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ABSTRACT

Despite their success and widespread adoption, the opaque nature of deep neu-
ral networks (DNNs) continues to hinder trust, especially in critical applications.
Current interpretability solutions often yield inconsistent or oversimplified expla-
nations, or require model changes that compromise performance. In this work, we
introduce TRACER, a novel method grounded in causal inference theory designed
to estimate the causal dynamics underpinning DNN decisions without altering
their architecture or compromising their performance. Our approach systematically
intervenes on input features to observe how specific changes propagate through
the network, affecting internal activations and final outputs. Based on this analysis,
we determine the importance of individual features, and construct a high-level
causal map by grouping functionally similar layers into cohesive causal nodes,
providing a structured and interpretable view of how different parts of the network
influence the decisions. TRACER further enhances explainability by generating
counterfactuals that reveal possible model biases and offer contrastive explanations
for misclassifications. Through comprehensive evaluations across diverse datasets,
we demonstrate TRACER’s effectiveness over existing methods and show its po-
tential for creating highly compressed yet accurate models, illustrating its dual
versatility in both understanding and optimizing DNNs.

1 INTRODUCTION

Neural networks have demonstrated transformative potential across various applications, notably
image classification (Krizhevsky et al., 2012), medical diagnostics (Esteva et al., 2017), and complex
pattern recognition (LeCun et al., 2015), even surpassing humans in certain domains (Silver et al.,
2016; Rajpurkar et al., 2017). Yet, their inherent complexity obscures their decision-making processes,
turning them into “black boxes” that raise transparency and trust concerns, thus impeding their
adoption in sectors requiring explainability, such as healthcare and cybersecurity (Zeiler & Fergus,
2014; Castelvecchi, 2016; Doshi-Velez & Kim, 2017; Lipton, 2018; Papernot & McDaniel, 2018;
Zhang et al., 2021). Neural Network Explainability, pivotal in Explainable AI (XAI), aims to clarify
DNN decision-making to ensure trust, ethical application, and bias mitigation. Although various XAI
strategies have been proposed, including saliency maps (Zhou et al., 2015), Grad-CAM (Selvaraju
et al., 2017), LIME (Ribeiro et al., 2016), and SHAP (Lundberg & Lee, 2017), they often present
inconsistencies, over-simplification, or architectural constraints, underscoring an ongoing challenge
in DNN understanding (Baehrens et al., 2010; Ba & Caruana, 2014; Rudin, 2019).

In this paper, we introduce TRACER, a novel approach based on causal inference theory (Pearl, 2009),
to infer the mechanisms through which AI systems process inputs to derive decisions. Recognizing
that conventional evaluation metrics based solely on validation datasets may not be indicative of a
model’s performance in real-world settings and drawing inspiration from Pearl’s causal hierarchy,
our approach reveals how targeted modifications to input features influence the internal states of
neural networks, thereby modelling the underlying causal mechanisms. Specifically, TRACER frames
the explainability of neural networks as a causal discovery and counterfactual inference problem,
where we observe and analyze all intermediate and final outputs of a model, given any sample, its
generated set of interventions, and its counterfactuals. Through the aggregation of multiple such
instances, we provide interpretability to state-of-the-art models without requiring any re-training or
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architectural changes, thus preserving their performance. In conjunction with an efficient approach for
counterfactuals generation, this offers contrastive explanations for misclassified samples, expanding
our understanding of not just what happened, but why it happened, and what could have happened
under different conditions, thus enabling the identification of potential model blind spots and biases,
and addressing the overarching issue of trust. Our main contributions can be summarized as follows:

• We propose TRACER, a framework for estimating the causal mechanisms underpinning DNN
decisions, combined with a conditional counterfactual generation method for identifying
failure modes, providing actionable insights for improving classifiers.

• We perform comprehensive evaluations of TRACER on image and tabular datasets, providing
explanations for correct and misclassified samples, while highlighting its effectiveness in
discovering the causal maps that describe the key transformation steps involved in decisions.

• We demonstrate TRACER’s versatility in both local and global explainability, as well as
its ability to outperform prevalent explanation techniques, identify redundancies in neural
network architectures, and aid in the creation of optimized, compressed models.

The paper is structured as follows: Section 2 reviews related work. Section 3 describes the TRACER
framework and its foundations. And Sections 4 and 5 present our experimental results and conclusions.

2 RELATED WORK

Techniques for DNN interpretability are typically categorized by explainability scope, implementation
stage, input/problem types, or output format (Adadi & Berrada, 2018; Angelov et al., 2021; Vilone &
Longo, 2021). Early endeavours like saliency maps by Zhou et al. (2015), Grad-CAM (Selvaraju
et al., 2017) and Layer-wise Relevance Propagation (LRP) (Bach et al., 2015) visually highlighted key
features in input data, but often produced inconsistent or coarse explanations, required structural model
changes, compromised performance, or overlooked nuances crucial for true comprehension (Rudin,
2019). Model-agnostic approaches, such as LIME (Ribeiro et al., 2016) and SHAP (Lundberg & Lee,
2017), offer explanations by approximating model decision boundaries but can face challenges like
resource intensiveness and inconsistencies in local explanations. Simplifying DNNs for improved
interpretability (Che et al., 2016; Frosst & Hinton, 2017) often compromises performance, as simpler
models cannot always capture the nuances of complex DNNs. In contrast to the aforementioned
methods, rather than merely highlighting influential features, TRACER estimates the causal dynamics
that steer DNN decisions, without the need for altering the model or compromising its performance.

Different from associative methods, causal inference techniques probe deeper to uncover cause-
effect relationships. The idea of merging causal inference with AI is an emerging perspective, with
prior works focusing on causal diagrams and structural equation models to gain such associative
understanding (Pearl, 2009; Yang et al., 2019; Xia et al., 2021; Kenny et al., 2021; Chou et al., 2022;
Geiger et al., 2022; Kelly et al., 2023). For instance, methods like those proposed by Chattopadhyay
et al. (2019), Kommiya Mothilal et al. (2021) and Chockler & Halpern (2024) perform causal
reasoning to explain decisions made by image classifiers, focusing on identifying causal elements
in the input space, while Reddy et al. (2024) extend this to capture indirect causal effects. TRACER
extends causal reasoning deeper into the structure of DNNs, combining causal analysis of both the
model’s internal workings and the input-output relationships. This enables explainability at both the
feature and network-structure level, providing more comprehensive explanations for DNN behavior.

Recent advances have also emphasized counterfactual explanations (Feder et al., 2021), generating
hypothetical instances to show how changes in inputs would alter predictions. For example, deep
generative approaches using Variational Autoencoders (VAEs) (Pawelczyk et al., 2020; Antorán
et al., 2020) or Generative Adversarial Networks (GANs) (Mirza, 2014; Nemirovsky et al., 2022)
were proposed to minimize changes to input features to produce counterfactuals. Our approach
improves on these by introducing a dual objective that ensures realism through adversarial training
while aligning counterfactuals closely with their nearest neighbors in the target class, making them
simultaneously plausible and interpretable.

Our proposed approach sets itself apart in two main aspects: (1) rather than only focusing on input
features, our approach performs an intervention-based analysis that additionally examines the causal
mechanisms within the DNN architecture, identifying how specific layers causally influence the
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Figure 1: Overview of TRACER with explanations for a misclassification. Interventions and counter-
factuals are used to determine the effects of individual features on the models’ intermediate and final
outputs, leading to the discovery of the mechanisms underpinning the decision-making process.

decision-making process, thereby inferring the critical components (critical layers) within DNNs; and
(2) a conditional counterfactual generation method, which synthesizes realistic alternative scenarios to
identify model blind spots and biases, while ensuring the generated counterfactuals remain plausible
and target specific outcomes through controlled feature changes.

3 THEORETICAL FOUNDATIONS AND METHODOLOGY

To understand the internal-workings of DNN architectures, we must consider not only the operations
performed by individual layers, but also how they influence one another across the network. TRACER
aims to estimate an accurate model of these mechanisms, focusing on the dynamics that govern the
network’s decisions. Therefore, our methodology, depicted in Figure 1, is structured around:

Causal discovery. We analyze the interactions and dependencies within DNNs by systematically
altering input features to observe the resulting changes, enabling an effective mapping of the decision
pathways. Through this process, we estimate the causal structures that drive the network’s decisions,
providing a clear understanding of how different features and layers contribute to the outcome.

Counterfactual generation. We simulate alternative scenarios by introducing targeted changes to
input features, allowing us to explore ‘what-if’ scenarios and observe how specific changes in inputs
can lead to different outcomes, providing further insights into the model’s sensitivity and robustness.

