
Learning Intractable Multimodal Policies with Reparameterization and Diversity Regularization

Ziqi Wang Jiashun Liu Ling Pan*

Hong Kong University of Science and Technology

Abstract

Traditional continuous deep reinforcement learning (RL) algorithms employ deterministic or unimodal Gaussian actors, which cannot express complex multimodal decision distributions. This limitation can hinder their performance in diversity-critical scenarios. There have been some attempts to design online multimodal RL algorithms based on diffusion or amortized actors. However, these actors are intractable, making existing methods struggle with balancing performance, decision diversity, and efficiency simultaneously. To overcome this challenge, we first reformulate existing intractable multimodal actors within a unified framework, and prove that they can be directly optimized by policy gradient via reparameterization. Then, we propose a distance-based diversity regularization that does not explicitly require decision probabilities. We identify two diversity-critical domains, namely multi-goal achieving and generative RL, to demonstrate the advantages of multimodal policies and our method, particularly in terms of few-shot robustness. In conventional MuJoCo benchmarks, our algorithm also shows competitive performance. Moreover, our experiments highlight that the amortized actor is a promising policy model class with strong multimodal expressivity and high performance. Our code is available at <https://github.com/PneuC/DrAC>

1 Introduction

Despite the remarkable progress in reinforcement learning (RL) for continuous control and decision-making tasks [23, 55, 43], learning multimodal policies remains challenging [20, 33, 48]. However, most state-of-the-art RL algorithms predominantly employ deterministic or unimodal Gaussian policies [29, 39, 11, 14], which limits their ability to capture the complex, multimodal decision distributions. However, real-world applications can have multiple goals, making multimodality and decision diversity essential [13, 28, 41], where unimodal policies can be brittle to perturbations in the environment. For example, given a navigation task in a maze with multiple valid paths, unimodal policies typically converge to a single shortest route, creating a critical vulnerability – when this route becomes obstructed during deployment, such policies fail catastrophically [26]. In contrast, a multimodal policy with high decision diversity can learn varied navigation strategies, allowing it to adapt when faced with unexpected obstacles. In zero-sum games, strategic diversity that requires multimodal policies is also critical for agents to maintain robustness against adaptive opponents [31]. Additionally, RL

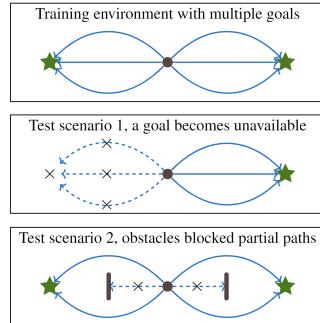


Figure 1: Motivational examples. A multimodal policy with maximized diversity can achieve multiple goals and enable robustness against environmental changes.

*Correspondence to: Ling Pan (lingpan@ust.hk)

has been applied to generative tasks in recent years [1], where multimodal policies can potentially improve the diversity of generated objects with less harm to quality [50].

The main challenge of learning expressive multimodal policies lies in their intractability. Existing online RL algorithms that train multimodal policies are typically based on the maximum-entropy RL framework [14]. However, entropy regularization encourages policies to be more uniform, but do not specifically prefer multimodality. Meanwhile, computing entropy requires an analytical expression of decision probability, which is not directly applicable to intractable actors. Some prior works attempt to mitigate this problem with a workaround that employs tractable but less expressive multimodal actors [32, 2, 50], sacrificing expressivity. Another line of research leverages Stein variational gradient descent (SVGD) as a gradient estimator [13] or as a sampler that directly samples actions from the value distribution learned by the critic [33]. However, we empirically observe that it either underperforms traditional algorithms or incurs significant computation costs. Besides, there have been some online RL algorithms training diffusion actors [53, 36, 48], but to our best knowledge, only the diffusion actor-critic with entropy regulator (DACER) [48] takes decision diversity into account among these algorithms. DACER controls diversity by scaling an additional unimodal Gaussian noise instead of optimizing diversity through gradients w.r.t. the actor’s parameters.

In this paper, we propose a novel diversity-regularized RL framework to address the aforementioned challenge. First, this paper shows that existing multimodal actors can be viewed as a combination of a parameterized mapping function with a fixed latent random distribution, which we call *stochastic-mapping actors*. We then highlight that the policy gradient of any stochastic-mapping actor can be estimated via the reparameterization trick, without accessing the gradient of decision probabilities. This provides a general methodology to optimize intractable stochastic-mapping actors. Secondly, we propose a distance-based diversity regularization instead of entropy, which does not explicitly require the decision probability. Combining with the policy regularization theorems [48], we develop a novelty actor-critic algorithm named *Diversity-regularized Actor Critic* (DrAC). Main contributions of this paper are summarized as follows

1. We formulate a class of actors named *stochastic-mapping actors*, bridge policy gradient and intractable stochastic actors via reparameterization trick. This formulation serves as a useful tool for understanding and designing multimodal RL models and algorithms.
2. We propose a learning framework with a distance-based diversity regularization, which simultaneously optimizes expected return and decision diversity without requiring explicit access to decision probabilities.
3. We identify two domains where multimodality and diversity are critical, and conduct comprehensive experiments, including performance in standard MuJoCo benchmarks. In addition to justifying the advantages of multimodal policies and our algorithm, we also present new insights on multimodality and diversity.

2 Related Works

Policy Diversity in RL Decision diversity (or randomness) is an essential ingredient of online deep RL algorithms [29, 11, 14], which not only enforces exploration but also reduces variance [11]. Some research has shown that decision diversity can improve sample efficiency or final performance regarding expected return [16, 34, 19, 54, 6]. Furthermore, diversity can serve in pretraining. Eysenbach et al. proposed that training policies with only a diversity objective can discover useful skills and serve as an effective pretraining method [9]. Ying et al. pretrain diffusion actors with intrinsic reward to discover diverse behaviors and fine-tune diffusion actors to fast generalize to downstream tasks [56]. Besides, Zhang et al. propose an algorithm to find varied policies for the same task [57]. Kumar et al. train multiple policies with diverse behaviors, and highlight that diversity is the key to ensuring few-shot robustness in out-of-distribution scenarios [26].

Another category of research on policy diversity in RL considers diversity as an independent objective distinguished from reward. An emerging topic called quality-diversity RL aims at learning a set of policies that cover a task-specified behavior space as completely as possible, and maximizing the quality of each policy at the same time [17, 51, 52]. RL is also applied in generative tasks, including code generation, music generation, artificial intelligence for science, and game content generation [1]. Some of these generative tasks treat diversity as an essential need besides quality. For example, Popova et al. formulate drug design as a Markov decision process (MDP) rewarded by a predictive

model to generate diverse new chemical structures [35]. Wang et al. leverage diversity-driven ensemble RL to generate diverse game levels with high quality [50].

Learning Multimodal Policies An early attempt in online multimodal RL is soft Q-learning (SQL) [13]. It proposes the maximum-entropy RL framework with an amortized actor. As the actor loss in maximum-entropy RL is a KL-divergence, SQL leverages SVGD to estimate the gradient of the actor loss. Stein soft actor-critic (S²AC) [33] views the entropy-regularized critic as an energy that directly samples actions based on it via SVGD. To improve inference speed, S²AC proposes to train an additional amortized actor that mimics the SVGD sampler. However, our experiments show that SQL performs poorly in many benchmarks, including MuJoCo, while training S²AC is much more memory-hungry and slower. Huang et al. propose a model-based RL method learning through evidence lower bound to train multimodal actors [20]. To our best knowledge, a fast and effective algorithm to train an amortized actor was absent prior to our work.

Another line of multimodal RL builds upon diffusion actors. There has been a lot of work investigating offline RL based on diffusion actor [58, 49, 24, 4, 3], but online methods have been a few. Specifically, Yang et al. [53] apply approximated policy improvement to generate target actions and train the diffusion actor to match the target actions. Psenka et al. [36] train the diffusion actor by matching the score-based structure with the action gradient of the Q-function. Ren et al. model the diffusion process as a low-level MDP and train the diffusion actor through a two-stage policy gradient [37]. Consistency policy methods have been demonstrated feasible to train diffusion actors online [7, 5]. Wang et al. propose DACER, an online RL algorithm with entropy regulator to train diffusion actor [48], taking decision diversity into consideration by automatically tuning the scale of an additional action noise. In addition, Ying et al. pre-train a Gaussian actor with intrinsic reward [56] to collect trajectories, and then fine-tune a diffusion actor in downstream tasks. Li et al. cluster the trajectories explored by learning with intrinsic rewards to discover modes, then utilize behavior cloning to train a diffusion actor [28]. Jain et al. propose an energy-based training method for diffusion actors [22]. Ishfaq et al. employ a diffusion model to generate synthetic training samples [21].

There has also been some work on leveraging tractable multimodal policy models [38, 50]. Mazoure et al. leverage normalizing flow to improve exploration [32]. Wang et al. represent decision distribution by Gaussian mixture model to generate diverse game levels [50]. However, these models may be weaker in expressivity compared with intractable models.

3 Preliminaries

3.1 Deep Reinforcement Learning

Deep reinforcement learning [41] aims at optimizing a policy π powered by deep learning to solve an MDP. An MDP involves a state space \mathcal{S} , an action space \mathcal{A} , a reward function $r(\cdot, \cdot) : \mathcal{S} \times \mathcal{A} \mapsto \mathbb{R}$, and a transition dynamics modeling the transition probability from one state to another given an action. Specifically, this paper focuses on the continuous action space. At each time step t , the policy observes a state $S_t \in \mathcal{S}$ to determine a decision distribution $\pi(\cdot | S_t)$ and draw an action $A_t \in \mathcal{A}$ from $\pi(\cdot | S_t)$, and then receives a reward signal $R_t = r(S_t, A_t)$. The objective of RL is optimizing π to maximize the expected return $J(\pi) = \mathbb{E}_{\pi}[\sum_{t=0}^{\infty} \gamma^t R_t]$. A state-action value function conditioned by a policy π is defined as $Q^{\pi}(s, a) = \mathbb{E}_{\pi}[\sum_{k=0}^{\infty} \gamma^k R_{t+k} | S_t = s, A_t = a]$ to evaluate a state-action pair. Prevalent continuous deep RL algorithms [29, 39, 11, 14] primarily follow the actor-critic architecture. In this framework, an actor π_{θ} models the policy, while a critic Q_{ϕ} learns an approximation of the Q-function conditioned by π_{θ} . The actor is typically optimized by policy gradient [40, 42] based on Q-value approximated by the critic.

3.2 Policy Regularization

Maximum entropy RL [59, 44, 45] is a classic framework to optimize both expected return and diversity. Haarnoja et al. introduce a deep learning framework for entropy-regularized RL [14], which modifies the standard RL objective by adding an entropy regularization $J(\pi) = \mathbb{E}_{\pi}[\sum_{t=0}^{\infty} \gamma^t (R_t + \alpha \mathcal{H}(\pi(\cdot | S_t)))]$, where $\mathcal{H}(\cdot)$ indicates the entropy of a given distribution. The state-action value function is defined as $Q^{\pi}_{\text{soft}}(s, a) = \mathbb{E}[R_t + \sum_{k=1}^{\infty} \gamma^k (R_{t+k} + \alpha \mathcal{H}(\pi(\cdot | s))) | S_t = s, A_t = a]$. The

policy is optimized by applying a soft policy iteration (SPI) operator as follows

$$\pi_{\text{new}} \leftarrow \underset{\pi}{\operatorname{argmin}} \text{D}_{\text{KL}} \left(\pi(\cdot|s) \middle\| \frac{\exp(Q_{\text{soft}}^{\pi_{\text{old}}}(s, \cdot))}{Z^{\pi_{\text{old}}}(s)} \right), \quad (1)$$

where $Z^{\pi_{\text{old}}}(s)$ is a scalar to normalize the distribution, which is intractable but negligible in practice.

