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ABSTRACT

While Vision Transformers, characterized by their growing complexity, excel in
various computer vision tasks, the intricacies of their internal dynamics remain
largely unexplored. To embed visual information, Vision Transformers draw rep-
resentations from image patches as transformed vectors and subsequently inte-
grate them using attention weights. However, current explanation methods only
focus on attention weights without considering essential information from the
corresponding transformed vectors, failing to accurately illustrate the rationales
behind models’ predictions. To accommodate contributions of transformed vec-
tors, we propose VTranM, a novel explanation method leveraging our intro-
duced vector transformation measurement. Specifically, our measurement faith-
fully evaluates transformation effects by considering changes in vector length and
directional correlation. Furthermore, we use an aggregation framework to incor-
porate attention and vector transformation information across layers, thus captur-
ing the comprehensive vector contributions over the entire model. Experiments
on segmentation and perturbation tests demonstrate the superiority of VTranM
compared to state-of-the-art explanation methods.

1 INTRODUCTION

Transformers have seen surging popularity in various computer vision tasks [45, 9, 15, 44, 22, 28].
The application of these models has resulted in superior performance, paving the way for new
breakthroughs in numerous domains. However, the inherent complexity of Vision Transformers
often renders them black-box models, making understanding their internal mechanisms a chal-
lenge. Such a lack of transparency undermines the trustworthiness of decision-making processes
[24, 47, 36, 14, 2]. Therefore, it is required to interpret Transformer networks. Post-hoc explana-
tion is an effective method to provide human-understandable interpretations, which elucidates the
rationale behind the model’s prediction by evaluating input elements’ contributions.

There are two types of post-hoc explanation methods, general traditional explanations [35, 43] and
Transformer-specific attention-based explanations [1, 10]. Although traditional explanations excel
in interpreting MLPs and CNNs, their efficacy is significantly diminished when applied to Vision
Transformers, due to the fundamental differences in model structures. As a response, attention-
based explanations develop new paradigms specific to Transformers, where attention weights play
a dominant role [1, 11, 10, 33]. Integrating the useful attention information, these methods offer a
more promising approach toward Transformer explainability.

Recent advancements in attention-based explanations have led to interesting insights into Vision
Transformers. However, the inherent complexity of these models, especially with their core mod-
ules: Multi-Head Self-Attention (MHSA) and Feed Forward Network (FFN) [15], still presents
distinct challenges in explainability. As elucidated in Section 2, we represent the outputs of both
MHSA and FFN as weighted sums of transformer vectors, with each vector scaled by an attention
weight. Existing attention-based methods simply consider the scaling weights indicated by attention
maps as the corresponding vectors’ contributions, overlooking the impacts of vector transforma-
tions. As shown in Figure 1, attention weights alone misrepresent the contributions from foreground
objects or background regions, while transformation information offers a necessary counterbalance.
For instance, even if certain background regions are scaled by high attention weights, their actual
contribution can be diminished if they are transformed into smaller or divergent vectors. Conversely,
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Figure 1: Visualization of attention and transformation weights, and the result of our VTranM that
integrates both of them. Circle sizes signify weight magnitudes or vector lengths, and arrows indi-
cate directions. Transformation weights are derived by our proposed measurement, which evaluates
the transformation effects by gauging changes in length and direction. Both weights are visualized
by heatmaps. Solely using attention weights often fails to localize foreground objects and inac-
curately highlights noisy backgrounds. In contrast, leveraging additional information from vector
transformation, the VTranM produces object-centric explanations.

a foreground object, despite receiving minimal attention weights, can play a pivotal role due to sig-
nificant transformation within the model. Given the intertwined dynamics of attention and vector
transformations, there is an imperative need for a comprehensive explanation method that cohesively
addresses both elements.

