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ABSTRACT

Policy gradient (PG) algorithms have been widely used in reinforcement learning
(RL). However, PG algorithms rely on exploiting the value function being learned
with the first-order update locally, which results in limited sample efficiency. In
this work, we propose an alternative method called Zeroth-Order Supervised Policy
Improvement (ZOSPI). ZOSPI exploits the estimated value function Q globally
while preserving the local exploitation of the PG methods based on zeroth-order
policy optimization. This learning paradigm follows Q-learning but overcomes the
difficulty of efficiently operating argmax in continuous action space. It finds max-
valued action within a small number of samples. The policy learning of ZOSPI has
two steps: First, it samples actions and evaluates those actions with a learned value
estimator, and then it learns to perform the action with the highest value through
supervised learning. We further demonstrate such a supervised learning framework
can learn multi-modal policies. Experiments show that ZOSPI achieves competitive
results on the continuous control benchmarks with a remarkable sample efficiency.1

1 INTRODUCTION

Model-free Reinforcement Learning achieves great successes in many challenging tasks Mnih
et al. (2015); Vinyals et al. (2019); Pachocki et al., however one hurdle for its applicability to real-
world control problems is the low sample efficiency. To improve the sample efficiency, off-policy
methods Degris et al. (2012); Gu et al. (2016); Wang et al. (2016); Lillicrap et al. (2015); Fujimoto
et al. (2018a) reuse the experiences generated by previous policies to optimize the current policy,
therefore can obtain a much higher sample efficiency than the on-policy methods Schulman et al.
(2015; 2017). Alternatively, SAC Haarnoja et al. (2018) improves sample efficiency by conducting
more active exploration with maximum entropy regularizer Haarnoja et al. (2017) to the off-policy
actor critic Degris et al. (2012); Zhang et al. (2019a).OAC Ciosek et al. (2019) further improves SAC
by combining it with the Upper Confidence Bound heuristics Brafman and Tennenholtz (2002) to
incentivize more informed exploration. Nonetheless, all of those previous methods rely on Gaussian-
parameterized policies and conducts local exploration strategies that simply add noises on the action
space. Consequentially, those methods can converge to sub-optimal solutions, as has been shown in
(Tessler et al., 2019).

In this work, we explore an alternative approach to the conventional policy gradient paradigm for
continuous control. We introduce a zeroth-order method that can be optimized through supervised
learning. The proposed method carries out non-local exploration through global value-function
exploitation to achieve higher sample efficiency for continuous control tasks. To better exploit the
learned value function Q, we propose to search the action space globally for a better target action,
which is in contrast to previous policy gradient methods that only utilize the local information of the
learned value functions (e.g. the Jacobian matrix Silver et al. (2014)). The key insight is to improve
sample efficiency at expense of additional computation, which is acceptable as samples are much
more expensive than computations in real-world applications such as Healthcare and Robotics.

The idea behind our work is related to the value-based policy gradient methods Lillicrap et al. (2015);
Fujimoto et al. (2018a), where the policy gradient optimization step takes the role of finding a
well-performing action given a learned state-action value function. In previous work, the policy

1Code is made open-sourced at https://anonymous.4open.science/r/Submission6417-285A
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Figure 1: (a) Landscape of Q value for a 1-dim continuous control task. Policy gradient methods
optimize the policy according to the local information of Q. (b) For the same task, ZOSPI directly
updates the predicted actions to the sampled action with the largest Q value. (c) Simulation results,
where in each optimization iteration 10 actions are uniformly sampled under different ranges. The
reported results are averaged over 100 random seeds. It can be seen that a larger random sample
range improves the chance of finding global optima. Similar phenomenon also exist in practice as
shown in Appendix A.

gradient step tackles the curse of dimensionality for deep Q-learning since it is intractable to directly
search for the maximal value in the continuous action space Mnih et al. (2015). Differently, we
circumvent searching for the action with the maximal value in the continuous action space by finding
the max-valued action within a small set of sampled actions.

A Motivating Example To perform a global exploitation of the learned value function Q, we
propose to apply a zeroth-order optimization scheme and update the target policy through supervised
learning, which is inspired by works of evolution strategies Salimans et al. (2017); Conti et al.
(2018); Mania et al. (2018) that adopt zeroth-order optimizations in the parameter space. Figure 1
shows a motivating example that demonstrates the difference between the zeroth-order and first-order
optimizations. Different from the standard policy gradient, combining the zeroth-order optimization
with supervised learning forms a new way of policy update. Such an update avoids the local
improvement of policy gradient: when policy gradient is applied, the target policy uses policy
gradient to adjust its predictions according to the deterministic policy gradient theorem Silver et al.
(2014), but such adjustments can only lead to local improvements and may induce sub-optimal
policies due to the non-convexity of the policy function Tessler et al. (2019); on the contrary, our
integrated approach of zeroth-order optimization and supervised learning can greatly improve the
non-convex policy optimization and more likely escape the potential local minimum.

Contributions of this paper can be summarized as follows:

1. We introduce a simple yet effective policy optimization method called Zeroth-Order Super-
vised Policy Improvement (ZOSPI), as an alternative to the policy gradient approaches for
continuous control. The policy from ZOSPI exploits global information of the learned value
function Q and updates itself through sample-based supervised learning.

2. Practically, we point out the flexibility of the proposed supervised learning paradigm and
show ZOSPI is capable of working with multi-modal policy class. And introduce a hybrid
method that leverages both zeroth-order and first-order gradients for policy learning.

3. Empirically, we demonstrate the improved performance of ZOSPI over policy gradient
methods on the continuous control benchmarks, in terms of both higher sample efficiency
and asymptotic performance.

