At). The objective of RL is
optimizing π to maximize the expected return J(π) = Eπ[

∑∞
t=0 γ

tRt]. A state-action value function
conditioned by a policy π is defined as Qπ(s, a) = Eπ[

∑∞
k=0 γ

kRt+k|St = s,At = a] to evaluate
a state-action pair. Prevalent continuous deep RL algorithms [29, 39, 11, 14] primarily follow the
actor-critic architecture. In this framework, an actor πθ models the policy, while a critic Qϕ learns
an approximation of the Q-function conditioned by πθ. The actor is typically optimized by policy
gradient [40, 42] based on Q-value approximated by the critic.

3.2 Policy Regularization

Maximum entropy RL [59, 44, 45] is a classic framework to optimize both expected return and
diversity. Haarnoja et al. introduce a deep learning framework for entropy-regularized RL [14], which
modifies the standard RL objective by adding an entropy regularization J(π) = Eπ[

∑∞
t=0 γ

t(Rt +
αH(π(·|St))], where H(·) indicates the entropy of a given distribution. The state-action value
function is defined as Qπ

soft(s, a) = E[Rt +
∑∞

k=1 γ
k(Rt+k + αH(π(·|s))|St = s,At = a]. The

3

policy is optimized by applying a soft policy iteration (SPI) operator as follows

πnew ← argmin
π

DKL

(
π(·|s)

∥∥∥∥exp(Qπold
soft (s, ·))

Zπold(s)

)
, (1)

where Zπold(s) is a scalar to normalize the distribution, which is intractable but negligible in practice.

Wang et al. extend the entropy-regularized RL framework to a general form [50]. Given an arbitrary
regularization function ϱ(π(·|s)), and a regularized learning objective J(π) = Eπ[

∑∞
t=0 γ

t(Rt +
αϱ(π(·|St))], the regularized Q-value is defined in the following form

Qπ
reg(s, a) = Eπ

[
Rt +

∑∞

k=1
γk

(
Rt+k + αϱ(π(·|St+k))

)∣∣∣St = s,At = a
]
. (2)

With the regularized Q-value defined, the policy can be optimized by regularized policy iteration with
a policy improvement operator expressed as

πnew(·|s)← argmax
π

[
αϱ(π(·|s)) + Ea∼π(·|s)[Q

πold
reg (s, a)]

]
(3)

for all s ∈ S. Furthermore, the policy gradient of the regularized learning objective is

∇θJ(π) = Es∼dπ

[
α∇θϱ(πθ(·|s)) +

∫
A
Qπ

reg(s, a)∇θπθ(a|s) da
]
, (4)

where dπ is the discounted state distribution given π.

4 Method

We propose diversity-regularized actor-critic (DrAC), which learn intractable multimodal policies
through reparameterization and diversity regularization. Fig. 2 illustrates the key ingredients of
DrAC. A detailed pseudo-code is provided in Appendix A.1.

(a) We unify amortized actors and diffusion actors
within a stochastic-mapping formulation πθ =
{fθ, pz} (See Section 4.1).

(b) We train a diversity-regularized critic and directly back-
propagate the gradient of Q and diversity to the actor’s
weights, as ∇θQ(s, fθ(s, z)) is an estimator of policy gra-
dient via reparameterization trick.

Figure 2: Key ingredients of our proposed method.

4.1 Unifying Intractable Multimodal Policies and Policy Gradient

We define a class of stochastic-mapping actors as πθ = {fθ, pz}, which is a combination of a
parameterized function fθ(·, ·) : S × Z 7→ A, and a fixed latent distribution pz over a latent space Z .
The action is drawn by sampling an independent random variable z from pz first, and then feeding
state s and z into fθ, i.e., a ∼ πθ(·|s) ≡ a← fθ(s, z), z ∼ pz . We reformulate existing multimodal
actors, namely amortized actors and diffusion actors, under this definition as follows.

Amortized actors 2 This type of actors [13] employ a neural network (NN) gθ, which takes the
state s and the latent variable z as input, and directly output the action a. We follow the most
straightforward mechanism in SQL, concatenate s and z directly feed into gθ. Formally, this is

fAmort
θ (s, z) ≡ gθ(s⊕ z). (5)

2This definition follows [13] and [33]. It is narrower than the concept of amortized inference.

4

Diffusion actors This type of actors [36, 37, 48] build upon the diffusion models [18], which
are powerful generative models. We adopt the implementation from DACER [48]. The policy is
parameterized by an NN ϵθ(·, ·, ·), and can be formulated by πθ = {fθ, pz} as follows

fDiffus
θ (s, z) ≡ x0,

xt−1 =
1
√
αt

(
xt −

βt√
1− ᾱt

ϵθ(s, xt, t)

)
+
√

βtzt−1,

xT = zT .

(6)

In Eq. (6), αt and βt are scalars calculated by some specific schedule mechanisms to control the
diffusion process, z0, z1, · · · , zT are i.i.d. noise vectors drawn from N (0, I) and we have treated
z = {z0, · · · , zT }, T is the number of diffusion steps. Note that the t’s here are not the time steps of
MDP but the time steps of the diffusion process.

These actors are powerful, but their decision probabilities πθ(a|s) does not have a closed-form
expression, making policy gradient not directly applicable. However, as they follow the stochastic
mapping formulation, it is feasible to calculate policy gradient via reparameterization trick (PGRT)
as mentioned in [27] by the equation below

∇θJ(πθ) = Es∼dπ,z∼pz
[∇aQ(s, fθ(s, z))∇θfθ(s, z)]. (7)

PGRT demonstrates that we can directly backpropagate the Q-function’s gradient to fθ to train
stochastic-mapping actors, where the Q-function can be approximated by differentiable critics. We
noticed that DACER [48] backpropagates the gradient of the Q-function to train diffusion actors, but
the paper of DACER did not mention the relation to policy gradient and did not disclose that this
method can be generalized to other actors.

