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Abstract

This paper studies spelling correction of purely
unsupervised learning, which meanings there
are no annotated errors within the training data,
a pivotal issue that has received broad atten-
tion in the community. Our intuition is that
humans are naturally good correctors with al-
most no exposure to parallel sentences, which
contrasts to current unsupervised methods that
are strongly reliant on the usage of confusion
sets. In this paper, we demonstrate that learn-
ing a spelling correction model is identical to
learning a language model from monolingual
data alone, with decoding it in a greater search
space. We propose Denoising Decoding Cor-
rection (D?C), which selectively imposes noise
upon the source sentence to solve out the under-
lying correct characters. Our method largely
inspires the ability of language models to per-
form correction, including both BERT-based
models and large language models (LLMs), and
unlocks significant performances on Chinese
and Japanese spelling correction benchmarks.
We also show that this self-supervised learn-
ing manner generally outstrips using confusion
sets, because it bypasses the need of introduc-
ing error characters to the training data which
can impair the patterns in the target domains.

1 Introduction

Spelling correction stands as a fundamental task
in natural language processing, supporting many
downstream applications, e.g. web search (Martins
and Silva, 2004; Gao et al., 2010), named entity
recognition (Yang et al., 2023b), optical character

recognition (Afli et al., 2016; Gupta et al., 2021).

Recent studies (Wu et al., 2023; Liu et al., 2024)
show that simply using the supervised signals
within parallel sentences to fine-tune pre-trained
language models (PLMs) achieves notable results
across a series of benchmarks.

However, the great cost of annotation blames for
the low accessibility of parallel sentences. These
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Figure 1: Comparison of human learning, supervised
learning and proposed self-supervised learning process
for spelling correction. [M] refers to the mask token.

models remain mediocre in handling massive do-
mains in real applications. This paper thus empha-
sizes the value of self-supervised learning, where
only monolingual data is used to adapt models
to specific target domains, which still achieves
marginal progress in recent years.

Previous unsupervised methods (Zhao and Wang,
2020; Liu et al., 2021; Li, 2022) focus on synthesiz-
ing pseudo parallel sentences, while the supervised
signals do not derive from the real distribution but
from the confusion set, a empirically constructed
set of common misspelled cases. By replacing
certain characters in the original sentences with
the error characters in the confusion set, parallel
sentences are obtained for fine-tuning the models.
However, the gap between the confusion set and
the real error patterns in the target domain can in-
duce a high false positive rate (Wu et al., 2023).
This paper raises a bold idea: can machine spelling
correction learn from monolingual data alone?

Intriguingly, humans naturally learn to rectify
mistakes in a sentence with minimal exposure to
parallel data. We give an illustration in Figure 1,



which shows that humans only learn to use the
correct sentences (monolingual data) in daily life.
When encountering a sentence with an error char-
acter “4£” (mold), they are able to correct it to “J&”
(cornea) with ease based on their knowledge. In
contrast, the machine spelling correction models
cannot do this only if it is exposed to annotated edit
pairs like “#2” — “f&£” in the training process.

In this paper, we demonstrate that a machine
spelling corrector can also be learned from solely
monolingual data, akin to a human learner, as illus-
trated in the bottom of Figure 1. The key is have
the model learn semantics rather than character-
to-character editing. In light of this, we find that
rephrasing models (Liu et al., 2024), where the
source sentence will first be encoded into the se-
mantic space, and then rephrased to the correct sen-
tence, demonstrate this ability. We call this manner
self-supervised spelling correction. However, the
resultant models still exhibit low recall.

To this end, we propose a novel decoding al-
gorithm Denoising Decoding Correction (D?C),
which selectively imposes noise upon the source
sentence to solve out the underlying correct char-
acters. We apply D?C to two architectures,
bidirectional models (represent by ReLM (Liu
et al., 2024), the state-of-the-art model in Chinese
spelling correction) and auto-regressive models
(represent by a series of LLMs (OpenAl, 2023;
Touvron et al., 2023; Yang et al., 2023a)), D2C
achieves significant performance boost over raw
language models, trained with monolingual data on
Chinese and Japanese spelling correction.

We summarize the contributions of this paper.

e We demonstrate the intrinsic transferability
between learning spelling correction models and
language, and spelling correction can be transferred
by language modeling on monolingual data.

o With the propose novel decoding algorithm, we
build an effective self-supervised learning manner,
allowing the spelling correction models to adapt to
target domains at a minimal expense.