In this paper, we propose VTranM, a novel explanation method for Vision Transformers using
vector transformation measurement. We first reinterpret Vision Transformer layers from a generic
perspective, which conceives both MHSA and FFN’s outputs as weighted linear combinations of
original and transformed vectors. Intuitively, vectors with increased magnitude and aligned orien-
tations will significantly influence the linear combination outcomes. Therefore, to quantify the ef-
fects of transformations, our introduced measurement focuses on two fundamental vector attributes:
length and direction. Using the proposed measure, we integrate transformation effects, quantified by
transformation weights, with the attention information, ensuring a faithful assessment of vector con-
tributions. Moreover, Vision Transformers consist of sequentially stacked layers, each performing
vital vector transformations and globally mixing different vectors, a process termed contextualiza-
tion [45]. Recognizing the accumulative nature of these mechanisms, a single-layer analysis remains
insufficient [8, 1]. To holistically evaluate all layers, our solution encompasses an aggregation frame-
work. Employing rigorous initialization and update rules, our framework yields a comprehensive
contribution map, which reveals vector contributions over the entire model. Experiments on seg-
mentation and perturbation tests show that our VTranM outperforms state-of-the-art methods.

In summary, our contributions are as follows: (i) We explore Vision Transformer explainability and
identify a primary issue: the lack of comprehensive consideration for vector transformations and
attention weights, which can result in misleading interpretations of the model’s prediction. (ii) We
introduce VTranM, a novel explanation method employing a vector transformation measurement.
This measurement regards changes in vector length and directional correlation, which faithfully
assesses the impact of transformations on vector contributions. (iii) Our approach establishes an
aggregation framework that integrates both attention and vector transformation information across
multiple layers, thereby capturing the cumulative nature of Vision Transformers. (iv) Using the pro-
posed measurement and framework, our VTranM demonstrates superior performance in comparison
to existing state-of-the-art methods.

2 MOTIVATION

Vision Transformer [15] sequentially stacks nL layers, each embodying an MHSA or an FFN. We
revisit these layers generically, then analyze the problem in Vision Transformer explanations.

2.1 REINTERPRETING TRANSFORMER LAYERS

From a general viewpoint, MHSA and FFN both process weighted linear combinations of origi-
nal and transformed vectors. Starting with a reinterpretation of MHSA, we illustrate this shared
principle, then we show how FFN emerges as a particular case within the unified formulation.
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In MHSA, every vector of the input sequence attends to all others by projecting the embeddings to
a query, key, and value. Formally, let E ∈ Rn×d be the embeddings matrix (a sequence of vectors),
where n is the number of vectors, and d is the dimensionality of embedding space. The projections
can be expressed as:

Q = EWQ, K = EWK, V = EWV, (1)
where WQ ∈ Rd×dQ , WK ∈ Rd×dK , and WV ∈ Rd×dV are parameter matrices. Subsequently,
the attention map A is computed by:

A = Softmax

(
QKT√

dQ

)
∈ Rn×n, (2)

Then, contextualization is performed on value V using attention map A, and another linear trans-
formation further projects the resulting embeddings back to the space Rd:

(AV)WH, (3)

where WH ∈ RdV ×d. To obtain the final output, MHSA integrates the results from multiple heads
and incorporates them into original embeddings E from the previous layer by skip-connection [21].
The output of MHSA is given by:

MHSA(E) = E+

nH∑
h=1

(AV)WH, (4)

where nH is the number of heads. We omit the subscript h for simplicity. Given the associative
property of matrix multiplication, we can regard the combination of value projection and multi-head
integration as a simple yet equivalent vector transformation featured by W̃ = WVWH:

(AV)WH = A(EWV)WH = AE(WVWH) = A(EW̃). (5)

We then reformulate the MHSA using the definition of transformed embeddings Ẽ = EW̃:

MHSA(E) = E+

nH∑
h=1

AẼ. (6)

From a vector-level view, each vector of the MHSA’s output is a weighted sum of original and trans-
formed vectors. With this insight, the FFN embodies a basic form of ‘contextualization’, where the
number of heads nH=1 and the attention map A=I (identity matrix), as contrasted with Equation 6.
Utilizing the concept of transformed embeddings Ẽ, the FFN can be expressed as:

FFN(E) = E+ IẼ, (7)

where Ẽ consists of vectors that have been transformed within the FFN.

2.2 PROBLEM IN EXPLAINING VISION TRANSFORMERS

In our reformulations, as depicted in Equation 6 and Equation 7, Vision Transformer layers are
generically expressed as weighted sums of original and transformed vectors, where each vector
is multiplied by a scaling weight. Existing attention-based methods typically account for these
scaling weights as the corresponding vectors’ contributions, which overlooks the influences imparted
by the vectors. As illustrated in Figure 1, relying solely on attention weights can misrepresent
the contributions from various image patches. This issue necessitates a comprehensive method to
faithfully interpret the inner mechanism of Transformer layers.