3.1 NOTATIONS

Throughout this paper, we use the following notations to describe our methodology. We denote with
X the input features and Y the output or prediction made by a DNN. A single input instance is
denoted as x ∈ Rd, where d is the input dimensionality. The function f represents a neural network,
mapping inputs to outputs. We denote the output of a specific layer or group of layers in the network
as gi. For causal discovery, do(X = xj) represents an intervention where the value of X is set to
xj , and P (Y | do(X = xj)) describes the probability of Y given this intervention. To measure the
similarity between the outputs of two layers, we use the Centered Kernel Alignment CKA(Ki,Kj),
where Ki and Kj are the kernel matrices corresponding to layers i and j. A binary matrix B(Ki,Kj)
indicates similarity between layers, with elements bi,j = 1 when CKA(Ki,Kj) exceeds a threshold.

3.2 PRELIMINARIES

Causal theory provides the means to model cause-effect relationships, offering a departure from mere
observational statistics to tackle questions about interventions and counterfactuals (Pearl, 2009). To
this end, the language of Structural Causal Models has been proposed to formalize these relationships.

Definition 1 (Structural Causal Model). A Structural Causal Model (SCM) M is a 4-tuple
(U, V,F , P (U)), where U is a set of exogenous variables determined by factors external to the
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model; V = {V1, V2, . . . , Vn} is a set of endogenous variables, each influenced by variables within
the model; F = {f1, f2, . . . , fn} is a set of functions, each fi mapping a subset of U ∪ V to Vi; and
P (U) is a probability distribution over U . For every endogenous variable Vi, its value is determined
by Vi = fi(pa(Vi), Ui), where pa(Vi) represents the parents or direct causes of Vi, and Ui ⊆ U .

Pearl’s Causal Hierarchy (PCH), grounded in SCMs, further refines our understanding by categorizing
causal knowledge into three distinct levels, which serve as TRACER’s foundations1:
1. Association. We extract dependency structures from the DNN activations and outputs P (Y (i) |X),
where X and Y (i) represent the input and the i-th layer’s output variables, respectively;
2. Intervention. By selectively manipulating feature values, we estimate the intervention distributions
P (Y (i) | do(X = xj)) to understand the effect of particular features on the final decision2;
3. Counterfactual. We explore alternative (or hypothetical) input scenarios and compute the
counterfactual distributions, P (Y

(i)
X=x′ | X = x), which quantifies the model’s output distribution if

a certain input were set to a particular value, given that we actually observed another input.

By identifying how specific input features and intermediate layer activations influence the model’s
final predictions, TRACER provides a unique approach for capturing an abstract overview of the
distinct computational components driving DNN decisions. This structured approach allows us to
produce explanations that clarify both the direct influence of features and how the model’s predictions
would change under different input conditions.
Definition 2 (Explanation). Given a d-dimensional input X = x ∈ Rd, an explanation for the output
y of a model F is a masked input xE = x⊙M ∈ {0, 1}d for which the following conditions hold:

Γ1 (Correctness): The model F , when evaluated on the input x, produces the output y.
(F ,x) |= (X = x) and F(x) = y, where |= denotes logical entailment.

Γ2 (Sufficiency): There exists a mask M ∈ {0, 1}d such that the resulting explanation xE =
M⊙x produces the same output as the original input: (F ,xE) |= F(M⊙x) = F(x) = y.
This condition ensures that the features selected by M are sufficient to explain y. Let a mask
M′ be defined such that the set of active features in M′ (i.e., where M′

i = 1) is not a subset
of those in M. Formally, {i : M′

i = 1} ̸⊆ {i : Mi = 1}, then (F ,x′
E) |= F(M′⊙x) ̸= y.

Γ3 (Minimality): The mask M is minimal, meaning that no strict subset of active features in
M suffices to produce the same output. Formally, for every mask M′ ∈ {0, 1}d such that
{i : M′

i = 1} ⊂ {i : Mi = 1}, the masked input x′
E = M′ ⊙ x is insufficient to produce

the same output: (F ,x′
E) ̸|= F(M⊙ x) = y.

Note that (i) in this definition, y can be set to any specific label to produce explanations for mis-
classifications or rare events; and (ii) partial explanations can be simplified to binary decisions (i.e.,
whether a feature is relevant or not) when computing feature attributions (defined in Section 3.4).

3.3 CAUSAL DISCOVERY

To discover a faithful representation of the causal mechanisms underpinning DNN models, we
perform an intervention-based analysis where we systematically change the values of input features
and study the effects on a given classifier. By observing the internal states and outputs of the classifier,
we can deduce how specific components contribute to the final decisions, offering an understanding
of the model’s causal structure and enabling the identification of key layers or connections that highly
influence the model’s predictions. Furthermore, by collecting the observed effects of all interventions,
we establish an abstract causal map to visualize the interplay between different network components,
and asses their collective influence on the DNN outputs. Ultimately, the insights gathered from our
approach enable the debugging and refinement of neural network classifiers.

3.3.1 INTERVENTIONS

In our analysis, interventions are crucial for isolating and understanding the causal significance of
specific input features. Given an input vector x ∈ Rd, where d denotes the dimensionality of the input

1Our analysis levels follow the terminology from Pearl’s Ladder of Causation (Pearl & Mackenzie, 2018)
2do(·) denotes the do-operator, as defined by Pearl (Pearl, 2009).
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space, an intervention is simulated by replacing a subset of x with a predetermined baseline value b.
For a specified subset of indices I ⊆ {1, . . . , d} corresponding to the features under intervention, the
intervened features are given by: x′

i = b · 1{i ∈ I}+ xi · (1− 1{i ∈ I}), where 1{i ∈ I} indicates
1 when i is in the set I and 0 otherwise. Assuming b to be causally independent (e.g., binary mask),
all input features, before and after interventions, can be considered exogenous variables in the causal
map due to their values being set externally and not being influenced by other variables in the model.
Proposition 1 (Causal Isolation of Intervened Samples). Let F : X → Y denote the mapping
function of a DNN. For any x ∈ X , I ⊆ {1, . . . , d}, and b ∈ R, the intervened sample x′ isolates the
causal effect of the features in I on F by setting the values of xi,∀i ∈ I to b. (Proof in Appendix A.1)

By performing such interventions, we effectively isolate and examine the causal impact of specific
features on the output, allowing us to determine which features are causally pivotal for the model’s
decisions, and to measure the depth of their influence. The value chosen as baseline can carry signifi-
cant importance in our intervention framework. In cooperative game theory, Shapley values (Shapley
et al., 1953) use baselines to evaluate each player’s contribution by averaging their marginal impacts
across all possible coalitions. This notion has been adapted for interpreting machine learning mod-
els (Lundberg & Lee, 2017), inspiring our use of baselines as neutral points of reference. In our
approach, the baseline aims to counteract or neutralize the impacts of altered features, isolating the
original input’s influence on the output without the bias introduced by those features. By contrasting
the results from such intervened inputs with the original’s, we extrapolate the causal relationships
between input features and model outputs.

3.3.2 CAUSAL ABSTRACTION

Given an input sample and its interventions, TRACER collects the intermediate and final outputs of the
classifier to perform a focused comparison of representations across network layers and extrapolate
an accurate estimation of the causal dynamics driving the network’s decisions. For this analysis, we
use Centered Kernel Alignments (CKA), a prevalent approach for quantifying similarities between
high-dimensional embeddings (Kornblith et al., 2019). Let fi ∈ Rn×di and fj ∈ Rn×dj denote the
activations of two distinct layers in a network for a set of n input samples, where di and dj represent
the dimensionalities of the activations for layers i and j, respectively. Their respective kernel matrices
are defined as Ki = fif

T
i ∈ Rn×n and Kj = fjf

T
j ∈ Rn×n to obtain their CKA similarity:

CKA(Ki,Kj) = HSIC(Ki,Kj)/
√

HSIC(Ki,Ki)× HSIC(Kj ,Kj),

where HSIC(Ki,Kj) is the Hilbert-Schmidt Independence Criterion (HSIC) for the kernel matrices,
and given by HSIC(Ki,Kj) = (n − 1)−2 Tr(HKiHKj). Here, H is a centering matrix given by
H = I − 1

n11
T , with n being the number of samples, I the identity matrix, and 1 a vector of ones.

Tr(·) denotes the trace of a matrix.

The use of CKA for evaluating representation similarity offers several advantages, including:
(i) Normalization: CKA scores range from 0 (completely dissimilar) to 1 (identical), allowing
straightforward comparison across layers; (ii) Flexibility: It accommodates various kernel functions,
such as linear or Gaussian, enabling flexibility based on specific requirements of the analysis; and
(iii) Robustness: The use of kernels allows CKA to operate in a richer feature space, providing a
more comprehensive similarity measure.