4.2 Actor-Critic Learning with Diversity Regularization

As we pursue decision diversity, an effective diversity regularization is desired. As discussed
earlier, the traditional entropy regularization do not prefer multimodality and is not applicable
to intractable actors. To overcome this challenge, we propose a distance-based regularization to
encourage multimodal diversity.

Figure 3: Average (Avg.) and geo-
metric mean (GM) of pairwise dis-
tances for two synthesized data dis-
tributions. Average pairwise dis-
tance overestimates the diversity of
distribution Y .

A straightforward distance-based diversity metric is the mean
pairwise distance, formulated as Dπ(s) = Ex,y∼π(·|s)[δ(x, y)],
where δ(·, ·) is a distance metric. However, this metric may
overestimate the diversity when the data distribution forms
some tiny clusters far away from each other (See Fig. 3).
We empirically found that this issue led to underwhelming
performance. Therefore, we consider the geometric mean
GM({δ(x1, y1), · · · , δ(xn, yn)}) = (

∏n
i=1 δ(xi, yi))

−1/n of
pairwise distances instead. The geometric mean is sensitive
to small values as multiplication is taken instead of summa-
tion, which mitigates the overestimation issue (See Fig. 3).
Furthermore, we reshape diversity on the log scale to make it
easier to balance reward and diversity. We propose a diversity
regularization as follows

Dπ(s) = Ex∼π(·|s),y∼π(·|s)[log δ(x, y)]. (8)

Specifically, L2 distance is adopted as the distance metric. This
diversity regularization is added to the original RL objective
with a coefficient α, resulting in an objective to maximize as

J = Eπ

[∑∞

t=0
γt(Rt + αDπ(St))

]
. (9)

We estimate the diversity of the actor πθ at a certain state s by sampling n pairs of i.i.d. latent
vectors (zx1 , z

y
1), · · · , (zxn, zyn), and compute the average log-distance over samples. This is denoted

as D̃θ(s) =
1
n

∑n
i=1 log δ(fθ(s, z

x
i), fθ(s, z

y
i)). Though this estimation requires multiple samples, it

is time-efficient as such a process can be easily parallelized on GPUs.

5

The practical DrAC algorithms follow the common actor-critic architecture. The actor is a stochastic-
mapping actor, and the critics follow the learning tricks in soft actor-critic (SAC) [14]. Double critics
Q(·, ·;ϕ1), Q(·, ·;ϕ2) and double target critics Q̂(·, ·; ϕ̂1), Q̂(·, ·; ϕ̂2) are employed. By substituting
D̃θ into Eq. (2) and unrolling it into a bootstrap learning target, the critic loss is derived as

Lϕ = Es,a,r,s′∼D

[
MSE(Q(s, a;ϕi), r + γ(Ṽ (s′; ϕ̂) + αD̃θ(s

′))
]
, i ∈ {1, 2} (10)

where D represents the off-policy replay buffer, Ṽ (s′; ϕ̂) = mini∈{1,2} Q̂(s′, a′; ϕ̂i) is an approxima-
tion of the value of the next state s′ based on the target critics and a′ is a sample drawn from πθ(·|s′).
The target critics are updated by the target smoothing strategy [14, 11].

Regarding actor learning, we combine PGRT (See Eq. (7)) with the regularized policy gradient
theorem (See Eq. (4)), derive a loss function as follows

Lθ = −Es∼D,z∼pz
[Q(s, fθ(s, z);ϕ) + αD̃θ(s)], (11)

where Q(s, fθ(s, z);ϕ) = mini∈{1,2} Q(s, fθ(s, z);ϕi), following the technique used in SAC. This
loss function can also be considered an approximation of Eq. (3).

4.3 Automatic Coefficient Adjustment based on Target-Diversity

Multimodal actors are expressive and flexible. However, given the diversity regularization with a
fixed coefficient, such properties can also lead to instability in critic learning, which may harm the
training. To mitigate this issue and also make hyperparameter tuning easier, we borrow the automatic
coefficient adjustment technique from SAC [15]. Specifically, we parameterize α with a learnable
scalar w such that α = exp(w) if w < 0 and α = w + 1 otherwise. Then α is treated as learnable
and updated by descending the gradient of a dual-optimization loss defined as

Lα = Es∼D[α(D̃θ(s)− D̂)], (12)

where D̂ is a target diversity value. Minimizing this loss will make D̃θ(s) match with D̂ adaptively.
As D̃θ(s) is defined on the log-scale, determining its range can be trivial. We introduce a temperature
hyperparameter β such that D̂ ← log(β

√
|A|) to ease the triviality. The scale of β is comparable to

pairwise distances after normalization by the action space dimensionality |A|.

5 Experiments

Domains Previous works on multimodal RL [13, 33, 48] only verify the multimodal ability with a
toy 2D multi-goal navigation task and mainly focus on the improvements in MuJoCo. To demonstrate
the advantages of DrAC and multimodal policies, we include two diversity-critical benchmarks in
multi-goal achieving and generative RL domains. We also test DrAC and representative multimodal
RL algorithms in standard MuJoCo benchmarks to compare the general performance.

Baselines By installing DrAC with an amortized actor and a diffusion actor separately, we obtain
two versions of DrAC, namely DrAmort and DrDiffus. We include SQL [13], DACER [48], S2AC
[33] as multimodal RL baselines, and SAC [15] as a unimodal baseline. Table 1 summarizes the
techniques of these algorithms. We keep NN architectures and common hyperparameters all the
same as the default setting of SAC to enable a fair comparison [14]. Appendix A.2 details the
hyperparameters. All trainings are conducted with five seeds.