2 RELATED WORK

2.1 POLICY GRADIENT METHODS

The policy gradient methods solve an MDP by directly optimizing the policy to maximize the
cumulative reward Williams (1992); Sutton and Barto (1998). While the prominent on-policy policy

2



Under review as a conference paper at ICLR 2023

gradient methods like TRPO Schulman et al. (2015) and PPO Schulman et al. (2017) improve the
learning stability of vanilla policy gradient Williams (1992) via trust region updates, the off-policy
methods such as Degris et al. (2012); Lillicrap et al. (2015); Wang et al. (2016) employ an experience
replay mechanism to achieve higher sample efficiency. The work of TD3 Fujimoto et al. (2018a)
further addresses the function approximation error and boosts the stability of DDPG with several
improvements. Another line of works is the combination of policy gradient methods and the max-
entropy regularizer, which leads to better exploration and stable asymptotic performances Haarnoja
et al. (2017; 2018). All of these approaches adopt function approximators Sutton et al. (2000)
for state or state-action value estimation and take directionally-uninformed Gaussian as the policy
parameterization, which lead to a local exploration behavior Ciosek et al. (2019); Tessler et al. (2019).

2.2 RL BY SUPERVISED LEARNING

Iterative supervised learning and self-imitate learning are becoming an alternative approach for
model-free RL. Instead of applying policy gradient for policy improvement, methods based on
supervised methods update policies by minimizing the mean square error between target actions
and current actions predicted by a policy network Sun et al. (2019), or alternatively by maximizing
the likelihood for a stochastic policy class Ghosh et al. (2019). While those previous works focus
on the Goal-Conditioned tasks in RL, in this work we aim to tackle more general RL tasks. Some
other works use supervised learning to optimize the policy towards manually selected policies to
achieve better training stability under both offline Wang et al. (2018) and online settings Zhang et al.
(2019b); Abdolmaleki et al. (2018); Song et al. (2019). Differently, in our work the policy learning is
based on a much simpler formulation than the previous attempts Abdolmaleki et al. (2018); Lim et al.
(2018); Simmons-Edler et al. (2019), and it does not rely on any expert data to achieve competitive
performance.

2.3 ZEROTH-ORDER METHODS

Zeroth-order optimization methods, also called gradient-free methods, are widely used when it is
difficult to compute the gradients. They approximate the local gradient with random samples around
the current estimate. The works in Wang et al. (2017); Golovin et al. (2019) show that a local
zeroth-order optimization method has a convergence rate that depends logarithmically on the ambient
dimension of the problem under some sparsity assumptions. It can also efficiently escape saddle
points in non-convex optimizations Vlatakis-Gkaragkounis et al. (2019); Bai et al. (2020). In RL,
many studies have verified an improved sample efficiency of zeroth-order optimization Usunier et al.
(2016); Mania et al. (2018); Salimans et al. (2017). In this work we provide a novel way of combining
the local sampling and the global sampling to ensure that our algorithm can approximate the gradient
descent locally and also find a better global region.

3 PRELIMINARIES

3.1 MARKOV DECISION PROCESSES

We consider the deterministic Markov Decision Process (MDP) with continuous state and action
spaces in the discounted infinite-horizon setting. Such MDPs can be denoted asM = (S,A, T , r, γ),
where the state space S and the action space A are continuous, and the unknown state transition
probability representing the transition dynamics is denoted by T : S × A 7→ S. r : S × A 7→
[0, 1] is the reward function and γ ∈ [0, 1] is the discount factor. An MDP M and a learning
algorithm operating on M with an arbitrary initial state s0 ∈ S constitute a stochastic process
described sequentially by the state st visited at time step t, the action at chosen by the algorithm
at step t, the reward rt = r(st, at) and the next state st+1 = T (st, at) for any t = 0, . . . , T . Let
Ht = {s0, a0, r0, . . . , st, at, rt} be the trajectory up to time t. Our algorithm finds the policy that
maximizes the discounted cumulative rewards

∑T
t=0 γ

trt. Our work follows the general Actor-Critic
framework Konda and Tsitsiklis (2000); Peters and Schaal (2008); Degris et al. (2012); Wang et al.
(2016), which learns in an unknown environment using a value network denoted by Qwt

: S×A 7→ R
for estimating Q values and a policy network for learning the behavior policy πθt : S 7→ A. Here wt

and θt are the parameters of these two networks at step t, respectively.
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Algorithm 1 Policy Update with Zeroth-Order and First-Order Optimization
1: Require
2: Objective function Qs, domain A, current policy network πθ, perturbation network πϕ current

point a0 = πθ(s), number of global samples n1, number of local samples n2

3: Global sampling
4: Sample n1 points uniformly in the entire space by

ai ∼ UA, for i = 1, . . . , n1,

where UA is the uniform distribution over A.
5: Local sampling
6: Sample n2 points locally from a Gaussian centered at a0 with a covariance matrix σ2I:

ai+n1 ∼ N (a0, σ
2I), i = 1, . . . , n2.

7: Set a+ = argmaxa∈{a0,...,an1+n2
} Qs(a).

8: Update policy πθ according to Eq.(2)
9: Local perturbation

10: Update perturbation network according to Eq. (4).

3.2 MIXTURE DENSITY NETWORKS

The optimal policies in many environments tend to have multi-modal property. Mixture Density
Networks (MDN), previously proposed in Bishop (1994) to solve the stochastic prediction problem,
is a potential multi-modal policy function to be introduced in this work. One challenge here is that
previous policy gradient methods are not compatible with multi-modal policies based on MDN. While
in normal regression tasks, the learning objective is to maximize the log-likelihood of observed data
given the current parameters of a predictive model, MDN uses the mixture of Gaussian with multiple
parameters as D = {Xi, Yi}N. Then the likelihood is given by

L =

i=N∑
i=1

L(Yi|Xi, θ) =

i=N∑
i=1

K∑
k=1

wk(Xi, θ)ϕ(Yi|µk(Xi, θ), σk(Xi, θ)), (1)

where θ denotes the parameters of neural networks with three branches of outputs {wi, µi, σi}K , ϕ is
the probability density function of normal distribution and

∑K
i=1 wi = 1.