2 Related Work

Correcting spelling errors poses a challenging yet
crucial task in natural language processing. Early
endeavors primarily relied on unsupervised tech-
niques, assessing sentence perplexity as a key met-
ric (Yeh et al., 2013; Yu and Li, 2014; Xie et al.,
2015). Recent methods model spelling correction
as a sequence tagging problem that map each char-

acter in a given sentence to its accurate counterpart
(Wang et al., 2018, 2019). On top of pre-trained
language models (PLMs), a number of BERT-based
models with the sequence tagging training objec-
tive are proposed. Zhang et al. (2020) identify
the potential error characters by a detection net-
work and then leverage the soft masking strategy
to enhance the eventual correction decision. Zhu
et al. (2022a) use a multi-task network to minimize
the misleading impact of the misspelled charac-
ters (Cheng et al., 2020). There is also a line of
work that incorporates phonological and morpho-
logical knowledge through data augmentation and
enhances the BERT-based encoder to assist map-
ping the error to the correct one (Guo et al., 2021;
Lietal., 2021; Liu et al., 2021; Cheng et al., 2020;
Huang et al., 2021; Zhang et al., 2021). Recent
studies (Wu et al., 2023; Liu et al., 2024) focus on
rephrasing training objective and achieves notable
results.

While in unsupervised spelling correction do-
main, previous works focus on generating pseudo
annotated data or detecting error characters with
confusion dataset (Zhao and Wang, 2020; Liu et al.,
2021; Li, 2022). We are the first to raise a no-
table self-supervised method with pure monolin-
gual Chinese and Japanese spelling correction data
in the community. Our method inherits the ability
of PLMs and present a transferability from lan-
guage modeling to spelling correction.

3 Transfer Language Modeling to
Spelling Correction

This section serves as the preliminary of our work.
The basic effort is to learn spelling correction
from monolingual data. We call it self-supervised
spelling correction. We first discuss the transfer-
ability between language modeling to spelling cor-
rection. Second, we point out that rephrasing is
the primary training objective for self-supervised
spelling correction.

3.1 Language Modeling

Given an input sentence Y = {y1,y2, -, yn} of
n characters, (auto-regressive) language modeling
seeks to solve the character y; based on its left
context, namely P(y;|y1,vy2, -, yi—1)- A spelling
correction model can be learned by two dominant
objectives, sequence tagging and rephrasing.



3.2 Spelling Correction

Spelling correction aims to rectify the underlying
misspelled characters in the source sentence. De-
note the source sentence as X = {x1,z2, -, Zn}
and the target sentence as Y = {y1,v2, "+, Yn}
and suppose x; is one of the typos in X, the model
learns to correct x; to y; based on the entire source
sentence, namely P(y;|z1, 2, -, Tp).

Tagging The above modeling process can also be
viewed as sequence tagging from X to Y. While
this has been widely adopted in previous work, a
recent study (Liu et al., 2024) shows that tagging-
based spelling correction models will lean towards
point-to-point editing, thus ignoring the specific
context. The final training objective degenerates
into P(y;|x;).

Rephrasing In comparison, rephrasing (Liu
et al., 2024) is shown to be a more effective train-
ing objective for spelling correction. It specif-
ically seeks to rewrite the entire sentence after
it, namely P(yi|:r1, T, Tn,Y1,Y2, " ,yi_l).
To ensure that the rephrasing process is based
on semantics instead of copying, a ratio of
noise (e.g. masking with an unused token) is
introduced to the source sentence, written as

P(yi|jla‘%25 e 757n7y17y27 e 7yi71)-

3.3 Self-supervised Spelling Correction

The unsupervised learning setting is naturally akin
to that of language modeling, where the model is
trained on monolingual data. Comparing the above
two training objectives with language modeling, we
find that rephrasing and language modeling are for-
mally the same. In rephrasing, the input sentence
is the concatenation of the source and target. This
means that the spelling correction model can bet-
ter utilize the knowledge in a pre-trained language
model and be transferred from it more easily.

Due to the lack of parallel sentences, we let
X =Y, sothat the rephrasing objective is modified
to P(yil91, 92, Un, Y1, Y2, - -+, Yi—1)- It means
that the model learns to rephrase the sentence based
on its semantics and we hope that the resultant
model can be generalizable to rephrase a sentence
with typos to its correct.

