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1 Introduction1

Recently, several studies have described “grounding” as an emergent property of vision-language2

models [VLMs; 15, 1, 6, inter alia] trained without explicit grounding objectives. Evidence comes3

from two main observations: spatial localization, where attention patterns and prompt-conditioned4

activations align tokens with fine-grained image regions or object boundaries [5, 4]; and cross-modal5

geometric correspondences that can be recovered even without paired image–text supervision [18].6

In this context, “emergence” simply means that such alignment patterns arise without explicit,7

fine-grained supervision, and “grounding” denotes statistical associations learned from large-scale8

co-occurrence of pixel regions and phrases in captions.9

This behavioral perspective departs from the original formulation of the symbol grounding prob-10

lem [11], which emphasizes how symbols acquire referentially anchored, causally supported links11

to percepts and actions. Such links should remain stable across contexts and be informative under12

interventions, rather than merely arising as byproducts of distributional regularities. Siskind [19]13

demonstrated with an algorithmic model that word-meaning mappings can be learned without relying14

solely on high co-occurrence correlations, underscoring the need to test grounding with mechanisms15

beyond surface statistics. To address the fundamental research question of how, if at all, symbol16

grounding emerges in autoregressive language modeling, we must move beyond correlations and17

probe causal mechanisms that link symbols to their environments, while also examining training18

dynamics to identify when and how such links appear.19

2 Method20

2.1 Dataset and Tokenization21

Our guiding principle is that symbol grounding should be learned from multimodal interactions,22

where environmental context provides the ground and dialogue supplies the linguistic forms. To23

capture this, we design a custom word-level tokenizer in which every lexical item is represented in24

two forms: one token that appears in non-verbal descriptions (e.g., a box in the scene) and another25

that appears in utterances (e.g., box in speech). We call these environmental tokens (<ENV>) and26

linguistic tokens (<LAN>). For example, box<ENV> and box<LAN> are treated as entirely separate27

tokens, so any successful mapping must be learned during training rather than inherited from token28

identity. We instantiate this framework in three datasets, ranging from child-directed transcripts to29

image-based dialogue. Due to space limits, we show CHILDES results in the main paper and30

leave others to the Appendix.31

Grounded Child-Directed Speech. The Child Language Data Exchange System (CHILDES)32

corpus [14] provides transcripts enriched with environmental annotations. We preprocess the data33

by retaining only two streams: (i) spoken utterances, mapped to linguistic tokens (<LAN>), and (ii)34

environmental descriptions, mapped to environmental tokens (<ENV>). Environmental context is35

drawn from three annotation types:36

• Local Events: simple events, pauses, long events, or remarks interleaved with transcripts.37

• Action Tiers: actions performed by the speaker or listener (e.g., %act: runs to toy box).38

These also include cases where an action replaces speech (e.g., 0 [% kicks the ball]).39
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• Situational Tiers: situational information tied to utterances or to larger contexts (e.g., %sit:40

dog is barking).41

Caption-Grounded Dialogue. The Visual Dialog dataset [8] pairs MSCOCO images [12] with42

multi-turn dialogues collected through sequential question–answer exchanges about each image.43

In our setup, the MSCOCO captions serve as the environmental stream (environmental tokens44

<ENV>), while the dialogue turns form the linguistic stream (linguistic tokens <LAN>). This design45

provides a controlled multimodal setting in which textual descriptions of visual scenes grounds natural46

conversational interaction. Compared to CHILDES, this setup introduces richer semantics and longer47

utterances, while still using the same text-only inputs for both streams, thereby offering a stepping48

stone toward grounding in fully visual contexts.49

Image-Grounded Dialogue. To move beyond textual proxies for the environment, we construct50

a fully image-grounded dialogue setup. Here, the environmental stream is derived directly from51

images: each image is tokenized into patch embeddings using a frozen vision transformer (ViT, [9]),52

and each patch embedding is treated as an <ENV> token, analogous to the visual tokens in modern53

VLMs. We adopt DINOv2 [16] as our visual encoder, since it is trained purely from vision without54

auxiliary text supervision (in contrast to CLIP [17]), ensuring that environmental tokens reflect55

visual structure alone. Dialogue remains in <LAN> form, yielding a realistic multimodal interaction56

where conversational predictions are conditioned directly on visual input. This setup allows us to57

evaluate whether the grounding effects observed in controlled text-based contexts also extend to real58

multimodal settings.59

2.2 Evaluation Protocol60

Behaviorally, we assess symbol grounding with a contrastive test that asks whether a model assigns61

higher probability to the correct linguistic token when the matching environmental token is present,62

similar to priming in psycholinguistics. This evaluation applies uniformly across datasets: in63