Wang et al. extend the entropy-regularized RL framework to a general form [50]. Given an arbitrary regularization function $\varrho(\pi(\cdot|s))$, and a regularized learning objective $J(\pi) = \mathbb{E}_{\pi}[\sum_{t=0}^{\infty} \gamma^t(R_t + \alpha \varrho(\pi(\cdot|S_t)))]$, the regularized Q-value is defined in the following form

$$Q_{\text{reg}}^{\pi}(s, a) = \mathbb{E}_{\pi} \left[R_t + \sum_{k=1}^{\infty} \gamma^k (R_{t+k} + \alpha \varrho(\pi(\cdot|S_{t+k}))) \middle| S_t = s, A_t = a \right]. \quad (2)$$

With the regularized Q-value defined, the policy can be optimized by regularized policy iteration with a policy improvement operator expressed as

$$\pi_{\text{new}}(\cdot|s) \leftarrow \underset{\pi}{\operatorname{argmax}} \left[\alpha \varrho(\pi(\cdot|s)) + \mathbb{E}_{a \sim \pi(\cdot|s)}[Q_{\text{reg}}^{\pi_{\text{old}}}(s, a)] \right] \quad (3)$$

for all $s \in \mathcal{S}$. Furthermore, the policy gradient of the regularized learning objective is

$$\nabla_{\theta} J(\pi) = \mathbb{E}_{s \sim d^{\pi}} \left[\alpha \nabla_{\theta} \varrho(\pi_{\theta}(\cdot|s)) + \int_{\mathcal{A}} Q_{\text{reg}}^{\pi}(s, a) \nabla_{\theta} \pi_{\theta}(a|s) \, da \right], \quad (4)$$

where d^{π} is the discounted state distribution given π .

4 Method

We propose diversity-regularized actor-critic (DrAC), which learn intractable multimodal policies through reparameterization and diversity regularization. Fig. 2 illustrates the key ingredients of DrAC. A detailed pseudo-code is provided in Appendix A.1.

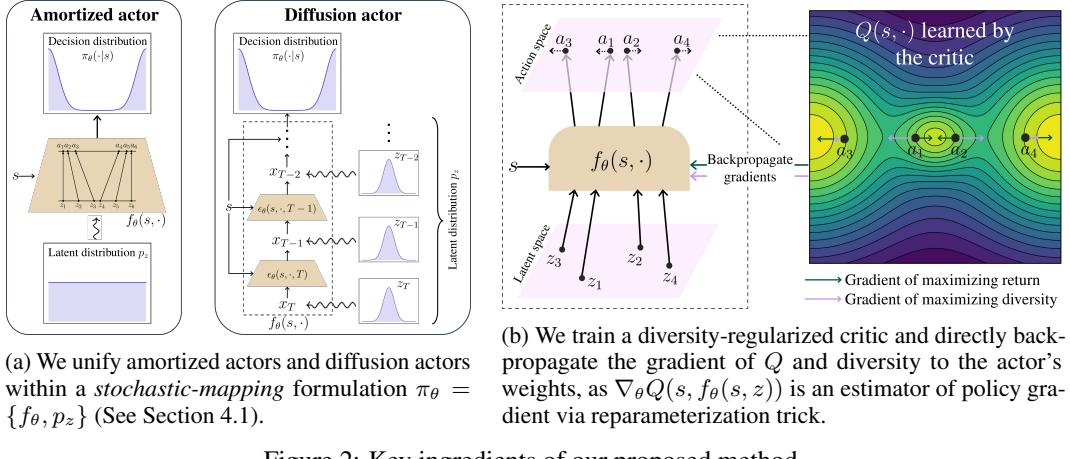


Figure 2: Key ingredients of our proposed method.

4.1 Unifying Intractable Multimodal Policies and Policy Gradient

We define a class of *stochastic-mapping actors* as $\pi_{\theta} = \{f_{\theta}, p_z\}$, which is a combination of a parameterized function $f_{\theta}(\cdot, \cdot) : \mathcal{S} \times \mathcal{Z} \mapsto \mathcal{A}$, and a fixed latent distribution p_z over a latent space \mathcal{Z} . The action is drawn by sampling an independent random variable z from p_z first, and then feeding state s and z into f_{θ} , i.e., $a \sim \pi_{\theta}(\cdot|s) \equiv a \leftarrow f_{\theta}(s, z), z \sim p_z$. We reformulate existing multimodal actors, namely *amortized actors* and *diffusion actors*, under this definition as follows.

Amortized actors² This type of actors [13] employ a neural network (NN) g_{θ} , which takes the state s and the latent variable z as input, and directly output the action a . We follow the most straightforward mechanism in SQL, concatenate s and z directly feed into g_{θ} . Formally, this is

$$f_{\theta}^{\text{Amort}}(s, z) \equiv g_{\theta}(s \oplus z). \quad (5)$$

²This definition follows [13] and [33]. It is narrower than the concept of amortized inference.

Diffusion actors This type of actors [36, 37, 48] build upon the diffusion models [18], which are powerful generative models. We adopt the implementation from DACER [48]. The policy is parameterized by an NN $\epsilon_\theta(\cdot, \cdot, \cdot)$, and can be formulated by $\pi_\theta = \{f_\theta, p_z\}$ as follows

$$\begin{aligned} f_\theta^{\text{Diffus}}(s, z) &\equiv x_0, \\ x_{t-1} &= \frac{1}{\sqrt{\alpha_t}} \left(x_t - \frac{\beta_t}{\sqrt{1-\bar{\alpha}_t}} \epsilon_\theta(s, x_t, t) \right) + \sqrt{\beta_t} z_{t-1}, \\ x_T &= z_T. \end{aligned} \quad (6)$$

In Eq. (6), α_t and β_t are scalars calculated by some specific schedule mechanisms to control the diffusion process, z_0, z_1, \dots, z_T are i.i.d. noise vectors drawn from $\mathcal{N}(\mathbf{0}, I)$ and we have treated $z = \{z_0, \dots, z_T\}$, T is the number of diffusion steps. Note that the t 's here are not the time steps of MDP but the time steps of the diffusion process.

These actors are powerful, but their decision probabilities $\pi_\theta(a|s)$ does not have a closed-form expression, making policy gradient not directly applicable. However, as they follow the stochastic mapping formulation, it is feasible to calculate policy gradient via reparameterization trick (PGRT) as mentioned in [27] by the equation below

$$\nabla_\theta J(\pi_\theta) = \mathbb{E}_{s \sim d^\pi, z \sim p_z} [\nabla_a Q(s, f_\theta(s, z)) \nabla_\theta f_\theta(s, z)]. \quad (7)$$

PGRT demonstrates that we can directly backpropagate the Q-function's gradient to f_θ to train stochastic-mapping actors, where the Q-function can be approximated by differentiable critics. We noticed that DACER [48] backpropagates the gradient of the Q-function to train diffusion actors, but the paper of DACER did not mention the relation to policy gradient and did not disclose that this method can be generalized to other actors.

4.2 Actor-Critic Learning with Diversity Regularization

As we pursue decision diversity, an effective diversity regularization is desired. As discussed earlier, the traditional entropy regularization do not prefer multimodality and is not applicable to intractable actors. To overcome this challenge, we propose a distance-based regularization to encourage multimodal diversity.

A straightforward distance-based diversity metric is the mean pairwise distance, formulated as $D^\pi(s) = \mathbb{E}_{x, y \sim \pi(\cdot|s)} [\delta(x, y)]$, where $\delta(\cdot, \cdot)$ is a distance metric. However, this metric may overestimate the diversity when the data distribution forms some tiny clusters far away from each other (See Fig. 3). We empirically found that this issue led to underwhelming performance. Therefore, we consider the geometric mean $\text{GM}(\{\delta(x_1, y_1), \dots, \delta(x_n, y_n)\}) = (\prod_{i=1}^n \delta(x_i, y_i))^{-1/n}$ of pairwise distances instead. The geometric mean is sensitive to small values as multiplication is taken instead of summation, which mitigates the overestimation issue (See Fig. 3). Furthermore, we reshape diversity on the log scale to make it easier to balance reward and diversity. We propose a diversity regularization as follows

$$D^\pi(s) = \mathbb{E}_{x \sim \pi(\cdot|s), y \sim \pi(\cdot|s)} [\log \delta(x, y)]. \quad (8)$$

Specifically, L2 distance is adopted as the distance metric. This diversity regularization is added to the original RL objective with a coefficient α , resulting in an objective to maximize as

$$J = \mathbb{E}_\pi \left[\sum_{t=0}^{\infty} \gamma^t (R_t + \alpha D^\pi(S_t)) \right]. \quad (9)$$

We estimate the diversity of the actor π_θ at a certain state s by sampling n pairs of i.i.d. latent vectors $(z_1^x, z_1^y), \dots, (z_n^x, z_n^y)$, and compute the average log-distance over samples. This is denoted as $\tilde{D}_\theta(s) = \frac{1}{n} \sum_{i=1}^n \log \delta(f_\theta(s, z_i^x), f_\theta(s, z_i^y))$. Though this estimation requires multiple samples, it is time-efficient as such a process can be easily parallelized on GPUs.

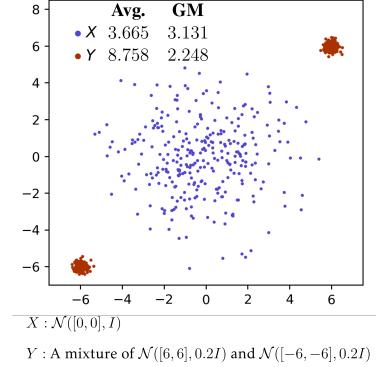


Figure 3: Average (Avg.) and geometric mean (GM) of pairwise distances for two synthesized data distributions. Average pairwise distance overestimates the diversity of distribution Y .

The practical DrAC algorithms follow the common actor-critic architecture. The actor is a stochastic-mapping actor, and the critics follow the learning tricks in soft actor-critic (SAC) [14]. Double critics $Q(\cdot, \cdot; \phi_1), Q(\cdot, \cdot; \phi_2)$ and double target critics $\hat{Q}(\cdot, \cdot; \hat{\phi}_1), \hat{Q}(\cdot, \cdot; \hat{\phi}_2)$ are employed. By substituting \tilde{D}_θ into Eq. (2) and unrolling it into a bootstrap learning target, the critic loss is derived as

$$\mathcal{L}_\phi = \mathbb{E}_{s, a, r, s' \sim \mathcal{D}} \left[\text{MSE}(Q(s, a; \phi_i), r + \gamma(\tilde{V}(s'; \hat{\phi}) + \alpha \tilde{D}_\theta(s')) \right], i \in \{1, 2\} \quad (10)$$

where \mathcal{D} represents the off-policy replay buffer, $\tilde{V}(s'; \hat{\phi}) = \min_{i \in \{1, 2\}} \hat{Q}(s', a'; \hat{\phi}_i)$ is an approximation of the value of the next state s' based on the target critics and a' is a sample drawn from $\pi_\theta(\cdot | s')$. The target critics are updated by the target smoothing strategy [14, 11].