We evaluate the tagging model and rephrasing
model on unsupervised spelling correction and
present empirical results in Table 1 (Mono.). It
shows that the tagging model trained on mono-
lingual data is powerless. We conjecture that the

| Method | LAW MED ODW
¢ | Tagging 0.5 0.6 0.5
& | Tagging-MFT | 101 53 10.5
= | Rephrasing 713 686 719
«: | Tagging 29.5 153 16.7
£ | Tagging-MFT | 34.0 17.3 18.9
“ | Rephrasing 276 123 133

Table 1: Comparison (F1) of tagging and rephrasing on
unsupervised spelling correction / shuffled characters.
The details of the models and dataset are in Sec. 5.

model only learns point-to-point copying since the
source is always the same as it target, thus losing
the ability to make modification to the source sen-
tence. In contrast, the rephrasing model can learn
well even with monolingual data, suggesting that
the model is well transferred from the pre-training
process. It paves the wave for us that pre-trained
language models can learn spelling correction from
solely monolingual data.

3.4 Shuffling of Characters

We conduct a second tiny experiment to strengthen
the idea. Specifically, we shuffle the characters in
the source and target sentences parallelly to spoil
the semantics of them and use these samples to
fine-tune the models. From Table 1 (Shuf.), we find
that the tagging model outperforms the rephrasing
model on samples that do not convey semantic
information. It inversely verifies that the tagging
model learns more of point-to-point editing at the
expense of semantics. As aforementioned, it is
the semantics that are the key to learning spelling
correction from monolingual data.

3.5 Vanilla Pre-trained Language Models

The second tiny experiment is to probe the pre-
trained knowledge in pre-trained language models.
We hypothesize that, after large-scale pre-training,
the language model already contains the literal
knowledge needed for spelling correction. What
we do is to mask the the error characters in the
source sentence and have the vanilla model (non-
fine-tuned one) to predict that. From Table 2, we
see that the vanilla model can already recall the
correct characters in its top-k candidates without
any fine-tuning on spelling correction. For exam-
ple, in about 90% of the cases, the model’s top 10
predictions has covered the correct answer.

To sum, this section provides evidence that
spelling correction can be learned with monolin-



Method | LAW MED ODW

Top20 | 938 888  93.8
Top-10 | 908 860  90.6
Top-5 869 820 887
Top-1 695 663 768

Table 2: Accuracy of the top-k predictions of MLM
from the vanilla BERT model.

gual data from pre-trained language models:

o rephrasing-based spelling correction shares the
same objective as language modeling;

e pre-trained language models have already pos-
sessed the needed knowledge for spelling correc-
tion.

4 Method

In this section, we propose an enhanced decod-
ing method to further unleash the potential of pre-
trained language models.

4.1 Two Rephrasing Architectures

The method focuses on rephrasing-based spelling
correction, which can be achieved in two archi-
tectures, non-auto-regressive rephrasing and auto-
regressive rephrasing.

Auto-regressive models Auto-regressive model
is the primary choice to generate the rephrasing
following the input sentence, represented by GPT-
like models (Brown et al., 2020) and large language
models (LLMs).

To improve the quality of rephrasing, it is an
easy yet effective way to mask a ratio of characters
in the source sentence with an unused token. In
this paper, we denote the masked source sentence

aSY = {g17g27' 7gn}

ReLLM Rephrasing Language Model (ReLM)
(Liu et al.,, 2024) is the current state-of-the-
art spelling correction model based on BERT
(Devlin et al., 2019). Tt rephrases the source
sentence by infilling the mask slots. Specifi-
cally, the model is fed with the concatenation
of the source sentence and the a sequence of
mask tokens. Due to the bidirectional nature of
BERT, the rephrasing process can be written as
P(yil91, 92, Yn, m1, M2, - - -, My ), where m;
refers to the mask token. As opposed to auto-
regressive models, ReLM predict all characters at
once.

