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Abstract

This paper studies spelling correction of purely001
unsupervised learning, which meanings there002
are no annotated errors within the training data,003
a pivotal issue that has received broad atten-004
tion in the community. Our intuition is that005
humans are naturally good correctors with al-006
most no exposure to parallel sentences, which007
contrasts to current unsupervised methods that008
are strongly reliant on the usage of confusion009
sets. In this paper, we demonstrate that learn-010
ing a spelling correction model is identical to011
learning a language model from monolingual012
data alone, with decoding it in a greater search013
space. We propose Denoising Decoding Cor-014
rection (D2C), which selectively imposes noise015
upon the source sentence to solve out the under-016
lying correct characters. Our method largely017
inspires the ability of language models to per-018
form correction, including both BERT-based019
models and large language models (LLMs), and020
unlocks significant performances on Chinese021
and Japanese spelling correction benchmarks.022
We also show that this self-supervised learn-023
ing manner generally outstrips using confusion024
sets, because it bypasses the need of introduc-025
ing error characters to the training data which026
can impair the patterns in the target domains.027

1 Introduction028

Spelling correction stands as a fundamental task029

in natural language processing, supporting many030

downstream applications, e.g. web search (Martins031

and Silva, 2004; Gao et al., 2010), named entity032

recognition (Yang et al., 2023b), optical character033

recognition (Afli et al., 2016; Gupta et al., 2021).034

Recent studies (Wu et al., 2023; Liu et al., 2024)035

show that simply using the supervised signals036

within parallel sentences to fine-tune pre-trained037

language models (PLMs) achieves notable results038

across a series of benchmarks.039

However, the great cost of annotation blames for040

the low accessibility of parallel sentences. These041
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Figure 1: Comparison of human learning, supervised
learning and proposed self-supervised learning process
for spelling correction. [M] refers to the mask token.

models remain mediocre in handling massive do- 042

mains in real applications. This paper thus empha- 043

sizes the value of self-supervised learning, where 044

only monolingual data is used to adapt models 045

to specific target domains, which still achieves 046

marginal progress in recent years. 047

Previous unsupervised methods (Zhao and Wang, 048

2020; Liu et al., 2021; Li, 2022) focus on synthesiz- 049

ing pseudo parallel sentences, while the supervised 050

signals do not derive from the real distribution but 051

from the confusion set, a empirically constructed 052

set of common misspelled cases. By replacing 053

certain characters in the original sentences with 054

the error characters in the confusion set, parallel 055

sentences are obtained for fine-tuning the models. 056

However, the gap between the confusion set and 057

the real error patterns in the target domain can in- 058

duce a high false positive rate (Wu et al., 2023). 059

This paper raises a bold idea: can machine spelling 060

correction learn from monolingual data alone? 061

Intriguingly, humans naturally learn to rectify 062

mistakes in a sentence with minimal exposure to 063

parallel data. We give an illustration in Figure 1, 064
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which shows that humans only learn to use the065

