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Abstract

Like humans, large language models store a vast repository of semantic memories.1

Efficient and strategic access to this memory store is a critical foundation for a2

variety of human cognitive functions. Therefore, it has been a research focus since3

the dawn of psychology and its computational mechanisms are well-characterized.4

Much of this understanding has been gleaned from a widely-used neuropsycholog-5

ical and cognitive science assessment called the Semantic Foraging Task (SFT),6

which requires the generation of as many semantically constrained concepts as7

possible. Our goal is to apply mechanistic interpretability techniques to bring8

greater rigor to the study of semantic memory foraging in LLMs. To this end, we9

present preliminary results examining SFT as a case study, analyzing how LLMs10

perform in comparison with humans. A central focus is on convergent and diver-11

gent patterns of generative memory search, which in humans play complementary12

strategic roles in efficient memory foraging. We show that these same behavioral13

signatures, critical to human performance on the SFT, also emerge as identifiable14

patterns in LLMs across distinct layers. Potentially, this analysis provides new15

insights into how LLMs may be adapted into closer cognitive alignment with hu-16

mans, or alternatively, guided toward productive cognitive disalignment to enhance17

complementary strengths in human–AI interaction.18

1 Introduction19

The inherent complexity of large decoder-based transformers, particularly in their ability to mimic20

some human cognitive functions, has led to a surge in research focused on interpreting and analyzing21

their internal workings [16, 22]. We suggest that cognitive mechanistic interpretability offers a22

remarkable opportunity to create and test scientific theories of the human mind, where AI systems can23

function as rigorous scientific artifacts to explain and predict human behavior [5]. Towards that end,24

the cognitive behavior we focus on in this work is the process of active memory search [4]. Active25

memory search, although at times seemingly effortless, involves complex operations for humans26

[20]. Our goal here is to understand how properties that explain memory operations in humans can27

similarly be identified as specific, explainable mechanisms used by LLMs appearing to emulate28

these cognitive operations in humans. For example, we activate relevant concepts in our mental29

lexicon, quickly retrieve their associated information, and then produce that output to achieve our30

objective. Although it is tempting to see these models relying on the same cognitive mechanisms that31

explain human behavior—a logical fallacy known as reflectionism—these models, operating with an32

entirely different cognitive architecture, may not be “thinking” like us at all, but instead reproducing33

the patterns of our language under a “strange and alien” type of intelligence [2], offering untapped34

possibilities for collaborative interaction [15, 18]. Disambiguating what cognitive mechanisms LLMs35

may be relying on is therefore needed.36
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1.1 Semantic Fluency and Cognitive Search37

To understand active memory search in LLMs, we use the well-established Semantic Fluency Task38

(SFT) [7], a timed assessment measuring information retrieval from semantic memory to assess39

language production and executive functions. During the SFT, humans “cluster” semantically or40

phonetically related words—convergent behavior—and “switch” to new clusters when retrieval41

slows—divergent behavior [21]. This strategy, marked by shorter pauses within clusters and longer42

ones between them [7], is crucial for understanding semantic navigation. Theoretically, this explore-43

exploit/converge-diverge behavior is modeled by the Marginal Value Theorem (MVT) of optimal44

foraging theory [3]. Further recent neural evidence for strategically timed switches in memory search45

are also supported [13, 11].46

1.2 Prior Work and Our Contributions47

While prior SFT research used models to simulate human word generation [6] and identify sequence48

patterns [8], our study investigates how internal LLM mechanisms explain semantic foraging. Build-49

ing on work showing LLM attention weights reflect clustering and switching behaviors [23], we first50

demonstrate that LLMs generating animal sequences largely reproduces the same active memory51

search patterns found in humans. We then show these semantic search mechanisms are identifiable in52

the token distribution patterns and internal representational spaces across various LLM sizes, evident53

in both intermediate layers and outputs.54

2 Analysis and Results55

2.1 Human versus LLM Semantic Fluency Behavior56

How do human and LLM generated sequences of animals compare? To illustrate that LLMs largely57

model their sequence generation from human behavior, Figure 1 shows similarities in human and58

LLM generated animal sequences.1 To efficiently summarize their generation patterns, a transition59

probability matrix was calculated for all human and machine sequences (699 human and 228560

machine sequences). This models the state-transition diagram where nodes are (animal) categories61

and edges model their transition probabilities to either stay in the same category or switch to a different62

one (Figure 1A). Computing the Spearman correlation coefficient between averaged machine and63

human transition probability matrices reveals a strong correlation, ρ = 0.701, p < 0.001 (Figure 1B).64

Investigating whether humans or LLM tended to “cluster” their generation in the same categories,65

we saw a clear indication they both more likely transition within the same category as evidenced66

by the distribution of probabilities of the off-diagonal (between-categories) versus the diagonal67

