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Abstract

Both humans and Large Language Models (LLMs) store a vast repository of
semantic memories. In humans, efficient and strategic access to this memory
store is a critical foundation for a variety of cognitive functions. Such access
has long been a focus of psychology and the computational mechanisms behind
it are now well characterized. Much of this understanding has been gleaned
from a widely-used neuropsychological and cognitive science assessment called
the Semantic Fluency Task (SFT), which requires the generation of as many
semantically constrained concepts as possible. Our goal is to apply mechanistic
interpretability techniques to bring greater rigor to the study of semantic memory
foraging in LLMs. To this end, we present preliminary results examining SFT as a
case study. A central focus is on convergent and divergent patterns of generative
memory search, which in humans play complementary strategic roles in efficient
memory foraging. We show that these same behavioral signatures, critical to human
performance on the SFT, also emerge as identifiable patterns in LLMs across
distinct layers. Potentially, this analysis provides new insights into how LLMs may
be adapted into closer cognitive alignment with humans, or alternatively, guided
toward productive cognitive disalignment to enhance complementary strengths in
human-AlI interaction.

1 Introduction

The inherent complexity of large decoder-based transformers, particularly in their ability to mimic
some human cognitive functions, has led to a surge in research focused on interpreting and analyzing
their internal workings [16} 23]]. We suggest that cognitive mechanistic interpretability offers a
remarkable opportunity to create and test scientific theories of the human mind, where Al systems
can function as rigorous scientific artifacts to explain and predict human behavior [5]. Towards
that end, the cognitive behavior we focus on in this work is the process of active memory search
[4]. Active memory search, although at times seemingly effortless, involves complex operations
for humans [20]. Our goal here is to understand how properties that explain memory operations in
humans can similarly be identified as specific, explainable mechanisms used by LLMs appearing
to emulate these cognitive operations in humans. For example, we activate relevant concepts in our
mental lexicon, quickly retrieve their associated information, and then produce that output to achieve
our objective. Although it is tempting to see these LLMs relying on the same cognitive mechanisms
that explain human behavior, i.e., reflectionism, they are operating with an entirely different cognitive
architecture and may not be “thinking” like us at all. Instead, they may be reproducing the patterns of
our language under a “strange and alien” type of intelligence [2], offering untapped possibilities for
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collaborative interaction [15} [18]. Disambiguating what cognitive mechanisms LLMs may be relying
on is therefore needed.

1.1 Semantic Fluency and Cognitive Search

To understand active memory search in LLMs, we use the well-established Semantic Fluency Task
(SFT) [[7], a timed assessment measuring information retrieval from semantic memory to assess
language production and executive functions, e.g., “name all the animals you can in 3 minutes.”
During the SFT, humans “cluster” semantically or phonetically related words—convergent behavior—
and “switch” to new clusters when retrieval slows—divergent behavior [21]. This strategy is
characterized by shorter pauses within clusters and longer ones between them [7]. Theoretically, this
explore-exploit/converge-diverge behavior is modeled by the Marginal Value Theorem (MVT) of
optimal foraging theory [3]] and recent neural evidence for strategically timed switches in memory
search are also further supported [13} [11]].

1.2 Prior Work and Our Contributions

Previous studies on SFT have mainly focused on two areas: (1) using models to simulate and
predict how humans generate words [6]], and (2) using those models to identify patterns in human
generated sequences [8]]. In contrast, our study focuses specifically on how internal representations
and mechanisms in LLMs can explain the cognitive dynamic of semantic foraging. Towards this
end, previous work has found that the distributions of attention weights within the LLM’s layers
and attention head may explain their semantic foraging behavior, specifically showing what LLM-
based metrics can separate clustering and switching behavior given a human sequence [24]. Our
contributions focus on characterizing patterns of generative convergence versus divergence specifically
within the layer dynamics of the LLMs’ distributional readouts with a focus towards eventual steering
applications. In this work:

* We analyzed a large dataset of semantic memory sequences from humans and language
models, finding that LLM semantic search exhibits human-like patterns of convergent and
divergent generation consistent with optimal memory search. A key distinction, however, is
that LLMs exploit clusters more thoroughly, switching categories less frequently than their
human counterparts.

* We show these mechanisms of semantic search behavior are identifiable in the token distri-
bution patterns and the intermediate representational spaces across LLLMs of various sizes.
Specifically, we use logitlens and residual stream probing to trace where and how convergent
and divergent semantic search behaviors emerge.