5.1 Multi-goal Achieving

In real-world scenarios, there could be multiple goals to achieve. We build a multi-goal version of
the PointMaze environment in D4RL [10] to conduct a case study of multi-goal achieving. This
environment requires the agent to learn to steer a ball from a fixed original point to navigate to one of
the goals within a maze. The maze contains multiple goals. The reward is sparse, only reaching a goal
returns +100 reward and ends the episode with a success flag. Besides the success rate, the number
of reachable goals is also evaluated. We designed three maze maps with increasing difficulty levels,
as illustrated in Fig. 9. We notice that the work of [28] tested more complex multi-goal achieving

6

Table 1: A summary of compared algorithms. Bold texts indicate our contributions. The “Temperature”
column indicates the technique of adjusting the emphasis on diversity used by each algorithm.

Actor Model Actor Learning Critic Learning Diversification Temperature

DrAmort Amortized Regularized PGRT Conventional Max-Diversity Target-Matching
SQL [13] Amortized SPI via SVGD Conventional Max-Entropy Constant
DrDiffus Diffusion Regularized PGRT Conventional Max-Diversity Target-Matching
DACER [48] Diffusion PGRT Distributional [8] Noise Scaling Target-Matching
S2AC [33] Energy-based SPI via SVGD Conventional Max-Entropy Constant
SAC [14] Gaussian SPI Conventional Max-Entropy Target-Matching

benchmarks. However, that work autonomously collects and clusters trajectories first, then clones
behaviors using these clusters, while our work focuses on basic RL algorithms. To ensure a fair and
meaningful comparison, we conducted a grid search for each algorithm before the formal evaluation.
The highest temperature that ensures each algorithm reaches the optimal success rate is picked.

The trajectories in the simple maze of learned policies are visualized in Fig. 4. It is clear that DrAmort
learns the most diverse and uniform trajectories. Despite using the same diffusion actor, DrDiffus
learn to reach different goals, DACER does not. Fig. 5b shows that DrAmort and SQL consistently
learns to reach the most goals in all mazes, and DrAmort learns faster than SQL. In terms of success
rate, DrAmort, DrDiffus, and DACER learn fast and stably, while SQL, SAC, and S2AC exhibit
a decrease in success rate in the early stage and reach optimal success rate more slowly. Given
the results, we consider that amortized actors possess superior multimodal expressivity. DACER
struggles with learning multimodal behaviors in PointMaze. This is most likely due to DACER
only controlling the diversity via noise scaling. Meanwhile, SQL shows better multimodality than
DrDiffus. The underwhelming multimodality of diffusion actors may be owing to a small number
of diffusion steps of 20 we used as suggested in [48]. However, despite using a small number of
diffusion steps, the inference and training speed is much slower than amortized actors. Therefore,
we advocate that the amortized actor is a promising actor class for representing multimodal policies.
Trajectories in medium and hard mazes are presented in Appendix B.2.

Figure 4: Evaluation trajectories of all tested algorithms in the simple maze.

(a) Success rate (b) Number of reachable goals

(c) Robustness against removal (d) Robustness against obstacle

Figure 5: Learning curves in multi-goal PointMaze. Solid lines represent mean performance, and
shaded regions indicate standard deviation. All curves are smoothed by the exponential moving
average with a coefficient of 0.5.

7

Inspired by [26], we investigate whether diversity empowers few-shot robustness in out-of-distribution
scenarios. We consider two types of perturbations: 1) Removal: half of the goals are removed during
the test; 2) Obstacle: some obstacles that do not exist in the training phase, appear in the test phase
and block the shortest paths to the goals. The first case requires agents to reach all goals with uniform
frequency. The second case requires the agents to navigate to the goal with diverse trajectories, so
that the they can bypass the obstacles by chance. Similar to [26], we test the five-episode success rate
of all algorithms in each scenario. That is, the probability that the agent can successfully reach any
goal at least once within five independent trials. The results are shown in Fig. 5c and Fig. 5d.

DrAmort shows the best robustness in all mazes, while SQL outperforms others among the rest
algorithms. According to Fig. 4, DrAmort exhibits the best trajectory diversity, so it has more chances
to bypass the obstacles. Meanwhile, DrAmort reaches goals more uniformly, so higher robustness
against removal is guaranteed. The results confirm that multimodality and diversity empower few-
shot robustness in out-of-distribution scenarios. DrDiffus outperforms DACER regarding robustness
against removal. Regarding SAC, although a high temperature is set, it struggles in learning to reach
multiple goals and generalizing to out-of-distribution test cases. This phenomenon confirms the
fundamental limitation of unimodal actors.

5.2 Generative RL

There has been some application of RL in generative tasks, e.g., game content generation [25, 50] and
program generation [30]. We take game level generation benchmark in [50] as a case study because
policy multimodality is important to balance quality and diversity in this domain, according to [50].

In this game level generation benchmark, the agent needs to observe a sliding window on an existing
game level and propose new level segments to be concatenated with the existing level. The level
segment is represented by a decoder, which is the generator of pretrained generative adversarial
networks [12, 47]. That means the agent will output a continuous latent vector at each step, and
the decoder will decode the action into a piece of level. There are two expert knowledge-based
formulations of the reward function in this benchmark, which aim to evaluate the quality of generated
levels under some game design principles. The reward also includes a penalty for unsolvable
level segments to guide agents to generate solvable levels. Solvable or not is checked by rules in
our experiments. Different reward functions result in different styles of generated levels, namely
MarioPuzzle and MultiFacet. Fig. 6 shows example levels of the two styles generated by DrAmort.
Besides episodic return, the diversity of generated levels is also desired in this domain.

Figure 6: Example MarioPuzzle style (left) and MultiFacet style (right) levels generated by DrAmort.

We train algorithms with the same temperature settings as multi-goal PointMaze. The learning curves
are shown in Fig. 7a. For both styles, DrAmort shows the best episodic returns, namely the best
qualities. This is possibly attributed to the superior expressivity of the amortized actor. As the
distribution of high-quality content is most likely multimodal, only highly expressive actors can
represent high-performance policies under high temperatures. Though SQL also applies amortized
actor, it performs badly. As SQL directly uses SVGD as the gradient estimator for approximating SPI,
it is possible that reparameterization trick is a better gradient estimator than SVGD for RL. S2AC,
which applies SVGD to directly sample actions, performs the worst on all tasks. On the other hand,
DrDiffus and DACER do not outperform SAC.

