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Abstract

Designing novel functional proteins remains a slow and expensive process due to
a variety of protein engineering challenges; in particular, the number of protein
variants that can be experimentally tested in a given assay pales in comparison to
the vastness of the overall sequence space, resulting in low hit rates and expensive
wet lab testing cycles. ML-guided protein engineering promises to accelerate this
process through computational screening of proposed variants in silico. However,
exploring the prohibitively large protein sequence space presents a significant
challenge for the design of novel functional proteins using ML-guided protein
engineering. Here, we propose using evolutionary Monte Carlo search (EMCS) to
efficiently explore the fitness landscape and accelerate novel protein design. As a
proof-of-concept, we use our approach to design a library of peptides predicted to
be functionally capable of transcriptional activation and then experimentally screen
them, resulting in a dramatically improved hit rate compared to existing methods.
Our method can be easily adapted to other protein engineering and design problems,
particularly where the cost associated with obtaining labeled data is significantly
high. We have provided open source code for our method at https://github.
com/SuperSecretBioTech/evolutionary_monte_carlo_search.

1 Introduction

The design and optimization of proteins with specific functionality is a long-sought pursuit in protein
engineering. Since proteins are composed of sequences of amino acids which ultimately dictate their
structure and function, the protein engineering problem can be reformulated as finding the optimal
mapping from amino acid sequence s of length L to biological function f : s → f(s), where we
call f the fitness function. Finding the optimum of f can be seen as a high-dimensional discrete
combinatorial optimization problem [1]. The enormous size of the protein sequence space, together
with the presence of sensitive and sporadic high fitness regions in the fitness landscape [2], makes
novel protein design extremely challenging.
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The traditional experimental approach involves high-throughput, iterative laboratory methods such
as directed evolution [3, 4], deep mutational scans [5], and semi-rational design [6]. However,
these methods typically require multiple rounds of engineering and analysis, making them tedious,
expensive, and time-consuming [7]. Furthermore, the number of variants capable of being tested in
even the most advanced laboratories (≈ 105 to 106) is miniscule in comparison to the size of the total
sequence space; additionally, high-throughput screening can be challenging to implement for some
classes of proteins [8].

In the past decade, the application of machine learning methods to protein engineering problems
has been massively successful [9]. In this context, machine learning models are trained to learn
the sequence-to-function map and then used to propose new sequences that maximize the predicted
fitness.

In recent years, methods such as generative models have been proposed to tackle this problem,
including deep generative networks [10–15], generative adversarial networks [16, 17] and diffusion
models [18–20]. In these cases the exploration problem is trivial, as the model produces an embedding
in a low-dimensional space where sampling is computationally inexpensive. However, generative
approaches typically require huge amounts of training data and a large number of positive examples
to ensure that the model embeddings are meaningful and so that they do not simply memorize positive
examples, an issue that has been widely observed to happen in image GANs [21, 22]. Given the
relatively small number of sequences in our training data (≈ 3.4 x 104) and the extreme paucity
of positive examples (173), we anticipated our small and skewed training data would would prove
insufficient for a generative modeling approach. On the other hand, transfer learning of large protein
language models (LPLMs) has shown success in modeling and designing novel proteins with fitness
functions trained on small numbers of positive hits [8, 23–25].

Model-guided fitness landscape exploration remains an understudied problem in the context of protein
engineering [26, 27]. Novel methods such as importance-weighted expectation maximization [15]
and GFlowNets [27] have been proposed to tackle this problem, however, the algorithm of choice
for exploring a machine learning based fitness landscape is Markov Chain Monte Carlo (MCMC)
sampling [8]. In this work, we focus on improving MCMC for fitness landscape exploration.

Evolutionary Monte Carlo (EMC) [28, 29] is an advanced sampling method that draws inspiration
from genetic recombination as well as physics-based MCMC techniques. While EMC has previously
been used for a variety of sampling tasks [28, 30–33], its potential as an exploratory algorithm for
protein design remains unexplored. In this paper, we modify EMC as a search tool for exploring
the complex fitness landscape of protein sequences capable of gene regulation, which we call EMC
Search (EMCS). EMCS is much less computationally intensive than gradient-based approaches and
Gibbs sampling. We further expect it to benefit from faster convergence and to provide a more
comprehensive and efficient exploration of the fitness landscape by allowing for interpolation at the
molecular level between chains. We think one of the primary strengths of EMCS combined with a
LPLM-based fitness function is the ability of the LPLM to implicitly identify biological domains
critical to protein function and for EMCS to interpolate between molecules and combine domains
from distinct chains to form higher fitness proteins (Fig 1).