Regarding actor learning, we combine PGRT (See Eq. (7)) with the regularized policy gradient theorem (See Eq. (4)), derive a loss function as follows

$$\mathcal{L}_\theta = -\mathbb{E}_{s \sim \mathcal{D}, z \sim p_z} [Q(s, f_\theta(s, z); \phi) + \alpha \tilde{D}_\theta(s)], \quad (11)$$

where $Q(s, f_\theta(s, z); \phi) = \min_{i \in \{1, 2\}} Q(s, f_\theta(s, z); \phi_i)$, following the technique used in SAC. This loss function can also be considered an approximation of Eq. (3).

4.3 Automatic Coefficient Adjustment based on Target-Diversity

Multimodal actors are expressive and flexible. However, given the diversity regularization with a fixed coefficient, such properties can also lead to instability in critic learning, which may harm the training. To mitigate this issue and also make hyperparameter tuning easier, we borrow the automatic coefficient adjustment technique from SAC [15]. Specifically, we parameterize α with a learnable scalar w such that $\alpha = \exp(w)$ if $w < 0$ and $\alpha = w + 1$ otherwise. Then α is treated as learnable and updated by descending the gradient of a dual-optimization loss defined as

$$\mathcal{L}_\alpha = \mathbb{E}_{s \sim \mathcal{D}} [\alpha(\tilde{D}_\theta(s) - \hat{D})], \quad (12)$$

where \hat{D} is a target diversity value. Minimizing this loss will make $\tilde{D}_\theta(s)$ match with \hat{D} adaptively. As $\tilde{D}_\theta(s)$ is defined on the log-scale, determining its range can be trivial. We introduce a temperature hyperparameter β such that $\hat{D} \leftarrow \log(\beta \sqrt{|\mathcal{A}|})$ to ease the triviality. The scale of β is comparable to pairwise distances after normalization by the action space dimensionality $|\mathcal{A}|$.

5 Experiments

Domains Previous works on multimodal RL [13, 33, 48] only verify the multimodal ability with a toy 2D multi-goal navigation task and mainly focus on the improvements in MuJoCo. To demonstrate the advantages of DrAC and multimodal policies, we include two diversity-critical benchmarks in *multi-goal achieving* and *generative RL* domains. We also test DrAC and representative multimodal RL algorithms in standard MuJoCo benchmarks to compare the general performance.

Baselines By installing DrAC with an amortized actor and a diffusion actor separately, we obtain two versions of DrAC, namely DrAmort and DrDiffus. We include SQL [13], DACER [48], S²AC [33] as multimodal RL baselines, and SAC [15] as a unimodal baseline. Table 1 summarizes the techniques of these algorithms. We keep NN architectures and common hyperparameters all the same as the default setting of SAC to enable a fair comparison [14]. Appendix A.2 details the hyperparameters. All trainings are conducted with five seeds.

5.1 Multi-goal Achieving

In real-world scenarios, there could be multiple goals to achieve. We build a multi-goal version of the PointMaze environment in D4RL [10] to conduct a case study of multi-goal achieving. This environment requires the agent to learn to steer a ball from a fixed original point to navigate to one of the goals within a maze. The maze contains multiple goals. The reward is sparse, only reaching a goal returns +100 reward and ends the episode with a success flag. Besides the success rate, the number of reachable goals is also evaluated. We designed three maze maps with increasing difficulty levels, as illustrated in Fig. 9. We notice that the work of [28] tested more complex multi-goal achieving

Table 1: A summary of compared algorithms. Bold texts indicate our contributions. The “Temperature” column indicates the technique of adjusting the emphasis on diversity used by each algorithm.

	Actor Model	Actor Learning	Critic Learning	Diversification	Temperature
DrAmort	Amortized	Regularized PGRT	Conventional	Max-Diversity	Target-Matching
SQL [13]	Amortized	SPI via SVGD	Conventional	Max-Entropy	Constant
DrDiffus	Diffusion	Regularized PGRT	Conventional	Max-Diversity	Target-Matching
DACER [48]	Diffusion	PGRT	Distributional [8]	Noise Scaling	Target-Matching
S ² AC [33]	Energy-based	SPI via SVGD	Conventional	Max-Entropy	Constant
SAC [14]	Gaussian	SPI	Conventional	Max-Entropy	Target-Matching

benchmarks. However, that work autonomously collects and clusters trajectories first, then clones behaviors using these clusters, while our work focuses on basic RL algorithms. To ensure a fair and meaningful comparison, we conducted a grid search for each algorithm before the formal evaluation. The highest temperature that ensures each algorithm reaches the optimal success rate is picked.

The trajectories in the simple maze of learned policies are visualized in Fig. 4. It is clear that DrAmort learns the most diverse and uniform trajectories. Despite using the same diffusion actor, DrDiffus learn to reach different goals, while DACER does not. Fig. 5b shows that DrAmort and SQL consistently learns to reach the most goals in all mazes, and DrAmort learns faster than SQL. In terms of success rate, DrAmort, DrDiffus, and DACER learn fast and stably, while SQL, SAC, and S²AC exhibit a decrease in success rate in the early stage and reach optimal success rate more slowly. Given the results, we consider that amortized actors possess superior multimodal expressivity. DACER struggles with learning multimodal behaviors in PointMaze. This is most likely due to DACER only controlling the diversity via noise scaling. Meanwhile, SQL shows better multimodality than DrDiffus. The underwhelming multimodality of diffusion actors may be owing to a small number of diffusion steps of 20 we used as suggested in [48]. However, despite using a small number of diffusion steps, the inference and training speed is much slower than amortized actors. Therefore, we advocate that the amortized actor is a promising actor class for representing multimodal policies. Trajectories in medium and hard mazes are presented in Appendix B.2.



Figure 4: Evaluation trajectories of all tested algorithms in the simple maze.

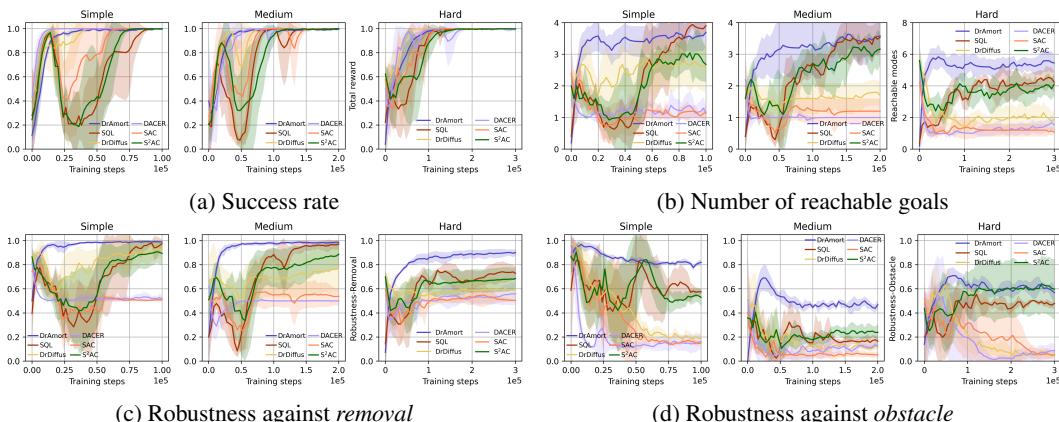


Figure 5: Learning curves in multi-goal PointMaze. Solid lines represent mean performance, and shaded regions indicate standard deviation. All curves are smoothed by the exponential moving average with a coefficient of 0.5.

Inspired by [26], we investigate whether diversity empowers few-shot robustness in out-of-distribution scenarios. We consider two types of perturbations: 1) *Removal*: half of the goals are removed during the test; 2) *Obstacle*: some obstacles that do not exist in the training phase, appear in the test phase and block the shortest paths to the goals. The first case requires agents to reach all goals with uniform frequency. The second case requires the agents to navigate to the goal with diverse trajectories, so that they can bypass the obstacles by chance. Similar to [26], we test the *five-episode success rate* of all algorithms in each scenario. That is, the probability that the agent can successfully reach any goal at least once within five independent trials. The results are shown in Fig. 5c and Fig. 5d.

DrAmort shows the best robustness in all mazes, while SQL outperforms others among the rest algorithms. According to Fig. 4, DrAmort exhibits the best trajectory diversity, so it has more chances to bypass the obstacles. Meanwhile, DrAmort reaches goals more uniformly, so higher robustness against removal is guaranteed. The results confirm that multimodality and diversity empower few-shot robustness in out-of-distribution scenarios. DrDiffus outperforms DACER regarding robustness against removal. Regarding SAC, although a high temperature is set, it struggles in learning to reach multiple goals and generalizing to out-of-distribution test cases. This phenomenon confirms the fundamental limitation of unimodal actors.

5.2 Generative RL

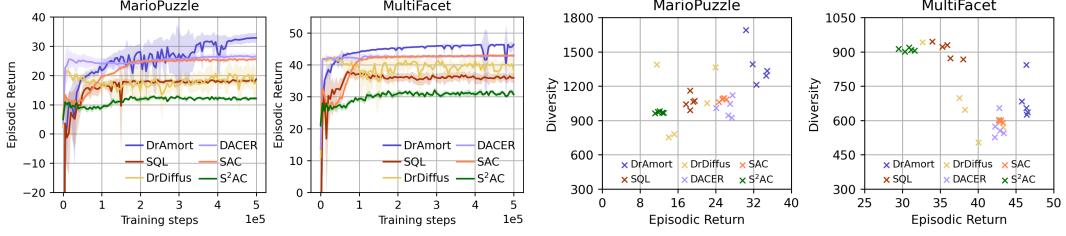
There has been some application of RL in generative tasks, e.g., game content generation [25, 50] and program generation [30]. We take game level generation benchmark in [50] as a case study because policy multimodality is important to balance quality and diversity in this domain, according to [50].

In this game level generation benchmark, the agent needs to observe a sliding window on an existing game level and propose new level segments to be concatenated with the existing level. The level segment is represented by a decoder, which is the generator of pretrained generative adversarial networks [12, 47]. That means the agent will output a continuous latent vector at each step, and the decoder will decode the action into a piece of level. There are two expert knowledge-based formulations of the reward function in this benchmark, which aim to evaluate the quality of generated levels under some game design principles. The reward also includes a penalty for unsolvable level segments to guide agents to generate solvable levels. Solvable or not is checked by rules in our experiments. Different reward functions result in different styles of generated levels, namely *MarioPuzzle* and *MultiFacet*. Fig. 6 shows example levels of the two styles generated by DrAmort. Besides episodic return, the diversity of generated levels is also desired in this domain.

Figure 6: Example *MarioPuzzle* style (left) and *MultiFacet* style (right) levels generated by DrAmort.

