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ABSTRACT
Analyzing changes in network evolution is central to statistical network inference. We consider a dynamic
network model in which each node has an associated time-varying low-dimensional latent vector of feature
data, and connection probabilities are functions of these vectors. Under mild assumptions, the evolution
of latent vectors exhibits low-dimensional manifold structure under a suitable distance. This distance can
be approximated by a measure of separation between the observed networks themselves, and there
exist Euclidean representations for underlying network structure, as characterized by this distance. These
Euclidean representations, called Euclidean mirrors, permit the visualization of network dynamics and lead
to methods for change point and anomaly detection in networks. We illustrate our methodology with real
and synthetic data, and identify change points corresponding to massive shifts in pandemic policies in a
communication network of a large organization. Supplementary materials for this article are available online,
including a standardized description of the materials available for reproducing the work.
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1. Introduction

The structure of many organizational and communication net-
works underwent a dramatic shift during the disruption of the
COVID-19 pandemic in 2020 (Zuzul et al. Forthcoming). This
massive shock altered network connectivity in many respects
and across multiple scales, differentially impacting individual
nodes, local sub-communities, and whole networks. A visualiza-
tion of this can be seen in Figure 1, which illustrates the shifting
structure, from the spring to the summer of 2020, in a communi-
cations network of a large corporation. Each node represents an
E-mail account, and connection between nodes reflect E-mail
frequency between accounts. The panel on the left of Figure 1
shows a clustering of the network into subcommunities, and
the panel on the right shows how those network connections
between the same individuals shifted over time.

Such transformations give rise to several important questions
in statistical network inference: how to construct useful mea-
sures of dissimilarity across networks; how to estimate any such
measure of dissimilarity from random network realizations; how
to identify loci of change; and how to gauge differences across
scales, from nodes to sub-networks to the entire network itself.
Our goal in this article is to build a robust methodology to
address such phenomena, and to model and infer important
characteristics of network time series.

To this end, we focus on a class of time series of random
networks. We define an intuitive distance between the evolution
of certain random variables that govern the behavior of nodes
in the networks and prove that this distance can be consistently
estimated from the observed networks. When this distance is
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sufficiently similar to a Euclidean distance, multidimensional
scaling extracts a curve in low-dimensional Euclidean space that
mirrors the structure of the network dynamics. This permits a
visualization of network evolution and identification of change
points. Figure 2 is the result of an end-to-end case study using
these techniques for a time series of communication networks in
a large corporation in the months around the start of pandemic
work-from-home protocols: see the dramatic change in both
panels beginning in Spring 2020. See Section 3 for the method-
ology used to generate these figures, and Section 4 for the full
details of this experiment.

Analysis of multiple networks is a key emerging subdiscipline
of network inference, with approaches ranging from joint spec-
tral embedding (Levin et al. 2017; Jones and Rubin-Delanchy
2020; Arroyo et al. 2021; Gallagher, Jones, and Rubin-Delanchy
2021; Jing et al. 2021; Pantazis et al. 2022), tensor decompo-
sitions (Zhang and Xia 2018; Lei, Chen, and Lynch 2020; Jing
et al. 2021), least-squares methods (Pensky 2019; Lei and Lin
2022), maximum likelihood methods (Krivitsky and Handcock
2014) and multiscale methods via random walks on graphs
(Lee and Maggioni 2011). In Padilla, Yu, and Priebe (2022) and
Wang, Yu, and Rinaldo (2021), the authors consider changepoint
localization for a time series of latent position random graphs
(Hoff, Raftery, and Handcock 2002), a type of independent-
edge network in which each node or vertex has an associated
latent position that determines its probability of connection with
others. The authors establish consistency for localization of a
particular kind of changepoint—namely, the case in which the
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Figure 1. Evidence of structural network dissimilarity across time. Visualizations are of anonymized and aggregated Microsoft communications networks in April and July
2020, with two communities highlighted. Nodes represent E-mail accounts, with edges determined by E-mail frequency (edges not shown in these images). Left panel
shows an initial Leiden clustering (Traag, Waltman, and Van Eck 2019) of the nodes into different subcommunities (colored); right panel shows the shift in connectivity
structure over this time. Full visualization details are given in Section 4.1. During this time period, our analysis demonstrates that the network as a whole experiences a
structural shock coincident with the pandemic work-from-home order. However, different subcommunities undergo qualitatively different changes in their structure, from
a connected network that seems to diverge (green) and a less cohesive one that seems to coalesce (blue). (See Figure 4, wherein the overall network behavior, as well as
the two highlighted communities with their different temporal behavior, are depicted.) The figures here are two-dimensional renderings of temporal snapshots of a large
(n = 32,277) complex network; hence, conclusions based on this visualization are notional.

Figure 2. Classical multidimensional scaling (CMDS) and ISOMAP embeddings of estimated network dissimilarity identifies changes in network structure. Left plot shows
top two dimensions CMDS of pairwise network distance matrix for anonymized, aggregated Microsoft communications networks from January 2019 to December 2020;
individual networks follow a curve that progresses smoothly until spring 2020 and then exhibits a major shock. Right plot shows associated ISOMAP manifold learning
representation and reveals a potential anomaly and/or changepoint. Full details for these plots are in Section 4.

latent positions are all fixed prior to some time point and after
which they may be different. Asymptotic properties of these
methods depend on particular model assumptions for how the
networks evolve over time and relate to one another, and rigor-
ous performance guarantees can be challenging and limited in
scope. The underlying geometry of latent spaces affects network
structure and evolution as well. In Smith, Asta, and Calder
(2019), the authors consider the impact of different curvature
and non-Euclidean properties of latent space geometry on net-
work formation. In Wilkins-Reeves and McCormick (2022), the
authors prove asymptotic results for estimators of underlying
latent space curvature.

On the one hand, both single and multiple-network inference
problems often have related objectives. For example, if data
include multiple network realizations from the same underlying
model on the same set of aligned vertices, we may wish to

effectively exploit these additional realizations for more accurate
estimation of common network parameters—that is, use the
replications in a multiple-network setting to refine parameter
estimates that govern any single network in the collection. On
the other hand, multiple network inference involves statistically
distinct questions, such as identifying loci of change across net-
works or detecting anomalies in a time series of networks.