3 METHOD

In this section, we propose VTranM. We first introduce the background of attention-based expla-
nations for Vision Transformers. Then, we develop a vector transformation measurement, which
evaluates the effects of transformed vectors. Finally, we design an aggregation framework to accu-
mulate both attention and transformation information across all layers.
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3.1 ATTENTION-BASED EXPLANATIONS

Attention-based explanation methods [1, 11, 10] measure the contribution of each vector using the
attention information, as expressed by:

C = O+ Eh
[
(∇Ap(c))+ ⊙T

]
, with O = I, T = A. (8)

Here, ⊙ is the Hadamard product. C ∈ Rn×n denotes the contribution map, where Cij represents
the influence of the j-th input vector on the i-th output vector. Matrices O ∈ Rn×n and T ∈ Rn×n

reflect the contributions from the original and transformed vectors, respectively. Previous explana-
tion methods quantify O and T simply using scaling weights. Specifically, I is an identity matrix
representing the self-contributions of original vectors, and A is the attention weights for scaling
transformed vectors. Moreover, ∇Ap(c)=∂p(c)

∂A is the partial derivative of attention map w.r.t. the
predicted probability for class c. Eh is the mean over multiple heads. Note that it averages across
heads using the gradient∇Ap(c) to become class-specific, and it removes the negative contributions
before averaging to avoid distortion [46, 6, 11, 10]. The previous methods’ limitation lies in their
assumption of equal influences from the skip connection and the attention weights, neglecting the
difference between original and transformed vectors.

3.2 VECTOR TRANSFORMATION MEASUREMENT

To account for the contributions from transformed vectors, we introduce a measurement that gauges
the influence of vector transformations and subsequently derives transformation weights. Using
these weights, we recalibrate the matrices O and T to encapsulate both attention and transformation
insights. Since MHSA and FFN are depicted in a unified form (see Section 2), we can first derive
our measurement based on MHSA, and then adapt it for FFN from a generic perspective.

Drawing from foundational principles of vector representations, we emphasize two core attributes:
length and direction [42, 25]. The core reasoning is that vectors with greater lengths and consistent
spatial orientations predominantly determine the results of linear combinations. Thus, our measure-
ment will involve two components, corresponding to these two attributes. The first component is
a length function L(x):Rd→R+, which measures the length of a vector, whether the original or
transformed. Mathematically, we instantiate L using L2 norm of the embedding space Rd, i.e.,
L(x) = ∥x∥2. Considering both the vector length measurement L and the attention weights, we
reintroduce O and T as:

O = I · diag(L(E1),L(E2), . . . ,L(En)), (9)

T = A · diag(L(Ẽ1),L(Ẽ2), . . . ,L(Ẽn)). (10)

Note that Cij indicates the contribution of the j-th input vector. Thus we apply the function L
column-wise. This approach accounts for both the attention weights and the vectors themselves. To
evaluate the changes in contributions after transformations, we now regard the original vectors as
reference units and analyze the relative effects of transformations. This is done by normalizing O
and T column-wise w.r.t. the lengths of the original vectors. As a result, we obtain:

O = I, T = A · diag

(
L(Ẽ1)

L(E1)
,

L(Ẽ2)

L(E2)
, . . . ,

L(Ẽn)

L(En)

)
. (11)

In this formulation, O uses the identity matrix to represent the contributions from original vectors
as basic reference units. Meanwhile, T discerns the relative influences of transformed vectors com-
pared to the original vectors using the ratio of their lengths. As detailed in Section 3.3, this approach
allows us to initialize a contribution map with the lengths of the model’s input vectors, and then
iteratively update the map across layers. The update employs the ratios of vector effects between
consecutive layers, tracing the evolution of transformations within the model. This framework en-
sures that our analysis remains grounded to the initial input to the model, yet dynamically adapts to
every vector transformation and contextualization encountered in the model.