We train algorithms with the same temperature settings as multi-goal PointMaze. The learning curves are shown in Fig. 7a. For both styles, DrAmort shows the best episodic returns, namely the best qualities. This is possibly attributed to the superior expressivity of the amortized actor. As the distribution of high-quality content is most likely multimodal, only highly expressive actors can represent high-performance policies under high temperatures. Though SQL also applies amortized actor, it performs badly. As SQL directly uses SVGD as the gradient estimator for approximating SPI, it is possible that reparameterization trick is a better gradient estimator than SVGD for RL. S²AC, which applies SVGD to directly sample actions, performs the worst on all tasks. On the other hand, DrDiffus and DACER do not outperform SAC.

We also evaluate the diversity of generated levels by computing the average pairwise Hamming distance following [50], and then visualize the performance in the 2D quality-diversity objective space of all trained policies in Fig. 7b. Each marker in the figure represents a policy trained by one of the algorithms with an independent seed. Under *MarioPuzzle* style, DrAmort generally dominates other algorithms, i.e., outperforms other algorithms in terms of both return and diversity. Under the *MultiFacet* style, DrAmort dominates other algorithms except for SQL. Though SQL shows the best diversity, its episodic return is poor. Under the other style, SQL does not demonstrate better diversity, and the episodic return is still poor. DrDiffus, DACER, and SAC are non-dominated with each other. But diffusion actor is much slower than Gaussian and amortized actors. Therefore, diffusion



(a) Learning curves regarding average episodic return, (b) Locations of all trained policies in the episodic return-diversity performance space.

Figure 7: Evaluation results in the game content generation benchmark.

actors might not be a good choice for this task. We present t-SNE embedding visualizations [46] of generated levels in Appendix B.5, to demonstrate their diversity more intuitively.

5.3 Conventional Benchmarks

To evaluate the general performance of DrAC in conventional tasks, we test DrAC in MuJoCo-v4 and compare it with baselines. We do not include S²AC as it is too computationally intensive and it uses an unusual implicit actor, making it less meaningful to compare standard performance. Learning curves in the six MuJoCo locomotion tasks are presented in Fig. 8.

DrAmort exhibits competitive performance. It achieves the best performance in three out of the six tasks and surpasses SQL in a total of five, demonstrating that DrAC is a strong method for training amortized actors. Overall, the performance of DrDiffus is comparable to DACER, though DACER leverages a more advanced critic learning technique [8]. Therefore, DrAC can serve as a high-performance base algorithm for learning multimodal policies, particularly for amortized actors. Meanwhile, it is surprising that DACER and DrDiffus do not outperform SAC, though they apply more complex diffusion actors. We notice that the paper of DACER [48] uses deeper networks, more advanced activations, and smaller learning rates than the default settings of [14]. It is possible that diffusion actors need more powerful networks and more elaborate hyperparameter tuning to fulfill their potentials.

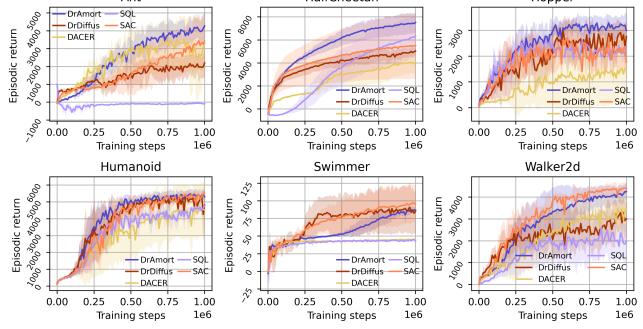


Figure 8: Learning curves in MuJoCo.

6 Conclusion

We propose *Diversity-regularized Actor Critic* (DrAC), a novel and versatile RL algorithm designed to train intractable multimodal policies. DrAC addresses the intractability challenge in training multimodal policies by leveraging the reparameterization trick and distance-based diversity regularization. Meanwhile, DrAC is compatible with all policy models that can be formulated as a stochastic-mapping actor defined as $\pi_\theta = \{f_\theta, p_z\}$ such that $a \sim \pi_\theta(\cdot|s) \equiv a \leftarrow f_\theta(s, z), z \sim p_z$. Experiments show DrAC can train amortized actors to achieve superior performance in multi-goal achieving and generative RL benchmark, which also verifies the significance of multimodal policies in these domains. Notably, using an amortized actor, DrAC demonstrates strong few-shot robustness [26] in out-of-distribution test scenarios within the multi-goal PointMaze environment. Nevertheless, this paper only investigates a basic implementation of DrAC, leaving ample room for further improvements. Future work could investigate scheduling the temperature, designing better stochastic-mapping actors, exploiting other distance and diversity metrics, and integrating more learning tricks, etc.

Our empirical results also indicate that the amortized actor possesses strong multimodal expressivity and performs well in all domains involved in this paper. On the other hand, the diffusion actor does not show significant advantages. It is possible that diffusion actors need more careful tuning of hyperparameters and better NN architecture design. However, the training and inference speed of amortized actors is comparable to traditional actors and significantly faster than diffusion actors. Therefore, we posit that the amortized actor represents a promising actor class for multimodal RL.

Acknowledgments and Disclosure of Funding

This work is supported by the National Natural Science Foundation of China 62406266.

References

- [1] Yuanjiang Cao, Quan Z Sheng, Julian McAuley, and Lina Yao. Reinforcement learning for generative AI: A survey. *arXiv preprint arXiv:2308.14328*, 2023.
- [2] Edoardo Cetin and Oya Celiktutan. Policy gradient with serial markov chain reasoning. *Advances in Neural Information Processing Systems*, 35:8824–8839, 2022.
- [3] Huayu Chen, Cheng Lu, Zhengyi Wang, Hang Su, and Jun Zhu. Score regularized policy optimization through diffusion behavior. In *International Conference on Learning Representations*, 2024.
- [4] Huayu Chen, Kaiwen Zheng, Hang Su, and Jun Zhu. Aligning diffusion behaviors with Q-functions for efficient continuous control. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang, editors, *Advances in Neural Information Processing Systems*, volume 37, pages 119949–119975. Curran Associates, Inc., 2024.
- [5] Yuhui Chen, Haoran Li, and Dongbin Zhao. Boosting continuous control with consistency policy. In *Proceedings of the 23rd International Conference on Autonomous Agents and Multiagent Systems*, pages 335–344, 2024.
- [6] Edoardo Conti, Vashisht Madhavan, Felipe Petroski Such, Joel Lehman, Kenneth Stanley, and Jeff Clune. Improving exploration in evolution strategies for deep reinforcement learning via a population of novelty-seeking agents. *Advances in neural information processing systems*, 31, 2018.
- [7] Zihan Ding and Chi Jin. Consistency models as a rich and efficient policy class for reinforcement learning. In *The Twelfth International Conference on Learning Representations*, 2024.
- [8] Jingliang Duan, Wenzuan Wang, Liming Xiao, Jiaxin Gao, Shengbo Eben Li, Chang Liu, Ya-Qin Zhang, Bo Cheng, and Keqiang Li. Distributional soft actor-critic with three refinements. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2025.
- [9] Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need: Learning skills without a reward function. In *International Conference on Learning Representations*, 2019.
- [10] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4RL: Datasets for deep data-driven reinforcement learning. *arXiv preprint arXiv:2004.07219*, 2020.
- [11] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-critic methods. In *International Conference on Machine Learning*, pages 1587–1596. PMLR, 2018.
- [12] Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. *Advances in Neural Information Processing Systems*, 27, 2014.
- [13] Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with deep energy-based policies. In *International Conference on Machine Learning*, pages 1352–1361. PMLR, 2017.
- [14] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor. In *International Conference on Machine Learning*, pages 1861–1870. PMLR, 2018.
- [15] Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and applications. *arXiv preprint arXiv:1812.05905*, 2018.

[16] Seungyul Han and Youngchul Sung. Diversity actor-critic: Sample-aware entropy regularization for sample-efficient exploration. In *International Conference on Machine Learning*, pages 4018–4029. PMLR, 2021.

[17] Shashank Hegde, Sumeet Batra, KR Zentner, and Gaurav Sukhatme. Generating behaviorally diverse policies with latent diffusion models. *Advances in Neural Information Processing Systems*, 36:7541–7554, 2023.

[18] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in Neural Information Processing Systems*, 33:6840–6851, 2020.

[19] Zhang-Wei Hong, Tzu-Yun Shann, Shih-Yang Su, Yi-Hsiang Chang, Tsu-Jui Fu, and Chun-Yi Lee. Diversity-driven exploration strategy for deep reinforcement learning. *Advances in Neural Information Processing Systems*, 31, 2018.

[20] Zhiao Huang, Litian Liang, Zhan Ling, Xuanlin Li, Chuang Gan, and Hao Su. Reparameterized policy learning for multimodal trajectory optimization. In *International Conference on Machine Learning*, pages 13957–13975. PMLR, 2023.

[21] Haque Ishfaq, Guangyuan Wang, Sami Nur Islam, and Doina Precup. Langevin soft actor-critic: Efficient exploration through uncertainty-driven critic learning. In *International Conference on Learning Representations*, 2025.

[22] Vineet Jain, Tara Akhoud-Sadegh, and Siamak Ravanbakhsh. Sampling from energy-based policies using diffusion. In *Reinforcement Learning Conference*, 2025.

[23] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al. Highly accurate protein structure prediction with alphafold. *Nature*, 596(7873):583–589, 2021.

[24] Bingyi Kang, Xiao Ma, Chao Du, Tianyu Pang, and Shuicheng Yan. Efficient diffusion policies for offline reinforcement learning. *Advances in Neural Information Processing Systems*, 36:67195–67212, 2023.

[25] Ahmed Khalifa, Philip Bontrager, Sam Earle, and Julian Togelius. PCGRL: Procedural content generation via reinforcement learning. In *Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment*, volume 16, pages 95–101, 2020.

[26] Saurabh Kumar, Aviral Kumar, Sergey Levine, and Chelsea Finn. One solution is not all you need: Few-shot extrapolation via structured MaxEnt RL. *Advances in Neural Information Processing Systems*, 33:8198–8210, 2020.

[27] Qingfeng Lan, Samuele Tosatto, Homayoon Farrahi, and Rupam Mahmood. Model-free policy learning with reward gradients. In *International Conference on Artificial Intelligence and Statistics*, pages 4217–4234. PMLR, 2022.

[28] Steven Li, Rickmer Krohn, Tao Chen, Anurag Ajay, Pulkit Agrawal, and Georgia Chalvatzaki. Learning multimodal behaviors from scratch with diffusion policy gradient. *Advances in Neural Information Processing Systems*, 37:38456–38479, 2024.

[29] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In *International Conference on Learning Representations*, 2016.

[30] Guan-Ting Liu, En-Pei Hu, Pu-Jen Cheng, Hung-Yi Lee, and Shao-Hua Sun. Hierarchical programmatic reinforcement learning via learning to compose programs. In *International Conference on Machine Learning*, pages 21672–21697. PMLR, 2023.

[31] Xiangyu Liu, Hangtian Jia, Ying Wen, Yujing Hu, Yingfeng Chen, Changjie Fan, Zhipeng Hu, and Yaodong Yang. Towards unifying behavioral and response diversity for open-ended learning in zero-sum games. *Advances in Neural Information Processing Systems*, 34:941–952, 2021.