We also evaluate the diversity of generated levels by computing the average pairwise Hamming
distance following [50], and then visualize the performance in the 2D quality-diversity objective
space of all trained policies in Fig. 7b. Each marker in the figure represents a policy trained by one of
the algorithms with an independent seed. Under MarioPuzzle style, DrAmort generally dominates
other algorithms, i.e., outperforms other algorithms in terms of both return and diversity. Under the
MultiFacet style, DrAmort dominates other algorithms except for SQL. Though SQL shows the best
diversity, its episodic return is poor. Under the other style, SQL does not demonstrate better diversity,
and the episodic return is still poor. DrDiffus, DACER, and SAC are non-dominated with each
other. But diffusion actor is much slower than Gaussian and amortized actors. Therefore, diffusion

8

(a) Learning curves regarding average episodic return,
i.e., average quality of generated levels.

(b) Locations of all trained policies in the episodic
return-diversity performance space.

Figure 7: Evaluation results in the game content generation benchmark.

actors might not be a good choice for this task. We present t-SNE embedding visualizations [46] of
generated levels in Appendix B.5, to demonstrate their diversity more intuitively.

5.3 Conventional Benchmarks

To evaluate the general performance of DrAC in conventional tasks, we test DrAC in MuJoCo-v4
and compare it with baselines. We do not include S2AC as it is too computationally intensive and it
uses an unusual implicit actor, making it less meaningful to compare standard performance. Learning
curves in the six MuJoCo locomotion tasks are presented in Fig. 8.

Figure 8: Learning curves in MuJoCo.

DrAmort exhibits competitive perfor-
mance. It achieves the best perfor-
mance in three out of the six tasks
and surpasses SQL in a total of five,
demonstrating that DrAC is a strong
method for training amortized ac-
tors. Overall, the performance of
DrDiffus is comparable to DACER,
though DACER leverages a more ad-
vanced critic learning technique [8].
Therefore, DrAC can serve as a high-
performance base algorithm for learn-
ing multimodal policies, particularly
for amortized actors. Meanwhile, it is
surprising that DACER and DrDiffus
do not outperform SAC, though they apply more complex diffusion actors. We notice that the paper
of DACER [48] uses deeper networks, more advanced activations, and smaller learning rates than the
default settings of [14]. It is possible that diffusion actors need more powerful networks and more
elaborate hyperparameter tuning to fulfill their potentials.

6 Conclusion

We propose Diversity-regularized Actor Critic (DrAC), a novel and versatile RL algorithm designed
to train intractable multimodal policies. DrAC addresses the intractability challenge in training
multimodal policies by leveraging the reparameterization trick and distance-based diversity reg-
ularization. Meanwhile, DrAC is compatible with all policy models that can be formulated as a
stochastic-mapping actor defined as πθ = {fθ, pz} such that a ∼ πθ(·|s) ≡ a ← fθ(s, z), z ∼ pz .
Experiments show DrAC can train amortized actors to achieve superior performance in multi-goal
achieving and generative RL benchmark, which also verifies the significance of multimodal policies
in these domains. Notably, using an amortized actor, DrAC demonstrates strong few-shot robustness
[26] in out-of-distribution test scenarios within the multi-goal PointMaze environment. Nevertheless,
this paper only investigates a basic implementation of DrAC, leaving ample room for further improve-
ments. Future work could investigate scheduling the temperature, designing better stochastic-mapping
actors, exploiting other distance and diversity metrics, and integrating more learning tricks, etc.

9

Our empirical results also indicate that the amortized actor possesses strong multimodal expressivity
and performs well in all domains involved in this paper. On the other hand, the diffusion actor does
not show significant advantages. It is possible that diffusion actors need more careful tuning of
hyperparameters and better NN architecture design. However, the training and inference speed of
amortized actors is comparable to traditional actors and significantly faster than diffusion actors.
Therefore, we posit that the amortized actor represents a promising actor class for multimodal RL.

Acknowledgments and Disclosure of Funding

This work is supported by the National Natural Science Foundation of China 62406266.

References
[1] Yuanjiang Cao, Quan Z Sheng, Julian McAuley, and Lina Yao. Reinforcement learning for generative AI:

A survey. arXiv preprint arXiv:2308.14328, 2023.

[2] Edoardo Cetin and Oya Celiktutan. Policy gradient with serial markov chain reasoning. Advances in
Neural Information Processing Systems, 35:8824–8839, 2022.

[3] Huayu Chen, Cheng Lu, Zhengyi Wang, Hang Su, and Jun Zhu. Score regularized policy optimization
through diffusion behavior. In International Conference on Learning Representations, 2024.

[4] Huayu Chen, Kaiwen Zheng, Hang Su, and Jun Zhu. Aligning diffusion behaviors with Q-functions for
efficient continuous control. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and
C. Zhang, editors, Advances in Neural Information Processing Systems, volume 37, pages 119949–119975.
Curran Associates, Inc., 2024.

[5] Yuhui Chen, Haoran Li, and Dongbin Zhao. Boosting continuous control with consistency policy. In
Proceedings of the 23rd International Conference on Autonomous Agents and Multiagent Systems, pages
335–344, 2024.

[6] Edoardo Conti, Vashisht Madhavan, Felipe Petroski Such, Joel Lehman, Kenneth Stanley, and Jeff Clune.
Improving exploration in evolution strategies for deep reinforcement learning via a population of novelty-
seeking agents. Advances in neural information processing systems, 31, 2018.

[7] Zihan Ding and Chi Jin. Consistency models as a rich and efficient policy class for reinforcement learning.
In The Twelfth International Conference on Learning Representations, 2024.

[8] Jingliang Duan, Wenxuan Wang, Liming Xiao, Jiaxin Gao, Shengbo Eben Li, Chang Liu, Ya-Qin Zhang,
Bo Cheng, and Keqiang Li. Distributional soft actor-critic with three refinements. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2025.