Our second component focuses on directions. Beyond adjusting lengths, vector transformations also
influence directions [16]. A transformed vector that stays directionally closer in representation space
is expected to have a stronger correlation with its original counterpart. To quantify this directional
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Figure 2: Illustration of our vector transformation measurement. We depict original and transformed
vectors with circles and arrows. Circle sizes reflect lengths, and arrows denote directions. The effects
of vector transformation are reflected by the changes in length and direction. Our method considers
both properties to evaluate these effects, resulting in the corresponding transformation weights.

correlation, we introduce a function C(x, x̃):Rd×Rd→R. Mathematically, we employ Cosine sim-
ilarity, which measures the angle between a pair of vectors, i.e., C(x, x̃) = cos⟨x, x̃⟩. Next, we
will use the function C to complement the length factors in matrix T. Simply multiplying C as a
coefficient may introduce negative values to the contribution map, which will distort the signs of
contributions through aggregation [40, 35, 6, 11, 10]. Inspired by [27], we propose the Normalized
Exponential Cosine Correlation (NECC). This measurement is normalized to emphasize the rela-
tive magnitudes of each correlation instead of the polarity, thereby serving as an effective positive
weighting factor. For a sequence of original vectors SE = (E1,E2, . . . ,En) and their transformed
counterparts SẼ = (Ẽ1, Ẽ2, . . . , Ẽn), the weighting factor for the i-th pair is given by:

NECC(i) =
exp(C(Ei, Ẽi))∑n

k=1 exp(C(Ek, Ẽk))
. (12)

Treating the original vectors as reference units, NECC is proportional to the extent to which each
transformed vector correlates with its corresponding original vector. Finally, employing two com-
ponents of our vector transformation measurement, we define the transformation weights W:

W = diag

(
L(Ẽ1)

L(E1)
NECC(1),

L(Ẽ2)

L(E2)
NECC(2), . . . ,

L(Ẽn)

L(En)
NECC(n)

)
, (13)

and the update map U for MHSA, incorporating both attention and transformation information:

U = O+ Eh
[
(∇Ap(c))+ ⊙T

]
, (14)

with
O = I, T = A ·W. (15)

Here, Uij denotes the influence of the j-th input vector on the i-th output vector of the MHSA layer.
This formulation balances both length and direction, reflecting how much of the original information
is retained or altered in the transformed vectors, to faithfully evaluate the vector contributions.

We now adapt our established approach to the FFN layer. Recall that FFN also involves a weighted
sum of original and transformed vectors (see Equation 7). For ‘contextualization’ in FFN, there is
only a single-head and the weighted combination is performed locally. This simpler form can be
easily reflected by discarding the gradient-weighted multi-head integration from Equation 14 and
changing the attention map A in Equation 15 to an identity matrix. We formulate the update map
for the FFN layer:

U = O+T, (16)

with
O = I, T = I ·W. (17)

Here, Uij denotes the influence of the j-th input vector on the i-th output vector of the FFN layer.
As illustrated by Figure 3, update maps capture the relative effects and will serve as refinements to
the overall contribution map as it aggregates across multiple layers.
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Figure 3: Illustration of our aggregation framework and the explanation pipeline. The overall contri-
bution map is initialized by input vector lengths and is updated using our Ul to trace vector evolution
across layers. In Cl, each i-th row represents the influences of input vectors E0 on the output of the
l-th layer El. For CnL , the row w.r.t. [CLS] vector is extracted and reshaped to produce the final
explanation map.

3.3 AGGREGATION FRAMEWORK

In Vision Transformers, the influences of vector transformations and contextualizations do not
merely reside within isolated layers but accumulate across them. For a comprehensive contribu-
tion map that reflects the roles of initial vectors corresponding to input image regions, it is necessary
to assess the relationships between input vectors and their evolved counterparts in deeper layers. To
this end, we introduce an aggregation framework that cohesively measures the combined influences
of contextualization and transformation across the entire model.

3.3.1 INITIALIZATION

We denote the overall contribution map by C ∈ Rn×n, where n is the number of vectors. The
Cij will faithfully accumulate the influence of the j-th input vector on the i-th output vector. At
the initial state, before entering Transformer layers, each input vector simply contains itself without
contextualization or transformation. We represent this state using initial vectors’ lengths, as depicted
in Figure 3. Specifically, we initialize the map as a diagonal matrix C0:

C0 = diag(L(E0
1),L(E0

2), . . . ,L(E0
n)), (18)

where E0 denotes the initial embeddings inputted to the first layer.