[32] Bogdan Mazoure, Thang Doan, Audrey Durand, Joelle Pineau, and R Devon Hjelm. Leveraging exploration in off-policy algorithms via normalizing flows. In *Conference on Robot Learning*, pages 430–444. PMLR, 2020.

[33] Safa Messaoud, Billel Mokeddem, Zhenghai Xue, Linsey Pang, Bo An, Haipeng Chen, and Sanjay Chawla. S²AC: Energy-based reinforcement learning with Stein soft actor critic. In *International Conference on Learning Representations*, 2024.

[34] Jack Parker-Holder, Aldo Pacchiano, Krzysztof M Choromanski, and Stephen J Roberts. Effective diversity in population based reinforcement learning. *Advances in Neural Information Processing Systems*, 33: 18050–18062, 2020.

[35] Mariya Popova, Olexandr Isayev, and Alexander Tropsha. Deep reinforcement learning for de novo drug design. *Science advances*, 4(7):eaap7885, 2018.

[36] Michael Psenka, Alejandro Escontrela, Pieter Abbeel, and Yi Ma. Learning a diffusion model policy from rewards via Q-score matching. In *International Conference on Machine Learning*, pages 41163–41182. PMLR, 2024.

[37] Allen Z Ren, Justin Lidard, Lars Lien Ankile, Anthony Simeonov, Pulkit Agrawal, Anirudha Majumdar, Benjamin Burchfiel, Hongkai Dai, and Max Simchowitz. Diffusion policy policy optimization. In *International Conference on Learning Representations*, 2024.

[38] Jie Ren, Yewen Li, Zihan Ding, Wei Pan, and Hao Dong. Probabilistic mixture-of-experts for efficient deep reinforcement learning. *arXiv preprint arXiv:2104.09122*, 2021.

[39] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

[40] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller. Deterministic policy gradient algorithms. In *International Conference on Machine Learning*, pages 387–395. PMLR, 2014.

[41] Richard S Sutton, Andrew G Barto, et al. *Reinforcement learning: An introduction*, volume 1. MIT press Cambridge, 1998.

[42] Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods for reinforcement learning with function approximation. In S. Solla, T. Leen, and K. Müller, editors, *Advances in Neural Information Processing Systems*, volume 12, pages 1057–1063. MIT Press, 1999.

[43] Chen Tang, Ben Abbatematteo, Jiaheng Hu, Rohan Chandra, Roberto Martín-Martín, and Peter Stone. Deep reinforcement learning for robotics: A survey of real-world successes. *Annual Review of Control, Robotics, and Autonomous Systems*, 8(Volume 8, 2025):153–188, 2025. ISSN 2573-5144.

[44] Emanuel Todorov. General duality between optimal control and estimation. In *2008 47th IEEE conference on decision and control*, pages 4286–4292. IEEE, 2008.

[45] Marc Toussaint. Robot trajectory optimization using approximate inference. In *Proceedings of the 26th annual international conference on machine learning*, pages 1049–1056, 2009.

[46] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. *Journal of machine learning research*, 9(11), 2008.

[47] Vanessa Volz, Jacob Schrum, Jialin Liu, Simon M Lucas, Adam Smith, and Sebastian Risi. Evolving Mario levels in the latent space of a deep convolutional generative adversarial network. In *Proceedings of the Genetic and Evolutionary Computation Conference*, pages 221–228, 2018.

[48] Yinuo Wang, Likun Wang, Yuxuan Jiang, Wenjun Zou, Tong Liu, Xujie Song, Wenxuan Wang, Liming Xiao, Jiang Wu, Jingliang Duan, et al. Diffusion actor-critic with entropy regulator. *Advances in Neural Information Processing Systems*, 37:54183–54204, 2024.

[49] Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy class for offline reinforcement learning. In *International Conference on Learning Representations*, 2023.

[50] Ziqi Wang, Chengpeng Hu, Jialin Liu, and Xin Yao. Negatively correlated ensemble reinforcement learning for online diverse game level generation. In *International Conference on Learning Representations*, 2024.

[51] Shuang Wu, Jian Yao, Haobo Fu, Ye Tian, Chao Qian, Yaodong Yang, Qiang Fu, and Yang Wei. Quality-similar diversity via population based reinforcement learning. In *International Conference on Learning Representations*, 2023.

[52] Ke Xue, Ren-Jian Wang, Pengyi Li, Dong Li, Jianye Hao, and Chao Qian. Sample-efficient quality-diversity by cooperative coevolution. In *International Conference on Learning Representations*, 2024.

[53] Long Yang, Zhixiong Huang, Fenghao Lei, Yucun Zhong, Yiming Yang, Cong Fang, Shiting Wen, Binbin Zhou, and Zhouchen Lin. Policy representation via diffusion probability model for reinforcement learning. *arXiv preprint arXiv:2305.13122*, 2023.

- [54] Zhengyu Yang, Kan Ren, Xufang Luo, Minghuan Liu, Weiqing Liu, Jiang Bian, Weinan Zhang, and Dongsheng Li. Towards applicable reinforcement learning: Improving the generalization and sample efficiency with policy ensemble. In *International Joint Conference on Artificial Intelligence*, 2022.
- [55] Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Mastering visual continuous control: Improved data-augmented reinforcement learning. In *International Conference on Learning Representations*, 2022.
- [56] Chengyang Ying, Huayu Chen, Xinning Zhou, Zhongkai Hao, Hang Su, and Jun Zhu. Exploratory diffusion policy for unsupervised reinforcement learning. *arXiv preprint arXiv:2502.07279*, 2025.
- [57] Yunbo Zhang, Wenhao Yu, and Greg Turk. Learning novel policies for tasks. In *International Conference on Machine Learning*, pages 7483–7492. PMLR, 2019.
- [58] Zhengbang Zhu, Hanye Zhao, Haoran He, Yichao Zhong, Shenyu Zhang, Haoquan Guo, Tingting Chen, and Weinan Zhang. Diffusion models for reinforcement learning: A survey. *arXiv preprint arXiv:2311.01223*, 2023.
- [59] Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, Anind K Dey, et al. Maximum entropy inverse reinforcement learning. In *AaaI*, volume 8, pages 1433–1438, 2008.
- [60] Eckart Zitzler and Lothar Thiele. Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. *IEEE transactions on Evolutionary Computation*, 3(4):257–271, 2002.

A Technical Details

A.1 Pseudo code of DrAC

Algorithm 1 details DrAC.

Algorithm 1 Diversity-regularized Actor-Critic (DrAC)

Require: Actor weights θ ; Critic weights $\phi = \{\phi_1, \phi_2\}$; Target critic weights $\hat{\phi} = \{\hat{\phi}_1, \hat{\phi}_2\}$
 Let gradient_step_count $\leftarrow 0$
for $t : 1 \rightarrow T$ **do**
 Sample an action $a \sim \pi(\cdot|s)$
 Execute a and observe s', r, d
 $r, s', d \leftarrow$ Execute a in the environment
 Store (s, a, r, s, d) in the buffer
while gradient_step_count $< t * \text{reply_ratio}$ **do**
 Sample a batch (s, a, r, s', d) from the replay memory
 Sample z ; $(z_1^x, z_1^y), \dots, (z_n^x, z_n^y)$ from p_z
 Let $\tilde{D}_\theta(s') \leftarrow \frac{1}{n} \sum_{i=1}^n \log \delta(f_\theta(s', z_i^x), f_\theta(s', z_i^y))$
 Compute Q-target $y \leftarrow r + \gamma(1 - d)(\hat{Q}(s, f_\theta(s, z); \hat{\phi}) + \alpha \tilde{D}_\theta(s'))$
 Update ϕ_1 and ϕ_2 with MSE($Q(s, a; \phi_i), y$), $i \in \{1, 2\}$
 Sample z ; $(z_1^x, z_1^y), \dots, (z_n^x, z_n^y)$ from p_z
 Let $\tilde{D}_\theta(s) \leftarrow \frac{1}{n} \sum_{i=1}^n \log \delta(f_\theta(s, z_i^x), f_\theta(s, z_i^y))$
 Update θ with $\mathcal{L}_\theta = -Q(s, f_\theta(s, z); \phi) - \alpha \tilde{D}_\theta(s)$
 Update α with $\mathcal{L}_\alpha = \alpha(\tilde{D}_\theta(s) - \hat{D})$
 Update $\hat{\phi}$ by $\hat{\phi} \leftarrow \rho \phi + (1 - \rho) \hat{\phi}$
 Let gradient_step_count \leftarrow gradient_step_count + 1
end while
end for

A.2 Experiment Settings

The customized maze maps used in our multi-goal PointMaze environment are shown in Fig. 9

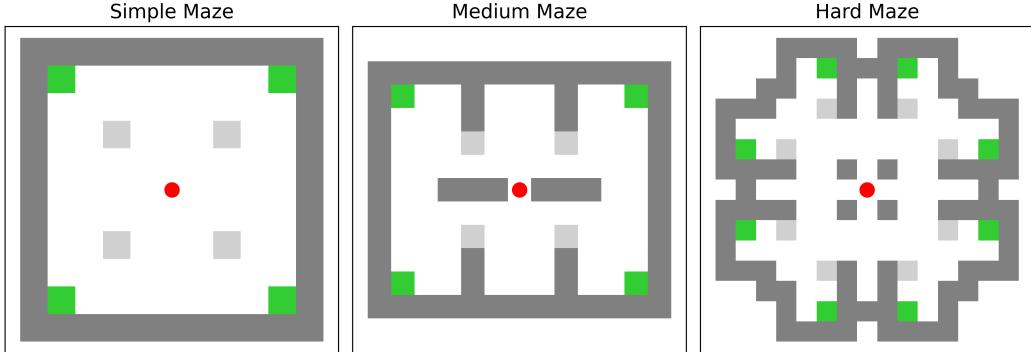


Figure 9: Maze maps of the Multi-goal PointMaze environment. The red circle indicates the start point, green cells indicate goals, gray cells are walls, and light gray cells are obstacles that only appear in the robustness evaluation stage.

The hyperparameters are listed in Table 2. The temperature hyperparameters listed in Table 2 are used in the multi-goal PointMaze environment and the game content generation environment. While for MuJoCo, we use a lower temperature for DrAC. For baseline algorithms, we use the default temperatures MuJoCo provided in their original papers. Temperature hyperparameters for all algorithms in MuJoCo are listed in Table 3.

Table 2: Hyperparameters

Hyperparameter	DrAmort	DrDiffus	DACER	SQL	S ² AC	SAC
Replay buffer size			1000000			
MLP hidden layers in actors & critics			(256, 256)			
Hidden layer activation in all networks			ReLU			
Optimizer			Adam			
Learning rate of actors & critics			3e ⁻⁴			
Discount rate (γ)			0.99			
Target smoothing coefficient (ρ)			0.005			
Replay ratio (gradient step)			1			
Mini-batch size			256			
Diversity temperature (β)	0.8			N/A		
Target entropy (\bar{H})	N/A		0.5 \mathcal{A}	N/A	0.5 \mathcal{A}	
Learning rate for α auto-adjustment	5e ⁻³		3e ⁻²	N/A	3e ⁻⁴	
Entropy coefficient (α)	N/A			0.3	0.7	N/A
Number of diversity estimation pairs (n)	8			N/A		
Number of SVGD particles (k)	N/A			10	32	N/A
Policy delay (actor update period)	N/A, equivalent to 1		2		N/A, equivalent to 1	

Table 3: Temperature settings for MuJoCo

DrAmort	DrDiffus	DACER	SQL	S ² AC	SAC
0.5	0.2	-0.9 \mathcal{A} [48]	0.2 for Ant, 1.0 for the rest [33]	- \mathcal{A}	

Regarding compute resources, all of our experiments are conducted with a Linux server with 8 NVIDIA RTX 3090 GPUs and an Intel Xeon Platinum 8375C CPU. All trainings are done with one GPU.