Euclidean latent position networks assign to each vertex a
typically unobserved vector in some low-dimensional Euclidean
space Rd; edges between vertices then arise independently. The
probability of an edge between vertex i and vertex j is some
fixed function κ , called the link function or kernel, of the two
associated latent positions for the respective vertices. Latent
position random graphs have the appealing characteristic of
modeling network connections as functions of inherent features
of the vertices themselves—these features are encoded in the



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 1027

latent positions—and transforming network inference into the
recovery of lower-dimensional structure. More specifically, if we
have a series of time-indexed latent position graphs Gt on a
common aligned vertex set, then associated to each network is a
matrix Xt whose rows are the latent vectors of the vertices. Since
the edge formation probabilities are a function of pairs of rows
of Xt , the probabilistic evolution of the network time series is
completely determined by the evolution of the rows of Xt . As
such, the natural object of study for inference about a time series
of latent position graphs are the rows of Xt. In particular, anoma-
lies or changepoints in the time-series of networks correspond
to changes in the Xt process. For example, a change in a specific
network entity is associated to a change in its latent position,
which can then be estimated.

The evolution of the rows of Xt can be deterministic, as is
the case when features of the nodes in a network follow some
predictable time-dependent pattern; but it can also be random,
as is the case when the actors in a network have underlying
preferences that are subject to random shocks. When the latent
position vector Xt(i) for some individual vertex i is a random
variable, we have, as t varies, a stochastic process. This collec-
tion of random variables can be endowed with a metric, which
under certain conditions is Euclidean realizable; that is, the
random variables at each time have a representation as points
in R

c for some dimension c, where the metric space distances
between the random variables are equal to the Euclidean dis-
tances between these points (see Borg and Groenen (2005) for
more on Euclidean realizability of dissimilarity matrices). This
allows us to visualize the time evolution of this stochastic process
as the image of a map from an interval into R

c.
We use this idea to formulate a novel approach to network

time series. We demonstrate methods for consistently estimating
a Euclidean representation, or mirror, of the evolution of the
latent position distributions from the observed networks. This
mirror can reveal important underlying structure of the network
dynamics, as we demonstrate in both simulated and real data,
the latter of which is drawn from organizational and commu-
nication networks, revealing the changepoint corresponding to
the start of pandemic work-from-home orders.

2. Model and Geometric Results

In order to model the intrinsic characteristics of the entities in
our network, we consider latent position random graphs, which
associate a vector of features in R

d to each vertex in the network.
The connections between vertices in the network are indepen-
dent given the latent positions, with connection probabilities
depending on the latent position vectors of the two vertices in
question. In our notation, X ∈ X ⊂ R

d or x ∈ X ⊂ R
d,

represent column vectors. If such column vectors are arranged
as rows in a matrix, we specify this explicitly or we use the
transpose to denote the corresponding row vector.

Definition 1 (Latent Position Graph, Random Dot Product Graph,
and Generalized Random Dot Product). We say that the random
graph G with adjacency matrix A ∈ R

n×n is a latent position ran-
dom graph (LPG) with latent position matrix X ∈ R

n×d, whose
rows are the transpositions of the column vectors X1, . . . , Xn ∈
X ⊆ R

d, and link function κ : X × X → [0, 1], if

P[A|X] =
∏
i<j

κ(Xi, Xj)Ai,j(1 − κ(Xi, Xj))1−Ai,j .

If κ(x, y) = x�y, we say that G is a random dot product graph
(RDPG) and we call P = XXT the connection probability
matrix. In this case, each Aij is marginally distributed (condi-
tionally on Xi, Xj) as Bernoulli(〈Xi, Xj〉).

As a generalization, suppose x1, y1 ∈ R
p and x2, y2 ∈ R

q,
where p + q = d. When κ([(x1)�, (x2)�]�, [(y1)�, (y2)�]�) =
(x1)�y1 − (x2)�y2, we say that G is a generalized random dot
product graph (GRDPG) and we call P = XIp,qXT the gener-
alized edge connection probability matrix, where Ip,q = Ip ⊕
(−Iq).

Remark 1 (Orthogonal nonidentifiability in RDPGs). Note that
if X ∈ R

n×d is a matrix of latent positions and W ∈ R
d×d is

orthogonal, X and XW give rise to the same distribution over
graphs. Thus, the RDPG model has a nonidentifiability up to
orthogonal transformation. Analogously, the GRDPG model has
a nonidentifiability up to indefinite orthogonal transformations.

Since we wish to model randomness in the underlying fea-
tures of each vertex, we will consider latent positions that are
themselves random variables defined on a probability space
(�,F ,P). For a particular sample point ω ∈ �, let X(t, ω) ∈ R

d

be the realization of the associated latent position for this vertex
at time t ∈ [0, T]. On the one hand, for fixed ω, as t varies,
X(t, ω), 0 ≤ t ≤ T is the realized trajectory of a d-dimensional
stochastic process. On the other hand, for a given time t, the
random variable X(t, ·) represents the constellation of possible
latent positions at this time. In order for the inner product to be
a well-defined link function, we require that the distribution of
X(t, ·) follow an inner-product distribution:

Definition 2. Let F be a probability distribution on R
d. We say

that F is a d-dimensional inner product distribution if 0 ≤ x�y ≤
1 for all x, y ∈ suppF. We will suppose throughout this work that
for a d-dimensional inner product distribution F and X ∼ F,
E[XX�] has rank d.

We wish to quantify the difference between the random
vectors X(t, ·) and X(t′, ·). Suppose that the graphs come from
an RDPG or GRDPG model, where at each time t, the latent
positions of each graph vertex are drawn independently from a
common inner product latent position distribution Ft . Because
X(t, ·) is a latent position, we necessarily have X(t, ·) ∈ L2(�);
for notational simplicity, we will use X(t, ·) and Xt interchange-
ably. We define a norm, which we call the maximum direc-
tional variation norm, on this space of random variables; this
norm leads to a natural metric dMV(Xt , Xt′), both of which are
described below. In the definition below, and throughout the
article, we use ‖ · ‖ to denote the Euclidean norm in R

d, ‖ · ‖2
to denote the spectral norm of a matrix, and ‖ · ‖F to denote the
Frobenius norm of a matrix.

Definition 3 (Maximum directional variation norm and metric).
For a random vector X ∈ L2(�), we define

‖X‖MV = max
u

E[〈X, u〉2]1/2 = ‖E[XX�]‖1/2
2 ,
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where the maximization is over u ∈ R
d with ‖u‖ = 1. We

define an associated metric dMV by minimizing the norm of
the difference between the random variables Xt , Xt′ over all
orthogonal transformations, which aligns these distributions.

dMV(Xt , Xt′) = min
W

‖Xt − WXt′ ‖MV

= min
W

∥∥∥E[(Xt − WXt′)(Xt − WXt′)
�]

∥∥∥1/2

2
, (1)

where the matrix norm on the right hand side is the spec-
tral norm. Given a map ϕ : [0, T] → L2(�) that assigns
time points t to random variables ϕ(t) = Xt , we may write
dMV(ϕ(t), ϕ(t′)) := dMV(Xt , Xt′).