[9] Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need: Learning
skills without a reward function. In International Conference on Learning Representations, 2019.

[10] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4RL: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

[11] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-critic
methods. In International Conference on Machine Learning, pages 1587–1596. PMLR, 2018.

[12] Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial nets. Advances in Neural Information Processing
Systems, 27, 2014.

[13] Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with deep
energy-based policies. In International Conference on Machine Learning, pages 1352–1361. PMLR, 2017.

[14] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In International Conference on Machine
Learning, pages 1861–1870. PMLR, 2018.

[15] Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash Kumar,
Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and applications. arXiv
preprint arXiv:1812.05905, 2018.

10

[16] Seungyul Han and Youngchul Sung. Diversity actor-critic: Sample-aware entropy regularization for
sample-efficient exploration. In International Conference on Machine Learning, pages 4018–4029. PMLR,
2021.

[17] Shashank Hegde, Sumeet Batra, KR Zentner, and Gaurav Sukhatme. Generating behaviorally diverse
policies with latent diffusion models. Advances in Neural Information Processing Systems, 36:7541–7554,
2023.

[18] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in Neural
Information Processing Systems, 33:6840–6851, 2020.

[19] Zhang-Wei Hong, Tzu-Yun Shann, Shih-Yang Su, Yi-Hsiang Chang, Tsu-Jui Fu, and Chun-Yi Lee.
Diversity-driven exploration strategy for deep reinforcement learning. Advances in Neural Information
Processing Systems, 31, 2018.

[20] Zhiao Huang, Litian Liang, Zhan Ling, Xuanlin Li, Chuang Gan, and Hao Su. Reparameterized policy
learning for multimodal trajectory optimization. In International Conference on Machine Learning, pages
13957–13975. PMLR, 2023.

[21] Haque Ishfaq, Guangyuan Wang, Sami Nur Islam, and Doina Precup. Langevin soft actor-critic: Effi-
cient exploration through uncertainty-driven critic learning. In International Conference on Learning
Representations, 2025.

[22] Vineet Jain, Tara Akhound-Sadegh, and Siamak Ravanbakhsh. Sampling from energy-based policies using
diffusion. In Reinforcement Learning Conference, 2025.

[23] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger, Kathryn
Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al. Highly accurate protein structure
prediction with alphafold. Nature, 596(7873):583–589, 2021.

[24] Bingyi Kang, Xiao Ma, Chao Du, Tianyu Pang, and Shuicheng Yan. Efficient diffusion policies for offline
reinforcement learning. Advances in Neural Information Processing Systems, 36:67195–67212, 2023.

[25] Ahmed Khalifa, Philip Bontrager, Sam Earle, and Julian Togelius. PCGRL: Procedural content generation
via reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment, volume 16, pages 95–101, 2020.

[26] Saurabh Kumar, Aviral Kumar, Sergey Levine, and Chelsea Finn. One solution is not all you need:
Few-shot extrapolation via structured MaxEnt RL. Advances in Neural Information Processing Systems,
33:8198–8210, 2020.

[27] Qingfeng Lan, Samuele Tosatto, Homayoon Farrahi, and Rupam Mahmood. Model-free policy learning
with reward gradients. In International Conference on Artificial Intelligence and Statistics, pages 4217–
4234. PMLR, 2022.

[28] Steven Li, Rickmer Krohn, Tao Chen, Anurag Ajay, Pulkit Agrawal, and Georgia Chalvatzaki. Learning
multimodal behaviors from scratch with diffusion policy gradient. Advances in Neural Information
Processing Systems, 37:38456–38479, 2024.

[29] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David
Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In International
Conference on Learning Representations, 2016.

[30] Guan-Ting Liu, En-Pei Hu, Pu-Jen Cheng, Hung-Yi Lee, and Shao-Hua Sun. Hierarchical programmatic
reinforcement learning via learning to compose programs. In International Conference on Machine
Learning, pages 21672–21697. PMLR, 2023.

[31] Xiangyu Liu, Hangtian Jia, Ying Wen, Yujing Hu, Yingfeng Chen, Changjie Fan, Zhipeng Hu, and Yaodong
Yang. Towards unifying behavioral and response diversity for open-ended learning in zero-sum games.
Advances in Neural Information Processing Systems, 34:941–952, 2021.

[32] Bogdan Mazoure, Thang Doan, Audrey Durand, Joelle Pineau, and R Devon Hjelm. Leveraging exploration
in off-policy algorithms via normalizing flows. In Conference on Robot Learning, pages 430–444. PMLR,
2020.

[33] Safa Messaoud, Billel Mokeddem, Zhenghai Xue, Linsey Pang, Bo An, Haipeng Chen, and Sanjay Chawla.
S2AC: Energy-based reinforcement learning with Stein soft actor critic. In International Conference on
Learning Representations, 2024.

11

[34] Jack Parker-Holder, Aldo Pacchiano, Krzysztof M Choromanski, and Stephen J Roberts. Effective diversity
in population based reinforcement learning. Advances in Neural Information Processing Systems, 33:
18050–18062, 2020.

[35] Mariya Popova, Olexandr Isayev, and Alexander Tropsha. Deep reinforcement learning for de novo drug
design. Science advances, 4(7):eaap7885, 2018.

[36] Michael Psenka, Alejandro Escontrela, Pieter Abbeel, and Yi Ma. Learning a diffusion model policy from
rewards via Q-score matching. In International Conference on Machine Learning, pages 41163–41182.
PMLR, 2024.

[37] Allen Z Ren, Justin Lidard, Lars Lien Ankile, Anthony Simeonov, Pulkit Agrawal, Anirudha Majumdar,
Benjamin Burchfiel, Hongkai Dai, and Max Simchowitz. Diffusion policy policy optimization. In
International Conference on Learning Representations, 2024.