correct sentences (monolingual data) in daily life.066

When encountering a sentence with an error char-067

acter “模” (mold), they are able to correct it to “膜”068

(cornea) with ease based on their knowledge. In069

contrast, the machine spelling correction models070

cannot do this only if it is exposed to annotated edit071

pairs like “模” → “膜” in the training process.072

In this paper, we demonstrate that a machine073

spelling corrector can also be learned from solely074

monolingual data, akin to a human learner, as illus-075

trated in the bottom of Figure 1. The key is have076

the model learn semantics rather than character-077

to-character editing. In light of this, we find that078

rephrasing models (Liu et al., 2024), where the079

source sentence will first be encoded into the se-080

mantic space, and then rephrased to the correct sen-081

tence, demonstrate this ability. We call this manner082

self-supervised spelling correction. However, the083

resultant models still exhibit low recall.084

To this end, we propose a novel decoding al-085

gorithm Denoising Decoding Correction (D2C),086

which selectively imposes noise upon the source087

sentence to solve out the underlying correct char-088

acters. We apply D2C to two architectures,089

bidirectional models (represent by ReLM (Liu090

et al., 2024), the state-of-the-art model in Chinese091

spelling correction) and auto-regressive models092

(represent by a series of LLMs (OpenAI, 2023;093

Touvron et al., 2023; Yang et al., 2023a)), D2C094

achieves significant performance boost over raw095

language models, trained with monolingual data on096

Chinese and Japanese spelling correction.097

We summarize the contributions of this paper.098

• We demonstrate the intrinsic transferability099

between learning spelling correction models and100

language, and spelling correction can be transferred101

by language modeling on monolingual data.102

• With the propose novel decoding algorithm, we103

build an effective self-supervised learning manner,104

allowing the spelling correction models to adapt to105

target domains at a minimal expense.106

2 Related Work107

Correcting spelling errors poses a challenging yet108

crucial task in natural language processing. Early109

endeavors primarily relied on unsupervised tech-110

niques, assessing sentence perplexity as a key met-111

ric (Yeh et al., 2013; Yu and Li, 2014; Xie et al.,112

2015). Recent methods model spelling correction113

as a sequence tagging problem that map each char-114

acter in a given sentence to its accurate counterpart 115

(Wang et al., 2018, 2019). On top of pre-trained 116

language models (PLMs), a number of BERT-based 117

models with the sequence tagging training objec- 118

tive are proposed. Zhang et al. (2020) identify 119

the potential error characters by a detection net- 120

work and then leverage the soft masking strategy 121

to enhance the eventual correction decision. Zhu 122

et al. (2022a) use a multi-task network to minimize 123

the misleading impact of the misspelled charac- 124

ters (Cheng et al., 2020). There is also a line of 125

work that incorporates phonological and morpho- 126

logical knowledge through data augmentation and 127

enhances the BERT-based encoder to assist map- 128

ping the error to the correct one (Guo et al., 2021; 129

Li et al., 2021; Liu et al., 2021; Cheng et al., 2020; 130

Huang et al., 2021; Zhang et al., 2021). Recent 131

studies (Wu et al., 2023; Liu et al., 2024) focus on 132

rephrasing training objective and achieves notable 133

results. 134

While in unsupervised spelling correction do- 135

main, previous works focus on generating pseudo 136

annotated data or detecting error characters with 137

confusion dataset (Zhao and Wang, 2020; Liu et al., 138

2021; Li, 2022). We are the first to raise a no- 139

table self-supervised method with pure monolin- 140

gual Chinese and Japanese spelling correction data 141

in the community. Our method inherits the ability 142

of PLMs and present a transferability from lan- 143

guage modeling to spelling correction. 144

3 Transfer Language Modeling to 145

Spelling Correction 146

This section serves as the preliminary of our work. 147

The basic effort is to learn spelling correction 148

from monolingual data. We call it self-supervised 149

spelling correction. We first discuss the transfer- 150

ability between language modeling to spelling cor- 151

rection. Second, we point out that rephrasing is 152

the primary training objective for self-supervised 153

spelling correction. 154

3.1 Language Modeling 155

Given an input sentence Y = {y1, y2, · · · , yn} of 156

n characters, (auto-regressive) language modeling 157

seeks to solve the character yi based on its left 158

context, namely P (yi|y1, y2, · · · , yi−1). A spelling 159

correction model can be learned by two dominant 160

objectives, sequence tagging and rephrasing. 161
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3.2 Spelling Correction162