The minimization in (1) is a variant of the classical Procrustes
alignment problem, so we may refer to the latent positions after
this rotation as “Procrustes-aligned.”

Remark 2. If X has mean zero, the ‖X‖MV considers the square
of spectral norm of its covariance matrix; that is, the norm ‖·‖MV
gives the maximal directional variation when X is centered. In
the cases of interest, we wish to capture features of the variance
of the drift in the latent position, Xt − WXt′ : this is the origin
of the name for this metric and its associated norm. The metric
dMV is not properly a metric on L2(�), since if X = WY a.s. for
some orthogonal matrix W, then dMV(X, Y) = 0. However, if we
consider the equivalence relation defined by X ∼ Y whenever
X = WY for some orthogonal matrix, this is a metric on the
corresponding set of equivalence classes. This means that we are
able to absorb the non-identifiability from the original parame-
terization, obtaining a new parameter space with a metric space
structure where the underlying distribution is identifiable.

One of the central contributions of this article is that the dMV
metric captures important features of the time-varying distri-
butions Ft . To describe a family of networks indexed by time,
each of which is generated by a matrix of latent positions that
are themselves random, we consider a latent position stochastic
process.

Definition 4 (Latent position process). Let Ft , 0 ≤ t ≤ T be a
filtration of F . A latent position process ϕ(t) is an Ft-adapted
map ϕ : [0, T] → (L2(�), dMV) such that for each t ∈ [0, T],
ϕ(t) = X(t, ·) has an inner product distribution. We say that a
latent position process is nonbacktracking if ϕ(t) = ϕ(t′) implies
ϕ(s) = ϕ(t) for all s ∈ [t, t′].

Once we have the latent position stochastic process, we can
construct a time series of latent position random networks
whose vertices have independent, identically distributed latent
positions given by ϕ(t).

Definition 5 (Time Series of LPGs). Let ϕ be a latent position
process, and fix a given number of vertices n and collection of
times T ⊆ [0, T]. We draw an iid sample ωj ∈ � for 1 ≤ j ≤ n,
and obtain the latent position matrices Xt ∈ R

n×d for t ∈ T by
appending the rows X(t, ωj), 1 ≤ j ≤ n. The time series of LPGs
(TSG) {Gt : t ∈ T } are conditionally independent LPGs with
latent position matrices Xt , t ∈ T .

We emphasize that each vertex in the TSG corresponds to a
single ω ∈ �, which induces dependence between the latent
positions for that vertex across time points, but the latent posi-
tion trajectories of any two distinct vertices are independent of
one another across all times. Since these trajectories form an iid
sample from the latent position process, it is natural to measure
their evolution over time using the metric on the corresponding
random variables, namely dMV(Xt , Xt′). In the definition of this
distance, the expectation is over ω ∈ �, which means that it
depends on the joint distribution of Xt and Xt′ . In particular,
dMV depends on more than just the marginal distributions of the
random vectors Xt and Xt′ individually, but takes into account
their dependence inherited from the latent position process ϕ.

A key question is whether the image ϕ([0, T]) has useful
geometric structure when equipped with the metric dMV . It
turns out that, under mild conditions, this image is a manifold.
In addition, the map ϕ admits a Euclidean analogue, called a mir-
ror, which is a finite-dimensional curve that retains important
signal from the generating stochastic process for the network
time series. To make this precise, we define the notions of
Euclidean realizability and approximate Euclidean realizability,
below, and provide several examples of latent position processes
that satisfy these requirements.

Definition 6 (Notions of Euclidean realizability). Let ϕ be a latent
position process.

We say that ϕ is approximately (Lipschitz) Euclidean c-
realizable with mirror ψ and realizability constant C > 0 if there
exists a Lipschitz continuous curve ψ : [0, T] → R

c such that∣∣dMV(ϕ(t), ϕ(t′)) − ‖ψ(t) − ψ(t′)‖∣∣
≤ C|t − t′| for all t, t′ ∈ [0, T].

For a fixed α ∈ (0, 1), we say that ϕ is approximately α-Hölder
Euclidean c-realizable if ψ is α-Hölder continuous, and there is
some C > 0 such that∣∣dMV(ϕ(t), ϕ(t′)) − ‖ψ(t) − ψ(t′)‖∣∣

≤ C|t − t′|α for all t, t′ ∈ [0, T].
Rather than c-realizable, we may simply say realizable if there
is some c for which this holds; we simply say that ϕ is Hölder
Euclidean realizable if the condition holds for some α ∈ (0, 1].
Remark 3. If there exists a Lipschitz curve ψ in R

c for which

dMV(ϕ(t), ϕ(t′)) = ‖ψ(t) − ψ(t′)‖
we say the latent position process is exactly Euclidean realizable.
While this is seldom the case for most interesting latent position
processes, it can be instructive to consider what this implies: that
pairwise dMV distances between the latent position process at t
and t′ coincide exactly with Euclidean distances along the curve
ψ at t and t′. Hence, the term mirror, a Euclidean-space curve
that replicates (with some distortion in the approximately real-
izable case) the time-varying dMV distance. For useful intuition,
consider a one-dimensional Brownian motion Bt . While this is
not a latent position process, its covariance operator R(s, t) =
E[(Bt − Bs)2] is exactly E[(Bt − Bs)2] = (t − s), corresponding
to the distance between points along the line x(t) = t between t
and s.
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In practice, the latent position process is unobserved, so it
is unclear whether the Euclidean realizability condition holds.
However, we show that the dMV distance can be consistently
estimated, so the question of realizability may be resolved at least
in part by inspection of the screenplot of the estimated distance
matrix. We remark further on this point after Theorem 6.

Note that if ϕ is approximately c-realizable, it is c′-realizable
for any c′ > c, and a tradeoff exists between the choice of
dimension c and the accuracy of the approximation, as measured
by C and α. The realizability dimension c can be interpreted as a
choice in a dimension reduction procedure. Namely, the dimen-
sion c corresponds to a curve ψ in R

c, along which pairwise
Euclidean distances locally approximate those of the maximum
variational distances along the latent position process.

As such, none of c, C, or ψ , as defined above, need be unique.
This leads naturally to the question of an “optimal” mirror—that
is, one that best captures, in Euclidean space, the salient features
of the dMV distance. To make this precise, suppose ϕ is a latent
position process.

For any associated mirror ψ , consider the functional L(ψ)
given by

L(ψ) =
∫ T

0

∫ T

0

∣∣∣d2
MV (ϕ(s), ϕ(t)) − ‖ψ(s) − ψ(t)‖2

∣∣∣2
ds dt (2)

As we show below, there exists a solution to the variational
problem of minimizing this functional over the class of mirrors
S(c, α, C) that are α-Hölder with realizability constant C, and
satisfy

∫ T
0 ψ(t) dt = 0. We call this minimizer an optimal mirror

for this α, c, and C. While any mirror satisfying the realizability
constraints estimates the dMV distance well locally, a minimizer
of this functional also estimates the dMV distance well in a global
sense.