A.3 Relation to Amortized Inference and Traditional Gaussian Actor

The formulation of stochastic mapping actors is closed to the definition of amortized inference. Due to that the term “amortized actor” has been used in [13] and adopted in [33], we name our formulation as “stochastic mapping actors”.

The formulation of stochastic mapping actors is also compatible with traditional Gaussian actor, by treating $f(s, z) \equiv \mu_\theta(s) + \sigma_\theta z$ and $z \sim \mathcal{N}(\mathbf{0}, I)$. Our method is also directly applicable to Gaussian actor.

B Additional Results

B.1 Computational costs

We record the average time cost per 1000 training steps in Ant-v4 environment. The test is conducted on a Linux server with 8 NVIDIA RTX 3090 GPUs and an Intel Xeon Platinum 8375C CPU. For each algorithm, we run three trials on GPU cards 0, 1 and 2, respectively, and then average the training time per 1000 steps. All algorithms are implemented with PyTorch 2.5.1, and the CUDA version is 12.5.

Table 4: Computational costs of all compared algorithms

	SAC	SQL	DrAmort	DACER	DrDiffus	S ² AC
Training time per 1000 steps	22.7s	18.9s	21.0s	76.9s	84.8s	220.5s
Peak GPU memory usage	352M	472M	392M	364M	608M	3462M

According to the table, we found that DrAmort is even faster than SAC. The reason is that SAC computes and back-propagates the log-probability at certain actions, which requires more sequential tensor operations. Though DrAmort requires samples, the computation is parallelized and takes fewer sequential tensor operations. As a result, DrAmort uses fewer GPU clock ticks and is slightly faster than SAC, given that the neural network is sufficiently small compared to the GPU’s parallel computation capability. For DrDiffus, it takes about 10% more time for training compared to DACER, but its diversity in multi-goal PointMaze is better.

For large-scale tasks that require larger networks, such as visual control, we can inject the latent variable at the last few layers. For example, if a CNN is used, the latent variables can be injected after the convolutional layers. In this case, the computation time and memory usage will not significantly increase.

B.2 Trajectories in Medium and Hard Multi-goal PointMaze

Figs. 10 and 11 demonstrate the trajectories in medium and hard mazes, respectively.

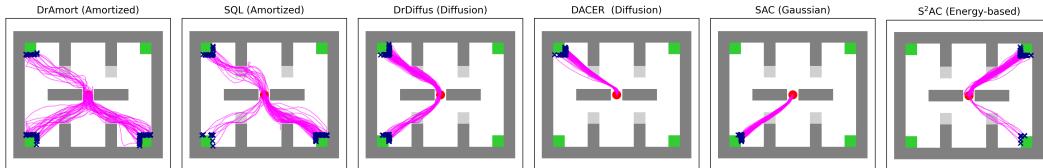


Figure 10: Evaluation trajectories of all tested algorithms in the medium maze.

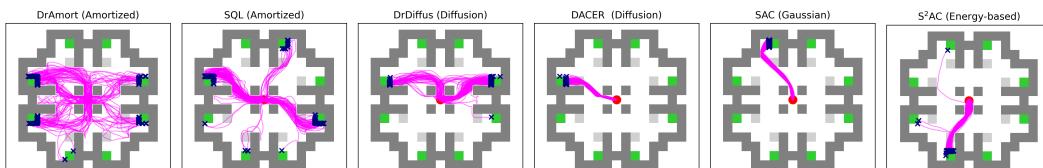


Figure 11: Evaluation trajectories of all tested algorithms in the hard maze.

Consistently, DrAmort exhibits the best diversity.

B.3 Sensitivity of Temperature Hyperparameter in Multi-goal PointMaze

We display the learning curves of all evaluated algorithms with varied temperatures. For our DrAmort and DrDiffus, we show a sensitivity study with five different temperatures. For baseline algorithms, we present three temperatures to explain our choice of their temperatures in our comparison study. Specifically, for all baseline algorithms, using a higher temperature than our choice leads to suboptimal success rate in at least one maze; while using a lower one leads to lower diversity.

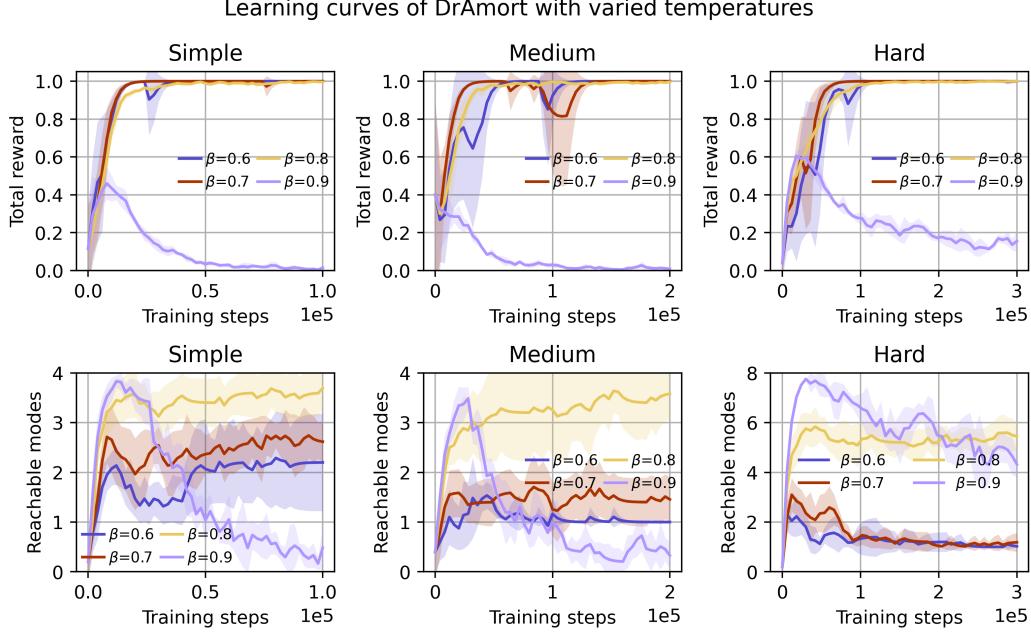


Figure 12: Learning curves of DrAmort in multi-goal PointMaze with varied temperatures.

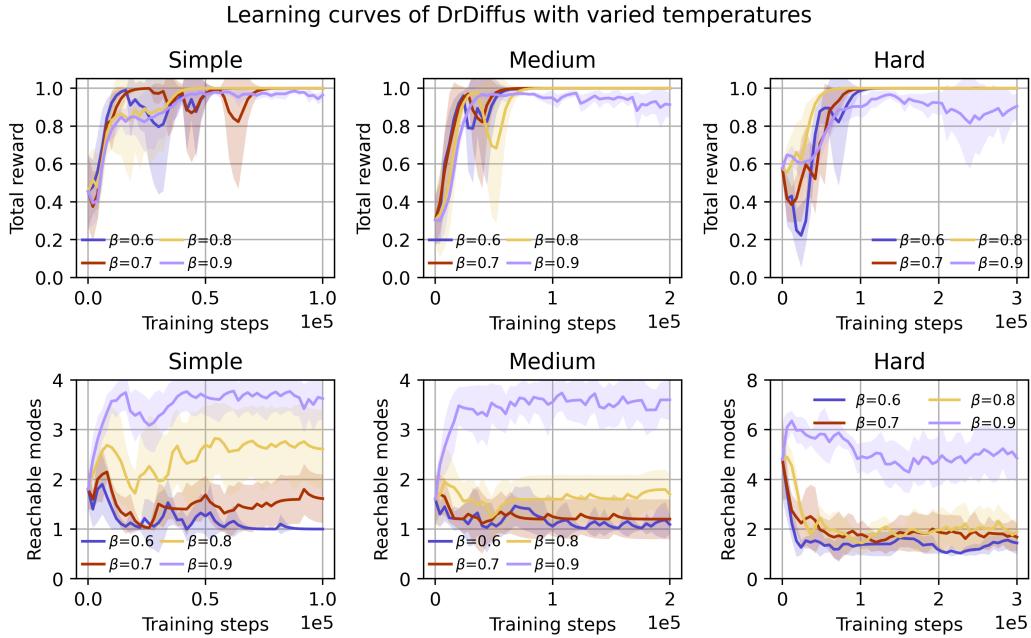


Figure 13: Learning curves of DrDiffus in multi-goal PointMaze with varied temperatures.

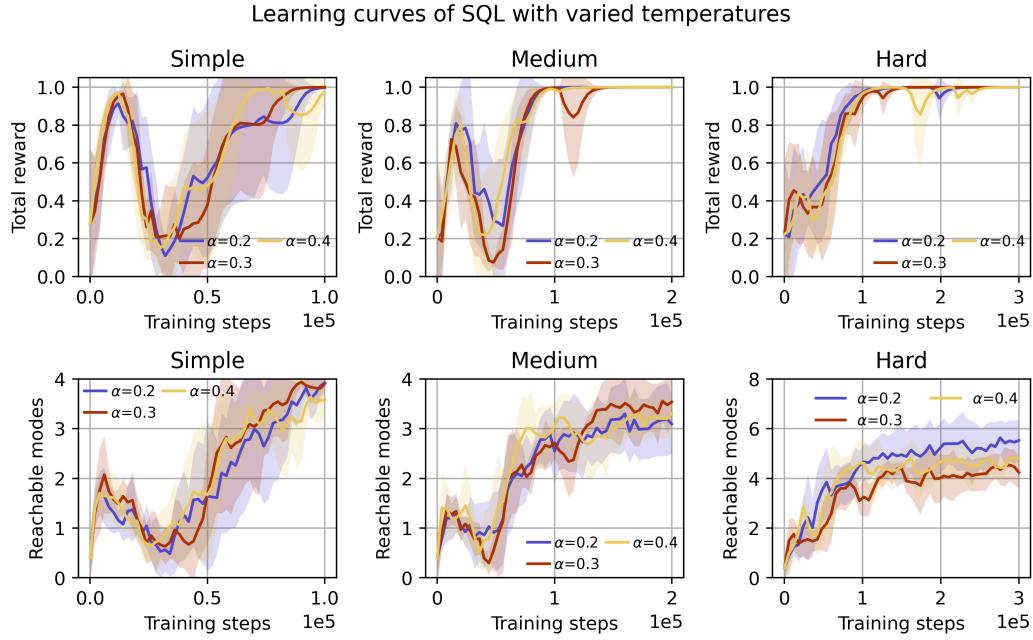


Figure 14: Learning curves of SQL in multi-goal PointMaze with varied temperatures.