2 Analysis and Results

2.1 Human versus LLM Semantic Fluency Behavior

How do human and LLM generated sequences compare during semantic foraging? To illustrate that
LLM outputs largely resemble human sequence generation, Figure [T]shows similarities in human and
LLM generated animal sequences after both were instructed to perform an SFT task.

We analyzed 699 human-generated sequences of animal names, collected from three separate exper-
iments where participants listed as many animals as they could in three minutes [26, [7]. We then
generated an equal number of sequences (699) using the instruction-tuned Llama-3 suite of models
(sizes 1B, 3B, 8B, and 70B) [19]]. To ensure variety, each LLM sequence began with the first word of
a human sequence, using the following minimally sufficient user prompt that did not hold any explicit
instruction to act like a human:

Without repeating yourself, continue your response as a list of comma
separated animal names that come to mind: <Animal;>, [...GENERATION...]

All LLM generated sequences were continued until they were at least the same length as the human
generated ones and then truncated to be the same number of responses afterwards: 35. All responses,
both human and LLM, were filtered according to strict criteria of needing to exist as a valid animal
name defined by the category norms. Any responses in generated sequences that were found to be
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Figure 1: LLM and Human generated SFT sequences are compared. A. A state-transition diagram is
drawn as conceptual illustration of three categories (non-human primates, insects, farm animals) that
describe how a sequence is thought to be generated. Arrows between the nodes represent divergent
behavior whereas self-edges represent convergent. Clustering refers to generating words within a
specific category, while switching involves moving to a new category. B. The correlation between the
average state-transition matrix representing transition probabilities between categories for human and
LLM. C. LLM and human between-category and within-category transition probability distributions
compared. D. Switch ratio distributions of human and LLM sequences showing that humans switch
more often (mean switch ratio 0.55) than LLMs (mean switch ratio 0.4) indicating that LLMs are more
effective at exhaustively sampling semantic clusters before switching. Mann-Whitney p < 0.0001.

invalid by the filter were grounds for discarding the entire sequence. After filtering, a total of 681
sequences were analyzed for humans and 2285 sequences for LLMs (606, 502, 572, 605) for model
sizes (1B, 3B, 8B, 70B), respectively.

In order to summarize generation patterns at the distributional level, a transition probability matrix
was calculated for all human and machine sequences. This models the state-transition diagram where
nodes are (animal) categories and edges model their transition probabilities to either stay in the
same category or switch to a different one (Figure[T|A). Here we consider categories to be different
animal categories, e.g., farm animals, pets, etc. Computing the Spearman correlation coefficient
between averaged machine and human transition probability matrices reveals a strong correlation,
p = 0.701,p < 0.001 (Figure[IB). Investigating whether humans and LLM tended to cluster their
generation in the same categories, we saw a clear indication they both more likely transition within
the same category as evidenced by the distribution of probabilities of the off-diagonal (between-
categories) versus the diagonal (within-categories) matrix elements (Figure EF]). Switch ratios, the
proportion of category switches for an individual’s sequence, revealed that even though LLMs tend to
match overall transition patterns to humans, LLMs tend to switch less often than humans (Figure[ID).
These results demonstrate an overall macro-cognitive alignment, i.e., population level alignment in
cognitive behavioral patterns, between human and machine.

2.2 Mapping Convergent and Divergent SFT Behavior

2.2.1 Investigating Output and Layer-wise Distributions

We investigated whether human behavior for this task can be evaluated by an LLM to detect their
switch behavior from token probabilities alone. To do so, we examine the model’s output distributions
as well as activations of the intermediate layers that led up to its final output via the logitlens
method [12]. First, in order to better understand the dynamics of these computations, for each
animal in the generated sequence, we distinguished the set of tokens that are between-category and
within-category sets (Figure[2JA). These sets are defined by the category norms, used to compute



A B Standardized Mean of Probabilities c D
and Relative Position by Token Type Logitlens Within vs. Between-category Token Probabilities Average

Between-category w/ Switch and No Switch Events (Layer Trajectory) Layers > 39

token set [ a, add, a,

ant, black, b,
Predict| buff, b, ca, ...,

2 1 0
dog, cat, octopus

0.008 Token Probability Type / Token Probability Type

—— Within-category ‘," mmm Within-category

0.006 Between-category ’;’ Between-category
Switch Event

—— Switch

''''' No-switch

0.004

Z-Scored Probability
Lo
Probability

Token Probability Type 7
~0.3- —— Within-category 0.002 /\/

Between-categol /ﬂ/—/_/
_0.4- —— Actual 7
: p . ; ; 0.000 ===r=——rrry
-1 0 1 2 3 40 50 60 70 80
Relative Position Layer