Upon obtaining the similarity measures, we establish causality by grouping layers based on their
CKA values, where we create a binary matrix B(Ki,Kj), which is defined as B(Ki,Kj) =
1 if CKA(Ki,Kj) ≥ 1 − ϵ, and 0 otherwise, with ϵ representing a predetermined threshold that
defines the maximum acceptable dissimilarity for two layers to be considered functionally similar and
grouped into a single causal node. While a smaller ϵ (i.e., stricter similarity criteria) leads to more
granular grouping, a larger ϵ results in broader grouping. For our causal analysis, such similarity
suggests that these layers contribute to a shared causal node representing an endogenous variable and
describing a distinct structural equation in our causal model.
Definition 3 (Layer Groups). Let F (x) = fk ◦ . . . ◦ f1(x) denote the compositional form of the
neural network classifier, with fi representing the i-th layer of the network. And let B denote the
binary CKA matrix. Two distinct layers fi and fj are said to belong to the same layer group gl if and
only if |i− j| = 1, B(Ki,Kj) = 1, and ∀k > l, fi, fj ̸∈ gk. All layer groups are mutually exclusive
and collectively exhaustive, i.e., ∀ p ̸= q, gp ∩ gq = ∅, and

⋃m
i=1 gi = {f1, f2, . . . , fk}.
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Theorem 1 (Layer Grouping). Let a sequence of layers {fj , fj−1, . . . , fi} within a neural network
F (x) be classified under the same Layer Group, i.e., B(Kj ,Kj−1) = B(Kj−1,Kj−2) = . . . =
B(Ki+1,Ki) = 1, where B(Ki,Kj) = 1 if CKA(Ki,Kj) ≥ 1− ϵ. The collective causal influence
of this sequence on F ’s output is encapsulated by a single composite layer gij: F ′(x) = fk ◦ . . . ◦
gij ◦ . . . ◦ f1(x), where gij ≡ fj ◦ fj−1 ◦ . . . ◦ fi ≡ fi. (Proof in Appendix A.2)

This definition of “Layer Groups” aggregates layers into cohesive groups, where each group estimates
a distinct node in the decision mechanism of the network. Through this aggregation, we effectively
abstract the composition of layers into single causal nodes when their computations are found to be
redundant, allowing for a more streamlined and high-level understanding of the network’s processes.
Theorem 2 (Necessary and Sufficient Conditions for Causal Nodes). Let F : Rn → Rm be a
DNN defined by composition as F = fk ◦ . . . ◦ f1 where each fi : Rdi−1 → Rdi represents the
transformation applied by the i-th layer, d0 = n, and dk = m. Let g = g(r) = . . . = g(s) = {fi}si=r
with 1 ≤ r < s ≤ k be a subset of consecutive layers. g constitutes a causal node as per Definition 3
if and only if ∀i ∈ {r, . . . , s− 1},CKA(Ki,Ki+1) ≥ 1− ε, where Ki is the kernel matrix of layer i
and ε ∈ (0, 1) is a predefined similarity threshold. (Proof in Appendix A.3)
Definition 4 (Causal Links between Layer Groups). Let ga and gb denote two distinct layer groups
within a neural network. A causal link between ga and gb is established if they are adjacent, i.e.,
∃ fi ∈ ga,∃ fj ∈ gb such that |i− j| = 1, or there exists a causal connection between layers in ga
and gb either directly, where B(Ki,Kj) = 1 for some fi ∈ ga and fj ∈ gb, or indirectly through an
intermediate group ga+1 = gc = gb−1 via a layer fk ∈ gc satisfying B(Ki,Kk) = 1.

By adopting definitions 3 and 4, which ensure that layer groups are mutually exclusive and non-
overlapping, we capture the internal dependencies of DDNs, leading to the discovery of layer-
wise abstractions that describe the structural equations governing our causal model. This enriched
perspective allows for more powerful explanatory modelling through better understanding of the
interplay between layers, and how they collectively shape the network’s decisions. Consequently,
our approach offers valuable insights into the high-level causal mechanisms that shape the network’s
behavior, and allows us to provide an abstract, structured, and interpretable view of the causal
dynamics that are intrinsic to its operations.

3.4 ESTIMATION OF CAUSAL EFFECTS

We define the Average Causal Effect (ACE) to quantify the causal impact of interventions on the
network’s outputs, quantitatively capturing both their direction and magnitude.
Definition 5 (Average Causal Effect). Let g′i(x) = softmax(gi(x)) and g′i(x

′) = softmax(gi(x′))
denote the normalized outputs of a Layer Group gi for a given input x and its intervention x′. The
normalization of these outputs is performed to transform the activation scores into valid probability
distributions, with which the Average Causal Effect (ACE) can be defined as the expected value of
the product of the signed Kullback-Leibler (KL) divergence between their probability distributions:

ACEi = EP (X)

[
|∆i

x| · KL
(
P (g′i(x) | do(X = x′)) ∥ P (g′i(x) | do(X = x))

)]
,

where ∆i
x = g′i(x)− g′i(x

′) represents the sign of the change induced by the intervention, and KL(·)
represents the KL divergence quantifying the changes between the probability distributions.

This definition provides a robust estimation of the causal effects, allowing us to understand how
(direction: positive versus negative contribution) and by how much (magnitude) specific interventions
influence the outputs.
Remark. Any intervention that produces outputs sufficiently similar to those produced by the original
input has little to no impact on the Average Causal Effect.
If the intervention on input x to produce x′ results in minimal change in the output of a Layer Group gi,
such that g′i(x) ≈ g′i(x

′), then with all other features of x remaining untouched, the change induced
by x′ approaches 0, leading to minimal or negligible contribution. Formally, if g′i(x) ≈ g′i(x

′), then:
KL

(
P (g′i(x) | do(X = x′)) ∥ P (g′i(x) | do(X = x))

)
≈ 0 =⇒ CEi = 0.

This suggests that interventions which do not substantially alter the output of a Layer Group have a
negligible causal impact on the model’s output, as measured by the ACE. Our approach henceforth
consists of generating interventions, such that those with no effect according to our definition above,
are considered not part of the explanation.
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3.5 COUNTERFACTUAL GENERATION

To improve classification performance and mitigate biases, we explain misclassified samples through
a TRACER analysis of counterfactuals, identifying specific feature changes that should be applied to
samples to obtain the desired outputs. Counterfactuals, defined as hypothetical data instances that, if
observed, would alter the model’s decision, must be valid and plausible. To generate such instances,
we use generative models like Generative Adversarial Networks (GANs) (Goodfellow et al., 2020)
and include these constraints into our training process. Specifically, we propose a novel plausibility
constraint, whereby the counterfactual generators are trained using both adversarial training to
ensure realism, and a proximity-based regularization term to enforce similarity between the generated
counterfactuals and real instances from a target class. This results in realistic counterfactuals requiring
minimal changes to the original data. While our proposed constraints can be adapted to various types
of generative models (e.g., VAE, GAN, normalizing flows), the model we discuss hereinafter assumes
an autoencoder-based GAN architecture.

Given an input x ∈ Rd and a target output y∗, our GAN-based counterfactual generation model is
defined such that the generator uses an encoder function Ex to map the input x to a condensed latent
representation zx = Ex(x). The desired model output y∗, typically an integer label, is transformed
into a one-hot encoded vector o(y∗) ∈ Rk, where k is the number of classes, using the Kronecker
delta function oi(y

∗) = δiy∗ for i = 1, . . . , k. This latent representation zx, concatenated with the
one-hot encoded target label o(y∗) to form an augmented latent vector z = [zx; o(y

∗)], is processed
by the decoder D to generate a counterfactual instance x∗ = D(z). To verify the authenticity of the
generated counterfactual x∗, the discriminator D evaluates whether x∗ appears realistic and plausible
by distinguishing between original data samples and those produced by the generator.

The GAN is optimized using a dual objective: (1) ensure the authenticity of the generated coun-
terfactual x∗ and (2) maximize its similarity with its nearest neighbour xnn among real samples
of its training dataset whose label correspond to some target class. Specifically, we combine the
conventional GAN loss and a proximity measure d(x∗, xnn), with λ as the balancing coefficient:
L = (1−λ) LGAN+λ d(x∗, xnn), ensuring that generated counterfactuals remain minimally different
from real instances in the target class, thereby preserving plausibility while leading to the desired
prediction. This approach offers a flexible and data-efficient process that closely aligns the generated
counterfactuals with the actual data distribution, while conditioning on priors for controlled outputs.

Remark. The regularization distance d(x∗, xnn), essential for maintaining plausibility, can be
implemented using metrics such as ℓ1, ℓ2, or perceptual loss. By introducing perturbations δi to the
latent representation zx before decoding, training with this regularization enables the generation of
multiple distinct plausible counterfactuals x∗ = D([zx+ δi; o(y

∗)]), thereby reducing mode collapse.
We choose in our experiments the ℓ1 norm as regularization metric to encourage sparsity in the
differences between x∗ and xnn, promoting minimal and interpretable changes to the original input.

Employing generative models for counterfactual generation, rather than relying on nearest neighbors
during inference, offers several advantages. First and foremost, relying on real data points as
counterfactuals would require storing large datasets, potentially leading to memory constraints. This
could be particularly problematic in applications where storage is expensive or limited. To address
this, we train the counterfactual generator on a small random subset of the training set (e.g., 10%),
which is afterwards discarded, eliminating the need for storage. Moreover, this allows us to generate
plausible, novel counterfactuals on-the-fly, avoiding computational costs and latency associated with
dataset searches, while enabling broader exploration of the feature space.