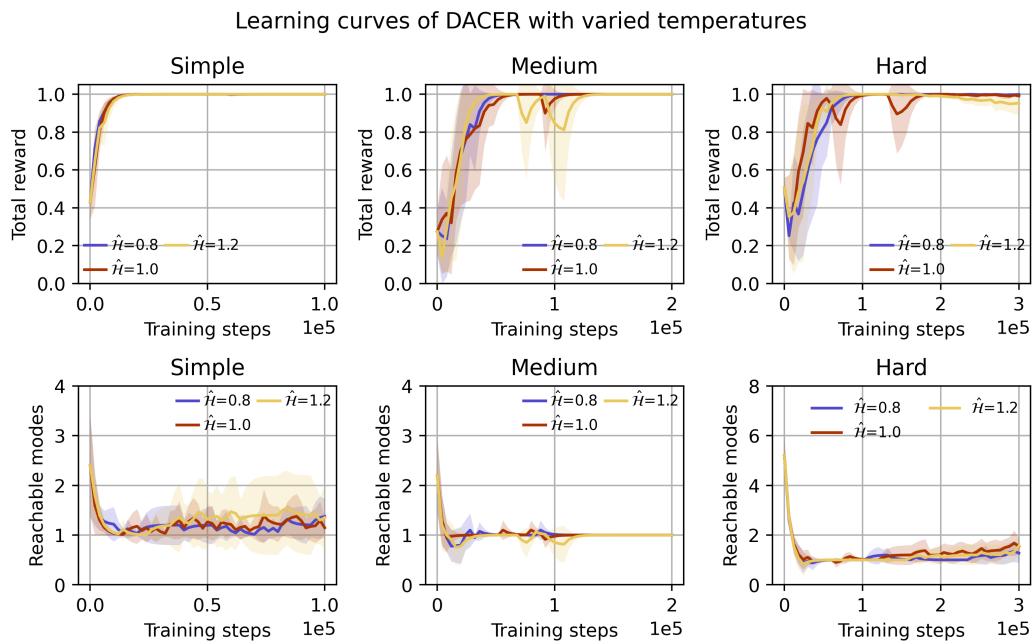


Figure 15: Learning curves of DACER in multi-goal PointMaze with varied temperatures.

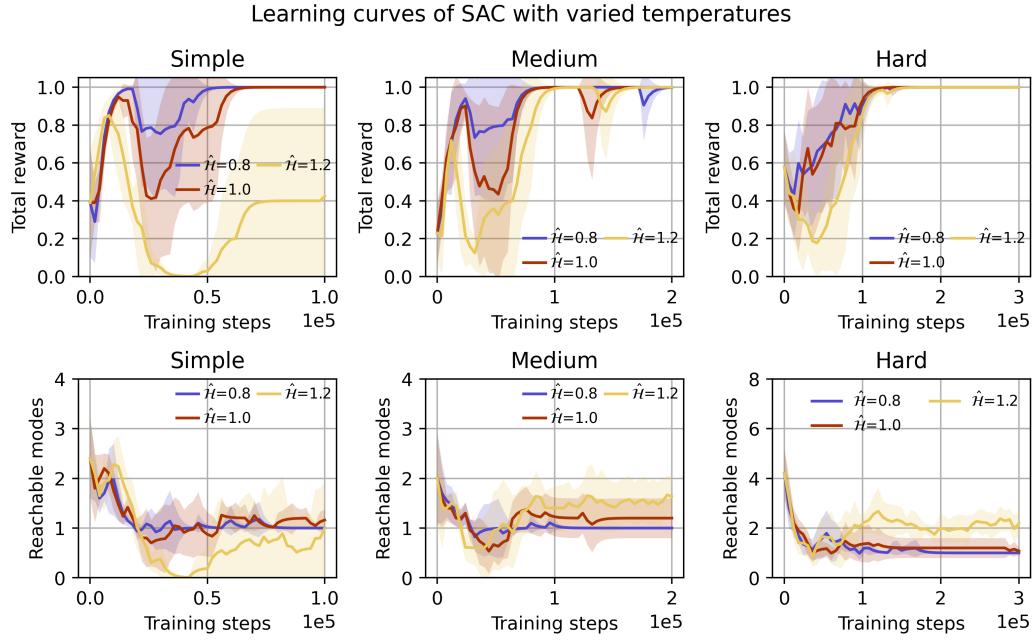


Figure 16: Learning curves of SAC in multi-goal PointMaze with varied temperatures.

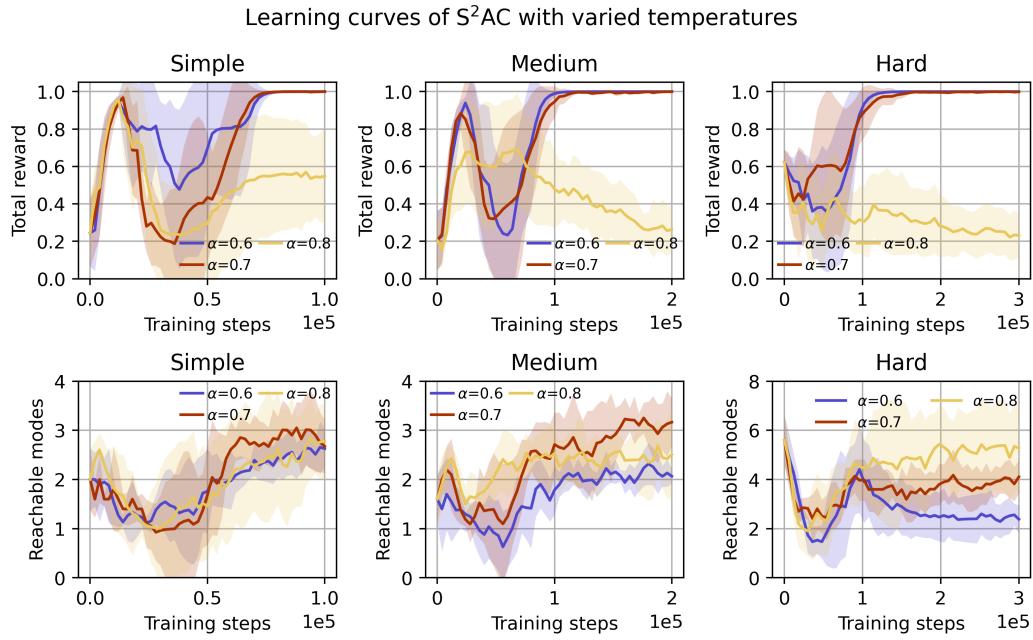


Figure 17: Learning curves of S²AC in multi-goal PointMaze with varied temperatures.

B.4 Sensitivity of Temperature in Game Content Generation

We train each algorithm with three groups of temperatures, namely high, mid, low, to investigate the sensitivity of temperature. The high temperature group uses the same temperature with the multi-goal PointMaze. The low temperature group are set to $-\lvert \mathcal{A} \rvert$ for SAC and DACER and near zero for DrAC, SQL and S^2 AC. The mid temperature group use temperatures averaged between low and high groups. Fig. 18 shows the algorithm performance across temperatures.

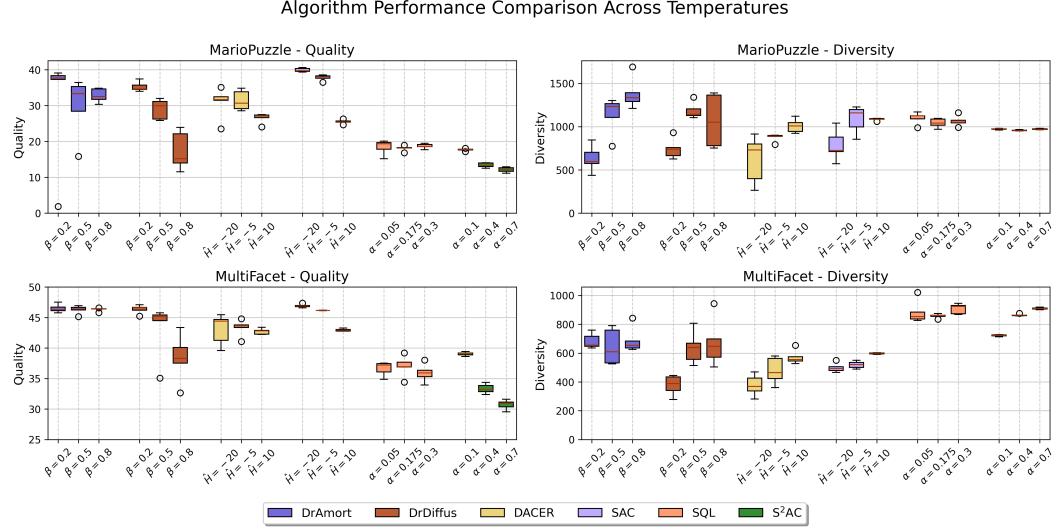


Figure 18: Sensitivity of temperature across tasks and metrics. The ticks of x -axis details the temperature.

Generally, the quality decreases along with raising temperature while diversity increases along with raising temperature. To provide an overall evaluation, we treat all policies trained by each algorithm across temperatures and seeds as a population, and compute the hypervolume (HV) metric for these populations [60]. The reference point is set according to the lowest quality and diversity performance across all algorithms, temperatures and seeds.

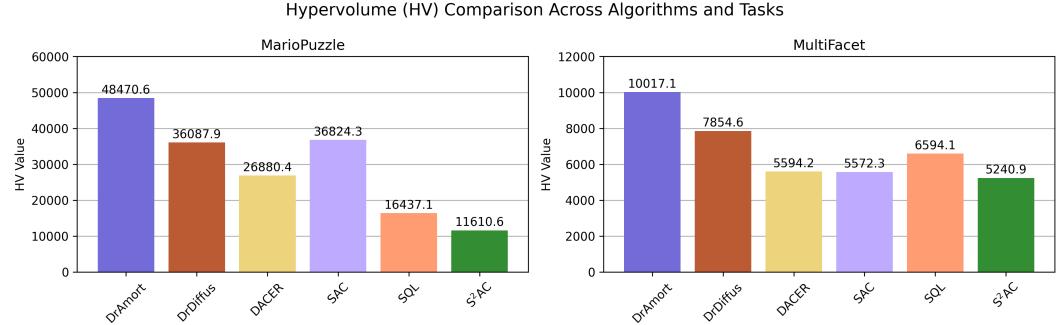


Figure 19: HV comparison of policy populations obtained by training each algorithm through three different temperatures.

The results show DrAmort produces the best population in terms of the HV metric, DrDiffus outperform baselines in MultiFacet and shows competitive performance in MarioPuzzle.

B.5 t-SNE visualization of Generated Game Levels

To compare the diversity of levels generated by each algorithm more intuitively, we embed levels generated by each algorithm with t-SNE [46], and plot the embeddings in Fig. 20 and Fig. 21.