Theorem 1 (Existence of Optimal Mirrors). Let ϕ be a latent
position process, which is approximately α-Hölder Euclidean
c-realizable with realizability constant C. Let S(c, α, C) be the
class of mirrors defined above. Then there exists a solution to
the variational problem

inf
ψ∈S(c,α,C)

L(ψ) (3)

Theorem 2 (Uniqueness of Optimal Mirrors). If ϕ is a latent posi-
tion process which is exactly α-Hölder Euclidean c-realizable,
the solution to the variational problem in (3) is unique up to
orthogonal transformations.

In addition to the existence of optimal mirrors, an approx-
imate Euclidean realizable latent position process ϕ has the
property that its image is a manifold.

Theorem 3 (Manifold properties of a nonbacktracking latent posi-
tion process). Let ϕ be a nonbacktracking latent position pro-
cess which is approximately Euclidean realizable. Then M =
ϕ([0, T]) is homeomorphic to an interval [0, I]. In particular, it
is a topological one-manifold with boundary. If ϕ is injective and
approximately α-Hölder Euclidean realizable, the same conclu-
sion holds.

If we suppose that the trajectories of ϕ satisfy a certain degree
of smoothness, it turns out that the map ϕ into the space of

random variables equipped with the dMV metric also has this
degree of smoothness.

Theorem 4. (Smooth trajectories and smooth latent position
processes) Suppose X(·, ω) : [0, T] → R

d is α-Hölder continu-
ous with some α ∈ (0, 1] for almost every ω ∈ �, such that

‖X(t, ω) − X(s, ω)‖ ≤ L(ω)|t − s|α ,

where the random variable L ∈ L2(�). LetM = ϕ([0, T]). Then
ϕ : [0, T] → (M, dMV) is Hölder continuous with this same α.

Remark 4. In the above definitions of realizability, regularity
conditions are imposed on ψ , which takes values in R

c, rather
than on ϕ, which gives random variables as output. Moreover,
ψ is the Euclidean realization of the manifold ϕ([0, T]) in the
space of random variables; this as an approximately distance-
preserving representation of those random variables, each of
which captures the full state of the system with all of the given
entities at any time t. As we show, estimates of this Euclidean
mirror, derived from observations of graph connectivity struc-
ture at a collection of time points, can recover important features
of the time-varying latent positions.

There are several natural classes of latent position processes
that are approximately Lipschitz or α-Hölder Euclidean real-
izable. The next theorem demonstrates approximate α-Hölder
Euclidean realizability for any latent position process expressible
as the sum of a deterministic drift and a martingale term whose
increments have well-controlled variance.

Theorem 5 (Approximate Holder realizability of variance-con-
trolled martingale-plus-drift processes). Suppose Mt is an Ft-
martingale with respect to the filtration {Ft : 0 ≤ t ≤ T},
and suppose γ : [0, T] → R

d is Lipschitz continuous. Let
ϕ(t) = γ (t) + Mt . Then

dMV(Xt , Xs)
2 ≤ ‖cov(Mt − Ms)‖2 + ‖γ (t) − γ (s)‖2.

When Mt satisfies ‖cov(Mt−Ms)‖2 ≤ C(t−s), and γ (t) = a(t)v
for some v ∈ R

d and Lipschitz continuous a : [0, T] → R, then
ϕ is approximately α-Hölder Euclidean realizable with α = 1/2
and c = 1.

Example 1. Consider Xt = γ (t) + Bt , where Bt is a d-
dimensional Brownian motion, and γ : [0, T] → R

d is a
Lipschitz continuous function of the form γ (t) = a(t)v. The
ϕ(t) is approximately α-Hölder Euclidean realizable, with α =
1/2, and the Euclidean mirror ψ(t) is ψ(t) = a(t)‖v‖, so c =
1. In the supplementary material, we provide simulations of a
network time series with this latent position process and show
that our estimated mirror matches ψ well for a network of 2000
nodes.

Example 2. Consider Xt = γ (t) + It , where It = ∫ t
0 Bs ds, Bs

is a d-dimensional Brownian motion, and γ (t) = (at + b)v is a
function describing the mean of Xt over time, with a, b ∈ R, v ∈
R

d. Then each sample path of Xt is continuously differentiable
in t, and E[Xt] = γ (t) is as well. If {Ft : 0 ≤ t ≤ T} is the
canonical filtration generated by Brownian motion, then I(t) is
not an Ft-martingale. Then

dMV(Xt , Xt′)
2 = a2(t − t′)2‖v‖2 + σ 2[(t − t′)2(t + 2t′)/3],
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so ϕ is approximately Euclidean realizable with ψ(t) =√
a2‖v‖2 + σ 2Tt, so again c = 1.

The latent positions for the vertices in our network are
not typically observed—instead, we only see the connectivity
between the nodes in the network, from which a given realiza-
tion of the latent positions can, under certain model assump-
tions, be accurately estimated. In order to compare the networks
at times t and t′, we can consider estimates of the networks’
latent positions at these two times as noisy observations from
the joint distribution of (Xt , Xt′), and deploy these estimates
in an approximation of the distances dMV(Xt , Xt′). Using these
approximate distances, we can then estimate the curve ψ(t), giv-
ing a visualization for the evolution of all of the latent positions
in the random graphs over time.

Suppose that G is a random dot product graph with latent
position matrix X, where the rows of X are independent, identi-
cally distributed draws from a latent position distribution F on
R

d. Let A be the adjacency matrix for this graph. As shown in
Sussman et al. (2012), a spectral decomposition of the adjacency
matrix yields consistent estimates for the underlying matrix of
latent positions. We introduce the following definition.

Definition 7 (Adjacency Spectral Embedding). Given an adja-
cency matrix A, we define the adjacency spectral embedding
(ASE) with dimension d as X̂ = ÛŜ1/2, where Û ∈ R

n×d is the
matrix of d top eigenvectors of A and Ŝ ∈ R

d×d is the diagonal
matrix with the d largest eigenvalues of A on the diagonal.

As we show in the next section, we will use the ASE of the
observed adjacency matrices in our TSG to estimate the dMV
distance between latent position random variables over time,
and in turn, to estimate the Euclidean mirror, which records
important underlying structure for the time series of networks.