4.2 Denoising Decoding Correction

In self-supervised spelling correction, where the
source sentence equals to the target sentence, the
resultant model trained with rephrasing still suffers
from a low recall when testing on real sentences
that need to be corrected. A more severs situation
happens when there are multiple errors in one sen-
tence. The cascade effect of errors makes it even
harder to correct the sentence. To this end, we pro-
pose a novel decoding algorithm, where we actively
introduce noise to the source sentence and encour-
age the model to recall more candidates. Since the
mask operation in the inference stage is consistent
with that in the training stage of rephrasing, the
model’s correction capability can be boosted. We
call this method Denoising Decoding Correction
(D*C).

Concretely, we first mask the characters in
source sentence from the left side during each it-
eration if the character’s confidence is bigger than
B (0.995). The character in such a position is re-
garded as a potential error. To determine which
character to be updated, we send this sentence to
the model and figure out whether the original char-
acter appears in its top-k candidates. If it does, we
remain the original character, else we record the
new character and its confidence, if this confidence
is bigger than a threshold e. After each iteration,
we choose the character with the biggest confidence
recorded before and update the original sentence
with it. We do the iteration continually until there
is nothing to update after an iteration. Note that
once a character is updated, the confidences of the
other characters will change correspondingly, so
this iterative decoding is robust to multiple errors.

Accelerating We notice that picking a charac-
ter with the biggest confidence each iteration costs
large decoding overhead. Given that there are al-
ways a small number of errors in a sentence, we
rank the characters in the sentence by their confi-
dences from the lowest to highest, mask top o of
them respectively and send the sentence to model.
Figure out whether the original character appears
in its top-k candidates. If it does, we remain the
original character (same as original D*C strategy),
else we update it with a new character with the
highest confidence, if this confidence is bigger than
a threshold e.

Pseudo code The overall procedure of DC is
described in Algorithm 1.



Algorithm 1: D>°C
Input: Source sentence Y'; threshold e,
top-k.
Output: predict result Z
1 Sort the characters in Y on their confidences
ascendingly and record the indices I;
2 forieldo

3 Mask v;;

4 Get top-k predictions {y},v2,-- -,y };
5 Get confidences {p},p?,---,pF};

o | ify; ¢ {yt, -, yF} and p} > e then
7 Replace y; with yil;

8 Decode the new Y and update it;
9 else

10 ‘ Keep y; unchanged;

1 end
12 end
B =Y,

5 Experiments

In this section, we report the empirical results on a
series of spelling correction benchmarks.

We focus on two languages:

o ECSpell (Lv et al., 2023): a small-scale multi-
domain Chinese spelling correction dataset of law
(LAW), medical treatment (MED), and official doc-
ument writing (ODW), which is particular in that
there are a large number of errors in the test set that
do not appear in the training set;

o MCSC (Jiang et al., 2022): a large-scale
Chinese spelling correction dataset specialized in
medicine, with more than 200k training samples;

e JWTD (Tanaka et al., 2020): a Japanese
spelling correction dataset, which is extracted from
the revision update of wikipedia.

We consider the following methods:

e BERT (Devlin et al., 2019): the fine-tuned
tagging model based on BERT-base;

e MDCSpell (Zhu et al., 2022b): the strongest
tagging model with a multi-task network of error
detection and correction;

o Masked-FT (MFT) (Wu et al., 2023): a simple
yet effective fine-tuning technique on tagging mod-
els to uniformly masking the non-error characters
in the source sentence;

e RelLM (Liu et al., 2024): the newly re-
leased state-of-the-art models on spelling correc-
tion, which rephrases the sentence in a non-auto-
regressive manner;

® Baichuan2-7b (Yang et al., 2023a): one of
the strongest Chinese LLMs following the auto-
regressive architecture;

e User Dictionary (UD) (Lv et al., 2023): an
enhanced decoding method that leverage an exper-
tise dictionary (law, medical treatment, and official
document writing) to bias the beam search.

5.1 Training Settings

For BERT-based models, we set the batch size to
128 and the learning rate to Se-5, swept from grid
search. For Baichuan2, we set the batch size to 32
and the learn rate to 3e-4, and use LoRA (Hu et al.,
2022) to reduce the training budget. For supervised
spelling correction, the masking ratio is chosen
from {0.2, 0.3}, while for self-supervised spelling
correction, it is set to 0.5.