CHILDES and caption-grounded dialogue, environmental priming comes descriptive templates; and64

in image-grounded dialogue, from ViT-derived visual tokens. We compare the following conditions:65

• Match (Experimental Condition): The environmental context contains the correct <ENV> token66

for the target word, and the model is expected to predict its <LAN> counterpart.67

• Mismatch (Control Condition): The environmental context is replaced with an <ENV> token68

from a different vocabulary item (sampled from the remaining words). The model is still tasked69

with predicting the same <LAN> token, and surprisal is measured, but performance is expected to70

be at chance level given the absence of a matching environmental cue.71

For example, when evaluating the word box<LAN>, the input sequence is: <CHI>72

jumped<ENV> beside<ENV> a<ENV> large<ENV> box<ENV> <CHI> I<LAN> found<LAN>73

a<LAN> cool<LAN> , where the model is expected to predict box<LAN>. In the control74

(mismatch) condition, the environmental token box<ENV> is replaced by another valid noun such as75

chair<ENV>. Formally, let θ denote model parameters. For a target type v with linguistic token vLAN76

and environmental token vENV, let c ∈ Cv be a context template and let u ̸= v index a mismatched77

type. In the match condition, e = match(v) inserts v<ENV> into the environmental stream of c. In the78

mismatch condition, e = mismatch(u) inserts u<ENV> with u ̸= v while the target remains v<LAN>.79

Grounding Information Gain. Following prior work, we quantify prediction quality using the mean80

surprisal of a word. For a token w with context c and environmental ground e, surprisal is defined81

as sθ(w | c, e) = − log2 Pθ(w | c, e), which quantifies the unexpectedness (self-information) of82

predicting w. In our setting, w = v<LAN> and e specifies either the correct ground v<ENV> (match) or a83

mismatched ground u<ENV> with u ̸= v.84

For each target word v, we construct N template contexts {c1, . . . , cN}. For each template cn, we85

evaluate the model under the match condition and under M mismatched conditions. The Grounding86

Information Gain G(v) for v is87

G(v) =
1

N

N∑
n=1

 1

M

M∑
u̸=v

[
sθ(v<LAN> | cn, u<ENV>)− sθ(v<LAN> | cn, v<ENV>)

] . (1)

This is an estimation (via sampling) of,88

G(v) = Ec,u

[
log2

Pθ(v<LAN> | c, v<ENV>)
Pθ(v<LAN> | c, u<ENV>)

]
. (2)
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(a) 12-Layer Transformer.
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(b) 12-Layer Mamba 2.
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(c) 4-Layer Mamba 2.
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(d) 4-Layer LSTM.
Figure 1: Average surprisal of the experimental and control conditions over training steps.
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(a) 12-Layer Transformer.
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(b) 12-Layer Mamba 2.
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(c) 4-Layer Mamba 2.
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(d) 4-Layer LSTM.
Figure 2: Grounding information gain and its correlation to the co-occurrence of linguistic and
environment tokens over training steps.
Intuitively, G(v) is the expected log-likelihood ratio between the match and mismatch conditions.89

It quantifies how much evidence the correct environmental ground provides for the hypothesis that90

the observed linguistic form was generated from it, or equivalently, the average number of bits by91

which uncertainty is reduced when conditioning on the correct ground rather than an incorrect one. A92

positive value of G(v) indicates that the correct environmental ground increases the predictability of93

its linguistic form, measured in bits. At the dataset level, we report Gθ = 1
|V |

∑
v∈V G(v), and track94

G
(t)
θ across training steps t to analyze how grounding emerges over time.95

Tested Vocabulary and Test Context. We select a vocabulary of 100 nouns from the MacArthur–Bates96

Communicative Development Inventories (CDI) [10] that occur frequently in our training corpus.97

Each word serves once as the target, with the remaining M = 99 nouns used to construct mismatched98

conditions. For each noun mentioned above, we create N = 10 different contexts. Each context has99

two parts: the first part describe an environment that a child is in (with <ENV> tags), and the second100

part is a sentence they say (with <LAN> tag). The two parts both contain the target noun. The full101

word list and context templates are provided in the Appendix.102

2.3 Model Training103

We train autoregressive language models from random initialization, ensuring that no prior linguistic104

knowledge influences the results. Training uses the standard causal language modeling objective,105

as in most generative LMs. To account for variability, we repeat all experiments with 5 random106

seeds, randomizing both model initialization and corpus shuffle order. Our primary architecture107

and training setups follow a Transformer [20] in the style of GPT-2, though we also run parallel108

experiments with state-space models [7] following Mamba-2. Standard LLaVA [13] uses a two-layer109

perceptron to project ViT embeddings into the language model. In our case, since DINOv2 provides110

embeddings with the same dimensionality as the language model, we bypass this projection and feed111