Spelling correction aims to rectify the underlying163

misspelled characters in the source sentence. De-164

note the source sentence as X = {x1, x2, · · · , xn}165

and the target sentence as Y = {y1, y2, · · · , yn}166

and suppose xi is one of the typos in X , the model167

learns to correct xi to yi based on the entire source168

sentence, namely P (yi|x1, x2, · · · , xn).169

Tagging The above modeling process can also be170

viewed as sequence tagging from X to Y . While171

this has been widely adopted in previous work, a172

recent study (Liu et al., 2024) shows that tagging-173

based spelling correction models will lean towards174

point-to-point editing, thus ignoring the specific175

context. The final training objective degenerates176

into P (yi|xi).177

Rephrasing In comparison, rephrasing (Liu178

et al., 2024) is shown to be a more effective train-179

ing objective for spelling correction. It specif-180

ically seeks to rewrite the entire sentence after181

it, namely P (yi|x1, x2, · · · , xn, y1, y2, · · · , yi−1).182

To ensure that the rephrasing process is based183

on semantics instead of copying, a ratio of184

noise (e.g. masking with an unused token) is185

introduced to the source sentence, written as186

P (yi|x̃1, x̃2, · · · , x̃n, y1, y2, · · · , yi−1).187

3.3 Self-supervised Spelling Correction188

The unsupervised learning setting is naturally akin189

to that of language modeling, where the model is190

trained on monolingual data. Comparing the above191

two training objectives with language modeling, we192

find that rephrasing and language modeling are for-193

mally the same. In rephrasing, the input sentence194

is the concatenation of the source and target. This195

means that the spelling correction model can bet-196

ter utilize the knowledge in a pre-trained language197

model and be transferred from it more easily.198

Due to the lack of parallel sentences, we let199

X = Y , so that the rephrasing objective is modified200

to P (yi|ỹ1, ỹ2, · · · , ỹn, y1, y2, · · · , yi−1). It means201

that the model learns to rephrase the sentence based202

on its semantics and we hope that the resultant203

model can be generalizable to rephrase a sentence204

with typos to its correct.205

We evaluate the tagging model and rephrasing206

model on unsupervised spelling correction and207

present empirical results in Table 1 (Mono.). It208

shows that the tagging model trained on mono-209

lingual data is powerless. We conjecture that the210

Method LAW MED ODW

M
on

o. Tagging 0.5 0.6 0.5
Tagging-MFT 10.1 5.3 10.5
Rephrasing 71.3 68.6 71.9

Sh
uf

. Tagging 29.5 15.3 16.7
Tagging-MFT 34.0 17.3 18.9
Rephrasing 27.6 12.3 13.3

Table 1: Comparison (F1) of tagging and rephrasing on
unsupervised spelling correction / shuffled characters.
The details of the models and dataset are in Sec. 5.

model only learns point-to-point copying since the 211

source is always the same as it target, thus losing 212

the ability to make modification to the source sen- 213

tence. In contrast, the rephrasing model can learn 214

well even with monolingual data, suggesting that 215

the model is well transferred from the pre-training 216

process. It paves the wave for us that pre-trained 217

language models can learn spelling correction from 218

solely monolingual data. 219

3.4 Shuffling of Characters 220

We conduct a second tiny experiment to strengthen 221

the idea. Specifically, we shuffle the characters in 222

the source and target sentences parallelly to spoil 223

the semantics of them and use these samples to 224

fine-tune the models. From Table 1 (Shuf.), we find 225

that the tagging model outperforms the rephrasing 226

model on samples that do not convey semantic 227

information. It inversely verifies that the tagging 228

model learns more of point-to-point editing at the 229

expense of semantics. As aforementioned, it is 230

the semantics that are the key to learning spelling 231

correction from monolingual data. 232

3.5 Vanilla Pre-trained Language Models 233

The second tiny experiment is to probe the pre- 234

trained knowledge in pre-trained language models. 235

We hypothesize that, after large-scale pre-training, 236

the language model already contains the literal 237

knowledge needed for spelling correction. What 238

we do is to mask the the error characters in the 239

source sentence and have the vanilla model (non- 240

fine-tuned one) to predict that. From Table 2, we 241

see that the vanilla model can already recall the 242

correct characters in its top-k candidates without 243

any fine-tuning on spelling correction. For exam- 244

ple, in about 90% of the cases, the model’s top 10 245

predictions has covered the correct answer. 246

To sum, this section provides evidence that 247

spelling correction can be learned with monolin- 248
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Method LAW MED ODW

Top-20 93.8 88.8 93.8
Top-10 90.8 86.0 90.6
Top-5 86.9 82.0 88.7
Top-1 69.5 66.3 76.8

Table 2: Accuracy of the top-k predictions of MLM
from the vanilla BERT model.