4 EXPERIMENTS AND RESULTS

In this section, we evaluate our proposed explainability method, TRACER3, primarily emphasizing its
causal discovery facets. We perform our initial experiments using the well-known MNIST (Deng,
2012) and ImageNet (Deng et al., 2009) datasets, which are standards in image classification tasks,
and on the CIC-IDS 2017 (Sharafaldin et al., 2018) network traffic dataset to demonstrate TRACER’s
applicability to tabular datasets. We use a modified AlexNet (Krizhevsky et al., 2012) and the ResNet-
50 (He et al., 2016) architecture as our MNIST and ImageNet classifiers, respectively. Since AlexNet

3The source code of TRACER will be made available on GitHub upon publication of the paper.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

is originally designed for ImageNet classification, we modified it to take as input single-channel
images of size 28×28 pixels, and changed the output layer to have 10 units corresponding to the
MNIST digit classes. The base models were then trained on the entire training sets before analysis
with TRACER. The training parameters are described in Appendix F.

4.1 CAUSAL DISCOVERY AND FEATURE ATTRIBUTIONS

Activation Layers
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Figure 2: TRACER’s causal analysis results for
an MNIST sample classified by AlexNet. The
causal structure is inferred using CKA similar-
ities between activation outputs from various
layers. Nodes in the resulting causal graph sym-
bolize layer groups, while the connections be-
tween them capture their causal relationships.

To evaluate TRACER’s effectiveness in uncovering
the causal pathways that govern DNN decision-
making processes, the relationships between acti-
vations of different layers are analyzed using CKA
similarities. This involves comparing activations
from the original input with those from its interven-
tions, to identify their influence on the decisions.
We perform interventions by systematically mask-
ing pixels in a grid pattern, setting pixel values to
zero before normalization. For MNIST, the inter-
ventions applied consist of 3×3 patches with a 1×1
sliding window. As depicted in Figure 2, TRACER
discerns layer groups forming causal nodes and
identifies the causal links between them. Specif-
ically, eight activation outputs from the MNIST
classifier are observed and analyzed, revealing in-
herent groupings based on similarity patterns across
the network layers. This observation has led to the
identification of four distinct causal nodes, with the
lack of causal connections between non-adjacent
layer groups indicating a linear causal chain driv-
ing the model’s decision for the given sample.

To quantitatively assess the reliability of TRACER, we measure how often a given model’s predictions
remain consistent when key features identified by our approach are randomly perturbed.
Formally, let f be the classification model. For a dataset X , each sample x ∈ X is coupled with
an explanation mask M(x) ∈ {0, 1}d generated by an explainability method, where M(x)i = 1
indicates that the i-th feature of x is significant. Let P denote a perturbation function which modifies
x by targeting a proportion p of the significant regions of the explanation. This perturbation function
P : {0, 1}d × [0, 1] → {0, 1}d can be defined as follows to produce a binary perturbation matrix:
P(M(x), p) = 1− 1{i ∈ S(M(x), p)}, where the set S(M(x), p) ⊆ {i ∈ {1, . . . , d} : M(x)i =

1} is defined as S(M(x), p) = {i1, i2, . . . , ik} with k = ⌊p · |M(x)|⌋, |M(x)| =
∑d

j=1 M(x)j , and
i1, i2, . . . , ik are sampled uniformly at random from the indices {i ∈ {1, . . . , d} : M(x)i = 1}.

LIME SHAP LRP Grad-CAM TRACER
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Figure 3: Reliability scores of different ex-
plainability methods on the MNIST dataset.

Thus, P(M(x), p) produces a perturbation matrix for
exactly k significant features of x, leaving all other
features unchanged. With x′ = x⊙P(M(x), p) de-
scribing the perturbed sample, the reliability score
for the explanations can be obtained as: S =
|X|−1

∑
x∈X 1{f(x) ̸= f(x′)}, where |X| is the

number of samples in the dataset, and 1{·} is an in-
dicator function returning 1 if the predictions before
and after applying the explainability mask differ.

This score captures the sensitivity of the model’s
predictions to changes in areas deemed critical by
the explainability method, thereby providing insights
into the reliability of the explanations generated. To
assess the robustness of TRACER and compare its per-
formance against that of existing explainability methods, we use this reliability metric on explanations
produced by the different approaches when evaluated on all test samples of the MNIST dataset.
The results, depicted in Figure 3, show the average and standard deviation of each method’s scores
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over 10 trials, for a perturbation factor p of 0.5, demonstrating TRACER’s superior performance and
consistency in producing meaningful and reliable explanations.

4.2 GENERALIZATION AND SCALABILITY

In this experiment, we highlight the broad adaptability of our approach across various neural network
architectures and datasets. To this end, we evaluate TRACER on the ImageNet dataset, as well as
on a Network Intrusion Detection dataset, explaining the decisions of both simple and complex NN
architectures such as MLP and ResNet-50. Intervention applied on ImageNet samples occlude parts
of the inputs (setting them to zero before normalization), with 7×7 patches and a 3×3 sliding window.
And for the Network Intrusion Detection dataset, we use 1×3 patches with a 1×1 sliding window.

Given the wide variety and realisic nature of the samples in the ImageNet dataset, its classification
results with the ResNet-50 architecture provide a solid benchmark for highlighting the limitations
of existing explainability methods and comparing their performances to that of TRACER. For this
comparison, we selected LIME, SHAP, LRP, and Grad-CAM as benchmarks, since they are among
the most widely adopted and representative explainability methods in the literature. The results,
depicted in Figure 4 show that while existing methods struggle to produce consistent explanations,
TRACER provides coherent and comprehensive explanations that highlight the most important features
and patterns that drive the classifier’s decisions. Further comparison of these methods, discussed in
Appendix D.1, highlight more distinctions between TRACER and existing methods, particularly when
using DNN architectures that exhibit complex interactions.

Diving deeper into the versatility spectrum, we challenge TRACER with the intricacies of structured
data using the CIC-IDS 2017 network traffic dataset. This dataset, reflecting authentic network
dynamics, unfolds a distinct set of challenges useful for evaluating explainability methods (e.g.,
diverse data types and intertwined correlations). For example, in an instance where a DDoS-attack-
induced traffic is erroneously classified as benign (see Appendix D.2), TRACER identifies and
elucidates features emblematic of the attack through its causal analysis. Specifically, TRACER reveals
that features such as port numbers and data transfer dynamics are essential for the detection of such
threats. Overall, the granularity and transparency of explanations provided by TRACER, especially in
domains such as cybersecurity, accentuate its potential to build trust in critical applications.
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Figure 4: TRACER vs existing XAI methods using an ImageNet sample classified by ResNet-50. The
second row shows feature contributions from different causal nodes, while the bottom row compares
the explanations provided by different methods. The sparse explanations given by SHAP and LRP
may require high-resolution screens for adequate visualization.
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4.3 BEYOND LOCAL EXPLAINABILITY

To evaluate TRACER’s capacity for global explainability, we integrated individual local explanations
to form a comprehensive view of a model’s decision logic. For this task, we focus on a random
subset of the MNIST dataset, processed through the AlexNet architecture, to derive causal insights
underpinning the classifier’s decisions for all class samples. The results of this analysis, detailed in
Appendix E, reveal significant redundancies within AlexNet’s architecture for MNIST, allowing us to
design compressed representations of the model to optimize the computational efficiency.

The characteristics and comparisons of these compressed models, reported in Table 1, show that the
most refined model obtained (C1) exhibits a staggering 99.42% reduction in model size with only a
0.16% drop in accuracy. This highlights TRACER’s potential for catalyzing practical innovations in
DNN design and optimization, without undermining the predictive performance of these models.

Table 1: Comparison of TRACER-assisted compressed models. θ represents the number of parameters
of the models, and Speed indicates the inference time per sample.

Model θ (M) Size (MB) FLOPs (M) Speed (ms) Accuracy (%)

AlexNet 11.7 46.8 46.3 4.23±0.4 99.64

C3 11.5 46.3 25.0 3.21±0.3 99.64
C2 4.7 18.1 18.3 1.99±0.1 99.53
C1 0.06 0.27 13.5 1.08±0.1 99.48

4.4 DISCUSSIONS AND LIMITATIONS

We focused our evaluations of TRACER on accessible neural networks, where the internal architectures
and intermediate activations can be directly analyzed. However, the flexibility and design of TRACER
extend beyond these settings, making it equally applicable to black-box models where the internal
dynamics remain obscured, and only the inputs and outputs are accessible. Under such constraints,
TRACER remains valuable, offering two distinct avenues of exploration. First, it can analyze and
quantify the influence of input features on the model’s prediction. Alternatively, by using a surrogate
model with an accessible structure, we can effectively approximate the underlying causal mechanisms
driving the predictions. This adaptability underscores TRACER’s potential in diverse environments.