5.2 Results on ECSpell

Table 3 summarizes the performances of different
training methods on ECSpell and we also report
the supervised performances for reference. For
self-supervised spelling correction, we first find
that ReLM outperforms MDCSpell-MFT by 35.1,
47.7 and 46.0 absolute points of F1 respectively
on LAW, MED, and ODW, suggesting the great
promise of rephrasing models. When empowered
with D?C, it further significantly produces the in-
crease of 18.9, 7.1 and 14.0 absolute points. The
biggest increase is on the recall rate, which is con-
sistent with the design of D?C. Furthermore, we
find that D>C is competitive against using user dic-
tionary (UD), or even more powerful. It suggests
the some of the domain knowledge in the user dic-
tionary has already stored in the pre-trained lan-
guage models, and D?C plays a key role to unlock
the great power of pre-training.

5.3 Results on MCSC

Table 4 summarizes the results on MCSC. In con-
trast to ECSpell, we find that the self-supervised
performances are much worse than supervised ones.
There are two reasons. The first reason is that the
annotated samples in MCSC are sufficient enough
so that the supervised fine-tuning results in nice
outcomes. The evidence is that all methods achieve
closer results on it compared to those on ECSpell.
The second is that MCSC is there are a great num-
ber of samples than contain more than one errors.
It is still a big challenge to handle these samples in
self-supervised spelling correction even with D’C.



Method EC-LAW (%) EC-MED (%) EC-ODW (%)
F1 P R FPR | F1 P R FPR | F1 P R FPR
2 BERT 38,6 421 357 122 | 242 271 219 105|249 299 213 139
.2 | BERT-MFT 746 732 761 143 | 61.7 624 609 105 | 60.8 59.7 62.0 189
% MDCSpell-MFT | 81.5 772 863 159 | 651 623 68.1 168 | 641 613 672 214
5 | Baichuan2 86.0 851 87.1 45 | 732 726 793 55 |82.6 86.1 793 40
“ | ReLM 958 936 980 57 |89 866 935 74 |922 933 911 25
BERT 0.5 0.7 0.4 9.0 0.6 0.9 0.4 8.0 0.5 0.8 04 124
~ | BERT-MFT 101 141 7.8 9.4 53 1.7 4.0 9.1 105 151 80 128
& | MDCSpell-MFT | 362 453 302 94 | 209 287 164 88 | 259 337 217 137
E Baichuan2 23,5 255 21.6 265 | 174 252 133 135 | 244 272 222 209
& | Baichuan2-UD 269 308 239 204 | 183 274 137 11.7 | 28.0 327 244 145
2 | Baichuan2-D’C | 27.6 30.6 25.1 224 | 202 262 164 124 |305 338 278 175
g RelLM 713 781 757 04 | 686 708 665 702|719 797 655 08
ReLM-UD 895 892 899 47 | 793 741 854 185 | 846 885 81.0 23
ReLM-D’C 90.2 87.7 929 86 | 757 668 874 255|859 857 861 73

Table 3: Results on ECSpell, where F1, P, R, FPR refers to the F1 score, precision, recall, and false positice rate.

MCSC (%)
Method FI P R FPR
= | BERT 707 708 707 29
.2 | BER-MFT 733 734 731 29
£ | MDCSpell-MFT | 78.5 785 786 25
£ | Baichuan2 75.5 763 747 12
“ | ReLM 832 829 836 25
BERT 06 17 04 02
$ | BERT-MFT 16 29 11 1.3
-2 | MDCSpell-MFT | 7.1 137 47 07
3 | Baichuan2 36 107 22 0.1
2 | Baichuan2-D°C | 20.0 374 137 038
= | ReLM 218 299 172 13
2 | ReLM-UD 308 363 268 34
ReLM-D’C 379 389 370 43

Table 4: Results on MCSC.

For self-supervised spelling correction, we find
that D>C similarly achieves significant perfor-
mance gain on both Baichuan2 and RelLM, lifting
the F1 scores by 16.4 and 16.1 respectively. We
also find that the user dictionary does not work
very well, because of the weak alignment between
the dictionary and MCSC data, incurring unstable
gain on different data. However, D?>C play its role
conditioned on the pre-trained knowledge.

5.4 Results on Japanese

From Table 5, we find that D*C also works well
on Japanese, outperforming the base decoding on
ReLLM by 18.2% points of F1.