gual data from pre-trained language models:249

• rephrasing-based spelling correction shares the250

same objective as language modeling;251

• pre-trained language models have already pos-252

sessed the needed knowledge for spelling correc-253

tion.254

4 Method255

In this section, we propose an enhanced decod-256

ing method to further unleash the potential of pre-257

trained language models.258

4.1 Two Rephrasing Architectures259

The method focuses on rephrasing-based spelling260

correction, which can be achieved in two archi-261

tectures, non-auto-regressive rephrasing and auto-262

regressive rephrasing.263

Auto-regressive models Auto-regressive model264

is the primary choice to generate the rephrasing265

following the input sentence, represented by GPT-266

like models (Brown et al., 2020) and large language267

models (LLMs).268

To improve the quality of rephrasing, it is an269

easy yet effective way to mask a ratio of characters270

in the source sentence with an unused token. In271

this paper, we denote the masked source sentence272

as Ỹ = {ỹ1, ỹ2, · · · , ỹn}.273

ReLM Rephrasing Language Model (ReLM)274

(Liu et al., 2024) is the current state-of-the-275

art spelling correction model based on BERT276

(Devlin et al., 2019). It rephrases the source277

sentence by infilling the mask slots. Specifi-278

cally, the model is fed with the concatenation279

of the source sentence and the a sequence of280

mask tokens. Due to the bidirectional nature of281

BERT, the rephrasing process can be written as282

P (yi|ỹ1, ỹ2, · · · , ỹn,m1,m2, · · · ,mn), where mi283

refers to the mask token. As opposed to auto-284

regressive models, ReLM predict all characters at285

once.286

4.2 Denoising Decoding Correction 287

In self-supervised spelling correction, where the 288

source sentence equals to the target sentence, the 289

resultant model trained with rephrasing still suffers 290

from a low recall when testing on real sentences 291

that need to be corrected. A more severs situation 292

happens when there are multiple errors in one sen- 293

tence. The cascade effect of errors makes it even 294

harder to correct the sentence. To this end, we pro- 295

pose a novel decoding algorithm, where we actively 296

introduce noise to the source sentence and encour- 297

age the model to recall more candidates. Since the 298

mask operation in the inference stage is consistent 299

with that in the training stage of rephrasing, the 300

model’s correction capability can be boosted. We 301

call this method Denoising Decoding Correction 302

(D2C). 303

Concretely, we first mask the characters in 304

source sentence from the left side during each it- 305

eration if the character’s confidence is bigger than 306

β (0.995). The character in such a position is re- 307

garded as a potential error. To determine which 308

character to be updated, we send this sentence to 309

the model and figure out whether the original char- 310

acter appears in its top-k candidates. If it does, we 311

remain the original character, else we record the 312

new character and its confidence, if this confidence 313

is bigger than a threshold ϵ. After each iteration, 314

we choose the character with the biggest confidence 315

recorded before and update the original sentence 316

with it. We do the iteration continually until there 317

is nothing to update after an iteration. Note that 318

once a character is updated, the confidences of the 319

other characters will change correspondingly, so 320

this iterative decoding is robust to multiple errors. 321

Accelerating We notice that picking a charac- 322

ter with the biggest confidence each iteration costs 323

large decoding overhead. Given that there are al- 324

ways a small number of errors in a sentence, we 325

rank the characters in the sentence by their confi- 326

dences from the lowest to highest, mask top α of 327

them respectively and send the sentence to model. 328

Figure out whether the original character appears 329

in its top-k candidates. If it does, we remain the 330

original character (same as original D2C strategy), 331

else we update it with a new character with the 332

highest confidence, if this confidence is bigger than 333

a threshold ϵ. 334

Pseudo code The overall procedure of D2C is 335

described in Algorithm 1. 336
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Algorithm 1: D2C
Input: Source sentence Y ; threshold ϵ,

top-k.
Output: predict result Z

1 Sort the characters in Y on their confidences
ascendingly and record the indices I;

2 for i ∈ I do
3 Mask yi;
4 Get top-k predictions {y1i , y2i , · · · , yki };
5 Get confidences {p1i , p2i , · · · , pki } ;
6 if yi /∈ {y1i , · · · , yki } and p1i > ϵ then
7 Replace yi with y1i ;
8 Decode the new Y and update it;
9 else