[38] Jie Ren, Yewen Li, Zihan Ding, Wei Pan, and Hao Dong. Probabilistic mixture-of-experts for efficient
deep reinforcement learning. arXiv preprint arXiv:2104.09122, 2021.

[39] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[40] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller. Deter-
ministic policy gradient algorithms. In International Conference on Machine Learning, pages 387–395.
PMLR, 2014.

[41] Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction, volume 1. MIT press
Cambridge, 1998.

[42] Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods for
reinforcement learning with function approximation. In S. Solla, T. Leen, and K. Müller, editors, Advances
in Neural Information Processing Systems, volume 12, pages 1057–1063. MIT Press, 1999.

[43] Chen Tang, Ben Abbatematteo, Jiaheng Hu, Rohan Chandra, Roberto Martín-Martín, and Peter Stone.
Deep reinforcement learning for robotics: A survey of real-world successes. Annual Review of Control,
Robotics, and Autonomous Systems, 8(Volume 8, 2025):153–188, 2025. ISSN 2573-5144.

[44] Emanuel Todorov. General duality between optimal control and estimation. In 2008 47th IEEE conference
on decision and control, pages 4286–4292. IEEE, 2008.

[45] Marc Toussaint. Robot trajectory optimization using approximate inference. In Proceedings of the 26th
annual international conference on machine learning, pages 1049–1056, 2009.

[46] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal of machine learning
research, 9(11), 2008.

[47] Vanessa Volz, Jacob Schrum, Jialin Liu, Simon M Lucas, Adam Smith, and Sebastian Risi. Evolving
Mario levels in the latent space of a deep convolutional generative adversarial network. In Proceedings of
the Genetic and Evolutionary Computation Conference, pages 221–228, 2018.

[48] Yinuo Wang, Likun Wang, Yuxuan Jiang, Wenjun Zou, Tong Liu, Xujie Song, Wenxuan Wang, Liming
Xiao, Jiang Wu, Jingliang Duan, et al. Diffusion actor-critic with entropy regulator. Advances in Neural
Information Processing Systems, 37:54183–54204, 2024.

[49] Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy class
for offline reinforcement learning. In International Conference on Learning Representations, 2023.

[50] Ziqi Wang, Chengpeng Hu, Jialin Liu, and Xin Yao. Negatively correlated ensemble reinforcement learning
for online diverse game level generation. In International Conference on Learning Representations, 2024.

[51] Shuang Wu, Jian Yao, Haobo Fu, Ye Tian, Chao Qian, Yaodong Yang, Qiang Fu, and Yang Wei. Quality-
similar diversity via population based reinforcement learning. In International Conference on Learning
Representations, 2023.

[52] Ke Xue, Ren-Jian Wang, Pengyi Li, Dong Li, Jianye Hao, and Chao Qian. Sample-efficient quality-diversity
by cooperative coevolution. In International Conference on Learning Representations, 2024.

[53] Long Yang, Zhixiong Huang, Fenghao Lei, Yucun Zhong, Yiming Yang, Cong Fang, Shiting Wen, Binbin
Zhou, and Zhouchen Lin. Policy representation via diffusion probability model for reinforcement learning.
arXiv preprint arXiv:2305.13122, 2023.

12

[54] Zhengyu Yang, Kan Ren, Xufang Luo, Minghuan Liu, Weiqing Liu, Jiang Bian, Weinan Zhang, and
Dongsheng Li. Towards applicable reinforcement learning: Improving the generalization and sample
efficiency with policy ensemble. In International Joint Conference on Artificial Intelligence, 2022.

[55] Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Mastering visual continuous control: Im-
proved data-augmented reinforcement learning. In International Conference on Learning Representations,
2022.

[56] Chengyang Ying, Huayu Chen, Xinning Zhou, Zhongkai Hao, Hang Su, and Jun Zhu. Exploratory diffusion
policy for unsupervised reinforcement learning. arXiv preprint arXiv:2502.07279, 2025.

[57] Yunbo Zhang, Wenhao Yu, and Greg Turk. Learning novel policies for tasks. In International Conference
on Machine Learning, pages 7483–7492. PMLR, 2019.

[58] Zhengbang Zhu, Hanye Zhao, Haoran He, Yichao Zhong, Shenyu Zhang, Haoquan Guo, Tingting Chen, and
Weinan Zhang. Diffusion models for reinforcement learning: A survey. arXiv preprint arXiv:2311.01223,
2023.

[59] Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, Anind K Dey, et al. Maximum entropy inverse
reinforcement learning. In Aaai, volume 8, pages 1433–1438, 2008.

[60] Eckart Zitzler and Lothar Thiele. Multiobjective evolutionary algorithms: a comparative case study and
the strength pareto approach. IEEE transactions on Evolutionary Computation, 3(4):257–271, 2002.

13

A Technical Details

A.1 Pseudo code of DrAC

Algorithm 1 details DrAC.

Algorithm 1 Diversity-regularized Actor-Critic (DrAC)

Require: Actor weights θ; Critic weights ϕ = {ϕ1, ϕ2}; Target critic weights ϕ̂ = {ϕ̂1, ϕ̂2}
Let gradient_step_count← 0
for t : 1→ T do

Sample an action a ∼ π(·|s)
Execute a and observe s′, r, d
r, s′, d← Execute a in the environment
Store (s, a, r, s, d) in the buffer
while gradient_step_count < t ∗ reply_ratio do

Sample a batch (s, a, r, s′, d) from the replay memory
Sample z; (zx1 , z

y
1), · · · , (zxn, zyn) from pz

Let D̃θ(s
′)← 1

n

∑n
i=1 log δ(fθ(s

′, zxi), fθ(s
′, zyi))

Compute Q-target y ← r + γ(1− d)(Q̂(s, fθ(s, z); ϕ̂) + αD̃θ(s
′))

Update ϕ1 and ϕ2 with MSE(Q(s, a;ϕi), y), i ∈ {1, 2}
Sample z; (zx1 , z

y
1), · · · , (zxn, zyn) from pz

Let D̃θ(s)← 1
n

∑n
i=1 log δ(fθ(s, z

x
i), fθ(s, z

y
i))

Update θ with Lθ = −Q(s, fθ(s, z);ϕ)− αD̃θ(s))

Update α with Lα = α(D̃θ(s)− D̂)

Update ϕ̂ by ϕ̂← ρϕ+ (1− ρ)ϕ̂
Let gradient_step_count← gradient_step_count + 1

end while
end for

A.2 Experiment Settings

The customized maze maps used in our multi-goal PointMaze environment are shown in Fig. 9

Figure 9: Maze maps of the Multi-goal PointMaze environment. The red circle indicates the start point, green
cells indicate goals, gray cells are walls, and light gray cells are obstacles that only appear in the robustness
evaluation stage.