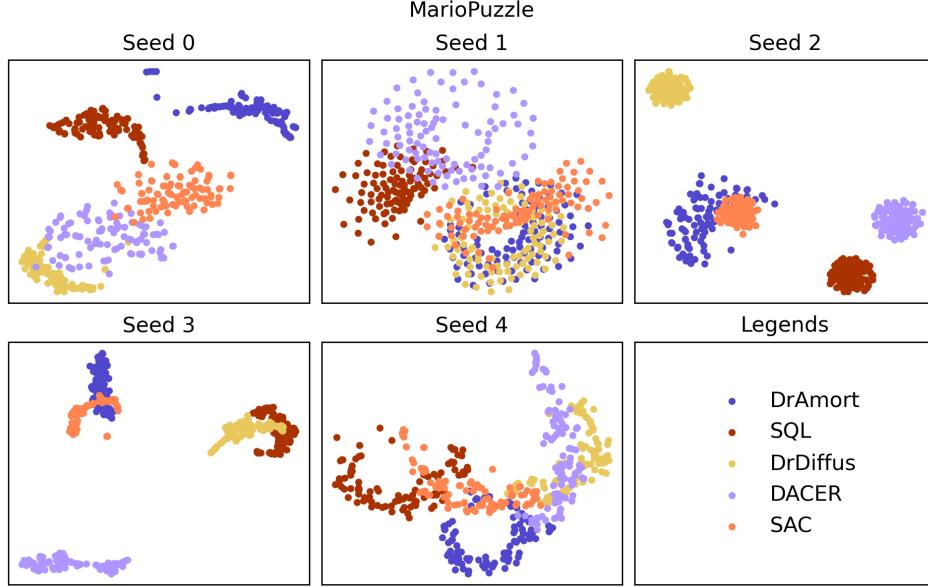


Figure 20: t-SNE embeddings of levels generated by each algorithm, under MarioPuzzle style.

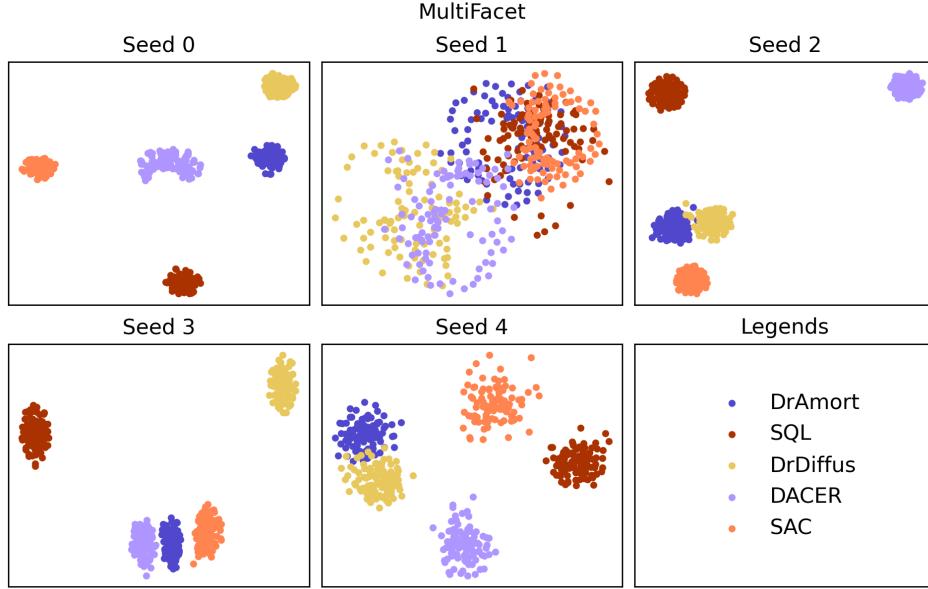


Figure 21: t-SNE embeddings of levels generated by each algorithm, under MultiFacet style.

Observing the embeddings, differences in terms of diversity are not significant. Different algorithms generally form different clusters. This may indicate that there is still ample room to improve the diversity with little harm to quality. Future work may investigate how to unleash the expressivity of multimodal policies more completely. Besides, average pairwise Hamming distance is a vanilla method to measure diversity of game content, more in-depth quantitative analysis may be considered in future work.

B.6 Sensitivity of Temperature Hyperparameter in MuJoCo

We demonstrate the sensitivity of temperature hyperparameter of DrAmort and DrDiffus as follows.

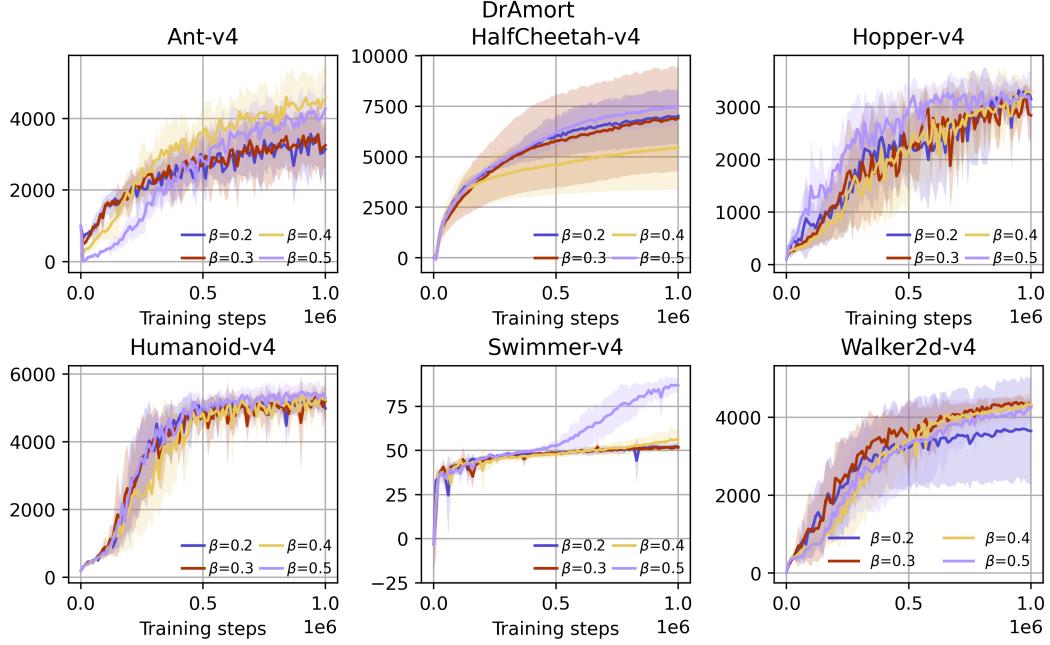


Figure 22: Learning curves of DrAmort with varied temperatures in MuJoCo

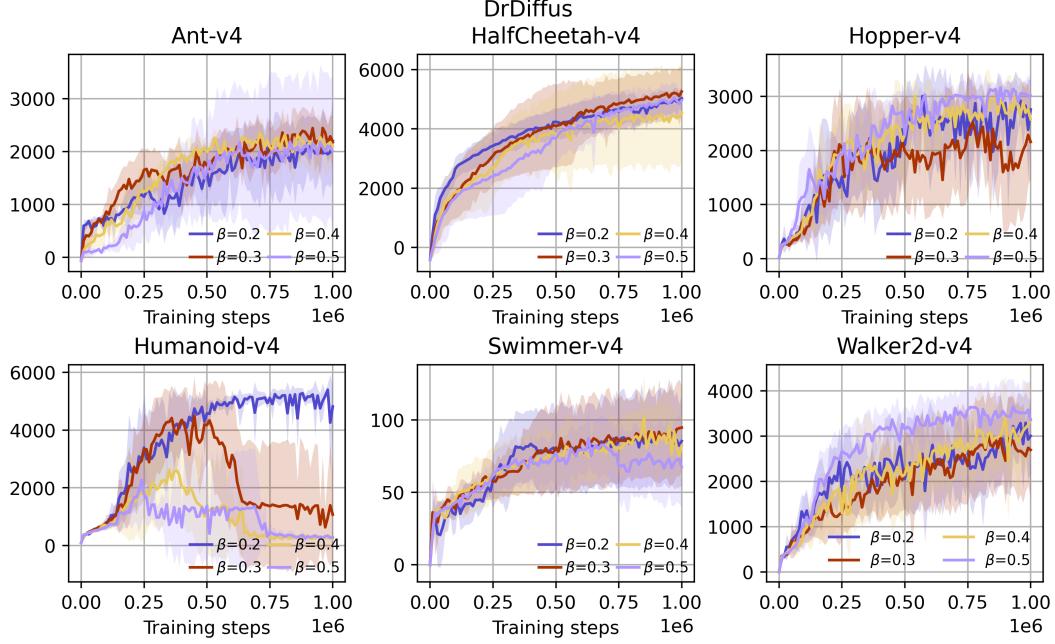


Figure 23: Learning curves of DrDiffus with varied temperatures in MuJoCo

DrAmort is robust to the temperature, overall $\beta = 0.5$ delivers superior performance. DrDiffus suffers from a performance drop in Humanoid with $\beta > 0.2$. More investigation into this phenomenon is an important future work.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately describe the proposed algorithm (policy gradient via reparameterization + distance-based diversity regularization) and experimental scope (multi-goal achieving, generative RL, MuJoCo). The abstract and the introduction align with the technical content in the paper (Section 4, 5, Appendix A.1).

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The conclusion (Section 6) involves a discussion of limitations.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [NA]

Justification:

Guidelines:

- The answer NA means that the paper does not include theoretical results.

- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [\[Yes\]](#)

Justification: Benchmarks and tested algorithms are described in Section 5. Experiment settings, including evaluation criteria, are described within Section 5. Hyperparameters are detailed in Appendix A. Appendix A.1 provides detailed pseudo-code of the proposed algorithm. Our code will be released after acceptance.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
 - (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
 - (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [\[Yes\]](#)

Justification: We will submit our code in supplemental materials, and we will release our code with instructions after acceptance. Our code contains training and evaluation. Customized RL environments are also included with the necessary assets. We do not use training data.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.

- While we encourage the release of code and data, we understand that this might not be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [\[Yes\]](#)

Justification: Experiment settings and evaluation criteria are introduced within the Section 5. Hyperparameters, including network architecture and the type of optimizer, are detailed in Appendix A.2.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [\[Yes\]](#)

Justification: We repeat all training with five seeds, and all results are reported with mean and standard deviation across the five seeds. All algorithms used the same set of seeds. All evaluations for all checkpoints are repeated at least 20 times to average.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer “Yes” if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: We describes our compute resources in Appendix A.2.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics <https://neurips.cc/public/EthicsGuidelines>?

Answer: [Yes]

Justification: The research involves algorithmic development and evaluation on simulation benchmarks and open-source game benchmarks. It does not involve human subjects or obviously ethically sensitive applications, and we expect that it conforms to the NeurIPS Code of Ethics.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [NA]

Justification: This research focuses on basic deep RL algorithm development, and all experiments are conducted in simulated imaginary environments or digital games without any sensitive subjects. We expect there is no societal impact.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: This work focuses on algorithm development and experiments are conducted with simulated environments and open-source games, so we expect the paper poses no such risks.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: Our experiments dependent on open-source assets in D4RL [10] and a game content generation [50], which are credited by citations in Section 5.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA]

Justification: This work does not involve new assets.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: This work does not involve any crowdsourcing experiment nor research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: This work does not involve any crowdsourcing experiment nor research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: This work does not involve LLMs as any important, original, or non-standard components.

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (<https://neurips.cc/Conferences/2025/LLM>) for what should or should not be described.