4 ZEROTH-ORDER SUPERVISED CONTINUOUS CONTROL

Q-learning in the tabular setting finds the best discrete action given the current state, which can be
difficult in the continuous action space due to the non-convexity of Q. A policy network is thus
trained to approximate the optimal action. However, gradient-based algorithm may be trapped by
local minima or saddle point depending on the initialization. In this section, we introduce a hybrid
method with a global policy and a perturbation policy. The global policy predicts a coarse action by
supervised learning on uniformly sampled actions and the perturbation network iterates based on the
coarse prediction. In the following section, we give a motivating example to demonstrate the benefits
of the hybrid framework.

Figure 1 shows a motivating example to demonstrate the benefits of applying zeroth-order optimization
to policy updates. Consider we have a learned Q function with multiple local optima. Here we
assume the conventional estimation of Q function is sufficient for a global exploitation Fujimoto et al.
(2018a); Haarnoja et al. (2018) and we will discuss an improved estimation method in the Appendix.
Our deterministic policy selects a certain action at this state, denoted as the red dot in Figure 1(a). In
deterministic policy gradient methods Silver et al. (2014); Lillicrap et al. (2015), the policy gradient
is conducted according to the chain rule to update the policy parameter θ with regard to Q-value by
timing up the Jacobian matrix∇θπθ(s) and the derivative of Q, i.e.,∇aQ(s, a). Consequently, the
policy gradient can only guarantee to find a local minima, and similar local improvement behaviors
are also observed in stochastic policy gradient methods like PPO and SAC Schulman et al. (2017);
Haarnoja et al. (2018); Tessler et al. (2019); Ciosek et al. (2019). Instead, if we can sample sufficient
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random actions in a broader range of the action space, denoted as blue dots in Figure 1(b), and
then evaluate their values respectively through the learned Q estimator, it is possible to find a better
initialization, from which the policy gradient can more likely find the global minima. Figure 1(c)
shows the simulation result using different sample ranges for the sample-based optimization starting
from the red point. It is clear that a larger sample range improves the chance of finding the global
optima. Utilizing such a global exploitation on the learned value function is the key insight of this
work.

4.1 ZEROTH-ORDER SUPERVISED POLICY IMPROVEMENT

Based on the above motivation, we propose a framework called ZOSPI (Zeroth-Order Supervised
Policy Improvement). ZOSPI consists of two policy networks: the global policy network that gives
us a coarse estimate on the optimal action and a perturbation network that iterates based on the output
of the global policy network using policy gradient.

Supervised learning for global policy network. We denote the global policy network by πθ. At
any step t, we sample a set of actions uniformly over the entire action space as well as a set of
actions sampled from Gaussian distribution centered at current prediction πθt . We denote by a+t , the
action that gives the highest Q value with respect to current state st. Then we apply the supervised
policy improvement that minimizes the L2 distance between a+t and πθt(st), which gives the descent
direction:

∇θ
1

2
(a+t − πθt(st))

2 = (a+t − πθt(st))∇θπθt(st). (2)

The global samples can help finding the regions that are better in the whole space. The local samples
from Gaussian distribution accelerate later-stage training when the prediction is accurate enough and
most global samples are not as good as the current prediction. The implementation detail is shown in
Algorithm 1.

Policy gradient for perturbation network. We introduce another perturbation network, denoted
by πϕt , as Fujimoto et al. (2018b). Such a perturbation network is parameterized by ϕt that performs
fine-grained control on top of the global policy network πθt . Different from the πθt , the perturbation
network πϕt takes both the current state st and the predicted action πθt(st) as inputs, thus the final
executed action is as follows:

at = πθt(st) + πϕt
(st, πθt(st)). (3)

The range of the outputs for the perturbation network is limited to 0.05 times the value of maximal
action. Therefore, it is only able to perturb the action provided by the policy network πθt .

The perturbation network πϕt
is trained with the policy gradient:

∇ϕJ = E[∇a′Qw(st, a
′)|a′=πθt (st)+πϕt (st)

∇ϕπϕt(st)]. (4)

The intuition behind such an empirical design can be drawn from the example of Figure 1: although
the global sampling step as well as the zeroth-order method helps policy optimization escape sub-
optimal regions of the non-convex value function, the first order method can help to optimize the
decision afterwards inside the locally convex region more efficiently. Eq. (4) shows that the updates
are accessed only through the gradient,∇aQw.

4.2 ANALYSES ON THE BENEFITS OF GLOBAL SAMPLING

In this section, we give some analyses on the benefits of global sampling in terms of the sampling
efficiency. Our analyses does not consider the improvement from the local sampling set, with which
the quality of supervised learning can only be even better.

Error rate of the a+t . The performance of the supervised policy improvement heavily depends on
the goodness of a+t , the best action in the sampling set. By assuming the continuity of the estimated
Q function, we give an upper bound on the error rate ∥a+t − a∗(s)∥, where a∗(s) is the true optimal
action given the current state s.
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Lemma 1. Assume the estimated Q function Qw(st, ·) given any st is L-Lipschitz with respect to
action inputs. Let the action space A ⊂ Rd for some positive integer d and assume that any action
a ∈ A, ∥a∥2 ≤ k for k > 0. Then with a probability at least 1− δ, we have

∥a+t − a∗(s)∥2 ≤ 2k
√
dL

(
log2(n/δ)

n

)1/d

.