3.3.2 UPDATE RULES

Based on the DAG representation of information flow [1], layer-wise aggregation is mathematically
equivalent to matrix multiplication of intermediate maps. This approach allows for tracing vector
contributions throughout the model. After initialization, we iteratively update the map Cl−1 using
Ul, which incorporates the effects of transformed vectors:

Cl ← Ul ·Cl−1 for l = 1, 2, . . . , nL. (19)
In this formula, Cl−1 represents the map that has traced the vector contributions up to the (l − 1)-
th layer but has yet to include the effects from the l-th layer, and Ul indicates the update map
from the l-th layer. Using this recursive formula, the map aggregates information about both vector
transformation and contextualization over the entire model. After applying the updates for all the
layers, the final contribution map can be expressed as:

CnL = UnL ·UnL−1 · · · · ·U1 ·C0, (20)
This framework provides a cumulative understanding of how initial input vectors contribute to the
final prediction, thereby faithfully interpreting the decision process of Vision Transformers.

3.4 UTILIZING THE OVERALL CONTRIBUTION MAP FOR INTERPRETATION

Vision Transformers often use designated vectors to perform specific tasks. For example, ViT [15]
performs image classification based on a [CLS] vector. This special vector becomes significant
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Figure 4: Visualizations of explanation results. Our method provides more object-centric heatmaps.

in the final prediction as it integrates information from all the inputs. To interpret the model’s
prediction, one can analyze the contribution of each initial input vector to the final [CLS]. In
our proposed VTranM, this is embodied in the overall contribution map CnL . Specifically, the
row in CnL that corresponds to the [CLS] vector represents the influences of original vectors. As
illustrated in Figure 3, we extract this row and reshape it to the image’s spatial dimensions, forming
a contribution heatmap. This heatmap highlights regions that are highly influential in determining
the prediction, serving as a post-hoc explanation of the model’s decision.

4 EXPERIMENTS

In this section, we first introduce experimental setups. Then we demonstrate the superiority of our
VTranM qualitatively and quantitatively. Lastly, we take an ablation study on the proposed method.

4.1 EXPERIMENTAL SETTINGS

4.1.1 BASELINE METHODS

We consider baseline methods that are widely used and applicable from three types. (i) Gradient-
based: Grad-CAM [35], (ii) Attribution-based: LRP [7], Conservative LRP [3], and Transformer
Attribution [11]), and (iii) Attention-based: Raw Attention [24], Rollout [1], ATTCAT [33], and
Transformer MM [10]). Details of experimental setups are provided in Appendix B.

4.1.2 EVALUATED PROPERTIES

Localization Ability. This property measures how well an explanation can localize the foreground
object recognized by the model. Intuitively, a reliable explanation should be object-centric, i.e., ac-
curately highlighting the object that the model uses to make the decision. Following previous works
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Table 1: Results of Impact on Accuracy. We report results on CIFAR-10 and CIFAR-100 [26].
Neg. (Pred.) ↑ Pos. (Pred.) ↓ Neg. (GT) ↑ Pos. (GT) ↓

Grad-CAM [35] 61.24 / 47.18 47.32 / 41.91 61.26 / 47.28 47.34 / 41.78
LRP [7] 72.62 / 46.76 72.14 / 46.31 72.54 / 46.80 72.13 / 46.29

Cons. LRP [3] 44.92 / 27.11 49.15 / 27.99 45.76 / 26.84 47.87 / 27.42
Trans. Attr. [11] 67.65 / 44.65 43.64 / 24.99 65.82 / 44.19 43.17 / 23.90

Raw Att. [24] 58.46 / 37.23 47.17 / 28.62 58.46 / 37.23 47.17 / 28.62
Rollout [1] 64.88 / 41.34 42.89 / 24.96 64.88 / 41.34 42.89 / 24.96

ATTCAT [33] 41.78 / 23.52 42.66 / 22.15 41.91 / 23.90 42.52 / 21.73
Trans. MM [10] 71.67 / 52.14 37.77 / 17.52 71.81 / 52.65 37.70 / 17.32

Ours 74.90 / 54.78 37.14 / 16.07 75.05 / 55.30 36.48 / 15.89

Table 2: Results of Localization Ability and Impact on Accuracy on Imagenet [34].
Localization Ability Impact on Accuracy

Pix. Acc. ↑ mAP ↑ mIoU ↑ Neg. (Pred.) ↑ Pos. (Pred.) ↓ Neg. (GT) ↑ Pos. (GT) ↓
Grad-CAM [35] 67.37 79.20 46.13 43.84 26.11 44.06 25.87