(within-categories) matrix elements (Figure 1C). Switch ratios, the proportion of category switches68

for an individual’s sequence, revealed that even though LLMs tend to match overall transition patterns69

to humans, LLMs tend to switch less often than humans, (Figure 1D). These results demonstrate an70

overall macro-cognitive alignment, i.e., population level alignment in cognitive behavioral patterns,71

between human and machine.72

2.2 Mapping Convergent and Divergent SFT Behavior73

2.2.1 Investigating Output and Layer-wise Distributions74

We investigated whether human behavior for this task can be evaluated by an LLM to detect their75

switch behavior from token probabilities alone. To do so, we examine the model’s output distributions76

as well as activations of the intermediate layers that led up to its final output via the “logitlens”77

method [12]. First, in order to better understand the dynamics of these computations, for each78

animal in the generated sequence, we distinguished the set of tokens that are between-category and79

within-category sets (Figure 2A). These sets are defined by the category norms, used to compute80

the transition-probability matrix 2.1 (See details A.2). Figure 2A shows how in the sequence “dog,81

cat, octopus,” dog and cat occupy relative positions −2,−1 (before) a switch event because the next82

animal octopus (relative position 0) represents a switch to a different category, i.e., dog and cat belong83

in the category “pets,” whereas octopus belongs in the category “fish.” Probability estimates of the84

1See supplementary material for LLM generation and human data details A.1.

2



Figure 1: LLM and Human generated SFT sequences are compared. A. A state-transition diagram is
drawn as conceptual illustration of three categories (non-human primates, insects, farm animals) that
describe how a sequence is thought to be generated. Arrows between the nodes represent divergent
behavior whereas self-edges represent convergent. Clustering refers to generating words within a
specific category, while switching involves moving to a new category. B: The correlation between the
average state-transition matrix representing transition probabilities between categories for human and
LLM. C: LLM and human between-category and within-category transition probability distributions
compared. D: Switch ratio distributions of human and LLM sequences.

Figure 2: Explaining switching or convergent/divergent behavior in LLMs. A. An example showing
how we parse within/between categories token sets. B. Probability estimates of words at and around
switch events in human generated sequences. C. A logitlens analysis of within vs. between category of
non-switch and switch events in the sequence. D. Performance of classifiers trained on residual-stream
representations generated from the actual human switch vs. no switch animal sequences and two
(convergent and divergent) contrastive pair datasets created (A-Actual, C-Convergent, D-Divergent).
E. A summary of classifier performance for the averaged top-3 layers of the representation reading of
the two convergent/divergent datasets versus the actual sequences.
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next-token are conditioned on sequence tokens making up cat, dog and the comma immediately85

after to determine the next-token probability estimates. The output probability mass falls over both86

between-category sets and within-category sets. The token vocabulary is parsed into the two set types87

and the probabilities are averaged within them, respectively.88

Figure 2B reveals that the model examined (Llama-3.3-70B) measures switch behavior for the actual89

human sequences to be surprising, showing lower probability at switch events in the sequence for90

within-category and the actual (belonging in the sequence). Comparing mean z-score probability91

values between relative positions -1 and 0 for each token distribution type using permutation tests92

(10,000 resamples) yields significant effects (within-category, d = −0.158; between-category,93

d = 0.144; actual sequence, d = −0.184; all p < 0.001).94

Properties found within intermediate layers are thought to provide insight into how computations95

may facilitate certain downstream tasks [9]. This internal step-by-step processing of transformers96

may even mirror the cognitive processing of humans [10] and may encode richer representations97

[17]. We therefore investigate within/between token distributional dynamics within the model’s98

intermediate layers, applying logitlens to the 70B model [12]. Appearing from middle layers, the99

model begins to distinguish within/between token-set distributions and switch events differently100

(Figure 2C). Within-category probability estimates increase the most dramatically, likely reflecting the101

“stickiness” to generate animals from within the same categories. Within-category probabilities are102

significantly attenuated during category switching, congruent with the observations found in Figure103

2B. The appearance of between-category probability estimates being above estimates from non-switch104

behavior appears relatable to the relative increase of between-category probability estimates shown in105

Figure 2B.106

2.2.2 Investigating Residual-Stream Representation107

Can we identify switching behavior within the model representations themselves, probing the interme-108

diate residual stream of the LLM [1]? To do so, we trained a simple logistic regression classifier on109

the intermediate activations, which were first reduced using PCA. All reported classifier performance110

is over an 80/20 cross-validation split. When applied to human generated sequences, the classifier111

was a weak predictor (AUROC = 0.57, Llama-3.3-70B) of switch events (Figure 2E, actual), per-112

forming worse than a classifier from output distributions, showed earlier in Figure 2C yielding an113