3. Statistical Estimation of Euclidean Mirrors

Given a finite sample from a time series of graphs with approxi-
mately α-Hölder Euclidean realizable latent position process ϕ,
our goal is to estimate a finite-sample analogue of an optimal
Euclidean mirror ψ . The distances dMV(ϕ(t), ϕ(s)) can be used
to recover a version of the mirror at these sampled times (up to
rigid transformations) from classical multidimensional scaling
(CMDS). As such, the crucial estimation problem is one of
accurately estimating the distances dMV(ϕ(t), ϕ(s)). To this end,
we define the estimated pairwise distances between any two such
n × d latent position matrices X̂t and X̂s as follows:

d̂MV(X̂t , X̂s) := min
W∈Od×d

1√
n
‖X̂t − X̂sW‖2, (4)

where Od×d is the set of real orthogonal matrices of order d, and
‖·‖2 denotes the spectral norm. Note that when U, V ∈ Mn,d(R)

have orthonormal columns, we have the following well-known
relations between d̂MV and the spectral norm of their sin 


matrix:
‖ sin 
(U, V)‖2 ≤ √

nd̂MV(U, V) ≤ √
2‖ sin 
(U, V)‖2.

Our central result is that, when our networks have a sufficiently
large number of vertices n, d̂MV provides a consistent estimate
of dMV .

Theorem 6. Suppose ϕ is a LPP such that ϕ(t) takes values in
R

d for all t ∈ [0, T]. Let {Gt}t∈T be a time series of LPGs whose
latent positions follow this LPP. For each t ∈ T , let X̂t ∈ R

n×d

be the matrix of estimated latent positions from the ASE of each
graph Gt . Then for all s, t ∈ T , with overwhelming probability
as n → ∞,∣∣∣d̂MV(X̂t , X̂s)

2 − dMV(ϕ(t), ϕ(s))2
∣∣∣ ≤ log(n)√

n
.

The functional L(ψ) in (2) requires information of
dMV(ϕ(t), ϕ(s)) for all t, s ∈ [0, T]. In the finite-sample
case, however, we only have a fixed, finite set of time points
T = {ti}m

i=1 ⊆ [0, T], with ti < ti+1 for all i. To address
finite-sample estimation of an analogue of an optimal mirror,
we introduce the functional L̂ defined on sets of size m of
vectors in R

c:

L̂({vi}m
i=1) =

m∑
i,j=1

∣∣dMV(ϕ(ti), ϕ(tj))
2

−‖vi − vj‖2∣∣2
�ti �tj. (5)

The time steps are defined as �ti := ti − ti−1, with t0 =
0. Note that the time steps �ti need not be constant for (5),
allowing us to consider real-data settings in which the network
observations may not be equally spaced in time. Suppose we
know the true matrix Dϕ of pairwise distances whose i, jth entry
is dMV(ϕ(ti), ϕ(tj)). When the �ti are equal and the process is
exactly Euclidean realizable, classical multidimensional scaling
(CMDS) applied to this matrix yields a collection of vectors
{ψ(ti) : 1 ≤ i ≤ m}, unique up to rotation, that minimizes
L̂({vi}m

i=1) (see additional details after Corollary 1). We call this
the finite-sample mirror for the latent position process ϕ. When
the �ti are not all equal, we suggest obtaining an initial solution
for (5) via CMDS, obtaining V0 ∈ R

m×c, with rows vi ∈ R
c.

Then one can employ a general-purpose nonlinear solver to (5)
with the initial point V0.

Having defined the dissimilarity matrices

Dϕ = [dMV(ϕ(s), ϕ(t))]s,t∈T , Dψ = [‖ψ(s) − ψ(t)‖2]s,t∈T ,

where {ψ(t)}t∈T achieves the minimum value of L̂, we note
that the first records the pairwise distances between the latent
position process at times t and s; the second records the dif-
ferences between the finite-sample optimal Euclidean mirror at
these times. Of course, the true distances are not observed, and
must be estimated. The estimates for these quantities are then

D̂ϕ = [d̂MV(X̂s, X̂t)]s,t∈T , D
ψ̂

= [‖ψ̂(s) − ψ̂(t)‖2]s,t∈T ,

where {ψ̂(t)}t∈T is the output of CMDS applied to the matrix
D̂ϕ . This means our full mirror estimation procedure is as
follows:

Suppose A(2) is the matrix of squared entries of A. Theorem 6
then guarantees that the square of each entrywise difference
between D̂(2)

ϕ and D(2)

ψ̂
is bounded, with high probability, by

log2(n)/n. Since both D̂(2)
ϕ and D(2)

ψ̂
are m × m matrices, we

immediately derive the following corollary:
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Algorithm 1 Mirror estimation
1: Input: graph adjacency matrices At1 , . . . , Atm , embedding

dimensions d and c.
2: Compute Adjacency Spectral Embedding of Ati to obtain

X̂t1 , . . . , X̂tm ∈ Mn,d(R).
3: For i, j ∈ {1, . . . , m} compute matrix entry D̂ϕ(i, j) =

d̂MV(X̂ti , X̂tj).
4: Apply CMDS to D̂ϕ to yield ψ̂(ti) ∈ R

c, 1 ≤ i ≤ m.
The ψ̂(ti) are defined as the rows of ÛŜ1/2, where ÛŜÛT

is the closest rank-c matrix to − 1
2 PD̂(2)

ϕ P with respect to the
Frobenius norm, and P = I − J/m, for J the m × m matrix
of all ones.

5: Output: Return mirror estimates ψ̂(t1), . . . , ψ̂(tm).

Corollary 1. Suppose the setting of Theorem 6. For fixed m, with
overwhelming probability,

‖D̂(2)
ϕ − D(2)

ϕ ‖F ≤ m log(n)√
n

.

We recall that CMDS computes the scaled eigenvectors of the
matrix − 1

2 PA(2)P, where P = I − Jm/m is a projection matrix,
A(2) is a matrix of squared distances, and Jm is the m×m matrix
of all ones. This matrix may be written as USUT for some m ×
c matrix U with orthonormal columns and diagonal matrix S.
This means that ψ(ti), the value at ti of the finite-sample optimal
Euclidean mirror associated to ϕ, is simply the ith row of the
matrix US1/2. We will analogously denote the ith row of ÛŜ1/2,
the output of CMDS applied to D̂ϕ , by ψ̂(ti).

Remark 5. In practice, where c is unknown, the selection of the
mirror dimension c is a model selection problem. However, in
light of Corollary 1 and the Hoffman-Wielandt inequality, we see
that the eigenvalues of the estimated projected distance matrix
− 1

2 PD̂(2)
ϕ P approximate those of the theoretical one, − 1

2 PD(2)
ϕ P.

As such, the singular values of − 1
2 PD̂(2)

ϕ P are consistent esti-
mates for the true singular values, meaning that the correct
choice of c will be revealed for large networks.