the representations directly into the autoregressive model. We obtain the developmental trajectory of112

the model by saving 33 checkpoints at various training steps.113

3 Experiments114

3.1 Behavioral Evidence of Emergent Grounding115

In this section, we ask: Does symbol grounding emerge behaviorally in autoregressive language116

models? For Transformers and Mamba-2, surprisal in the match condition decreases steadily while117

the mismatch condition plateaus higher, indicating that the model exploits the environmental ground to118

predict the linguistic form. The 12-layer version shows sharper learning dynamics initially and drifts119

later, consistent with the tendency of Mamba to overfit local pattern shortcuts [22]. In contrast, the120

unidirectional LSTM (Figure 1d) shows little separation between the conditions, reflecting sequential121

state compression and the absence of content-addressable retrieval. Overall, these results provide122

behavioral evidence of emergent grounding: in sufficiently expressive architectures, the correct123

environmental ground reliably lowers surprisal for its linguistic counterpart, whereas LSTMs fail to124

exhibit this effect, marking an architectural boundary on where grounding can emerge.125
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3.2 Behavioral Effects Surpass Co-occurrence126
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Figure 3: Mechanis-
tic analysis of symbol
grounding emergence.

A natural concern is that surprisal reductions might reflect shallow127

statistics: the model could simply memorize frequent co-occurrences128

of <ENV> and <LAN> tokens rather than learn a general mapping.129

To test this, we compare each word’s co-occurrence frequency with130

its Grounding Information Gain. Raw counts are log-transformed to131

match surprisal’s log scale, and for every checkpoint we regress log co-132

occurrence counts against Grounding Information Gain, yielding an R2133

over training. Figure 2 plots R2 (orange) alongside overall gain (blue). In134

both Transformer and Mamba-2, R2 rises early but soon collapses, while135

Grounding Information Gain continues to grow. By contrast, the LSTM136

shows persistently high R2 but negligible gain. Thus, in Transformers and137

Mamba-2, grounding cannot be explained by co-occurrence alone: models138

initially exploit surface regularities, but later improvements depend on139

richer internal mechanisms.140

3.3 An Mechanistic Interpretability Account of Grounding141

To give a mechanistic account of symbol grounding, e.g., where and how142

in the network is it represented, we apply two interpretability analysis.143

Tuned Lens Probing. We probe layer-wise representations using tuned144

lens [2], which trains affine translators to map intermediate activations to145

the final prediction space while keeping the output head fixed. Figure 3a146

shows surprisal estimates from each layer under the match condition.147

Early layers remain poor predictors, while surprisal drops substantially148

beginning at layer 7, pointing to a representational shift in the mid layers.149

Saliency Flow. For each attention layer l, we compute a saliency matrix150

following Wang et al. [21]: Il =
∣∣∣∑h Ah,l ⊙ ∂L(x)

∂Ah,l

∣∣∣, which measures151

the contribution of attention heads (via gradient × attention) to the152

loss. We focus specifically on anchor-to-end connections, i.e., flows153

from environmental ground (<ENV>) to their linguistic form (<LAN>).154

Figure 3b shows that anchor-to-end saliency is weak in early layers but155

rises sharply in later training steps, peaking in layers 7–9. This suggests156

that mid-layer attention plays a central role in establishing symbol–ground157

correspondences.158

3.4 Attention-Head Mechanisms Implements Symbol Grounding159

We next ask how this computation is implemented at the level of individual160

attention heads. Bick et al. [3] has argued that autoregressive LMs employ a161

Gather-and-Aggregate (G&A) mechanism: some heads compress relevant162

information into a subset of positions (gather), while others redistribute163

this information to downstream tokens (aggregate).164

Figure 3c shows an example gather head (layer 6, head 7). Here, attention concentrates on165

environmental ground tokens such as train<ENV>, pooling information from previous tokens into166

a compact representation. This behavior suggests that early mid-layer heads are responsible for167

collecting grounded information into retrievable states. Figure 3d highlights an aggregate head (layer168

7, head 12). In contrast to the gather pattern, this head propagates information from the environmental169

ground (train<ENV>) to the corresponding linguistic tokens (train<LAN> and related context). This170

pattern reflects a broadcasting role, where collected grounding information is distributed to the171

locations that drive final predictions. Taken together with our earlier identification of gather heads172

in lower layers (prior to layer 7), these results suggest that symbol grounding is implemented via a173

functional specialization across attention heads. Specifically, gather heads in early layers compress174

and store information from environmental grounds into a smaller set of hidden positions, creating175

retrievable intermediate representations. Aggregate heads in mid layers (particularly layers 7–9)176

propagate this stored information forward, redistributing it to the positions associated with linguistic177

tokens and thereby supporting accurate prediction.178
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A Appendix243