Though the dependence of n is 1/n1/d, the estimation of a+t is sufficient for a coarse prediction,
because our prediction prediction πθ aggregates all the historical information, which further reduces
the error and we only need πθ in a local convex region of the global optima. This rate can be much
lower when we have a fairly better prediction and the best actions are given by the local sampling set
instead.

Quality of πθ. It is hard to directly evaluate the error rate of πθ(st) because of the online stochastic
gradient descent applied on a non-stationary distribution of states and a Q-function that is continuously
being updated. Thus we take a step back and consider a simpler scenario. We assume a fixed Q
function and a fixed state distribution. We assume that the policy network is a linear model with
θ ∈ Rp. We consider a global empirical risk minimizer, so called ERM, since it is easy to achieve for
linear models. Let our dataset with T samples be {(st, a+t )}Tt=1. Our ERM estimate is defined by

θ̂ = argmin
θ∈Θ

T∑
t=1

(a+
t − πθ(st))

2.

Theorem 1. If assumptions in Lemma 1 hold, with a high probability we have

E∥πθ̂(s)− a∗(s)∥22 = Õ

(
k
√
dpL

n1/dT
+min

θ
E∥πθ(s)− a∗(s)∥2

)
.

where Õ hides all the constant and logarithmic terms.

Theorem 1 implies that though the error of a∗t at one step can be high, the error of our policy
network can be further reduced by aggregating information from multiple steps. However, when πθ

is nonlinear functions, the quality may be worse than the case in our analyses. That is why we need
some local perturbation through policy gradient to further improve our policy. Missing proofs in this
section are given by Appendix B. Pseudo code of ZOSPI is provided in Appendix D.

4.3 MULTI-MODAL CONTINUOUS CONTROL WITH ZOSPI

Different from standard policy gradient methods, the policy optimization step in ZOSPI can be
considered as sampling-based supervised learning. Such a design enables many extensions of the
proposed learning paradigm. In this section, we introduce the combination of ZOSPI and first-order
method for stabilized training and the combination of ZOSPI and MDN for multi-modal policy
learning.
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Figure 2: Illustration of how ZOSPI with MDN works
when multiple optimal actions exist for a certain state:
(left) Supermario is going to collect the mushroom, both
a2 and a3 are the optimal actions for the current location.
While deterministic policy gradient methods (green color)
are only able to learn one of those optimal actions, ZOSPI
with MDN is able to learn both. Policy gradient methods
normally learn a Gaussian policy class.

Learning Multi-Modal Policies with
Mixture Density Networks In the con-
text of RL, there might be multiple opti-
mal actions for some certain states, e.g.,
stepping up-ward and then right-ward
may lead to the same state as stepping
right and then upward, therefore both
choices result in identical return in Fig-
ure 2. However, normal deterministic
policy gradient methods can not capture
such multi-modality due to the limitation
that the DPG theorem is not applicable
to a stochastic policy class.

In this section, we further integrate
ZOSPI with the Mixture Density Net-
works (MDNs) Bishop (1994), which
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Figure 3: Experimental results on the MuJoCo locomotion tasks. The shaded region represents
standard deviation. The dashed lines indicate asymptotic performance of TD3 after 1M interactions.
ZOSPI is able to reach on-par performance within much less interactions. In all main experiments
the results reported are collected from 10 random seeds and in ablations studies we use 5 random
seeds. Curves are smoothed uniformly for visual clarity.

was introduced for multi-modal regression. Applying MDNs to ZOSPI leads to a more flexible
and interpretable multi-modal policy class Tessler et al. (2019): different from normal Dirac policy
parameterization used in TD3, ZOSPI with MDN predicts a mixture of Dirac policies, i.e., the policy
πMDN(s) predicts K choices for action a⃗ = {a1, ..., aK} ∈ AK , with their corresponding probability
p⃗ = {p1, ..., pK} ∈ RK , and

∑K
i pi = 1. Then the action is sampled by

πMDN(s) = ai, w.p. pi, for i = 1, ...,K (5)

Thereby, instead of learning the mean value of multiple optimal actions, ZOSPI with MDN is able to
learn multiple optimal actions. Different from previous stochastic multi-modal policies discussed
in Haarnoja et al. (2018), the learning of multi-modal policy does not aim to fit the entire Q function
distribution. Rather, ZOSPI with MDN focuses on learning the multi-modality in the best choices
of actions, thus addresses the difficulty in generating multi-modal policies Haarnoja et al. (2017);
Tessler et al. (2019). Figure 2 illustrates the difference between ZOSPI with MDN and the previous
policy gradient methods.

5 EXPERIMENTS

In this section, we conduct experiments on five MuJoCo locomotion benchmarks to demonstrate the
effectiveness of the proposed method. Specifically, we validate the following statements:

1. If we use ZOSPI with locally sampled actions, the performance of ZOSPI should be the
same as its policy gradient counterpart like TD3; if we increase the sampling range, ZOSPI
can better exploit the Q function thus find better solution than the policy gradient methods.

2. If we continuously increase the sampling range, it will result in an uniform sampling, and
the Q function can be maximally exploited.

3. The perturbation network can help to improve the sample efficiency of the primal ZOSPI
frame work purely based on zeroth-order optimization.

4. The supervised learning policy update paradigm of ZOSPI permits it to be flexibly work
with multi-modal policy class.

5.1 ZOSPI ON THE MUJOCO LOCOMOTION TASKS.

We evaluate ZOSPI on the Gym locomotion tasks based on the MuJoCo engine Brockman et al.
(2016); Todorov et al. (2012). The five locomotion tasks are Hopper-v2, Walker2d-v2, HalfCheetah-
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Table 1: Quantitative results. ZOSPI achieves comparable performance with only half the number of
interactions with the environment, and achieves superior performance for 1M interactions.