While our TRACER approach is highly parallelizable by design, its depth of analysis can require
a trade-off between granularity (the precision of the causal analysis determined by the number of
interventions generated for each sample) and computational efficiency.

5 CONCLUSION

In this paper, we introduced TRACER, a novel approach for accurately estimating the causal dynamics
embedded within deep neural networks. Through seamless integration of causal discovery and
counterfactual analysis, our methodology enables a deep understanding of the decision-making
processes of DNNs. Our empirical results demonstrate TRACER’s ability to both identify the causal
nodes and links underpinning a model’s decisions, and also leverage counterfactuals to highlight the
nuances that drive misclassifications, offering clear and actionable insights for model refinement
and robustness. Beyond local explanations, we showcased the potential of our approach to capture
the global dynamics of DNNs, leading to practical advantages such as novel and effective model
compression strategies. Through our foundational principles and findings, we have ascertained that
by producing intuitive, human-interpretable explanations, TRACER offers outstanding transparency
to neural networks, significantly enhancing their trustworthiness for critical applications.
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A FRAMEWORK

A.1 PROPOSITION 1 [CAUSAL ISOLATION OF INTERVENED SAMPLES]

Proof (By induction). Let F : X → Y be a DNN. For x ∈ X , I ⊆ {1, . . . , d}, and b ∈ R, define the
intervened sample x′ by:

x′
i =

{
b, if i ∈ I;

xi, if i /∈ I.

We will prove by induction on n = |I| that x′ isolates the causal effect of features in I on F .

Base Case (n = 1). Let I = {i}. Then x′ differs from x only at index i:

x′
j =

{
b, if j = i;

xj , if j ̸= i.

Since only xi is altered, any change in F (x′) compared to F (x) is due solely to the change in xi.
Thus,

F (x′)− F (x) = ∆Fi,

where ∆Fi represents the effect of changing xi to b.

Inductive Step. Assume the proposition holds for all subsets I with |I| = n. Let I ′ = I ∪ {i′} with
|I ′| = n+ 1 and i′ /∈ I . Define x′′ by:

x′′
i =

{
b, if i ∈ I ′;

xi, if i /∈ I ′.

Consider F (x′′). Since x′′ differs from x only at indices in I ′, we have:

F (x′′)− F (x) = (F (x′′)− F (x′)) + (F (x′)− F (x)) .

By the inductive hypothesis, F (x′)− F (x) isolates the effect of features in I , and x′′ differs from x′

only at i′:

x′′
i =

{
x′
i, if i ̸= i′;

b, if i = i′.

Thus, the change from F (x′) to F (x′′) is due solely to xi′ :

F (x′′)− F (x′) = ∆Fi′ ,

where ∆Fi′ represents the effect of changing xi′ to b.

Combining the effects: F (x′′)− F (x) = ∆Fi′ +
∑

i∈I ∆Fi.

Therefore, F (x′′)− F (x) isolates the causal effects of features in I ′ = I ∪ {i′}.

By induction on n, for any I ⊆ {1, . . . , d}, the intervened sample x′ isolates the causal effect of
features in I on F .

A.2 THEOREM 1 [LAYER GROUPING]

Proof (By induction). Base case: let us take two consecutive layers fi and fi+1, such that
B(Ki+1,Ki) = 1. By the definition of the binary similarity matrix B, B(Ki+1,Ki) = 1 ⇐⇒
CKA(Ki+1,Ki) ≥ 1− ϵ. This implies that the kernel representations Ki+1 and Ki are sufficiently
aligned:

Ki+1 ≈ Ki in terms of kernel alignment.
Let us define a composite layer gii+1(x) = fi+1 ◦ fi(x). Since CKA(Kgii+1 ,Ki+1) = 1, the
composite layer gii+1 preserves the kernel similarity properties of fi+1, satisfying Kgii+1 = Ki+1.
Thus, the two layers fi and fi+1 can be replaced by gii+1 without altering the representation,
establishing the base case.

Induction step: Let us assume that for n layers fi, fi+1, . . . , fi+n−1, if B(Ki+k,Ki+k−1) = 1 for
all k ∈ {1, 2, . . . , n − 1}, then these layers can be replaced by a composite layer gi,i+n−1(x) =
fi+n−1 ◦ · · · ◦ fi(x), where Kgi,i+n−1 = Ki+n−1.
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Let us now consider n + 1 layers fi, fi+1, . . . , fi+n, with B(Ki+k,Ki+k−1) = 1 for all k ∈
{1, 2, . . . , n}. By the inductive hypothesis, the first n layers fi, fi+1, . . . , fi+n−1 can be replaced by
a composite layer gi,i+n−1(x), with Kgi,i+n−1

= Ki+n−1. Since B(Ki+n,Ki+n−1) = 1, we know:

CKA(Ki+n,Ki+n−1) ≥ 1− ϵ,

implying Ki+n ≈ Ki+n−1. Let us define the new composite layer gi,i+n(x) = fi+n ◦ gi,i+n−1(x).
The kernel representation of gi,i+n satisfies:

Kgi,i+n
= Ki+n.

Therefore, the n+ 1 layers fi, fi+1, . . . , fi+n can be replaced by the single composite layer gi,i+n,
preserving the representational similarity.

By the principle of mathematical induction, for any sequence of layers {fi, fi+1, . . . , fj} such that
B(Kk,Kk−1) = 1 for all k ∈ {i + 1, . . . , j}, these layers can be replaced by a single composite
layer gij(x) = fj ◦ · · · ◦ fi(x), with Kgij = Kj . Thus, F ′(x) = F (x), completing the proof.

A.3 THEOREM 2 [NECESSARY AND SUFFICIENT CONDITIONS FOR CAUSAL NODES]

Proof (By contradiction). Let F = fk ◦ fk−1 ◦ · · · ◦ f1 be a DNN, where each fi : Rdi−1 → Rdi ,
with d0 = n and dk = m. And let g = {fi}si=r, 1 ≤ r < s ≤ k, be a subset of F .

We will prove that g is a causal node if and only if:

∀i ∈ {r, r + 1, . . . , s− 1}, CKA(Ki,Ki+1) ≥ 1− ε,

where Ki is the kernel (Gram) matrix of activations at layer i, and ε ∈ (0, 1) is a threshold.

Necessary Condition (⇒). Let us assume g is a causal node. And let us suppose, for contradiction,
there exists i ∈ {r, . . . , s− 1} such that: CKA(Ki,Ki+1) < 1− ε.

This implies a significant dissimilarity between layers i and i + 1: ∥Ki − Ki+1∥2F > δ, where δ
corresponds to ε and ∥ · ∥F denotes the Frobenius norm.

However, in a causal node, layers are by definition functionally redundant, so their activations should
satisfy:

∥Ki −Ki+1∥2F ≤ δ.

This contradiction implies: ∀i ∈ {r, . . . , s− 1}, CKA(Ki,Ki+1) ≥ 1− ε.

Sufficient Condition (⇐). Let us assume: ∀i ∈ {r, . . . , s− 1}, CKA(Ki,Ki+1) ≥ 1− ε.

And let us suppose, for contradiction, that g is not a causal node. The composite function gr,s is
given by: gr,s = fs ◦ fs−1 ◦ · · · ◦ fr.
Since: CKA(Ki,Ki+1) ≥ 1− ε, ∀i ∈ {r, . . . , s− 1}, the activations are highly similar:

Ki ≈ Ki+1.

Therefore:
Kr ≈ Kr+1 ≈ · · · ≈ Ks.

This implies that the composite function gr,s behaves similarly to a single layer fr: gr,s(x) ≈ fr(x).

Thus, g can be treated as a single causal node, contradicting the assumption that g is not a causal
node. Therefore, g is a causal node.

A.4 MINIMIZATION OF SPURIOUS CORRELATIONS

We will demonstrate that by using multiple interventions for our CKA analysis, TRACER minimizes
the effects of spurious correlations in the identification of causal relationships within DNNs.

Proof. Let F : Rd → Rm be a deterministic DNN composed of L layers: F = fL ◦ fL−1 ◦ · · · ◦ f1,
where each fl represents the function of layer l. And let x ∈ Rd and y = F (x) ∈ Rm be an input
vector and its corresponding output by the network.
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Let us consider a set of N interventions, resulting in inputs {x(i)}Ni=1, where each x(i) is obtained by
modifying a subset of features in x: x(i) = x+ δ(i), with δ(i) ∈ Rd being the intervention vector for
the i-th intervention, where δ

(i)
j ̸= 0 only for features being intervened upon.

For each input x(i), the activations at layers l and m are computed as follows:

h
(i)
l = fl ◦ fl−1 ◦ · · · ◦ f1(x(i)),

h(i)
m = fm ◦ fm−1 ◦ · · · ◦ fl+1(h

(i)
l ).

Let Al and Am be the matrices collecting the activations across interventions:

Al =


(h

(1)
l )⊤

(h
(2)
l )⊤

...
(h

(N)
l )⊤

 ∈ RN×dl , Am =


(h

(1)
m )⊤

(h
(2)
m )⊤

...
(h

(N)
m )⊤

 ∈ RN×dm .