6 Discussion

6.1 Using Confusion Set

We compare D?C and the data augmentation
method using the confusion set, a widely used tech-

JWTD(%)
Method FI P R FPR
3 | BERT 65.0 756 568 22.0
%4 | BERT-MFT 68.0 798 59.2 293
8 | MDCSpell-MFT | 73.0 81.8 659 26.8
2 | ReLM 73.6 848 651 715
BERT 00 00 00 00
. | BERT-MFT 17 302 09 49
S | MDCSpell-MFT | 2.3 524 12 49
ReLM 108 771 58 1.1
ReLM-D’C 29.0 393 23.0 38.0

Table 5: Results on Japanese spelling correction.

Dataset ReLM-Conf. (%) | ReLM-D*C (%)
F1 FPR F1 FPR
EC-LAW | 80.0 40.2 90.2 8.6
EC-ODW | 67.0 38.9 85.9 7.3
MCSC 39.8 9.9 37.9 43

Table 6: Comparison with the confusion set and D*C.
Conf. means confusion.

nique in previous work in Table 6. We find that D>C
outperforms using the confusion set on two of the
chosen datasets. It suggests that the non-matching
segments in the confusion set can cause gaps to the
real error patterns in the testing time. However, the
monolingual data used in self-supervised learning
bypasses this risk.

6.2 Seen and Unseen Errors

To take a closer look at the correction ability, we
divide test set into two subsets, exclusive (E) and
inclusive (I) set, which refer to the test errors that
occur or not occur in the training set. From table 7,
it is discernible that supervised models fit internal
error set well but the performances drop sharply



F1(%)

Models LAW MED ODW
MDCSpell (I) 718 513 549
MDCSpell (E) 75 40 08

MDCSpel-MFT (I) | 943 784  81.7

MDCSpell-MFT (E) | 76.0 60.7 57.8

MDCSpell-MFT (I) 52.6 329 32.1
MDCSpell-MFT (E) | 48.0 26.0 33.7

Self-supervised | Supervised

ReLM (I) 932 735 822
ReLM (E) 925 747 731
ReLM-D’C (I) 982  79.2 88.3
ReLM-D*C (E) 97.0 815 827

Table 7: Performances on seen (I) and unseen (E) errors,
measured by F1 scores.

—— FPR

FPR (%)

00 02 04 06 038 00 02 04 06 038
Annotate Rate (%) Annotate Rate (%)

Figure 2: ReLM’s F1 and FPR scores with different
amount of annotated data on MCSC.

on external error set. While models trained with
monolingual data have a high degree of similarity
between the performance on external error set and
internal error set and D>C boosts the performance
on external and internal set simultaneously. Surpris-
ingly, we find that MDCSpell-MFT performs even
better on self-supervised learning than supervised
on the exclusive set. It suggests that the tagging
objective degenerates the learned representation in
the pre-trained language model, incurring the drop
of generalizablity.

6.3 Effect of Annotated Data

We investigate the variation of F1 and FPR when
increasingly adding annotated data on top of mono-
lingual data. From 2, it is discernible that eventual
performance can be boosted greatly with a small
amount of annotated data, which is about under
20%. It offers a promising signal that monolingual
data, which can be achieved with a low cost, com-
bined with a smaller amount of annotation, can lead
to nice outcomes in real applications. Meanwhile,
we notice that the false positive rate also increases
with the increase of annotated data.
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Figure 3: Performances with different mask rates.

6.4 Mask Rate

We also investigate the impact of mask rate. From
Figure 3 it is apparent that the F1 scores on ECSpell
keep improving when the mask rate grows from 0%
to about 30%, and than drop slightly. Besides, the
F1 score on MCSC keeps increasing until mask rate
meets 80%, which is much higher than ECSpell.
To dig further, a phenomenon observed across all
datasets is that an increase in the mask rate uplifts
recall (R) scores more apparently than precision (P)
scores while P scores either lean to unchanged or
even decline with an increase in the mask rate. Be-
cause monolingual fine-tuning process is designed
to shield models from error patterns and introduces
noise solely through mask tokens, the models are
more inclined to preserve the source sentences with-
out modification, which means a lower R scores.
During the evaluation stage, error characters serve
as noise for the model, therefore a higher mask rate
boost models’ performances on R scores. It also
indicates that mask rate relies on specific data and
the dataset MCSC which has shorter sentences and
multi-typos leans to perform better under higher
mask rate.

6.5 Effect of Hyperparameters

We access the effect of hyperparameters in D*C.
As a representative, we depict the curves on ReLM
in Figure 4.