METHOD/TASK HOPPER-V2 WALKER2D-V2 HALFCHEETAH-V2 ANT-V2 HUMANOID-V2

TD3 2843 ± 197 3842 ± 239 10314 ± 93 4868 ± 388 4855 ± 263
SAC 2158 ± 388 4154 ± 333 8735 ± 170 3051 ± 469 5012 ± 478
OAC 2983 ± 317 3075 ± 183 4497 ± 296 4497 ± 297 4624 ± 351
OURS 3268 ± 234 4027 ± 28 10992 ± 126 5006 ± 135 4881 ± 164
IMPROV. OVER TD3/SAC ↑ 15%/ ↑ 51% ↑ 5%/ ↓ 3% ↑ 7%/ ↑ 26% ↑ 3%/ ↑ 64% ↑ 1%/ ↓ 3%

METHOD/TASK HOPPER-V2 WALKER2D-V2 HALFCHEETAH-V2 ANT-V2 HUMANOID-V2

TD3-0.5M 2234 ± 231 1648 ± 204 8801 ± 176 3232 ± 268 3036 ± 567
SAC-0.5M 1926 ± 410 2640 ± 529 7255 ± 180 2167 ± 399 4068 ± 610
OAC-0.5M 2395 ± 166 3074 ± 182 7405 ± 115 2903 ± 322 3610 ± 376
OURS-0.5M 3048 ± 307 3932 ± 125 10290 ± 129 4304 ± 260 4175 ± 302
IMPROV. OVER TD3/SAC ↑ 58%/ ↑ 36% ↑ 139%/ ↑ 49% ↑ 17%/ ↑ 42% ↑ 33%/ ↑ 99% ↑ 38%/ ↑ 3%

v2, Ant-v2, and Humanoid-v2. We compare our method with TD3 and SAC, the deterministic
and the stochastic SOTA policy gradient methods. We also include PPO and OAC Ciosek et al.
(2019) to better show the learning efficiency of ZOSPI. We compare different methods within 0.5M
environment interactions in the two easy tasks to demonstrate the high learning efficiency of ZOSPI,
and present results during 1M interactions for the other tasks. The results of TD3 and OAC are
obtained by running the code released by the authors, the results of PPO are obtained through the
high quality open-source implementation Dhariwal et al. (2017), and the results of SAC are extracted
from the training logs of Haarnoja et al. (2018).

The learning curves of those tasks are shown in Figure 3. It is worth noting that in all of the results we
reported, only 50 actions are sampled and it is sufficient to learn well-performing policies. With a high
sampling efficiency, ZOSPI works well in the challenging environments that have high-dimensional
action spaces such as Ant-v2 and Humanoid-v2. In all the tasks the sample efficiency is consistently
improved over TD3, which is the DPG counterpart of ZOSPI. While a total of 50 sampled actions
should be very sparse in the high dimensional space, we attribute the success of ZOSPI to the
generality of the policy network as well as the sparsity of meaningful actions. For example, even in
the tasks that have high dimensional action spaces, only limited dimensions of the action are crucial.

We provide quantitative comparison in Table 1. We report both the averaged score and the standard
deviation of different methods after 1M step of interactions with the environment. Moreover, we
provide the quantitative results of ZOSPI with 0.5M interactions during training to emphasize on its
high sample efficiency. In 4 out of the 5 environments (except Humanoid), ZOSPI is able to achieve
on-par performance compared to TD3 and SAC, with only half number of interactions. The last
line of Table 1 reports the improvement of ZOSPI over TD3 and SAC respectively. All results are
collected by experimenting with 10 random seeds.

The last plot in Figure 3 shows the ablation study on the sampling range in ZOSPI, where a sampling
method based on a zero-mean Gaussian is applied and we gradually increase its variance from 0.1
to 0.5. We also evaluate the uniform sampling method with radius of 0.5, which is denoted as U
0.5 in the Figure. The results suggest that zeroth-order optimization with local sampling performs
similarly to the policy gradient method, and increasing the sampling range can effectively improve
the performance.

5.2 ABLATION STUDY

In this section, we conduct a series of experiments as the ablation study to evaluate different com-
ponents of ZOSPI. Specifically, we investigate the performance of ZOSPI under different number
of samples, with or without perturbation networks, and Number of Diracs (NoD) used in the policy
network.

Number of Samples Used in ZOSPI The first column of Figure 4 shows the performance of
ZOSPI when using different number of samples. In both environments, more samples lead to better
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Figure 4: Ablation study. The first column (a) shows the performance of our proposed method with
different number of samples; the second column (b) shows the performance difference when ZOSPI is
work with or without the perturbation network; the last column (c) shows the performance difference
between using different number of Diracs when combining MDNs with ZOSPI.

performance, but in the easier task of Hopper, there are only tiny differences, while in the task
of Walker2d, using more than 50 samples noticeably improves the performance. Trading off the
improvements and the computational costs when using more samples, we choose to use 50 samples
for the experiments we reported in the previous section.

Perturbation Network The second column of Figure 4 shows the ablation studies on the perturba-
tion network. While in the simpler control task of Hopper, the perturbation network helps improve
the learning efficiency only a little bit, in more complex task the perturbation network is crucial for
efficient learning. This result demonstrate the effectiveness of the combination of global and local
information in exploiting of the learned value function. In all of our main experiments, we use a
perturbation network with a perturbation range of 0.05.

The Application of MDNs Our ablation studies on the usage of MDNs are shown in the last
column of Figure 4. In the easier task of Hopper, using a larger number of NoD in ZOSPI with
MDN only improves a little but introduce several times of extra computation expense. However, such
multi-modal policies clearly improves the performance in the complex tasks like Humanoid. In our
experiments, we find larger NoD benefits the learning for the Walker2d and Humanoid tasks, and do
not improve performance in the other three environments. More implementation details of ZOSPI
with MDN can be found in Appendix E.