LRP [7] 50.96 55.87 32.82 42.55 41.29 42.56 41.29
Cons. LRP [3] 64.06 68.01 36.23 33.24 34.35 34.33 34.03

Trans. Attr. [11] 79.70 86.03 61.95 57.48 19.00 58.26 18.38
Raw Att. [24] 67.87 80.24 46.37 48.70 25.44 48.70 25.44

Rollout [1] 59.01 73.76 39.43 43.23 32.34 43.23 32.34
ATTCAT [33] 43.88 48.38 27.90 32.34 31.71 33.59 30.68

Trans. MM [10] 79.05 85.71 61.56 57.53 15.88 58.85 15.20
Ours 80.53 86.33 63.45 58.12 15.75 59.36 15.09

[35, 6, 11, 10], we perform segmentation on the ImageNet-Segmentation dataset [19], using DeiT
[44], a prevalent Vision Transformer model. We regard the explanation heatmaps as preliminary
semantic signals. Then we use the average value of each heatmap as a threshold to produce binary
segmentation maps. Based on the ground-truth maps, we evaluate the performance on three metrics:
Pixel-wise Accuracy, mean Intersection over Union (mIoU), and mean Average Precision (mAP).

Impact on Accuracy. This aspect focuses on how well an explanation captures the correlations
between pixels and the model’s accuracy. We assess this property by perturbation tests on CIFAR-
10, CIFAR-100 [26], and ImageNet [34]. The pre-trained DeiT model is used to perform both
positive and negative perturbation tests w.r.t. the predicted and the ground-truth class. Specifically,
these tests include two stages. First, we produce explanation maps for the class we want to visualize.
Second, we gradually remove pixels and evaluate the resulting mean top-1 accuracy. In positive tests,
pixels are removed from the most important to the least, while in negative tests, the removal order
is reversed. A faithful explanation should assign higher scores to pixels that contribute more. Thus,
a severe drop in the model’s accuracy is expected in positive tests, while we expect the accuracy to
be maintained in negative tests. For quantitative evaluation, we compute the Area Under the Curve
(AUC) [4] w.r.t. the accuracy curve of different perturbation levels.

Impact on Probability. This property further measures how well the explanations illustrate impor-
tant pixels for the model’s predicted probabilities. Similarly, it is evaluated by perturbation tests
on ImageNet. Instead of AUC, we report the Area Over the Perturbation Curve (AOPC) and the
Log-odds score (LOdds) [37, 32, 12]. These metrics quantify the average change of output prob-
abilities w.r.t. the predicted label. For comprehensive evaluations, we report results on ViT-Large
[15] together with DeiT [44] and ViT-Base [15].

4.2 EXPERIMENTAL RESULTS

Qualitative Evaluation. As shown by Figure 4, our proposed VTranM can generate more precise
and exhaustive heatmaps. Appendix A provides more visualizations.

Quantitative Evaluation. (i) Localization Ability. Table 2 (left) reports the segmentation results
on the ImageNet-Segmentation dataset. Our proposed VTranM significantly outperforms all the
baselines on pixel accuracy, mIoU, and mAP, demonstrating its stronger localization ability. (ii)
Impact on Accuracy. Table 1 and Table 2 show the results of the perturbation tests for both classes.
For positive tests, a lower AUC indicates superior performance, while for negative tests, a higher
AUC is desirable. The results underscore the superiority of our method. (iii) Impact on Probabil-
ity. Table 3 reports the results of perturbation tests assessing the output probability. Our VTranM
achieves the best performance on three Vision Transformers variants.
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Table 3: Results of Impact on Probability on three Vision Transformer models.
AOPC ↑ LOdds ↓

DeiT [44] ViT-B [15] ViT-L [15] DeiT [44] ViT-B [15] ViT-L [15]
Grad-CAM [35] 0.253 0.557 0.457 -3.704 -4.020 -3.023

LRP [7] 0.180 0.474 0.508 -2.140 -3.259 -3.634
Cons. LRP [3] 0.218 0.613 0.614 -3.011 -4.272 -4.443

Trans. Attr. [11] 0.282 0.721 0.716 -4.163 -5.622 -5.541
Raw Att. [24] 0.254 0.652 0.655 -3.657 -4.911 -4.961

Rollout [1] 0.229 0.688 0.689 -3.223 -5.259 -5.183
ATTCAT [33] 0.235 0.641 0.645 -3.262 -4.461 -4.622