In this study we propose a design strategy for generating novel protein sequences using a few-shot
transfer learning-based approach. We then experimentally validate our proposed method in the lab by
screening a library of proposed sequences for their transcriptional activation ability, demonstrating
that our approach is capable of improving discovery rates. Though here we have applied our method to
the design of small gene activator proteins, we anticipate that our method will be generally applicable
to a diverse range of problems in the field of protein engineering.

2 Model and Search

Training Transfer Learning-Based Fitness Models We performed and independently validated
a high-throughput screen in which 85 amino acid (85aa) peptides were experimentally screened
for their ability to activate a synthetic genetic locus using a nuclease-inactivated Cas platform for
transcriptional activation [34].

Using this screening platform, we identified 173 gene activators ("positive hits") from a training set
of 34217 protein sequences (0.51% hit rate). Using these data, we sought to train a machine learning
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Figure 1: a. Transfer learning approach for predicting gene activators from sequence using LPLM
embeddings. b. Fitness landscape diagram representing the effective search spaces of MHMCS
(pink) and EMCS (blue). When initialized at positive hits, MHMCS is constrained to locally search
near the starting molecule’s other high fitness sequences, while EMCS interpolates between multiple
starting molecules with varying resolution to optimize the search and escape deep local optima. c.
EMCS can evaluate multiple protein sequences simultaneously while allowing for favorable protein
domains to aggregate. In this example, an exchange among the boxed regions between the proteins
can potentially be evaluated in one iteration, while the same qualitative evaluation in MHMCS would
take multiple iterations.

model capable of predicting proteins capable of gene activation from sequence alone. An in-depth
discussion of the screening platform together with additional information about the final training
dataset is provided in our prior work [34].

We compared OneHot encoding with transfer learning using a 650 million parameter LPLM (ESM-2
model) [35] as input features for two models: an XGBoost model, where we flatten the features by
taking the mean, and a CNN model. As a consequence of mean-featurization, the XGBoost model
learned protein sequences’ global features whereas we anticipated that the CNN model would be
capable of identifying local features. For both XGBoost and CNN models, we found that transfer
learning significantly improved prediction when compared to OneHot encoding (Table S1,S2).

Metropolis-Hasting Monte Carlo Search (MHMCS) The MHMCS algorithm operates by propos-
ing a low number of mutations to modify the current molecule and then evaluating the new molecule’s
fitness; if fitness improves, the proposal is accepted, while, if fitness decreases, the proposal is ac-
cepted with probability weighted by the ratio of the proposed fitness to the current fitness. Algorithm
S1 details our implementation of MHMCS with our choice of default parameters in Table S3.

Evolutionary Monte Carlo Search (EMCS) Evolutionary Monte Carlo Search (EMCS) extends
traditional Metropolis-Hastings Monte Carlo Search (MHMCS) by introducing genetic crossover
events in a parallel tempering setup [29, 36]. In parallel tempering, multiple MHMCS chains are run
simultaneously at different temperatures and are swapped at two randomly chosen temperatures after
a predetermined number of iterations. The primary advantage of parallel tempering is that it allows
MHMCS to occur over a larger search radius without sacrificing resolution. EMCS builds upon
parallel tempering by adding genetic crossover events (domain swapping through chain interpolation).
This allows for an even larger search radius (Fig. 1), while also adding the possibility of aggregation
of favorable protein domains, which we hypothesize is critical to exploit the small number of positive
hits in our training data. Algorithm S2 details our implementation of EMCS with our choice of
default parameters in Table S3. We provide a more in-depth discussion of the EMCS algorithm in the
supplementary material.
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Search Method Initialization # Sequences # Positive Hits Hit Percentage
EMCS known 410 94 22.9%
EMCS random 390 39 10%

MHMCS random 200 2 1 %
HTS Biological Origins 34217 173 0.51%

Table 1: Positive hit results for the ensemble model. Initialization column denotes the sampling
algorithm’s starting sequence as either randomly initialized ("Random"), or known positive hit

("Known"). HTS: High throughput screening.