The hyperparameters are listed in Table 2. The temperature hyperparameters listed in Table 2 are used in the
multi-goal PointMaze environment and the game content generation environment. While for MuJoCo, we use a
lower temperature for DrAC. For baseline algorithms, we use the default temperatures MuJoCo provided in their
original papers. Temperature hyperparameters for all algorithms in MuJoCo are listed in Table 3.

14

Table 2: Hyperparameters

Hyperparameter DrAmort DrDiffus DACER SQL S2AC SAC

Replay buffer size 1000000
MLP hidden layers in actors & critics (256, 256)
Hidden layer activation in all networks ReLU
Optimizer Adam
Learning rate of actors & critics 3e−4

Discount rate (γ) 0.99
Target smoothing coefficient (ρ) 0.005
Replay ratio (gradient step) 1
Mini-batch size 256

Diversity temperature (β) 0.8 N/A
Target entropy (H̄) N/A 0.5|A| N/A 0.5|A|
Learning rate for α auto-adjustment 5e−3 3e−2 N/A 3e−4

Entropy coefficient (α) N/A 0.3 0.7 N/A

Number of diversity estimation pairs (n) 8 N/A
Number of SVGD particles (k) N/A 10 32 N/A

Policy delay (actor update period) N/A, equivalent to 1 2 N/A, equivalent to 1

Table 3: Temperature settings for MuJoCo
DrAmort DrDiffus DACER SQL S2AC SAC

0.5 0.2 −0.9|A| [48] 0.2 for Ant, 1.0 for the rest [33] −|A|

Regarding compute resources, all of our experiments are conducted with a Linux server with 8 NVIDIA RTX
3090 GPUs and an Intel Xeon Platinum 8375C CPU. All trainings are done with one GPU.

A.3 Relation to Amortized Inference and Traditional Gaussian Actor

The formulation of stochastic mapping actors is closed to the definition of amortized inference. Due to that
the term “amortized actor” has been used in [13] and adopted in [33], we name our formulation as “stochastic
mapping actors”.

The formulation of stochastic mapping actors is also compatible with traditional Gaussian actor, by treating
f(s, z) ≡ µθ(s) + σθz and z ∼ N (0, I). Our method is also directly applicable to Gaussian actor.

15

B Additional Results

B.1 Computational costs

We record the average time cost per 1000 training steps in Ant-v4 environment. The test is conducted on a
Linux server with 8 NVIDIA RTX 3090 GPUs and an Intel Xeon Platinum 8375C CPU. For each algorithm, we
run three trials on GPU cards 0, 1 and 2, respectively, and then average the training time per 1000 steps. All
algorithms are implemented with PyTorch 2.5.1, and the CUDA version is 12.5.

Table 4: Computational costs of all compared algorithms

SAC SQL DrAmort DACER DrDiffus S2AC

Training time per 1000 steps 22.7s 18.9s 21.0s 76.9s 84.8s 220.5s
Peak GPU memory usage 352M 472M 392M 364M 6080M 3462M

According to the table, we found that DrAmort is even faster than SAC. The reason is that SAC computes and
back-propagates the log-probability at certain actions, which requires more sequential tensor operations. Though
DrAmort requires samples, the computation is parallelized and takes fewer sequential tensor operations. As a
result, DrAmort uses fewer GPU clock ticks and is slightly faster than SAC, given that the neural network is
sufficiently small compared to the GPU’s parallel computation capability. For DrDiffus, it takes about 10% more
time for training compared to DACER, but its diversity in multi-goal PointMaze is better.

For large-scale tasks that require larger networks, such as visual control, we can inject the latent variable at the
last few layers. For example, if a CNN is used, the latent variables can be injected after the convolutional layers.
In this case, the computation time and memory usage will not significantly increase.

B.2 Trajectories in Medium and Hard Multi-goal PointMaze

Figs. 10 and 11 demonstrate the trajectories in medium and hard mazes, respectively.

Figure 10: Evaluation trajectories of all tested algorithms in the medium maze.

Figure 11: Evaluation trajectories of all tested algorithms in the hard maze.

Consistently, DrAmort exhibits the best diversity.

16

B.3 Sensitivity of Temperature Hyperparameter in Multi-goal PointMaze

We display the learning curves of all evaluated algorithms with varied temperatures. For our DrAmort and
DrDiffus, we show a sensitivity study with five different temperatures. For baseline algorithms, we present three
temperatures to explain our choice of their temperatures in our comparison study. Specifically, for all baseline
algorithms, using a higher temperature than our choice leads to suboptimal success rate in at least one maze;
while using a lower one leads to lower diversity.

Figure 12: Learning curves of DrAmort in multi-goal PointMaze with varied temperatures.

Figure 13: Learning curves of DrDiffus in multi-goal PointMaze with varied temperatures.

17

Figure 14: Learning curves of SQL in multi-goal PointMaze with varied temperatures.

Figure 15: Learning curves of DACER in multi-goal PointMaze with varied temperatures.

18

Figure 16: Learning curves of SAC in multi-goal PointMaze with varied temperatures.

Figure 17: Learning curves of S2AC in multi-goal PointMaze with varied temperatures.