10 Keep yi unchanged;
11 end
12 end
13 Z = Y ;

5 Experiments337

In this section, we report the empirical results on a338

series of spelling correction benchmarks.339

We focus on two languages:340

• ECSpell (Lv et al., 2023): a small-scale multi-341

domain Chinese spelling correction dataset of law342

(LAW), medical treatment (MED), and official doc-343

ument writing (ODW), which is particular in that344

there are a large number of errors in the test set that345

do not appear in the training set;346

• MCSC (Jiang et al., 2022): a large-scale347

Chinese spelling correction dataset specialized in348

medicine, with more than 200k training samples;349

• JWTD (Tanaka et al., 2020): a Japanese350

spelling correction dataset, which is extracted from351

the revision update of wikipedia.352

We consider the following methods:353

• BERT (Devlin et al., 2019): the fine-tuned354

tagging model based on BERT-base;355

• MDCSpell (Zhu et al., 2022b): the strongest356

tagging model with a multi-task network of error357

detection and correction;358

• Masked-FT (MFT) (Wu et al., 2023): a simple359

yet effective fine-tuning technique on tagging mod-360

els to uniformly masking the non-error characters361

in the source sentence;362

• ReLM (Liu et al., 2024): the newly re-363

leased state-of-the-art models on spelling correc-364

tion, which rephrases the sentence in a non-auto-365

regressive manner;366

• Baichuan2-7b (Yang et al., 2023a): one of 367

the strongest Chinese LLMs following the auto- 368

regressive architecture; 369

• User Dictionary (UD) (Lv et al., 2023): an 370

enhanced decoding method that leverage an exper- 371

tise dictionary (law, medical treatment, and official 372

document writing) to bias the beam search. 373

5.1 Training Settings 374

For BERT-based models, we set the batch size to 375

128 and the learning rate to 5e-5, swept from grid 376

search. For Baichuan2, we set the batch size to 32 377

and the learn rate to 3e-4, and use LoRA (Hu et al., 378

2022) to reduce the training budget. For supervised 379

spelling correction, the masking ratio is chosen 380

from {0.2, 0.3}, while for self-supervised spelling 381

correction, it is set to 0.5. 382

5.2 Results on ECSpell 383

Table 3 summarizes the performances of different 384

training methods on ECSpell and we also report 385

the supervised performances for reference. For 386

self-supervised spelling correction, we first find 387

that ReLM outperforms MDCSpell-MFT by 35.1, 388

47.7 and 46.0 absolute points of F1 respectively 389

on LAW, MED, and ODW, suggesting the great 390

promise of rephrasing models. When empowered 391

with D2C, it further significantly produces the in- 392

crease of 18.9, 7.1 and 14.0 absolute points. The 393

biggest increase is on the recall rate, which is con- 394

sistent with the design of D2C. Furthermore, we 395

find that D2C is competitive against using user dic- 396

tionary (UD), or even more powerful. It suggests 397

the some of the domain knowledge in the user dic- 398

tionary has already stored in the pre-trained lan- 399

guage models, and D2C plays a key role to unlock 400

the great power of pre-training. 401

5.3 Results on MCSC 402

Table 4 summarizes the results on MCSC. In con- 403

trast to ECSpell, we find that the self-supervised 404

performances are much worse than supervised ones. 405

There are two reasons. The first reason is that the 406

annotated samples in MCSC are sufficient enough 407

so that the supervised fine-tuning results in nice 408

outcomes. The evidence is that all methods achieve 409

closer results on it compared to those on ECSpell. 410

The second is that MCSC is there are a great num- 411

ber of samples than contain more than one errors. 412

It is still a big challenge to handle these samples in 413

self-supervised spelling correction even with D2C. 414
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Method EC-LAW (%) EC-MED (%) EC-ODW (%)
F1 P R FPR F1 P R FPR F1 P R FPR