It turns out that for large networks, the invariant subspace
associated to D̂(2)

ϕ corresponding to its largest eigenvalues is
an accurate approximation to the corresponding subspace of
D(2)

ϕ , which matches that of D(2)
ψ when we have approximate

Euclidean realizability. This suggests that applying CMDS to the
estimated dissimilarity matrix D̂ϕ can recover the finite-sample
optimal mirror ψ(t) up to a rotation: in other words, ψ̂(t) ≈
Rψ(t) for some real orthogonal matrix R and all t ∈ T .

Theorem 7. Suppose ϕ is approximately Euclidean c-realizable
and let m be a given positive integer. Let Û, U ∈ R

m×c be the
top c eigenvectors, and Ŝ, S ∈ R

c×c be the diagonal matrices
with diagonal entries equal to the top c eigenvalues of Êϕ =
− 1

2 PD̂(2)
ϕ P� and Eϕ = − 1

2 PD(2)
ϕ P�, respectively, where P =

I − Jm/m, Jm is the all-ones matrix of order m. Suppose Si,i > 0
for 1 ≤ i ≤ c. Then with overwhelming probability, there is a
real orthogonal matrix R ∈ Oc×c such that

‖Û − UR‖F ≤ 23/2

λc(Eϕ)

⎛⎝m log(n)√
n

+
( m∑

i=c+1
λ2

i
(
Eϕ

))1/2
⎞⎠ .

Call this upper bound B = B(n, m, c). The spectrally-scaled
CMDS output satisfies

‖ÛŜ1/2 − US1/2R‖F ≤ Bλ
1/2
1 (Eϕ)

×
(

2 + 4Bκ1/2 + (1 + 2B)
m log(n)√

nλc(Eϕ)

)
,

where κ = λ1(Eϕ)/λc(Eϕ). In particular, we have
m∑

i=1
‖ψ̂(ti) − Rψ(ti)‖2 ≤ B2λ1(Eϕ)

×
(

2 + 4Bκ1/2 + (1 + 2B)
m log(n)√

nλc(Eϕ)

)2
.

If all but the top c eigenvalues of Dϕ are sufficiently small—
as is the case when Dϕ is rank c—Theorem 7 ensures that
a Euclidean mirror can be consistently estimated. As such, if
the important aspects of a finitely-sampled latent position pro-
cess, such as changepoints or anomalies, are reflected in low-
dimensional Euclidean space, then we recover an optimal finite-
sample mirror consistently through CMDS applied to the esti-
mated distance matrix. We encapsulate our consistency results
and connections between true distances, their estimates, and
associated Euclidean mirrors in Figure 3.

The right-hand side of Figure 3 lists the true and typically
unobserved distance measure dMV , and from it, immediately
below, the matrix of pairwise distances Dϕ . If this dissimilarity
is Euclidean realizable in c dimensions, then classical multidi-
mensional scaling will recover this mirror, denoted by ψ , up to
Euclidean distance-preserving transformations.

On the left-hand side of Figure 3, we see how to compute an
estimate of dMV from spectral embeddings of a pair of observed
network adjacencies. Theorem 6 grants that the estimated dis-
similarity matrix of pairwise distance D̂ϕ will be close to the true
dissimilarity Dϕ , and if the latent position process is Euclidean
realizable, Theorem 7 establishes that classical multidimensional
scaling applied to D̂ϕ serves as a consistent estimate for ψ .

This figure describes our overall approach to the problem
of inference in time series of networks: first, we construct a
useful dissimilarity measure that captures important features
of the underlying LPP; next, show how this dissimilarity can
be consistently estimated; and finally, extract an estimated mir-
ror that provides a low-dimensional representation of network
evolution. Our methodology is not restricted simply to the
specific distance measure dMV that we have defined here, and
other notions of distance may have conceptual, theoretical, or
computational benefits depending on the underlying process.

Remark 6. Using CMDS on the distance matrix as our estimate
means that permuting the time points t1, . . . , tk to tσ(1), . . . , tσ(k)
where σ ∈ Sk produces the same set of points in R

c (up to
an orthogonal transformation), in a permuted order. As such,
if the original times are associated with these points, we recover
the identical smooth curve. If the times are not retained, only
the original time ordering recovers this smooth trajectory.
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Figure 3. Consistent estimation of network dissimilarity and Euclidean mirrors.

This does not change the content of the theorem: one just
replaces ti with tσ(i) in the statement. On the other hand, if we
have an unordered collection of networks, and not a time series
of graphs ordered naturally by time, our estimation procedure
will yield a collection of points in R

c, but these will not typically
fall on a one-dimensional curve.

When we have exact Euclidean realizability or when the
tail eigenvalues of Dϕ can be bounded directly, we obtain the
following two corollaries of Theorem 7.

Corollary 2. Suppose Dϕ is a Euclidean distance matrix with
dimension c. ThenDϕ = Dψ , and for fixed m, there is a constant
C = C(m) such that with overwhelming probability, there is a
real orthogonal matrix R ∈ Oc×c such that the CMDS output
satisfies

‖ÛŜ1/2 − US1/2R‖F ≤ C
log(n)√

n
.

In particular, we have

m∑
i=1

‖ψ̂(ti) − Rψ(ti)‖2 ≤ C
log2(n)

n
.

Suppose that ψ is Lipschitz continuous with constant L and
ϕ has realizability constant B. If we further assume that there
exists a constant A such that dMV(ϕ(t), ϕ(s)) ≤ A and ‖ψ(t) −
ψ(s)‖2 ≤ A for all s, t ∈ [0, T], then we can bound the
sum of the tail eigenvalues of D(2)

ϕ , turning the approximate
Lipschitz Euclidean realizability assumption into an eigenvalue
bound.

Note that we can always choose A = (2L + B)T from the
realizability assumptions, but in certain cases, A may be smaller,
and in particular, not grow linearly with T. While this corollary
is stated for the Lipschitz case, a version of it may be formulated
for the α-Hölder case as well.

Corollary 3. Suppose Dϕ is approximately Lipschitz
Euclidean c-realizable with realizability constant B. Suppose
dMV(ϕ(t), ϕ(s)), ‖ψ(t)−ψ(s)‖ ≤ A for all s, t ∈ [0, T]. Suppose
that ti = Ti/m for i = 1, . . . , m. Then

‖D(2)
ϕ − D(2)

ψ ‖F ≤ 2ABT
√

(m2 − 1)/6 ≤ 0.82ABTm.

For m fixed, there is a constant C = C(m) such that with
high probability, there is a rotation matrix R ∈ Oc×c such that
the CMDS output satisfies

‖ÛŜ1/2 − US1/2R‖F ≤ C
(

log(n)√
n

+ 0.82ABT
)

.

Example 3. In Example 2, which is approximately Lipschitz
Euclidean realizable, we have

B ≤ σ 2T
a‖v‖ + √

a‖v‖ + σ 2T
,

and A ≤ T
√

a2‖v‖2 + σ 2T.