Within- \asc, ax, b, ...
category token set

3 W e
No‘sw\xc it

Figure 2: Explaining switching or convergent/divergent behavior in LLMs. A. Schematic illustrating
the analysis of a switch event. For the preceding context, the model’s vocabulary is partitioned into
a Within-category token set (tokens that would continue the current ‘pet’ cluster) and a Between-
category token set (tokens that would initiate a switch to a new cluster) via animal category norms
[25] B. Final output probabilities (z-scored) centered on the switch event (Relative Position 0). At
the switch, the probability mass for Between-category tokens (orange) peaks, while the mass for
Within-category tokens (blue) troughs. C. Logitlens analysis comparing probabilities during switch
events (solid lines) vs. non-switch, convergent events (dashed lines). A clear separation emerges in
the mid-to-late layers beyond layer 40. Critically, during a switch event, the model’s tendency to
amplify Within-category probabilities are greatly attenuated (compare solid blue vs. dashed blue
line), providing a distinct, internal computational signature for the divergent “switch” mechanism. D.
Average probability of Within-category vs. Between-category for switch vs. non-switch events from
layer > 39 where token probabilities in the different categories examined begin to differ from 0, as
shown in panel C.

the transition-probability matrix 2.1 (See details[A.T]). Figure ZJA shows how in the sequence “dog,
cat, octopus,” dog and cat occupy relative positions —2, —1 (before) a switch event because the next
animal octopus (relative position 0) represents a switch to a different category, i.e., dog and cat belong
in the category “pets,” whereas octopus belongs in the category “sea creature.” Probability estimates
of the next-token are conditioned on sequence tokens making up cat, dog and the comma immediately
after to determine the next-token probability estimates. The output probability mass falls over both
between-category sets and within-category sets. The token vocabulary is parsed into the two set types
and the probabilities are averaged within them, respectively.

Figure 2B reveals that the model examined (Llama-3.3-70B) measures switch behavior for the actual
human sequences to be surprising, showing lower probability at switch events in the sequence for
within-category and the actual (belonging in the sequence). Comparing mean z-score probability
values between relative positions -1 and 0 for each token distribution type using permutation tests
(10,000 resamples) yields significant effects (within-category, d = —0.158; between-category,
d = 0.144; actual sequence, d = —0.184; all p < 0.001).

Properties found within intermediate layers are thought to provide insight into how computations
may facilitate certain downstream tasks [9]. This internal step-by-step processing of transformers
may even mirror the cognitive processing of humans [10] and may encode richer representations
[L7]. We therefore investigate within/between token distributional dynamics within the model’s
intermediate layers, applying logitlens to the 70B model [12]. Appearing from middle layers, the
model begins to distinguish within/between token-set distributions and switch events differently
(Figure[2|C). Within-category probability estimates increase the most dramatically, likely reflecting the
“stickiness” to generate exemplars from within the same categories. Within-category probabilities are
significantly attenuated during category switching, congruent with the observations found in Figure
[2B. The appearance of between-category probability estimates being above estimates from non-switch
behavior appears relatable to the relative increase of between-category probability estimates shown in
Figure 2B. Figure 2D summarizes activations for the late layers (> 39), where the model shows a
clear distinction between switch vs. non-switch events. During non-switch events (False), the model
is strongly convergent, with high (averaged) Within-category probability (0.0035) and low Between-
category probability (0.0005). Critically, during a switch event (Figure 2D, True), this convergent
bias is neutralized: the Within-category probability is suppressed to 0.0008, becoming very close
to the Between-category probability (0.0007), although still statistically different (Mann-Whitney,
two-sided, p < 0.001).
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Figure 3: Decodability of Semantic Foraging Behavior from Internal Representations. The heatmap
displays the layer-wise classification performance (AUROC) of linear probes trained to distinguish
switch (divergent) vs. non-switch (convergent) events across four Llama models of increasing scale
(1B, 3B, 8B, 70B) and a dataset of three different prompt types: N-neutral, C-convergent, and
D-divergent. A summary of classifier performance for the averaged top-3 layers of the representation
reading of the three different datasets demonstrates that increasing model size tends to improve
performance.

2.2.2 Investigating Residual-Stream Representation

Can we identify switching behavior within the model representations themselves, probing the interme-
diate residual stream of the LLM [1]]? To do so, we trained a simple logistic regression classifier on
the intermediate activations, which were first reduced using PCA. All reported classifier performance
is over an 80/20 cross-validation split. First, we investigate whether human generated sequences are
distinguishable from within these intermediate activations alone where switching behavior was la-
beled by category norms reported earlier. This classifier was a very weak predictor (AUROC = 0.57,
Llama-3.3-70B) of switch events (Supplementary Figure S1), performing worse than a classifier
from output distributions, showed earlier in Figure 2IC yielding an AUROC = 0.751 (Supplementary
Figure S2) shown for different model sizes.