3 Results

The protein fitness landscape is known to be highly sensitive, multi-peaked, and rugged [1, 2],
reflecting the possibility that a complete loss of function can arise due to a relatively small number
of point mutations (e.g. mutations in catalytic domains, mutations that cause misfolding, ...). The
complexity of this space presents obvious challenges for efficient exploration. Here, as a proof-of-
concept, we compare how EMCS and MHMCS respectively explore the discrete fitness landscape of
85aa proteins capable of gene activation, and evaluate prediction success rates, sequence diversity,
and convergence speeds.

Experimental Screening For experimental validation, we used EMCS and MHMCS to design
novel proteins using all three of our models (XGBoost, CNN, ensemble) using parameters defined
in Table S3. Together, we used EMCS and MHMCS to design 4600 novel sequences (Table S4)
that are largely distinct from the sequence space occupied by the original training data, confirming
that both model-guided sampling techniques are capable of proposing diverse novel proteins (Fig.
S3). We then experimentally assayed the peptides for their ability to activate a genetic locus (full
details of experimental design can be found in the supplementary material, Fig. S1-S2). In total,
we identified 357 positive hits (7.59% hit rate), peptide sequences capable of activating a synthetic
gene reporter significantly over background fluorescence. In contrast, the initial screen had a hit rate
of only 0.51%. If we use the latter number as a proxy for the fraction of naturally occurring 85aa
peptide sequences that are capable of gene activation, then our approach increased the baseline hit
rate by ≈ 15-fold. In fact, the best model-guided sampling technique (ensemble model + EMCS
from known hits), increased the hit rate ≈ 45-fold (Table 1, Table S5, S6) by this metric.

Sequence Diversity To compare sequence proposals between EMCS and MHMCS, we performed
an in silico sampling experiment where we explore the fitness landscape a minimum of 1000 times
with each algorithm using identical and controlled initial conditions, including ablation studies. A
unique advantage of EMCS is its ability to identify novel high fitness sequences even when initialized
from sequences that were known positive hits (and thus already in a high fitness neighborhood).
When initialized from known positive hits, the final edit distances of sequences discovered by EMCS
are 1.5 - 3x higher compared to those discovered by MHMCS using a similar temperature regime
(Table S8-S9, Fig. S5). Consistently, using entropy as a measure of information change, we in-silico
experiments show that the average entropy change per iteration in EMCS is ≈ 3-fold higher than that
of MHMCS (using default parameters - Fig. S4, Table S7).

Convergence When initialized at random sequences, EMCS converges 1.25 - 5x faster than
MHMCS (depending on choice of temperature and crossover rates, as shown in Fig. S4, Table. S10)
likely due to the algorithm’s increased versatility over MHMCS.

4 Discussion

In this work, we propose a two-step machine learning and sampling approach for protein engineering
problems where training data is limited and positive hits are rare. Our method involves leveraging
Large Protein Language Models (LPLMs) with transfer learning to estimate a fitness landscape, and
then efficiently sampling the fitness landscape with Evolutionary Monte Carlo Search (EMCS) to
propose novel high fitness protein sequences. As a proof-of-concept, we apply this approach to design
small gene activators and demonstrate that it is capable of successfully generating novel and diverse
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protein sequences with dramatically higher experimental validation rates when compared to a more
traditional sampling method (MHMCS) or baseline discovery from high-throughput screening.

Finally, though our proof-of-concept involved the design of relatively small proteins, we anticipate
that our approach will generalize to arbitrarily lengthy peptides and generalize especially well to
protein engineering problems involving larger proteins with multiple well characterized domains.
While we aim to extend our approach to the application of larger proteins, our sampling algorithm
will first need to be modified and optimized as random swaps within larger proteins are increasingly
likely to result in low fitness predictions due to the presence of longer conserved domains.
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