6 CONCLUSION

In this work, we propose the method of Zeroth-Order Supervised Policy Improvement (ZOSPI)
as an alternative approach of policy gradient algorithms for continuous control. ZOSPI improves
the learning efficiency of previous policy gradient learning by exploiting the learned Q functions
globally and locally through sampling the action space. Different from previous policy gradient
methods, the policy optimization of ZOSPI is based on supervised learning so that the learning of
actor can be implemented with regression. Such a property enables potential extensions such as
multi-modal policies, which can be seamlessly cooperated with ZOSPI. We evaluate ZOSPI on five
locomotion tasks, where it remarkably improves the performance in terms of both sample efficiency
and asymptotic performance compared to previous policy gradient methods.
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A VISUALIZATION OF Q-LANDSCAPE

Figure 5 shows the visualization of learned policies (actions given different states) and Q values in
TD3 during training in the Pendulum-v0 environment, where the state space is 3-dim and action space
is 1-dim. The red lines indicates the selected action by the current policy. The learned Q function are
always non-convex and locally convex. As a consequence, in many states the TD3 is not able to find
globally optimal solution and local gradient information may be misleading in finding actions with
the highest Q values.
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Figure 5: Landscape of learned value function of TD3 in the Pendulum-v0 environment (control task
with 1-dim action space so that the state-action values can be easily visualized.)

B MISSING PROOFS IN SECTION 4.2

Proof of Lemma 1. By the properties of Euclidean metric, we have the following lemma.
Lemma 2. Let A ⊂ Rd with Euclidean metric. Any a ∈ A, ∥x∥2 ≤ k. Then there exists a set
{a1, . . . , aN} that is a 2k

√
d

N1/d -covering of N . In other words, for all a ∈ A, ∃i ∈ [N ],

∥a− ai∥2 ≤
2k
√
d

N1/d
.

Define Ai as the set of all the actions that is closest to ai:

Ai
∆
=

{
a ∈ A : i = min{argmin

j∈[N ]

∥aj − a∥2}

}
.

Let P (·) be the probability measure of uniform distribution over AWe have P (Ai) ≥ 1/(2N). Now
since we have n uniform samples from set A. Let N = n/ log2(n/δ).

Lemma 3 (Coupon Collector’s problem). It takes O(N log2(N/δ)) rounds of random sampling to
see all N distinct options with a probability at least 1− δ.

Proof. Consider a general sampling problem: for any finite set N with |N | = N . For any n, whose
sampling probability is p(c), with a probability at least 1− δ, it requires at most

log(1/δ)

log(1 + p(n)
1−p(n) )

for n to be sampled.
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Since log(1 + x) ≥ x− 1
2x

2 for all x > 0, we have

log(1/δ)

log(1 + p(n)
1−p(n) )

≤ log(1/δ)
1

p(n)
1−p(n) −

p(n)2

2(1−p(n))2

= O(log(1/δ)
1− p(n)

p(n)
).

Searching the whole space N with each new element being found with probability N−i
N at round i, it

requires at most

O(

N∑
i=1

log(
N

δ
)

N

N − i
) = O(log2(

N

δ
)N),

with a probability at most 1− δ.

By Lemma 3 We have with a probability at least 1− δ, there exists a sample in each Ai described
above. To proceed, we apply the Lipschitz of the Q function, Lemma 1 follows.

Proof of Theorem 1. Now we proceed to show Theorem 1. We denote 2k
√
dL log1/d(n/δ)

n1/d by σ2.
Our global policy network gives a prediction from a linear model. Let our dataset be {st, a+t }Tt=1.
Let ϵt = a+t − a∗t . Let S = (s1, . . . , sT )

T and a+,a∗, ϵ be the corresponding vector for
(a+t )

T
t=1, (a

∗
t )

T
t=1, (ϵt)

T
t=1. We have any ϵi, ϵj are independent for i ̸= j. We further make an

assumption that E[ϵt] = 0. Then we immediately have E[ϵiϵj ] = 0 as well. This assumption is just
for simplifying the proof, we can show similar results without assume the unbiasedness as the bias
can be bounded.

To proceed, let θ∗ = argminθ Es∥sT θ − a∗(s)∥22.
Since the ERM solution is simply OLS (ordinary least square). We have the estimate

θ̂ = (STS)−1STa+.

We have

θ̂ − θ∗ = (STS)−1ST (a∗ − Sθ∗) + (STS)−1ST ϵ.

Since ∥ϵt∥2 ≤ σ2, we have Var(ϵt) ≤ σ2. We observe that

Var((STS)−1ST ϵ) ≤ σ2((STS)−1) = O(σ2p/T ).

The generalization error is given by

Es∥sT θ̂ − a∗(s)∥22
≤ Es∥sT θ̂ − sT θ∗∥22 + Es∥sT θ∗ − a∗(s)∥22

= O
(
σ2p

T
+ Es∥sT (STS)−1ST (a∗ − Sθ∗)∥22 + Es∥sT θ∗ − a∗(s)∥22

)
= Õ

(
σ2p

T
+ Es∥sT θ∗ − a∗(s)∥22

)
.
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C ONE-STEP ZEROTH-ORDER OPTIMIZATION WITH CONSISTENT ITERATION

Algorithm 2 One-step Zeroth-Order Optimization with Consistent Iteration
Require
Objective function Q, domain A, current point a0, number of local samples n1, number of global
samples n2, local scale η > 0 and step size h, number of steps m.
for t = 1, . . . n2 do

Globally sampling
Sample a point uniformly in the entire space by

at0 ∼ UA
where UA is the uniform distribution over A.
for i = 1, . . . ,m do

Locally sampling
Sample n1 points around at,i−1 by

ãj = at,i−1 + µej for ej ∼ N (0, Id), j = 1, . . . n1,

where N (0, Id) is the standard normal distribution centered at 0.
Update
Set at,i = at,i−1 + h(argmaxa∈{ãj} Q(a)− at,i−1)

end for
end for
return maxa∈{atm}n2

t=1
Q(a).