Su
pe

rv
is

ed BERT 38.6 42.1 35.7 12.2 24.2 27.1 21.9 10.5 24.9 29.9 21.3 13.9
BERT-MFT 74.6 73.2 76.1 14.3 61.7 62.4 60.9 10.5 60.8 59.7 62.0 18.9
MDCSpell-MFT 81.5 77.2 86.3 15.9 65.1 62.3 68.1 16.8 64.1 61.3 67.2 21.4
Baichuan2 86.0 85.1 87.1 4.5 73.2 72.6 79.3 5.5 82.6 86.1 79.3 4.0
ReLM 95.8 93.6 98.0 5.7 89.9 86.6 93.5 7.4 92.2 93.3 91.1 2.5

Se
lf

-s
up

er
vi

se
d

BERT 0.5 0.7 0.4 9.0 0.6 0.9 0.4 8.0 0.5 0.8 0.4 12.4
BERT-MFT 10.1 14.1 7.8 9.4 5.3 7.7 4.0 9.1 10.5 15.1 8.0 12.8
MDCSpell-MFT 36.2 45.3 30.2 9.4 20.9 28.7 16.4 8.8 25.9 33.7 21.7 13.7
Baichuan2 23.5 25.5 21.6 26.5 17.4 25.2 13.3 13.5 24.4 27.2 22.2 20.9
Baichuan2-UD 26.9 30.8 23.9 20.4 18.3 27.4 13.7 11.7 28.0 32.7 24.4 14.5
Baichuan2-D2C 27.6 30.6 25.1 22.4 20.2 26.2 16.4 12.4 30.5 33.8 27.8 17.5
ReLM 71.3 78.1 75.7 0.4 68.6 70.8 66.5 7.02 71.9 79.7 65.5 0.8
ReLM-UD 89.5 89.2 89.9 4.7 79.3 74.1 85.4 18.5 84.6 88.5 81.0 2.3
ReLM-D2C 90.2 87.7 92.9 8.6 75.7 66.8 87.4 25.5 85.9 85.7 86.1 7.3

Table 3: Results on ECSpell, where F1, P, R, FPR refers to the F1 score, precision, recall, and false positice rate.

Method MCSC (%)
F1 P R FPR

Su
pe

rv
is

ed BERT 70.7 70.8 70.7 2.9
BERT-MFT 73.3 73.4 73.1 2.9
MDCSpell-MFT 78.5 78.5 78.6 2.5
Baichuan2 75.5 76.3 74.7 1.2
ReLM 83.2 82.9 83.6 2.5

Se
lf

-s
up

er
vi

se
d

BERT 0.6 1.7 0.4 0.2
BERT-MFT 1.6 2.9 1.1 1.3
MDCSpell-MFT 7.1 13.7 4.7 0.7
Baichuan2 3.6 10.7 2.2 0.1
Baichuan2-D2C 20.0 37.4 13.7 0.8
ReLM 21.8 29.9 17.2 1.3
ReLM-UD 30.8 36.3 26.8 3.4
ReLM-D2C 37.9 38.9 37.0 4.3

Table 4: Results on MCSC.

For self-supervised spelling correction, we find415

that D2C similarly achieves significant perfor-416

mance gain on both Baichuan2 and ReLM, lifting417

the F1 scores by 16.4 and 16.1 respectively. We418

also find that the user dictionary does not work419

very well, because of the weak alignment between420

the dictionary and MCSC data, incurring unstable421

gain on different data. However, D2C play its role422

conditioned on the pre-trained knowledge.423

5.4 Results on Japanese424

From Table 5, we find that D2C also works well425

on Japanese, outperforming the base decoding on426

ReLM by 18.2% points of F1.427

6 Discussion428

6.1 Using Confusion Set429

We compare D2C and the data augmentation430

method using the confusion set, a widely used tech-431

Method JWTD(%)
F1 P R FPR

Su
pe

rv
is

ed BERT 65.0 75.6 56.8 22.0
BERT-MFT 68.0 79.8 59.2 29.3
MDCSpell-MFT 73.0 81.8 65.9 26.8
ReLM 73.6 84.8 65.1 7.5

Se
lf

.