Trans. MM [10] 0.296 0.719 0.719 -4.504 -5.567 -5.623
Ours 0.297 0.725 0.725 -4.514 -5.676 -5.725

Table 4: Ablation study on the proposed method.
Segmentation Perturbation Test

Pix. Acc. ↑ mAP ↑ mIoU ↑ Neg. ↑ Pos. ↓
Baseline 52.94 67.78 33.42 44.92 31.95

+ AF 76.30 85.28 58.34 55.25 16.98
+ AF + L 77.50 85.39 59.59 55.03 16.28

+ AF + L + NECC 77.89 85.69 60.29 55.42 16.18

Ablation Study. We conduct ablation studies
on the effect of our proposed vector transforma-
tion measurement (L and NECC) and aggrega-
tion framework (AF). We perform experiments
on ImageNet, based on ViT. Four variants are
considered: (i) Baseline, which merely applies
Equation 8 to the input without aggregation, (ii)
Baseline + AF, which initializes the contribution map as an identity matrix and aggregates using Ul,
where relative lengths and NECC are discarded, (iii) Baseline + AF + L, which additionally use rela-
tive length measurement in Ul while still excluding the NECC, and (iv) Baseline + AF + L + NECC,
which is our VTranM. As shown in Table 4, each proposed component improves the performance,
validating the effectiveness.

5 RELATED WORK

Traditional post-hoc explanations. General traditional post-hoc explanation methods mainly fall
into two groups: gradient-based and attribution-based. Examples of gradient-based methods are
Gradient*Input [38], SmoothGrad [39], Deconvolutional Network [48], Full Grad [41], Integrated
Gradients [43], and Grad-CAM [35]. These methods produce saliency maps using the gradient. On
the other hand, attribution-based methods propagate classification scores backward to the input [5,
29, 37, 23, 18, 20], based on Deep Taylor Decomposition [31]. There are other approaches beyond
these two types, such as saliency-based [49, 30, 13], Shapley additive explanation (SHAP) [29], and
perturbation-based methods [17]. Although initially designed for MLPs and CNNs, some traditional
methods have been adapted for Transformers in recent works [11, 3]. However, without essential
attention information, these methods still yield suboptimal performance on Vision Transformers.

Transformer-specific attention-based explanations. A growing line of work in interpretability
develops new paradigms specifically for Transformers. Attention maps are widely used in this di-
rection, as they are intrinsic distributions of scaling weights over vectors. Representative methods
include Raw Attention [47], a method simply employing the inherent attention information, Roll-
out [1], which linearly accumulates attention maps, Transformer-MM [10], a general framework
for cross-attention and encoder-decoder Transformers, and ATTCAT [33], a method that formulates
Attentive Class Activation Tokens to estimate the relative importance among input vectors. How-
ever, these approaches overlook the relative effects of transformations and fail to faithfully aggregate
vector contributions across all modules, hindering reliable interpretations of Vision Transformers.

6 CONCLUSIONS

In this paper, we explored the challenge of explaining Vision Transformers. Upon reinterpretation,
we expressed Transformer layers using a generic form in terms of weighted linear combinations
of original and transformed vectors. This new perspective revealed a principal issue in existing
methods: they solely rely on attention weights and ignore significant information about vector trans-
formations, thus failing to explain the models’ inner workings. To tackle this problem, we proposed
VTranM, an explanation method comprising a vector transformation measurement and an aggrega-
tion framework. Faithfully evaluating the contribution of input vectors throughout the entire model,
our method offers more object-centric interpretations.

9



Under review as a conference paper at ICLR 2024

REFERENCES

[1] Samira Abnar and Willem Zuidema. Quantifying attention flow in transformers. In ACL, 2020.
1, 2, 4, 6, 7, 8, 9, 14

[2] Chirag Agarwal, Satyapriya Krishna, Eshika Saxena, Martin Pawelczyk, Nari Johnson, Isha
Puri, Marinka Zitnik, and Himabindu Lakkaraju. Openxai: Towards a transparent evaluation
of model explanations. In NeurIPS, 2022. 1

[3] Ameen Ali, Thomas Schnake, Oliver Eberle, Grégoire Montavon, Klaus-Robert Müller, and
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A MORE VISUALIZATION RESULTS

Figure 5 illustrates the explanations produced by various methods. Compared to the baselines, our
explanations are more accurate in terms of both background regions and foreground objects.
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Figure 5: Visualizations of explanation results.
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B DETAIL OF EXPERIMENTAL SETUP

B.1 DATASETS

CIFAR-10 and CIFAR-100. CIFAR-10 and CIFAR-100 [26] are two widely used image classi-
fication datasets, each containing 60,000 32 × 32 color images. CIFAR-10 has 10 classes, while
CIFAR-100 has a more challenging setting with 100 classes. Both datasets are split into 50,000
training and 10,000 testing images. In this paper, we evaluate explanation methods on validation
sets.