D PSEUDO CODE OF ZOSPI

Algorithm 3 Zeroth-Order Supervised Policy Improvement (ZOSPI)
1: Require
2: Number of epochs M , size of mini-batch N , momentum τ > 0.
3: Random initialized policy network πθ, target policy network πθ′ , perturbation network πϕ,

θ′ ← θ.
4: Two random initialized Q networks, and corresponding target networks, parameterized by

w1, w2, w
′
1, w

′
2. w′

i ← wi.
5: Empty experience replay buffer D = {}.
6: for iteration = 1, 2, ... do
7: for t = 1, 2, ..., T do
8: # Interaction
9: Rollout with at = πθt(st) + πϕt(st, πθt(st)), store transition (st, at, st+1, rt) in D.

10: for epoch = 1, 2, ...,M do
11: Sample a mini-batch of transition tuples D′ = {(stj , atj , stj+1, rtj )}Nj=1.
12: # Update Q
13: Calculate target Q value yj = rtj +mini=1,2 Qw′

i
(stj+1, πθ′(stj )).

14: Update wi with one step gradient descent on the loss
∑

j(yj −Qwi(stj , atj ))
2, i = 1, 2.

15: # Update π
16: Call Algorithm 1 for policy optimization to update θ and ϕ.
17: end for
18: θ′ ← τθ + (1− τ)θ′; w′

i ← τwi + (1− τ)w′
i

19: end for
20: end for
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E IMPLEMENTATION DETAILS

E.1 NETWORK STRUCTURE AND HYPER-PARAMS

In our experiments, we follow Fujimoto et al. (2018a) to use a 3-layer MLP with 256 hidden units
for both critic and actor networks. We also follow Fujimoto et al. (2018a) to use 25000 timesteps for
worm-up and use a batch-size of 256 : 1 training-interaction proportion during training.

E.2 MIXTURE DENSITY NETWORKS

Our implementation of ZOSPI with MDN is based on neural network with multiple outputs. For
MDN with K Gaussian mixture outputs, the neural network has 3 ×K-dim output. The first K-
dim units are normalized with softmax activation as the probability of selecting the Gaussians, the
following K-dim units are corresponding K mean values of the Gaussians, and the last K-dim units
are standard deviation of the K Gaussians. In our experiments, we use Diracs instead of Gaussians
for parameterization. Therefore, our networks output 2×K-dim units for each action dimension,
where the first K-dimensions denote the probabilities and the latter K-dimensions denote the mean
values. In our experiments, we use K = 1 for Hopper, HalfCheetah and Ant, K = 5 for Walker2d,
and K = 5 for Humanoid. (K = 5 and K = 10 achieve on-par performance for the Humanoid
environment, though the K = 10 setting spend roughly one more time computational expense).

More implementation details are provided with the code in the supplementary material.

E.3 RUNNING TIME OF ZOSPI

We conduct our experiments with 8 GTX TITAN X GPUs and 32 Intel(R) Xeon(R) E5-2640 v3 @
2.60GHz CPUs. The wall clock time of our proposed method is roughly 3-times slower than running
TD3, without application of MDNs (i.e., NoD = 1). It takes roughly 20 hours to train Hopper with
10 seeds, and takes about 120 hours to train Humanoid when NoD = 10 with 10 seeds.

F BETTER EXPLORATION WITH BOOTSTRAPPED NETWORKS

Sample efficient RL requires algorithms to balance exploration and exploitation. One of the most
popular way to achieve this is called optimism in face of uncertainty (OFU) Brafman and Tennenholtz
(2002); Jaksch et al. (2010); Azar et al. (2017); Jin et al. (2018), which gives an upper bound on Q
estimates and applies the optimal action corresponding to the upper bound. The optimal action at is
given by the following optimization problem:

argmax
a

Q+(st, a), (6)

where Q+ is the upper confidence bound on the optimal Q function. A guaranteed exploration
performance requires both a good solution for (6) and a valid upper confidence bound.

While it is trivial to solve (6) in the tabular setting, the problem can be intractable in a continuous
action space. Therefore, as shown in the previous section, ZOSPI adopts a local set to approximate
policy gradient descent methods in the local region and further applies a global sampling scheme to
increase the potential chance of finding a better maxima.

As for the requirement of a valid upper confidence bound, we use bootstrapped Q networks to address
the uncertainty of Q estimates as in Osband et al. (2016; 2018); Agarwal et al. (2019); Kumar et al.
(2019); Ciosek et al. (2019). Specifically, we keep K estimates of Q, namely Q1, . . . QK with
bootstrapped samples from the replay buffer. Let Q = 1

K

∑
k Qk(s, a). An upper bound Q+ is

Q+(s, a) = Q+ ϕ

√
1

K

∑
k

[Qk(s, a)−Q]2, (7)

where ϕ is the hyper-parameter controlling the failure rate of the upper bound. Another issue is
on the update of bootstrapped Q networks. Previous methods Agarwal et al. (2019) usually update
each Q network with the following target rt + γQk (st+1, πθt(st+1)) , which violates the Bellman
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equation as πθt is designed to be the optimal policy for Q+ rather than Qk. Using πθt also introduces
extra dependencies among the K estimates. We instead employ a global random sampling method to
correct the violation as

rt + γ max
i=1,...n

Qk (st+1, ai) , a1, . . . an ∼ UA.

The correction also reinforces the argument that a global random sampling method yields a good
approximation to the solution of the optimization problem (6). The detailed algorithm is provided in
Algorithm 4 in Appendix F.1.