BERT 0.0 0.0 0.0 0.0
BERT-MFT 1.7 30.2 0.9 4.9
MDCSpell-MFT 2.3 52.4 1.2 4.9
ReLM 10.8 77.1 5.8 1.1
ReLM-D2C 29.0 39.3 23.0 38.0

Table 5: Results on Japanese spelling correction.

Dataset ReLM-Conf. (%) ReLM-D2C (%)
F1 FPR F1 FPR

EC-LAW 80.0 40.2 90.2 8.6
EC-ODW 67.0 38.9 85.9 7.3
MCSC 39.8 9.9 37.9 4.3

Table 6: Comparison with the confusion set and D2C.
Conf. means confusion.

nique in previous work in Table 6. We find that D2C 432

outperforms using the confusion set on two of the 433

chosen datasets. It suggests that the non-matching 434

segments in the confusion set can cause gaps to the 435

real error patterns in the testing time. However, the 436

monolingual data used in self-supervised learning 437

bypasses this risk. 438

6.2 Seen and Unseen Errors 439

To take a closer look at the correction ability, we 440

divide test set into two subsets, exclusive (E) and 441

inclusive (I) set, which refer to the test errors that 442

occur or not occur in the training set. From table 7, 443

it is discernible that supervised models fit internal 444

error set well but the performances drop sharply 445
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Models F1(%)
LAW MED ODW

Su
pe

rv
is

ed MDCSpell (I) 71.8 51.3 54.9
MDCSpell (E) 7.5 4.0 0.8
MDCSpell-MFT (I) 94.3 78.4 81.7
MDCSpell-MFT (E) 76.0 60.7 57.8

Se
lf

-s
up

er
vi

se
d MDCSpell-MFT (I) 52.6 32.9 32.1

MDCSpell-MFT (E) 48.0 26.0 33.7
ReLM (I) 93.2 73.5 82.2
ReLM (E) 92.5 74.7 73.1
ReLM-D2C (I) 98.2 79.2 88.3
ReLM-D2C (E) 97.0 81.5 82.7

Table 7: Performances on seen (I) and unseen (E) errors,
measured by F1 scores.
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Figure 2: ReLM’s F1 and FPR scores with different
amount of annotated data on MCSC.

on external error set. While models trained with446

monolingual data have a high degree of similarity447

between the performance on external error set and448

internal error set and D2C boosts the performance449

on external and internal set simultaneously. Surpris-450

ingly, we find that MDCSpell-MFT performs even451

better on self-supervised learning than supervised452

on the exclusive set. It suggests that the tagging453

objective degenerates the learned representation in454

the pre-trained language model, incurring the drop455

of generalizablity.456

6.3 Effect of Annotated Data457

We investigate the variation of F1 and FPR when458

increasingly adding annotated data on top of mono-459

lingual data. From 2, it is discernible that eventual460

performance can be boosted greatly with a small461

amount of annotated data, which is about under462

20%. It offers a promising signal that monolingual463

data, which can be achieved with a low cost, com-464

bined with a smaller amount of annotation, can lead465

to nice outcomes in real applications. Meanwhile,466

we notice that the false positive rate also increases467

with the increase of annotated data.468
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Figure 3: Performances with different mask rates.