AUROC = 0.751 (Supplementary Figure 3) shown for different model sizes).114

To explore this further, we created two new contrastive pair datasets from the human sequences115

evaluated earlier to amplify either convergent behavior (staying within a category) and another to116

amplify divergent behavior (switching to a new category). Details of this procedure is available in117

supplements A.3. When trained on representations from this new contrastive pair data, the same118

logistic regression classifier performed exceptionally well at distinguishing between switch and non-119

switch events (AUROC = 0.98, Llama-3.3-70B, convergence; AUROC = 0.97, Llama-3.3-70B,120

divergence) (Figure 3A). A layer-wise analysis showed that the intermediate layers were the most121

effective for this classification (Figure 2B). In the divergent case, performance peaked in the middle122

layers and then dropped in the later layers.123

3 Conclusion and Future Work124

Our work provides evidence that the strategic cognitive mechanisms of semantic foraging are an125

identifiable and potentially steerable property of LLMs. Future work will relate human processing126

details, e.g., time to generate responses, to the patterns we reported as we believe they may serve as127

features used to predict and explain human cognition, allowing us to map internal model states to128

cognitive representations and computations. Further, these findings open new avenues for “cognitive129

(dis)alignment” in mechanistic interpretability research, where we may either strategically align mod-130

els with human cognition or deliberately misalign them to develop novel, more creative AI systems131

that may productively depart from our own cognitive behavior. We hope to demonstrate that in applied132

collaborative contexts, approaches like representation engineering could offer the ability to steer133

model behavior via cognitive control vectors, in potentially generalizable, enhancive/augmentative134

ways that extend beyond our own cognitive endowments that define our abilities [26].135
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A Technical Appendices and Supplementary Material210

A.1 Human and LLM Generated Data211

We analyzed 699 human-generated sequences of animal names, collected from three separate exper-212

iments where participants listed as many animals as they could in three minutes [25, 7]. We then213

generated an equal number of sequences (699) using the instruction-tuned Llama-3 suite of models214

(sizes 1B, 3B, 8B, and 70B) [19]. To ensure variety, each LLM sequence began with the first word of215

a human sequence, using the minimally sufficient user prompt:216

Without repeating yourself, continue your response as a list of comma
separated animal names that come to mind: <Animal>, [...GENERATION...]217

All LLM generated sequences were continued until they were at least the same length as the human218

ones and then truncated to be the same number of responses afterwards. All responses, both human219

and LLM, were filtered according to strict criteria of needing to exist as a valid animal name defined220

by the category norms. Any responses in generated sequences that were found to be invalid by the221

filter were grounds for discarding the entire sequence. After filtering, a total of 681 sequences were222

analyzed for humans and 2285 sequences for LLMs (606, 502, 572, 605) for model sizes (1B, 3B,223

8B, 70B), respectively.224

A.2 Category Norms and Defining Switches225

In the context of cognitive psychology and neuropsychology, category norms are collections of data226

that represent the typical responses given by a group of people for a specific category. Essentially,227

norms provide a baseline or a standard of comparison. In this study, we evaluate the categories people228

give when they think of animals. Using established category norms for animals [24], we parsed229

all sequences to identify switch events as two sequential animals with no shared categories, i.e.,230

divergences, and non-switch events, i.e., convergences as two sequential animals with at least one231

shared category.232

A.3 Contrastive Generation233

Two contrastive dataset were constructed to illustrate that we could effectively isolate a core mecha-234

nism for SFT; one dataset intended to readout convergent behavior and one for reading out divergent235

behavior. For the convergent contrastive dataset, we relied on the following prompt:236

Without repeating yourself, provide the next animal in the comma separated
list that comes immediately to mind that sticks/stays/clusters/converges
to the same kind/type/category of last animal in the list: <SEQUENCE>,

237

For the divergent contrastive dataset, we relied on the following prompt:238

Without repeating yourself, provide the next animal in the comma separated
list that comes immediately to mind that diverges/moves/switches/changes
drastically away from the kind/type/category of last animal in the list:
<SEQUENCE>,

239

We selected two sub-sequences, randomly sub-sampled from each human generated sequence, to240

include one non-switch (sub) sequence, and one switch (sub) sequence. We replaced the next animal241

in that actual (sub) sequence to either be a maximally positive convergent/divergent example or a242

maximally negative convergent/divergent example by relying on an external embedding model[14]243

and cosine similarity measure. This allowed making a determination of what animal (belonging in244

the SNAFU defined norms [24]) would be either maximally/minimally convergent or divergent based245

on that cosine measure. These new question-and-answer pairs that prompt for either a convergent or246

a divergent response based on the sequence so far were used to readout the convergent or divergent247

behavior we report in the classifiers Figure 2 that significantly improved the ability to readout switch248

behavior.249

7



Figure 3: Classification of switching behavior from NLL output estimates for all model sizes for the
actual token sequences of the human examined in Figure 2.
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