The linear kernel matrices for CKA can then be computed as: KAl
= AlA

⊤
l ∈ RN×N ,

KAm = AmA⊤
m ∈ RN×N , with centered kernel matrices: K̃Al

= HKAl
H, K̃Am = HKAmH,

where H = IN − 1
N 1N1⊤

N is the centering matrix, IN is the N ×N identity matrix, and 1N is an
N × 1 vector of ones.

Given these kernel matrices, the Hilbert-Schmidt Independence Criterion (HSIC) and the CKA can
be obtained:

HSIC(Al, Am) = Tr(K̃Al
K̃Am

),

CKA(Al, Am) =
HSIC(Al, Am)√

HSIC(Al, Al)HSIC(Am, Am)
.

True Causal Relationship. Let us assume a true causal relationship between layers l and m, so h
(i)
m

is a deterministic function of h(i)
l : h(i)

m = fm:l+1(h
(i)
l ), where fm:l+1 = fm ◦ fm−1 ◦ · · · ◦ fl+1.

Under multiple interventions, variations in h
(i)
l lead to corresponding variations in h

(i)
m , preserving

their functional relationship. Hence, the covariance between h
(i)
l and h

(i)
m remains high. This

cross-covariance matrix is given by:

Clm =
1

N
Ā⊤

l Ām ∈ Rdl×dm ,

where Āl and Ām are the centered activation matrices:

Āl = Al −
1

N
1N1⊤

NAl, Ām = Am − 1

N
1N1⊤

NAm.

Similarly, we can obtain the auto-covariance matrices as:

Cll =
1

N
Ā⊤

l Āl, Cmm =
1

N
Ā⊤

mĀm,

along with their Frobenius norms:

∥Clm∥2F =

dl∑
i=1

dm∑
j=1

(Clm)2ij , ∥Cll∥2F =

dl∑
i=1

dl∑
j=1

(Cll)
2
ij , ∥Cmm∥2F =

dm∑
i=1

dm∑
j=1

(Cmm)2ij .

Since h
(i)
m is a function of h(i)

l , the covariance Clm is significant, so ∥Clm∥2F is large. Therefore, the
CKA similarity is high:

CKA(Al, Am) =
∥Clm∥2F√

∥Cll∥2F ∥Cmm∥2F
≈ 1.
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Spurious Correlation. For spurious correlations, there is no functional dependence between h
(i)
l

and h
(i)
m . Therefore, the cross-covariance Clm is small, so ∥Clm∥2F is negligible. Thus, the CKA

similarity is low:

CKA(Al, Am) =
∥Clm∥2F√

∥Cll∥2F ∥Cmm∥2F
≈ 0.

By setting a threshold τ = 1 − ϵ close to 1, we distinguish between true causal connections and
spurious correlations:

CKA(Al, Am) ≥ τ =⇒ Causal Connection,

CKA(Al, Am) < τ =⇒ Spurious Correlation.

B FEATURE ATTRIBUTIONS AT CAUSAL NODES

Figure 5 below depicts how individual features contribute to the network’s final decision. For
every causal node (group of neural network layers), we highlight the top contributing features (top
convolution filter output or top-3 feature outputs for linear layers). Positive contributions are distinctly
marked in blue, signifying features that positively influence the network’s decision, while negative
contributions are depicted in red, pointing out the features that negatively affect the decision.

Causal Graph
Feature Contributions

Cause

G2: Top-1 Output 
Convolution Layer 

G3: Top-3 Outputs 
Linear Layer 

G4: Top-3 Outputs 
Linear Layer 

G1: Top-1 Output 
Convolution Layer 

0.323#547

0.355#1809

0.598#460

0.007

0.002

0.99#5

#9

#3

 
Input Features Input

G1

G2

G3

G4 
(Output) 

Effect

Figure 5: Contribution of features within each causal node. Blue and red respectively indicates
positive and negative contributions. The overlay on the input sample provides a cohesive visualization
of how distinct features of the input affect the final decision via the causal mechanism discovered.

C COUNTERFACTUAL ANALYSIS

The objective of counterfactual generation in the context of our research is to offer interpretable
insights into the decision-making processes of deep neural networks, particularly in cases of misclas-
sification. By examining the contrast between the original input and the generated counterfactual, we
can uncover subtle features or patterns that influence the model’s decision, thereby pinpointing what
changes might rectify misclassifications.
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(b) Illustration of a misclassified MNIST sample and
its generated counterfactual.

Figure 6: Architecture of the counterfactual generator and illustration of its generation process.

To this end, we design a GAN architecture tailored to our counterfactual generation tasks. This GAN,
depicted in Figure 6a, consists of a CNN-based Generator for creating plausible, class-conditional
counterfactuals, coupled with a CNN-based Discriminator analyzing the authenticity of the generated
images, is designed as follows:

1. The encoder uses convolutional layers to transform the inputs into latent embeddings which
are then merged with class information via label encodings;

2. The decoder uses transposed convolutions to construct the counterfactual inputs from the
augmented latent representations produced by the encoder.

In this experiment, we explore the use of counterfactuals as a means to understand causes for
misclassifications, as well as identify the minimal feature changes required to obtain correct outcomes.
Figure 7 below shows examples of counterfactuals generated for handwritten digits (MNIST) and
natural images (CIFAR-10) (Krizhevsky et al., 2009).

As illustrated in Figure 6b, given an initially misclassified input and a desired target label, our
GAN-based counterfactual generator produces an alternative version of the input, which, when fed to
the model, results in the desired outcome. The differences between the input and its counterfactual
reveal the minimal modifications required for the classifier to produce the correct (desired) decision.

Through a side-by-side analysis of the causal mechanisms obtained from the predictions of the mis-
classified sample and its counterfactual, TRACER provides clear insights into the primary contributing
factors to the initial misclassification, while also highlighting via the counterfactual’s analysis, the
optimal neural pathways for the network to yield the correct (and desired) outcome. This detailed
causal analysis is visually represented in Figure 8. Upon examination, we discern that a predominant
portion of the input features, represented in blue, activate neurons that steer the classifier towards the
produced outcome in both cases. However, the causal analysis of the misclassified sample reveals a
notably more extensive set of features that oppose the predicted outcome when contrasted with the
counterfactual. This observation makes it evident that TRACER not only identifies which parts of the
input features support the misclassification (in blue) but also which features contradict this decision
(in red). Intriguingly, while the causal graphs remain consistent for both inputs in this instance,
the classifier’s activations manifest pronounced differences. This insight suggests that the model’s
learned parameters might lack the flexibility to generalize enough to correctly discern the true label
of the misclassified sample. To address this, potential avenues might include incorporating such
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Figure 7: Illustration of counterfactuals generated for handwritten digits and natural images.

misclassified instances into the training set or fine-tuning the model with regularization techniques to
enhance its generalization capabilities. In essence, counterfactuals provide a means to understand
model decisions and identify changes to input features that can correct misclassifications.

This causal analysis reveals that our counterfactual generation method serves two main purposes. First,
it provides an intuitive visualization for understanding the nuances of model decisions. Secondly,
from a model development and refinement perspective, these counterfactuals can highlight potential
vulnerabilities or biases in the model, guiding further training or fine-tuning endeavours.

D GENERALIZATION

D.1 IMAGE DATASETS

Here, we address the question of scalability of TRACER to large-scale image datasets. Given the
challenges associated with the explainability of real-world images (e.g., the intricacies of pixel-level
interactions, variances in image quality, or scale), we use for this task the MNIST and ImageNet (Deng
et al., 2009) datasets, classified with the AlexNet and ResNet-50 architectures respectively. Using
the ImageNet dataset, known for its vastness, diversity, and complexity, we show that TRACER
overcomes the limitations of existing explainability methods. The explanations produced by TRACER
and benchmark explainability methods are depicted in Figure 9, showing that while existing methods
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Figure 8: Comparison of an original misclassified input, the generated counterfactual, and the
associated causal mechanisms. The variations between the original and counterfactual inputs highlight
the pertinent features influencing the model’s decision-making process. (Blue: Positive contributions;
Red: Negative contributions; Gi: i-th Layer Group)

struggle to produce coherent and comprehensive explanations, TRACER consistently reveals the core
features and patterns crucial for classification decisions. The effectiveness of our proposed approach
becomes even more apparent when used with complex models like ResNet-50, as it still maintains its
precision despite the intricate patterns leveraged by very deep networks, emphasizing its capability to
accurately discern the nuances of complex interactions within deeper architectures.

In contrast to TRACER,

• Every execution of LIME produces different explanations due to its inherent stochasticity,
hindering interpretability.

• SHAP and LRP explanations produce misleading results due to their sensitivity to model and
dataset complexities, resulting in overly detailed or sparse attributions that do not always
intuitively align with the underlying data patterns.