19

B.4 Sensitivity of Temperature in Game Content Generation

We train each algorithm with three groups of temperatures, namely high, mid, low, to investigate the sensitivity
of temperature. The high temperature group uses the same temperature with the multi-goal PointMaze. The
low temperature group are set to −|A| for SAC and DACER and near zero for DrAC, SQL and S2AC. The
mid temperature group use temperatures averaged between low and high groups. Fig. 18 shows the algorithm
performance across temperatures.

Figure 18: Sensitivity of temperature across tasks and metrics. The ticks of x-axis details the
temperature.

Generally, the quality decreases along with raising temperature while diversity increases along with raising
temperature. To provide an overall evaluation, we treat all policies trained by each algorithm across temperatures
and seeds as a population, and compute the hypervolume (HV) metric for these populations [60]. The reference
point is set according to the lowest quality and diversity performance across all algorithms, temperatures and
seeds.

Figure 19: HV comparison of policy populations obtained by training each algorithm through three
different temperatures.

The results show DrAmort produces the best population in terms of the HV metric, DrDiffus outperform baselines
in MultiFacet and shows competitive performance in MarioPuzzle.

20

B.5 t-SNE visualization of Generated Game Levels

To compare the diversity of levels generated by each algorithm more intuitively, we embed levels generated by
each algorithm with t-SNE [46], and plot the embeddings in Fig. 20 and Fig. 21.

Figure 20: t-SNE embeddings of levels generated by each algorithm, under MarioPuzzle style.

Figure 21: t-SNE embeddings of levels generated by each algorithm, under MultiFacet style.

Observing the embeddings, differences in terms of diversity are not significant. Different algorithms generally
form different clusters. This may indicate that there is still ample room to improve the diversity with little harm
to quality. Future work may investigate how to unleash the expressivity of multimodal policies more completely.
Besides, average pairwise Hamming distance is a vanilla method to measure diversity of game content, more
in-depth quantitative analysis may be considered in future work.

21

B.6 Sensitivity of Temperature Hyperparameter in MuJoCo

We demonstrate the sensitivity of temperature hyperparameter of DrAmort and DrDiffus as follows.

Figure 22: Learning curves of DrAmort with varied temperatures in MuJoCo

Figure 23: Learning curves of DrDiffus with varied temperatures in MuJoCo

DrAmort is robust to the temperature, overall β = 0.5 deliveries superior performance. DrDiffus suffers from a
performance drop in Humanoid with β > 0.2. More investigation into this phenomenon is an important future
work.

22

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately describe the proposed algorithm (policy gradient
via reparameterization + distance-based diversity regularization) and experimental scope (multi-goal
achieving, generative RL, MuJoCo). The abstract and the introduction align with the technical content
in the paper (Section 4, 5, Appendix A.1).

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in the
paper.

• The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The conclusion (Section 6) involves a discussion of limitations.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to violations of

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not include theoretical results.

23

• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they appear in

the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Benchmarks and tested algorithms are described in Section 5. Experiment settings,
including evaluation criteria, are described within Section 5. Hyperparameters are detailed in Appendix
A. Appendix A.1 provides detailed pseudo-code of the proposed algorithm. Our code will be released
after acceptance.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by the

reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either be

a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: We will submit our code in supplemental materials, and we will release our code with
instructions after acceptance. Our code contains training and evaluation. Customized RL environments
are also included with the necessary assets. We do not use training data.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

24

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: Experiment settings and evaluation criteria are introduced within the Section 5. Hy-
perparameters, including network architecture and the type of optimizer, are detailed in Appendix
A.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [Yes]

Justification: We repeat all training with five seeds, and all results are reported with mean and standard
deviation across the five seeds. All algorithms used the same set of seeds. All evaluations for all
checkpoints are repeated at least 20 times to average.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report

a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

25

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Answer: [Yes]

Justification: We describes our compute resources in Appendix A.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experimental

runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research involves algorithmic development and evaluation on simulation benchmarks
and open-source game benchmarks. It does not involve human subjects or obviously ethically sensitive
applications, and we expect that it conforms to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [NA]

Justification: This research focuses on basic deep RL algorithm development, and all experiments are
conducted in simulated imaginary environments or digital games without any sensitive subjects. We
expect there is no societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

26

https://neurips.cc/public/EthicsGuidelines

Answer: [NA]

Justification: This work focuses on algorithm development and experiments are conducted with
simulated environments and open-source games, so we expect the paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: Our experiments dependent on open-source assets in D4RL [10] and a game content
generation [50], which are credited by citations in Section 5.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [NA]

Justification: This work does not involve new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]

Justification: This work does not involve any crowdsourcing experiment nor research with human
subjects.

Guidelines:

27

paperswithcode.com/datasets

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: This work does not involve any crowdsourcing experiment nor research with human
subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research? Note that if the LLM is used only for writing,
editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or
originality of the research, declaration is not required.

Answer: [NA]

Justification: This work does not involve LLMs as any important, original, or non-standard compo-
nents.

Guidelines:

• The answer NA means that the core method development in this research does not involve LLMs
as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.

28

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Works
	Preliminaries
	Deep Reinforcement Learning
	Policy Regularization

	Method
	Unifying Intractable Multimodal Policies and Policy Gradient
	Actor-Critic Learning with Diversity Regularization
	Automatic Coefficient Adjustment based on Target-Diversity

	Experiments
	Multi-goal Achieving
	Generative RL
	Conventional Benchmarks

	Conclusion
	Technical Details
	Pseudo code of DrAC
	Experiment Settings
	Relation to Amortized Inference and Traditional Gaussian Actor

	Additional Results
	Computational costs
	Trajectories in Medium and Hard Multi-goal PointMaze
	Sensitivity of Temperature Hyperparameter in Multi-goal PointMaze
	Sensitivity of Temperature in Game Content Generation
	t-SNE visualization of Generated Game Levels
	Sensitivity of Temperature Hyperparameter in MuJoCo