Context Templates. All contexts are created with gpt-4o-mini, with the following prompt:244

template = f’’’given the word "{word}", create 3 pairs of sentence245

that follow this requirement:246

1. The first sentence has subject "The child", describing an event or situation,247

and have the word "{word}". Make sure to add newline to the end of248

this first sentence249

2. The second sentence is said by the250

child (only include the speech itself,251

don’t include "the child say", etc.),252

and the word "{word}" also appears in the sentence253

said by the child. Do not add quote marks either254

3. Print each sentence on one line.255

Do not include anything else.256

4. Each sentence should be short, less than 10 words.257

5. The word "{word}" in both sentence have258

the same meaning and have clear indication259

or implication relationship.260

6. "{word}" should not appear at the261

first/second word of each sentence.262

Generate 3 pairs of such sentences,263

so there should be 6 lines in total.264

You should not add number.265

For each line, just print out the sentence.266

’’’267

Word List for CHILDES and Vision Dialogue (Text Only). [’box’, ’book’, ’ball’, ’hand’, ’paper’,268

’table’, ’toy’, ’head’, ’car’, ’chair’, ’room’, ’picture’, ’doll’, ’cup’, ’towel’, ’door’, ’mouth’, ’camera’,269

’duck’, ’face’, ’truck’, ’bottle’, ’puzzle’, ’bird’, ’tape’, ’finger’, ’bucket’, ’block’, ’stick’, ’elephant’,270

’hat’, ’bed’, ’arm’, ’dog’, ’kitchen’, ’spoon’, ’hair’, ’blanket’, ’horse’, ’tray’, ’train’, ’cow’, ’foot’,271

’couch’, ’necklace’, ’cookie’, ’plate’, ’telephone’, ’window’, ’brush’, ’ear’, ’pig’, ’purse’, ’hammer’,272

’cat’, ’shoulder’, ’garage’, ’button’, ’monkey’, ’pencil’, ’shoe’, ’drawer’, ’leg’, ’bear’, ’milk’, ’egg’,273

’bowl’, ’juice’, ’ladder’, ’basket’, ’coffee’, ’bus’, ’food’, ’apple’, ’bench’, ’sheep’, ’airplane’, ’comb’,274

’bread’, ’eye’, ’animal’, ’knee’, ’shirt’, ’cracker’, ’glass’, ’light’, ’game’, ’cheese’, ’sofa’, ’giraffe’,275

’turtle’, ’stove’, ’clock’, ’star’, ’refrigerator’, ’banana’, ’napkin’, ’bunny’, ’farm’, ’money’]276

Word List for Vision Dialogue (VLM). ["box", "book", "table", "toy", "car", "chair", "doll", "door",277

"camera", "duck", "truck", "bottle", "bird", "elephant", "hat", "bed", "dog", "spoon", "horse", "train",278

"couch", "necklace", "cookie", "plate", "telephone", "window", "pig", "cat", "monkey", "drawer",279

"bear", "milk", "egg", "bowl", "juice", "ladder", "bus", "food", "apple", "sheep", "bread", "animal",280

"shirt", "cheese", "giraffe", "clock", "refrigerator", "accordion", "aircraft", "alpaca", "ambulance",281

"ant", "antelope", "backpack", "bagel", "balloon", "barrel", "bathtub", "beard", "bee", "beer", "beetle",282

"bicycle", "bidet", "billboard", "boat", "bookcase", "boot", "boy", "broccoli", "building", "bull",283

"burrito", "bust", "butterfly", "cabbage", "cabinetry", "cake", "camel", "canary", "candle", "candy",284

"cannon", "canoe", "carrot", "cart", "castle", "caterpillar", "cattle", "cello", "cheetah", "chicken",285

"chopsticks", "closet", "clothing", "coat", "cocktail", "coffeemaker", "coin", "cosmetics"]286

Checkpointing. We save the intermediate steps: [0, 150, 300, 500, 1000, 1500, 2000, 2500, 3000,287

3500, 4000, 4500, 5000, 5500, 6000, 6500, 7000, 7500, 8000, 8500, 9000, 9500, 10000, 11000,288

12000, 13000, 14000, 15000, 16000, 17000, 18000, 19000, 20000] (33 checkpoints in total)289

Visual Dialogue Results. We provide the Visual Dialogue results in Figure 4 and Figure 5.290
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(b) Vision Dialogue (VLM)
Figure 4: Average surprisal of the experimental and control conditions over training steps.
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(a) Vision Dialogue (Text Only)
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(b) Vision Dialogue (VLM)
Figure 5: Grounding information gain and its correlation to the co-occurrence of linguistic and
environment tokens (or images) over training steps.
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