ImageNet. ImageNet [34] is a large-scale benchmark in the field of image classification. In
this work, we evaluate explanation methods on the validation set, which comprises 50,000 high-
resolution images across 1,000 distinct classes. Each class contains roughly the same number of
images, ensuring a balanced benchmark.

ImageNet-Segmentation. ImageNet-Segmentation [19] is an annotated subset of ImageNet, con-
taining 4,276 images from 445 categories.

B.2 IMPLEMENTATION OF BASELINE METHODS

B.2.1 GRADIENT-BASED METHODS

Grad-CAM. The Grad-CAM method [35] considers the last attention map and utilizes the row
corresponding to the [CLS] vector, which is then reshaped to the 2D image space. Different from
Raw Attention, Grad-CAM performs multi-head integration based on gradient information. We
implement this method on Vision Transformers following previous works [11, 10].

B.2.2 ATTRIBUTION-BASED METHODS

LRP. LRP [7] starts from the model’s output and propagates relevance scores backward up to the
input image. This propagation adheres to a set of rules defined by the Deep Taylor Decomposition
theory [31].

Conservative LRP. Conservative LRP [3] introduces specialized Layer-wise Relevance Propagation
rules for attention heads and layer norms in Transformer models. This is designed to implement
conservation, a common property of attribution techniques.

Transformer Attribution. Transformer Attribution [11] is an attribution method specifically de-
signed for Transformer models. It first computes relevance scores via modified LRP, and then inte-
grates these scores with attention maps to produce an explanation.

B.2.3 ATTENTION-BASED METHODS

Raw Attention. This method [24] extracts the multi-head attention map from the last layer of
the model and reshapes the row corresponding to the [CLS] vector into the 2D image space. The
explanation result is further obtained by averaging across different heads.

Rollout. Rollout [1] interprets the information flow within Transformers from the perspective of
Directed Acyclic Graphs (DAGs). It traces and accumulates the attention weights across various
layers using a linear combination strategy.

ATTCAT. ATTCAT [33] is a Transformer explanation technique using attentive class activation
tokens. It employs a combination of encoded features, their associated gradients, and their attention
weights to produce confident explanations.

Transformer-MM. Transformer-MM [10] is a general interpretation framework applicable to di-
verse Transformer architectures. It aggregates attention maps with corresponding gradients to gen-
erate class-specific explanations.
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B.3 EVALUATION METRICS

Area Under the Curve (AUC) ↓. This metric calculates the Area Under the Curve (AUC) corre-
sponding to the model’s performance as different proportions of input pixels are perturbed [4]. To
elaborate, we first generate new data by gradually removing pixels in increments of 5% (from 0% to
100%) based on their explanation weights. The model’s accuracy is then assessed on these perturbed
data, resulting in a sequence of accuracy measurements. The AUC is subsequently computed using
this sequence.

Area Over the Perturbation Curve (AOPC) ↑. AOPC [32, 12] measures the changes in output
probabilities w.r.t. the predicted label after perturbations:

AOPC =
1

|K|
∑
k∈K

(p̂(y|x)− p̂(y|xk)), (21)

where K = {0, 5, ..., 95, 100} is a set of perturbation levels, p̂(y|x) estimates the probability for
the predicted class given a sample x, and xk is the perturbed version of x, from which the top k%
elements ranked by explanation weights are eliminated.

Log-odds score (LOdds) ↓. LOdds [37, 33] averages the difference between the negative loga-
rithmic probabilities on the predicted label before and after masking k% top-scored pixels over the
perturbation set K:

LOdds = − 1

|K|
∑
k∈K

log
p̂(y|x)
p̂(y|xk)

. (22)

The notations are the same as in Equation 21.
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