F.1 ALGORITHM 4: ZOSPI WITH BOOTSTRAPPED Q NETWORKS

Algorithm 4 ZOSPI with UCB Exploration
Require

• The number of epochs M , the size of mini-batch N , momentum τ > 0 and the number of Bootstrapped
Q-networks K.

• Random initialized policy network πθ1 , target policy network πθ′1
, θ′1 ← θ1.

• K random initialized Q networks, and corresponding target networks, parameterized by wk,1, w
′
k,1,

w′
k,1 ← wk,1 for k = 1, . . . ,K.

for iteration = 1, 2, ... do
for t = 1, 2, ..., T do
# Interaction
Run policy πθ′t

, and collect transition tuples (st, at, s
′
t, rt,mt).

for epoch j = 1, 2, ...,M do
Sample a mini-batch of transition tuples Dj = {(s, a, s′, r,m)i}Ni=1.
# Update Q
for k = 1, 2, ...,K do

Calculate the k-th target Q value yki = ri +maxl Qw′
k,t

(s′i, a
′
l), where a′

l ∼ UA.

Update wk,t with loss
∑N

i=1 mik(yki −Qw′
k,t

(si, ai))
2.

end for
# Update π
Calculate the predicted action a0 = πθ′t

(si)
Sample actions al ∼ UA
Select a+ ∈ {al} ∪ {a0} as the action with maximal Q+(st, a) defined in (7).
Update policy network with Eq.(2).

end for
θ′t+1 ← τθt + (1− τ)θ′t.
w′

k,t+1 ← τwk,t + (1− τ)w′
k,t.

wk,t+1 ← wk,t; θt+1 ← θt.
end for

end for

G GAUSSIAN PROCESSES FOR CONTINUOUS CONTROL

Different from previous policy gradient methods, the self-supervised learning paradigm of ZOSPI
permits it to learn both its actor and critic with a regression formulation. Such a property enables the
learning of actor in ZOSPI to be implemented with either parametric models like neural networks
or non-parametric models like Gaussian Processes (GP). Although plenty of previous works have
discussed the application of GP in RL by virtue of its natural uncertainty capture ability, most of
these works are limited to model-based methods or discrete action spaces for value estimation Kuss
and Rasmussen (2004); Engel et al. (2005); Kuss (2006); Levine et al. (2011); Grande et al. (2014);
Fan et al. (2018). On the other hand, ZOSPI formulates the policy optimization in continuous control
tasks as a regression objective, therefore empowers the usage of GP policy in continuous control
tasks.

As a first attempt of applying GP policies in continuous control tasks, we simply alter the actor
network with a GP to interact with the environment and collect data, while the value approximator is
still parameterized by a neural network. We leave the investigation of better consolidation design in
future work.

17



Under review as a conference paper at ICLR 2023

+10

+10

+10

+10

(a) Env. and the optimal policy

0 50000 100000 150000 200000 250000 300000
Interactions

0

100

200

300

400

500

600

Re
wa

rd

TD3
ZOSPI
SAC
DDPG
PPO
ZOSPI UCB
ZOSPI GP

(b) Performance comparison (c) PPO

(d) DDPG (e) TD3 (f) SAC

(g) ZOSPI (h) ZOSPI-UCB (i) ZOSPI-GP

Figure 6: Visualization of learned policies on the FSM environment. (a) the FSM environment and
its optimal solution, where the policy should find the nearest reward region and move toward it; (b)
learning curves of different approaches; (c)-(i) visualize the learned policies and corresponding value
functions. We run multiple repeat experiments and show the most representative and well-performing
learned value function and policy of each method.

H EXPERIMENTS ON THE FOUR-SOLUTION-MAZE.

The Four-Solution-Maze (FSM) environment is a diagnostic environment where four positive reward
regions with a unit side length are placed in the middle points of 4 edges of a N ×N map. An agent
starts from a uniformly initialized position in the map and can then move in the map by taking actions
according to the location observations (current coordinates x and y). Valid actions are limited to
[−1, 1] for both x and y axes. Each game consists of 2N timesteps for the agent to navigate in the
map and collect rewards. In each timestep, the agent will receive a +10 reward if it is inside one of
the 4 reward regions or a tiny penalty otherwise. For simplicity, there are no obstacles in the map,
the optimal policy thus will find the nearest reward region, directly move towards it, and stay in the
region till the end. Figure 6(a) visualizes the environment and the ground-truth optimal solution.

Although the environment is simple, we found it extremely challenging due to existence of multiple
sub-optimal policies that only find some but not all four reward regions. We do not conduct grid
search on hyper-parameters of the algorithms compared in our experiments but set them to default
setting across all experiments. Though elaborated hyper-parameter tuning may benefit for certain
environment.

On this environment we compare ZOSPI to on-policy and off-policy SOTA policy gradient methods
in terms of the learning curves, each of which is averaged by 5 runs. The results are presented in
Figure 6(b). And learned policies from different methods are visualized in Figure 6(c)-6(i). For each
method we plot the predicted behaviors of its learned policy at grid points using arrows (although
the environment is continuous in the state space), and show the corresponding value function of its
learned policy with a colored map. All policies and value functions are learned with 0.3M interactions
except for SAC whose figures are learned with 1.2M interactions as it can find 3 out of 4 target
regions when more interactions are provided.

We use 4 bootstrapped Q networks for the upper bound estimation in consideration of both better
value estimation and computational cost for ZOSPI with UCB. And in ZOSPI with GP, a GP model is
used to replace the actor network in data-collection, i.e.,exploration. The sample efficiency of ZOSPI
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is much higher than that of other methods. Noticeably ZOSPI with UCB exploration is the only
method that can find the optimal solution, i.e., a policy directs to the nearest region with a positive
reward. All other methods get trapped in sub-optimal solutions by moving to only part of reward
regions they find instead of moving toward the nearest one.
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