• As Grad-CAM explanations are based on the coarse spatial resolution of the final convolu-
tional layer of a DNN, this method often leads to highlighting broader regions rather than
precise feature-level contributions to the decision-making.

• LRP and Grad-CAM, inherently designed for white-box DNNs, where internal model
structures are accessible, face significant restrictions in terms of applicability and utility in
scenarios involving black-box or proprietary models.
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Figure 9: Comparison of TRACER results against existing explainability methods.

D.2 TABULAR DATASETS

Transitioning from the realm of images, we further explored the efficacy of TRACER in the context
of structured (or tabular) data. For this endeavour, we selected the CIC-IDS 2017 (Sharafaldin
et al., 2018) network traffic dataset, which is representative of real-world network behaviors and
patterns. This dataset poses its own set of challenges, distinct from image datasets, such as the mix of
categorical and numerical attributes, the potential correlations between features, and the variance in
feature scales.

The results presented in Figure 10 illustrate TRACER’s ability to provide detailed and accurate
explanations beyond the image domain. For the sample explained in this figure, where a network
traffic generated during a DDoS attack is considered as benign traffic by a multi-layer feed-forward
neural network classifier, we observe that the features indicative of an attack negatively contribute
to the decision of the classifier. Specifically, the explanations provided tell us which features were
found relevant for classifying this network traffic as an attack (i.e., Source/Destination Port numbers,
frequency of communication, sizes of transferred data, etc.).

The clarity of the causal explanations obtained by TRACER for such tasks make it particularly suitable
given the criticality of network intrusion detection systems in ensuring cybersecurity, where the
ability to transparently understand and trust decisions can be indispensable for the practical viability
of such systems.

E GLOBAL EXPLAINABILITY

Given the effectiveness of TRACER in explaining neural network decisions for individual samples,
we endeavour to evaluate its potential as a global explainability tool to paint a holistic picture
of the model’s decision-making. To this end, rather than solely relying on global explanations,
which might overlook individual nuances, we adopt an approach that aggregates local explanations
to derive a global perspective. Specifically, using TRACER, we perform local explanations on a
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Feature Contributions

Figure 10: Explainability of tabular datasets with TRACER. A sample from a Network Intrusion
Detection dataset is misclassified as benign traffic rather than its correct class (DDoS attack). Negative
contributions are shown in red and positive contributions in blue for the top-20 features.

strategically selected subset of the dataset, aiming to capture a representative understanding of the
overall characteristics. For this experiment, we selected the MNIST dataset classified using the
AlexNet architecture as before. While without loss of generality, simply performing random sampling
within all classes suffices for this experiment, by using clustering algorithms (Settles, 2009; Olvera-
López et al., 2010) or Proximally-Connected graphs (Diallo & Patras, 2023), more optimal sampling
policies can also be adopted to identify and select the most influential samples. Our findings for this
experiment revealed several remarkable insights into the potential of TRACER, and into the use of
AlexNet for MNIST classification.

Specifically, as shown in Figure 11:
1. About 85% of the samples could be concisely explained with a causal mechanism entailing

merely 2 intermediate causal nodes. This level of generalization showcases the simplicity of
the model’s decision-making processes.

2. With just one additional causal node, the causal mechanism explains 99% of the classifica-
tions, bringing the total to 3 intermediate causal nodes.

3. To attain a full coverage, explaining 100% of the classifications, the complexity increases
only marginally, requiring 4 intermediate causal nodes.

Encouraged by these insights into the causal dynamics of AlexNet’s decisions on the MNIST dataset,
we venture to create compressed representations of the original model. The objective is twofold:
preserving the original model’s accuracy while substantially reducing its computational complexity.
Leveraging the knowledge distilled from TRACER, we craft the corresponding compressed models
by replacing redundant layers in a layer group with a single representative layer where inputs
and output sizes are adjusted to work with the rest of the network. The compressed models C1,
C2, and C3, respectively corresponding to initial coverages of C1: 84.6%, C2: 98.8%, and C3:
100%, are then trained on the identical training set as the original model. The results, presented in
Table 1, show that the most compressed model achieves a staggering 99.42% reduction in model size,

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Input G1 G2 G3 (Output) 

Input G1 G2 G3 G4 (Output) 

Input G1 G2 G3 G5 (Output) 

Merged CKA Causal Graph Coverage

C1 
84.6%

G4

C2 
98.8%

C3 
100%

Causal Analysis 
 

TRACER

Sampling

Dataset

Figure 11: Global explainability with TRACER– Generalization of causal mechanisms across samples.
The Coverage column indicates the percentage of analyzed samples that can be explained by distinct
causal mechanisms.

while only sacrificing a negligible 0.16% in accuracy, making it significantly more lightweight and
computationally efficient.

By decoding the fundamental causal interactions within neural networks, this experiment shows that
TRACER’s capacity to provide global explanations and insights can also inspire practical applications
such as model compression, without compromising the integrity of the predictions. Furthermore, it
is worth noting that the compressed models derived through our approach remain fully compatible
with existing and well-established compression methods such as quantization and pruning, further
extending their efficiency and applicability across diverse deployment scenarios.

We provide a comprehensive comparison between the baseline MNIST architecture and its three
compressed versions (C1, C2, and C3) obtained with TRACER. Table 2 below includes detailed
information about the layers in each model (such as layer type, output dimensions, and the number of
parameters), as well as classification accuracies and compression ratios.
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Table 2: Comparison between the baseline MNIST architecture and its compressed versions. For
each version, the layer configurations, output shapes, classification accuracies, and parameter counts
are presented, highlighting how TRACER-enabled compressed models preserve performance.

Layer (Type) Baseline C3 C2 C1

Conv2d 32 × 26 × 26 - - -
ReLU 32 × 26 × 26 - - -
Conv2d 64 × 26 × 26 64 × 26 × 26 64 × 26 × 26 64 × 26 × 26
ReLU 64 × 26 × 26 64 × 26 × 26 64 × 26 × 26 64 × 26 × 26
MaxPool2d 64 × 13 × 13 - - -
Conv2d 96 × 13 × 13 - - -
ReLU 96 × 13 × 13 - - -
Conv2d 64 × 13 × 13 - - -
ReLU 64 × 13 × 13 - - -
Conv2d 32 × 13 × 13 32 × 26 × 26 32 × 26 × 26 32 × 26 × 26
ReLU 32 × 13 × 13 32 × 26 × 26 32 × 26 × 26 32 × 26 × 26
MaxPool2d 32 × 12 × 12 32 × 12 × 12 32 × 12 × 12 32 × 12 × 12
Dropout 4608 4608 4608 4608
Linear 2048 2048 - -
ReLU 2048 2048 - -
Dropout 2048 2048 - -
Linear 1024 1024 1024 -
ReLU 1024 1024 1024 -
Linear 10 10 10 10

Accuracy (%) 99.64 99.64 99.53 99.48
Total Parameters 11,696,202 11,567,786 4,749,994 66,218
Compression (%) - 1.1% 59.4% 99.4%

F IMPLEMENTATION DETAILS

Counterfactual Generator. The counterfactual GAN architecture was designed with the following
hyperparameters:

• Learning rate: 10−3

• Balancing coefficient (λ): 0.1
• Number of training epochs: 100
• Regularization metric: ℓ1-norm

The generator consists of four convolutional layers in the encoder, combined with class information
via one-hot encoding, and a decoder with transposed convolutions to produce counterfactual instances.

Intervention Setup. We design interventions to occlude portions of the inputs before normalization:

• For MNIST: 3x3 patches with a 1x1 sliding window
• For ImageNet: 30x30 patches with a 15x15 sliding window
• For CIC-IDS 2017: 1x3 patches with a 1x1 sliding window

Training and Optimization Details. TRACER is implemented in PyTorch (Paszke et al., 2019), and
all DNN models are trained using the Adam optimizer with a learning rate of 10−3. Unless stated
otherwise, default parameters are used throughout all training processes.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

CKA Threshold for Layer Grouping. For causal analysis, the Centered Kernel Alignment (CKA)
similarity threshold was set to 1− ϵ, where ϵ represents a small tolerance for dissimilarity. In our
experiments, ϵ was set to 0.05.

G IMPACT OF CKA SENSITIVITY ON CAUSAL STRUCTURES

In this section, we investigate the sensitivity of TRACER’s causal discovery process to the choice
of the threshold parameter ϵ used in the CKA similarity measure for grouping layers into causal
nodes. This threshold determines the margin of dissimilarity allowed between layers to be considered
functionally similar and thus grouped into a single causal node. We conduct ablation studies on
both the MNIST and ImageNet datasets to understand how varying ϵ influences the structure and
interpretability of the discovered causal graphs.

For this analysis, we vary ϵ across a range of values (0, 0.05, 0.1, 0.2, 1) and observe the resulting
causal graph structures. Lower ϵ implies stricter similarity criteria, leading to more granular groupings,
whereas a higher ϵ allows for broader groupings by tolerating greater dissimilarity between layers.