Remark 7. The relationship between the true and estimated
network features from Figure 3 is equally appropriate for certain
changes to the distance metric. For example, consider a latent
position process with ϕ(t) = c(t)ϕ(0), c(t) ∈ [0, 1], correspond-
ing to a global change in the density of the network, but one that
leaves the community structure unchanged.

Using the adjacency spectral embedding with the eigenvec-
tors scaled by the eigenvalues will detect these global transfor-
mations in sparsity, while using unit eigenvectors of the adja-
cency spectral embedding (unscaled by their respective eigen-
values) will ignore changes of this type, instead focusing only
on divergences in community structure. These different compu-
tations of network dissimilarity will result in distinct mirrors,
highlighting distinct changes in the networks over time.

Together, these theorems ensure that time-dependent underly-
ing low-dimensional structure associated to network evolution
can be consistently recovered. In what follows, we will see how
this methodology can be employed in real and synthetic data to
reveal important structural features and potential anomalies in
network time series.

4. Experiments

4.1. Organizational Network Data and Pandemic-Induced
Shifts

We start with a discussion of the visualization of the communi-
cation network in Figure 1 and the output of our mirror-based
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analysis in Figure 2. We consider a time series of weighted com-
munication networks, arising from the E-mail communications
between 32,277 entities in a large organization, with one network
generated each month from January 2019 to December 2020, a
period of 24 months. This data was studied through the lens of
modularity in Zuzul et al. (Forthcoming).

To generate the visualization in Figure 1, we first cluster the
graph G1 using Leiden clustering and then apply Node2Vec
(Grover and Leskovec 2016) to each graph Gt to obtain embed-
dings X̂t ∈ R

n×33. Applying the Uniform Manifold Approxima-
tion and Projection (UMAP) algorithm of McInnes, Healy, and
Melville (2018) to the X̂t matrices, we obtain a layout with points
X̂′

t ∈ R
n×2, colored using the labels from the Leiden clustering.

To obtain our mirror estimates, we again apply Leiden clus-
tering (Traag, Waltman, and Van Eck 2019) to the January 2019
network, obtaining 33 clusters that we retain throughout the
two year period. We make use of this clustering to compute
the Graph Encoder Embedding (GEE) of Shen, Wang, and
Priebe (2022) for each time, which produces spectrally-derived
estimates of invertible transformations of the original latent
positions. For each time t = 1, . . . , 24, we obtain a matrix
Ẑt ∈ R

32277×33, each row of which provides an estimate of these
transformed latent positions. Constructing the distance matrix
D̂ϕ = [d̂MV(Ẑt , Ẑt′)] ∈ R

24×24, we apply CMDS to obtain the
estimated curve ψ̂ shown in the left panel of Figure 2, where
the choice of dimension c = 2 is based on the scree plot of D̂ϕ .
The nonlinear dimensionality reduction technique ISOMAP
(Tenenbaum, de Silva, and Langford 2000), which relies on a
spectral decomposition of geodesic distances, can be applied
to these points to extract an estimated one-dimensional curve,
which we plot against time in the right panel of Figure 2. Since
the ISOMAP embedding generates points whose Euclidean dis-
tances approximate the geodesic distances between points on
the mirror, larger changes in the y-axis of this figure correspond
to significant changes in the networks. This one-dimensional
curve exhibits some changes from the previous trend in Spring
2020 and a much sharper qualitative transformation in July 2020.
What is striking is that both these qualitative shifts correspond
to policy changes: in Spring 2020, there was an initial shift in
operations, widely regarded at the time as temporary. In mid-
summer 2020, nearly the peak of the second wave of COVID-19,
it was much clearer that these organizational shifts were likely
permanent, or at least significantly longer-lived. In Figure 4, the
top panel plots the result of our methods applied to the induced
subgraphs corresponding to each of the 33 communities; these
are represented by the grey trajectories. The trajectories of two
subcommunities have been highlighted in the top plot: the green
curve shows a constant rate of change throughout the two-year
period, and does not exhibit a noticeable pandemic effect. The
blue curve, on the other hand, shows a significant flattening
in early 2020, followed by rapid changes in summer. Thus, we
can see a differential effect of the pandemic on different work
groups within the organization. In Figure 4, both bottom panels
show methods for identifying changepoints over the 24 months,
with consistent results. We start by generating the ISOMAP
embedding ι of ψ̂ , yielding ιt ∈ R for t = 1, . . . , 24. In the
bottom left panel, for each time starting in June 2019, we plot
the sigmage (see Good 1992) of its ISOMAP embedding relative

to the previous 5 months. That is, we measure the distance of
the ISOMAP embedding to the mean of the previous 5 months’
embeddings, relative to the standard deviation of those embed-
dings: letting μt = 1

5
∑5

i=1 ιt−i for each time t > 5, the sigmage
st is given by

st = |ιt − μt|√
1
4
∑5

i=1(ιt − μt)2
.

Note that since the computation of the sigmages requires a
window of time-points, we are only able to produce these esti-
mates starting in June 2019. We see apparent outliers in March
and April, and again in July–September 2020. The right panel
shows the ISOMAP curve with a moving prediction confidence
interval of width five standard deviations, generated from simple
linear regression applied to the previous five time points (which
is why we again only have an interval starting in June). This
method indicates the same set of outliers as the previous one, but
allows for some more detailed analysis: In March and April 2020,
it appears that the behavior is anomalous because the network
stopped drifting, while the behavior in the summer of that year is
anomalous because it made a significant jump from its previous
position.

In the supplementary material, we consider additional visual-
izations of the organizational communication networks. We plot
a collection of other summary statistics, namely edge counts,
maximum degree, median degree, and modularity, for each
network over time. As we describe in that section, since this
approach considers each network separately, these summary
statistics exhibit greater variance than the ISOMAP embedding
of the mirror (Figure 2 right panel, or Figure 4 bottom right
panel), and they do not capture changepoints associated to
pandemic policy restrictions.