Threshold Figure 4 shows that different datasets
are suitable with different threshold (¢). For ex-
ample, D>C with higher ¢ (0.9) gains better perfor-
mances on LAW, MED and ODW domains. How-
ever, D>C with about 0.6 threshold have higher F1
scores on MCSC. It reveals that ¢ should be set
based on different datasets.



80.0 90
—A— 0.9
77.51 = 08 88 4
750 —— 0.7 e
X X %07
S 725 =
I T 84
70.01 —— 09
67.5 1 82 - 038
' —A— 0.7
65.0 T T T 80 T T T
5 10 15 20 5 10 15 20
Top-k Characters on EC-MED Top-k Characters on EC-LAW
85 39.0
—— 0.7
3851 - 06
80 k_"/‘_‘
_ 3801 —— 0.5
X x
< 75 4 < 37.5 1
— —
« “ 370
701 Sos
36.5
—— 0.7

36.0 T ™ T
5 10 15 20
Top-k Characters on MCSC

N4

T T T
5 10 15 2
Top-k Characters on EC-ODW

Figure 4: Non-auto-regressive D’C’s performance with
different hyperparameters.

| Dataset | Original (s) | Accelerate (s)
EC-MED 0.024 0.048
ReLM EC-LAW 0.022 0.038
EC-ODW 0.022 0.044
EC-MED 1.0 3.2
Baichuan | EC-LAW 0.6 1.6
EC-ODW 0.7 2.2

Table 8: Comparison between accelerated D?>C and di-
rectly decoding on ReLM and Baichuan, measured by
second per sample.

Top-k There is a common phenomenon in Figure
4 that a higher top-k characters uplifts F1 score un-
der different change confidence e. Considering that
a high top-k characters brings decline in running
speed, it is a trade off between speed and accuracy
for users.

6.6 Efficiency

We compare the decoding efficiency of acceler-
ated D?>C and decoding directly in Table 8. We
can observe that compared with decoding each sen-
tence directly, D?C requires about twice the time
on ReLLM and three times the time on Baichuan.

7 Case Study

We further showcase some cases to illustrate how
D?C improves the decoding process.

SRC 1 A AR 7X AR 6 9% B A R
TRG A ARAE A 84 5 B A7 AR
ReLM 1 A AR 2 AR 6 5% B AT AR 8k
ReLM-D?C | - A 4454k 64 9% B A A0 £

Table 9: Multi-typo case can be better corrected by D>C.
Blue characters are right and red are wrong.

SRC PEAKREELTE
TRG THAEELTE
ReLM PEAREELTHE
ReLM-D’C | I\ #HAEE2HE

Table 10: D?>C improves the recall rate.

Multi-typo In this case, (How does calcification
(451t) of the meniscus (F A #&) occur), error
characters are (45— 7%) and (F— 1¥), which
are very similar in pronunciation but meaningless
as words in the sentence. We noticed in experiment
that ReLM without D2C failed to correct this sen-
tences with two error characters while success with
single error character if one of the two errors has
been corrected before. Therefore, with D*C we
introduce noise into the source sentence to correct
“f£” and “7” step by step.

Not recall Considering sentences in spelling cor-
rection sometimes have short length, models re-
ceive limited semantics information and tend to
under-correct error characters just like case in Table
10. This case (How to calculate children’s weight
(KA €) ) has the error pattern of (& — 4&), which
are similar in terms of their visual appearance. In
the presence of semantics limitations, D?C directs
models to reword specified position to incorporate
more suitable characters and effectively mitigating
the issue of under-correction.

8 Conclusion

This paper studies self-supervised spelling correc-
tion based on the rephrasing-based models. We
demonstrate that machine spelling correction does
not necessitate parallel data, and can be learned
from monolingual data alone. We propose a novel
decoding algorithm named D?C to effectively en-
hance the recall ability of the self-supervised model.
Results on Chinese and Japanese spelling correc-
tion showcase the significant improvement brought
by our method. We hope that this paper can bring
new insight and vigour to future research on unsu-
pervised spelling correction.

Limitations

Our work focuses on Chinese and Japanese. Other
language such as Korean have not been studied in
this work. D?C cost a decline in the speed of single
sentence processing. Our self-supervised method’s
performances is sensitive to multi-typo data.
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