6.4 Mask Rate 469

We also investigate the impact of mask rate. From 470

Figure 3 it is apparent that the F1 scores on ECSpell 471

keep improving when the mask rate grows from 0% 472

to about 30%, and than drop slightly. Besides, the 473

F1 score on MCSC keeps increasing until mask rate 474

meets 80%, which is much higher than ECSpell. 475

To dig further, a phenomenon observed across all 476

datasets is that an increase in the mask rate uplifts 477

recall (R) scores more apparently than precision (P) 478

scores while P scores either lean to unchanged or 479

even decline with an increase in the mask rate. Be- 480

cause monolingual fine-tuning process is designed 481

to shield models from error patterns and introduces 482

noise solely through mask tokens, the models are 483

more inclined to preserve the source sentences with- 484

out modification, which means a lower R scores. 485

During the evaluation stage, error characters serve 486

as noise for the model, therefore a higher mask rate 487

boost models’ performances on R scores. It also 488

indicates that mask rate relies on specific data and 489

the dataset MCSC which has shorter sentences and 490

multi-typos leans to perform better under higher 491

mask rate. 492

6.5 Effect of Hyperparameters 493

We access the effect of hyperparameters in D2C. 494

As a representative, we depict the curves on ReLM 495

in Figure 4. 496

Threshold Figure 4 shows that different datasets 497

are suitable with different threshold (ϵ). For ex- 498

ample, D2C with higher ϵ (0.9) gains better perfor- 499

mances on LAW, MED and ODW domains. How- 500

ever, D2C with about 0.6 threshold have higher F1 501

scores on MCSC. It reveals that ϵ should be set 502

based on different datasets. 503
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Figure 4: Non-auto-regressive D2C’s performance with
different hyperparameters.

Dataset Original (s) Accelerate (s)

ReLM
EC-MED 0.024 0.048
EC-LAW 0.022 0.038
EC-ODW 0.022 0.044

Baichuan
EC-MED 1.0 3.2
EC-LAW 0.6 1.6
EC-ODW 0.7 2.2

Table 8: Comparison between accelerated D2C and di-
rectly decoding on ReLM and Baichuan, measured by
second per sample.

Top-k There is a common phenomenon in Figure504

4 that a higher top-k characters uplifts F1 score un-505

der different change confidence ϵ. Considering that506

a high top-k characters brings decline in running507

speed, it is a trade off between speed and accuracy508

for users.509

6.6 Efficiency510

We compare the decoding efficiency of acceler-511

ated D2C and decoding directly in Table 8. We512

can observe that compared with decoding each sen-513

tence directly, D2C requires about twice the time514

on ReLM and three times the time on Baichuan.515

7 Case Study516

We further showcase some cases to illustrate how517

D2C improves the decoding process.518

SRC 伴月板改化的病因有哪些
TRG 半月板钙化的病因有哪些

ReLM 伴月板改化的病因有哪些
ReLM-D2C 半月板钙化的病因有哪些

Table 9: Multi-typo case can be better corrected by D2C.
Blue characters are right and red are wrong.

SRC 小孩休重怎么计算
TRG 小孩体重怎么计算

ReLM 小孩休重怎么计算
ReLM-D2C 小孩体重怎么计算

Table 10: D2C improves the recall rate.

Multi-typo In this case, (How does calcification 519

(钙化) of the meniscus (半月板) occur), error 520

characters are (钙→改) and (半→伴) , which 521

are very similar in pronunciation but meaningless 522

as words in the sentence. We noticed in experiment 523

that ReLM without D2C failed to correct this sen- 524

tences with two error characters while success with 525

single error character if one of the two errors has 526

been corrected before. Therefore, with D2C we 527

introduce noise into the source sentence to correct 528

“伴” and “改” step by step. 529

Not recall Considering sentences in spelling cor- 530

rection sometimes have short length, models re- 531

ceive limited semantics information and tend to 532

under-correct error characters just like case in Table 533

10. This case (How to calculate children’s weight 534

(体重) ) has the error pattern of (体→休), which 535

are similar in terms of their visual appearance. In 536

the presence of semantics limitations, D2C directs 537

models to reword specified position to incorporate 538

more suitable characters and effectively mitigating 539

the issue of under-correction. 540

8 Conclusion 541

This paper studies self-supervised spelling correc- 542

tion based on the rephrasing-based models. We 543

demonstrate that machine spelling correction does 544

not necessitate parallel data, and can be learned 545

from monolingual data alone. We propose a novel 546

decoding algorithm named D2C to effectively en- 547

hance the recall ability of the self-supervised model. 548

Results on Chinese and Japanese spelling correc- 549

tion showcase the significant improvement brought 550

by our method. We hope that this paper can bring 551

new insight and vigour to future research on unsu- 552

pervised spelling correction. 553

Limitations 554

Our work focuses on Chinese and Japanese. Other 555

language such as Korean have not been studied in 556

this work. D2C cost a decline in the speed of single 557

sentence processing. Our self-supervised method’s 558

performances is sensitive to multi-typo data. 559
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