To explore this further, we exaggerated the semantic distances of switch or non-switch exemplars,
amplifying either convergent behavior (staying within a category) or divergent behavior (switch-
ing to a new category). This was done by creating contrastive pair datasets, bootstrapped from
the human sequences evaluated earlier. Details of this procedure are available in supplements
[A2] When classifiers were trained on representations from this new contrastive pair data, they
performed exceptionally well at distinguishing between switch and non-switch events on residual-
stream representations (AUROC = 0.96, Llama-3.3-70B, neutral; AUROC = 0.98, Llama-3.3-70B,
convergence; AUROC = 0.97, Llama-3.3-70B, divergence) (Figure 3]A). A layer-wise analysis
showed that the intermediate layers were the most effective for this classification (Figure 2B). Inter-
estingly, only in the divergent prompt instructed case, performance peaked in the middle layers and
then dropped in the later layers, suggesting that when the model is instructed to produce divergent
responses, representations of exemplars are moved closer together in later layers.

3 Conclusion and Future Work

Our work provides evidence that the strategic cognitive mechanisms of semantic foraging are an
identifiable and potentially steerable property of LLMs [22]. Future work will relate human processing
details, e.g., time to generate responses, to the patterns we reported as we believe they may serve
as features used to predict and explain properties of human cognition, allowing us to map internal
model states to cognitive representations and computations. Additionally, we seek to investigate
whether a generalizable mechanism can be identified and rigorously tested. These findings open
new avenues for “cognitive (dis)alignment” in mechanistic interpretability research, where we may
either strategically align models with patterns of human cognition or deliberately misalign them to
inform and develop novel, more creative Al systems that may productively depart from our own
cognitive behavior. We hope to demonstrate that in applied collaborative contexts where approaches
like representation engineering may offer an ability to steer model behavior in augmentative ways
that extend beyond our own cognitive endowments [27]].
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A Technical Appendices and Supplementary Material

A.1 Category Norms and Defining Switches

In the context of cognitive psychology and neuropsychology, category norms are collections of data
that represent the typical responses given by a group of people for a specific category. Essentially,
norms provide a baseline or a standard of comparison. In this study, we evaluate the categories people
give when they think of animals. Using established category norms for animals [25], we parsed
all sequences to identify switch events as two sequential animals with no shared categories, i.e.,
divergences, and non-switch events, i.e., convergences as two sequential animals with at least one
shared category.

A.2 Contrastive Generation

Three contrastive datasets were constructed to illustrate that we could effectively isolate a core
mechanism for SFT. We generated three datasets using distinct prompt instructions. In each case,
<SEQUENCE> represents the placeholder for the preceding, comma-separated list of animals.

1. Neutral Prompt (Baseline)
This prompt provided a general instruction without specific cognitive constraints.

Without repeating yourself, provide the next animal in
the comma separated list that comes immediately to mind:
<SEQUENCE>,

2. Convergent Prompt (Clustering)
This prompt explicitly instructed the model to stay within the current semantic category.

Without repeating yourself, provide the next animal in the
comma separated list that comes immediately to mind that
sticks/stays/clusters/converges to the same kind/type/category
of last animal in the list: <SEQUENCE>,

3. Divergent Prompt (Switching)
This prompt explicitly instructed the model to switch to a new, drastically different semantic category.

Without repeating yourself, provide the next animal in the
comma separated list that comes immediately to mind that
diverges/moves/switches/changes drastically away from the
kind/type/category of last animal in the list: <SEQUENCE>,

We selected two sub-sequences, randomly sub-sampled from each human generated sequence, to
include one non-switch (sub) sequence, and one switch (sub) sequence. We replaced the next animal
in that actual (sub) sequence to either be a maximally positive convergent/divergent example or a
maximally negative convergent/divergent example by relying on an external embedding model[[14]]
and cosine similarity measure. This allowed making a determination of what animal (belonging in the
SNAFU defined norms [25]]) would be either maximally/minimally convergent or divergent based on
that cosine similarity measure. These new question-and-answer pairs that prompt for either a neural,
convergent, or a divergent response based on the sequence so far were used to readout the convergent
or divergent behavior we report in the classifiers Figure 2] that significantly improved the ability to
readout switch behavior.
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