We apply these varying thresholds to the trained MNIST and ImageNet models, performing for each
value of ϵ the following steps:

1. Compute the CKA similarity between consecutive layers.
2. Group layers into causal nodes based on the CKA threshold.
3. Construct the causal graph with the identified causal nodes and their interconnections.

G.1 RESULTS AND ANALYSIS

G.1.1 MNIST CLASSIFICATION

Figure 12 illustrates the causal graphs obtained for different ϵ values when applied to the MNIST
classifier.

Observations:

• ϵ = 0: The stringent threshold results in highly granular groupings, treating individual
layers as separate causal nodes. This leads to a complex causal graph with numerous nodes
and connections, hindering interpretability.

• ϵ = 0.05: A moderate threshold beginning to merge some consecutive layers into single
causal nodes. Key functional blocks of the network are now represented as single causal
nodes, reducing the complexity of the causal graph while maintaining meaningful dis-
tinctions between different processing stages, thereby enhancing interpretability without
substantial loss of detailed information.

• ϵ = 0.1: Further increasing ϵ results in broader groupings, significantly simplifying the
causal graph.

• ϵ = 0.2: At these higher thresholds, the causal graph becomes increasingly abstract, with
major sections of the network consolidated into larger causal nodes. While this simplifies
the graph, it may oversimplify the underlying causal mechanisms, potentially obscuring
finer-grained interactions.

• ϵ = 1: The threshold becomes non-restrictive, allowing all layers to be grouped into
a single causal node. This results in a highly abstract causal graph with a single node
representing the entire network, eliminating any internal structural distinctions. While the
graph is exceedingly simple, it offers no meaningful insights into the network’s internal
decision-making processes, effectively rendering the causal discovery uninformative.

G.1.2 IMAGENET CLASSIFICATION

Similarly, Figure 13 presents the causal graphs derived from the ResNet-50 model trained on
ImageNet for varying ϵ values. For this experiment, we select a sample that shows the effects of
residual connections on the classifier’s behaviour.
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CKA Filtered CKA Merged CKA Causal Graph

Legends
Model input (Exposure/Treatment) Intermediate Nodes (Mediators)

Model Output (Outcome)

Exogenous Variables Endogenous Variables

Figure 12: Impact of ϵ on the causal graphs discovered by TRACER when processing a given sample
with the MNIST classifier. Each row corresponds to a different ϵ value, demonstrating how the
granularity of layer groupings evolves.

Observations:

• ϵ = 0: The high-resolution causal graph reflects the intricate architecture of ResNet-50,
with each block treated as a functionality distinct layer. While accurate, the resulting graph
is highly complex.

• ϵ = 0.05: The threshold begins to merge similar residual blocks into single causal nodes,
capturing the repetitive nature of ResNet architectures and reducing the complexity of the
causal graph. This abstract view of ResNet-50 groups functionally similar blocks as single
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CKA Filtered CKA Merged CKA Causal Graph

Legends
Model input (Exposure/Treatment) Intermediate Nodes (Mediators)

Model Output (Outcome)

Exogenous Variables Endogenous Variables

Figure 13: Impact of ϵ on the causal graphs discovered by TRACER when processing a given sample
with the ImageNet classifier. Each row corresponds to a different ϵ value, demonstrating how the
granularity of layer groupings evolves.

causal nodes, while showing the effects of residual connections, thereby striking a balance
between structural detail and interpretability.

• ϵ = 0.1: A noticeable simplification occurs, with entire stages of ResNet-50 being repre-
sented as single causal nodes.

• ϵ = 0.2: The causal graph becomes highly abstract, with large sections of the network
encapsulated within single nodes. While this enhances overall interpretability, it overlooks
important nuances in layer interactions critical for understanding the model’s decision-
making process.
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• ϵ = 1: The non-restrictive threshold groups all layers into a single causal node, resulting
in an overly abstract causal graph with just one node representing the entire ResNet-50
architecture. While the graph is exceedingly simple and easy to interpret, it offers no
meaningful insights into the network’s internal decision-making processes or the hierarchical
structure of residual blocks. Consequently, the causal discovery becomes uninformative, as
it fails to capture the distinct functional roles of different network segments.

G.2 TRADE-OFFS AND RECOMMENDATIONS

The ablation studies reveal a clear trade-off between the granularity of causal graph representations
and their interpretability:

• Lower values (e.g., ϵ = 0): Offers a detailed view of the network’s internal mechanisms
but results in complex and potentially cumbersome causal graphs.

• Moderate values (e.g., ϵ ∈ [0.05, 0.2]): Balances detail and simplicity, providing clear and
interpretable causal structures while retaining meaningful distinctions between different
network components.

• Higher values (e.g., ϵ > 0.2): Simplifies the causal graph significantly but may obscure
important layer interactions and reduce the depth of insights obtainable from the causal
analysis.

Based on these findings, an ϵ value in the range of 0.05 to 0.2 is optimal for achieving a balance
between interpretability and detail, as this allows TRACER to produce causal graphs that are abstract
while being sufficiently detailed to provide meaningful insights into the network’s behaviour.

H CAUSAL DISCOVERY FOR LATENT-SPACE-BASED MODELS

In this section, we will assess TRACER’s suitability for studying the causal structures of more complex
models, such as U-Nets Ronneberger et al. (2015) and Variational Autoencoders (VAEs) Kingma
(2013).

H.1 SPATIALLY-STRUCTURED MODELS

Models like U-Net are renowned for their ability to capture both local and global features through
skip connections between their downsampling and upsampling paths. Such spatially-structured
models are widely used in image segmentation and classification tasks but pose significant challenges
for interpretability due to their complexity. To evaluate the ability of TRACER to handle such
architectures, we apply our causal discovery method to a U-Net model trained on the CIFAR-10
dataset. The architecture consists of four down-sampling blocks and by four up-sampling blocks,
followed by a classification layer, with each block containing convolutional layers and non-linear
activations, designed to progressively encode and decode spatial information.

As illustrated in Figure 14, our causal discovery process resulted in a causal graph with five nodes
representing the key stages of the network: two causal nodes for the down-sampling path, two causal
nodes for the up-sampling path, and one causal node for the classification layer. With non-adjacent
causal links discovered between the first down-sampling causal node and the last up-sampling causal
node, as well as between the last down-sampling and first-up-sampling causal nodes (corresponding
to the skip connections inherent in the U-Net architecture), TRACER produces an accurate high-level
causal view of the network, providing insights into how different parts of the network interact and
contribute to the classification node, thereby improving the interpretability of the network.

H.2 STOCHASTIC MODELS

Inherently stochastic models, such as Variational Autoencoders (VAEs), introduce randomness into
a network’s operations through stochastic layers, which can present challenges for causal analysis
due to variables that are not directly observed and may not be deterministic. To address this, we
explicitly account for stochastic components by modelling stochastic computations as separate layers
and treating stochasticity as exogenous variables in the causal graph.
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CKA Filtered CKA Merged CKA Causal Graph

Legends
Model input (Exposure/Treatment) Intermediate Nodes (Mediators)

Model Output (Outcome)

Exogenous Variables Endogenous Variables

Down Blocks

Up Blocks

Figure 14: Causal graph inferred by TRACER for the UNet model trained on CIFAR-10. Every two
blocks are merged into single causal nodes, and causal links are identified between both sequential
and non-sequential nodes, reflecting the architecture’s skip connections.

Specifically, to identify stochastic layers within the model, we evaluate whether any given layer
produces non-consistent outputs when provided with the same input multiple times, i.e, if the outputs
vary across evaluations on the same input, we classify the layer as stochastic. This allows us to detect
layers where randomness influences the output, aligning with the causal interpretation of stochastic
variables as external influences affecting endogenous variables within the model.

In this experiment, we infer the causal structure of a VAE trained on the MNIST dataset, focusing on
its ability to reconstruct inputs and perform classification tasks. Our VAE architecture is composed of:
an encoder that maps inputs to a latent space, a stochastic layer implementing the reparameterization
trick, a decoder that reconstructs the data from the latent representation, and a classification layer. By
explicitly modelling stochasticity as an exogenous variable, as shown in Figure 15, TRACER captures
the influence of randomness on the network’s behaviour, providing a more accurate representation of
the causal relationships within the model.

CKA Filtered CKA Merged CKA Causal Graph

Legends
Model input (Exposure/Treatment) Intermediate Nodes (Mediators)

Model Output (Outcome)

Exogenous Variables Endogenous Variables

Latent Stochasticity (Exogenous/Structural Noise)

Encoder

Decoder

Classifier

Reparameterization

Figure 15: Causal graph inferred by TRACER for the VAE model. The stochastic layer (reparameteri-
zation) is modeled as an exogenous variable influencing the decoder and classification layers.

Our causal analysis reveals how randomness propagates through the network, affecting the decoder’s
output and, consequently, the final prediction. This approach allows us to interpret stochastic models
by understanding how the stochastic components contribute to the overall decision-making process,
highlighting the pathways through which they affect the network and helping identify areas where
uncertainty may impact performance.
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