4.2. Synthetic Data and Bootstrapping

In the previous section, we apply the GEE embedding to obtain
estimates Ẑt , which are then used for estimates of pairwise
distances d̂MV(Ẑt , Ẑs). Although the GEE differs slightly from
the adjacency spectral embedding, it is computationally more
tractable and yields similarly useful output. To further illustrate
our underlying theory, however, we consider synthetic data.
That is, we use real data to obtain a distribution from which
we may resample. Such a network bootstrap permits us to test
our asymptotic results through replicable simulations that are
grounded in actual data. To this end, we consider the true latent
position distribution at each time to be equally likely to be any
row of the GEE-obtained estimates from the real data, Ẑt ∈
R

32277×33, for t = 1, . . . , 24. Given a sample size ns, for each
time, we sample these rows uniformly and with replacement
to get a matrix of latent positions Xt ∈ R

ns×33. We treat this
matrix as the generating latent position matrix for independent
adjacency matrices At ∼ RDPG(Xt). Note that if for sample i,
we choose row j of Ẑ1 at time t = 1, then the same row j of Ẑt
will be used for all times t = 1, . . . , 24 for that sample, so that
the original dependence structure is preserved across time. We
may now apply the methods described in our theorems, namely
ASE of the adjacency matrices followed by Procrustes alignment,
to obtain the estimates X̂t , along with the associated distance
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Figure 4. Differential pandemic effect on 33 subcommunities of the larger organization and change point detection. Top: For each subcommunity, we apply our methods
to obtain an ISOMAP representation (single grey curve). Green and blue curves correspond to communities highlighted in Figure 1 which exhibit different changes over the
time period. Overall network ISOMAP embedding from Figure 2 is overlaid for context. Bottom left panel: Comparing ISOMAP embedding at a given time to mean of previous
5 months’embeddings, measured in terms of their standard deviation. Plot of sigmages indicates clear outliers in March–April of 2020, and again in July–September. Bottom
right panel: Observed ISOMAP embedding along with a running confidence interval for the predicted value of the ISOMAP embedding generated from linear regression
applied to the embeddings for the previous 5 months, with width five standard deviations.

estimates. In Figure 5, we see that ISOMAP applied to the CMDS
embedding of the bootstrapped data converges to the original
ISOMAP curve, as predicted by our theorems.

To check whether this procedure demonstrates the pandemic
effects, in Figure 6, we show the sigmages for each month, plot-
ted over 100 replicates of this experiment, with ns = 30,000 for
each replicate. The pandemic effect in summer of 2020 is clearly
visible in all but a few replicates, while the effect in March–
April is still identified in the majority of replicates. We observe
dramatic changes in variance for certain months, over the dif-
ferent replicates: this might indicate the discrepancies between
the pandemic effect on different network entities, rendering the
final estimate much more sensitive to the sample of rows used to
generate the network.

In the appendix of supplementary material, we provide mir-
ror estimates for an evolving stochastic blockmodel with a
change in rank from 2 to 1. We demonstrate the mirror esti-
mation procedure and model misspecification in the embedding
dimension, specifically the accuracy of the first dimension of the
estimated distance matrix and the noise in the second dimension
at and after the collapse to a rank 1 model.

Code for these results and additional simulations can be
found at https://www.cis.jhu.edu/~parky/IsoMirror/dynamics.
html.

5. Discussion

To effectively model time series of networks, it is natural
to consider network evolution governed by underlying low-
dimensional dynamics. Here, we examine latent position net-
works in which the vertex latent positions follow a stochastic
process known as a latent position process (LPP). Under mild
conditions, we can associate to the LPP certain geometric struc-
ture, and understanding how that structure changes with time
allows us to identify transformations in network behavior across
multiple scales. To make this precise, we define the maximum
directional variation norm and metric on the space of random
latent positions. We describe notions of Euclidean realizability
and Euclidean mirrors for this metric and process, characteriz-
ing how closely this metric can be approximated by a Euclidean
distance.

Of course, the latent position process is typically unobserved;
what we have instead is a time series of networks from which

https://www.cis.jhu.edu/~parky/IsoMirror/dynamics.html
https://www.cis.jhu.edu/~parky/IsoMirror/dynamics.html
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Figure 5. Convergence of bootstrapped estimates. We collect four bootstrapped
time series of graphs at various network sizes ns , sampling the latent positions with
replacement from the real data of the previous section, and generating the net-
works as random dot product graphs with these synthetic latent position matrices.
ISOMAP on the resulting network embeddings shows that the bootstrapped curve
converges to the original ISOMAP curve as the number of samples ns increases.

Figure 6. Pandemic effect recovered from synthetic data. For each of 100 replicates
of bootstrapped data, with ns = 30,000 for each replicate, we repeat procedure in
bottom left panel of Figure 4. Sigmages plotted in a box-and-whisker plot. Pandemic
effect in summer of 2020 is visible in all but a few replicates; effect in March–April is
still identified in the majority of replicates.

these latent positions must be estimated. One of our key results
is that the pairwise dissimilarity matrix of maximum directional
variation distances between latent positions Xt and Xt′ at pairs of
time points can be consistently estimated by spectrally embed-
ding the network adjacencies at these different pairs of times
and computing spectral norm distances between these embed-
dings. When the latent position process is such that the max-
imum directional variation metric between any pair of latent
positions Xt , Xt′ is approximately Euclidean realizable, we find

that classical multidimensional scaling applied to the estimated
distances gives us an inferentially valuable low-dimensional
representation of network dissimilarities across time. Further
dimension reduction techniques, such as ISOMAP, can further
clarify changes in network dynamics. To this last point, ISOMAP
is a manifold-learning algorithm; detailed analysis of its effect
on embeddings of estimated pairwise network distances can
bring us closer to provable guarantees for changepoint detection.
More broadly, the interplay between the probabilistic structure
of the underlying latent position process and the geometric
structure of the Euclidean mirror is a key component of the
estimated Euclidean representation of relationships between
networks across time.

We consider two estimates for the maximum directional
variation distance dMV , namely the spectral norm applied to
the GEE estimate, and the d̂MV estimated distance between the
adjacency spectral embeddings. However, these are far from the
only options, and it is an open question whether dMV or another
metric on the space of random variables is best for downstream
inference tasks under certain model assumptions. It is also an
open question whether there is a better estimate for the distance
dMV itself, either in terms of computational complexity or statis-
tical properties. Of particular interest is the spectral norm dis-
tance applied to the omnibus embeddings (Levin et al. 2017) for
the adjacency matrices: this likely converges to another distance
on the space of random variables, potentially highlighting differ-
ent features in the final CMDS embedding. Results quantifying
the distribution of the errors in the CMDS embedding are key to
formulating hypothesis tests for changepoint detection. The per-
spective described in Figure 3, which connects distance metrics
for generative processes of networks to their estimates, translat-
ing manifold geometry into Euclidean geometry, is a useful con-
tribution to time series analysis for networks. It provides math-
ematical formalism for network dynamics; asymptotic proper-
ties of estimates of manifold structure; and conditions for the
representation of time-varying networks in low-dimensional
space. Latent position networks are interpretable, estimable,
and flexible enough to capture important features of real-
world network time series. As such, this canonical framework
invites and accommodates future approaches to joint network
inference.

Supplementary Materials

The supplementary material includes proofs and additional simulations
and mirror computations for latent position process networks and evolving
stochastic blockmodel.
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