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ABSTRACT

This paper explores the emergence of in-context learning (ICL) in reinforcement
learning (RL) environments, focusing on how transformers can surpass Bayesian
inference limitations. We investigate the critical role of task diversity in enabling
transformers to develop advanced learning algorithms for RL. To overcome the
limitations of existing RL environments in providing sufficient task variety, we in-
troduce a novel benchmark based on the Omniglot dataset, offering unprecedented
task diversity. Through extensive experimentation, we demonstrate that increasing
task diversity leads to significant improvements in transformers’ ability to gener-
alize to unseen tasks. We examine the effects of model capacity, regularization
techniques, and action representation on ICL performance. Our findings reveal
that larger model capacities and specific augmentation strategies contribute to en-
hanced ICL capabilities. Notably, we observe a clear transition from Bayesian
inference-like behavior to more advanced learning paradigms as task diversity
increases. This research provides crucial insights into the factors driving general-
izable in-context reinforcement learning in transformers and underscores the im-
portance of designing RL environments with qualitatively diverse tasks to unlock
the full potential of ICL in RL scenarios.

1 INTRODUCTION

Transformers (Vaswani et al., 2017), with their widespread applications across numerous fields and
substantial evidence of effectiveness, have become a cornerstone in modern machine learning. These
models, particularly when pretrained on extensive text corpora, have demonstrated remarkable pro-
ficiency in transferring knowledge to related downstream tasks through finetuning on smaller, task-
specific datasets (Devlin et al., 2018; Howard & Ruder, 2018; Radford et al., 2019). A striking
capability emerges when these pretrained transformers are exposed to training datasets character-
ized by high task diversity: they adapt to new tasks directly through the examples in their context,
without the need for further training (Brown et al., 2020). This phenomenon, termed in-context
learning (ICL), contrasts starkly with other settings such as supervised learning (SL) and reinforce-
ment learning (RL), where acquiring large, diverse datasets poses a significant challenge (Levine
et al., 2020).

The exploration of in-context learning within supervised learning, particularly in regression and
classification, has been extensively documented (Kirsch et al., 2022; Garg et al., 2022; Zhang et al.,
2023; Wies et al., 2023; Von Oswald et al., 2023; Li et al., 2023; Bai et al., 2023). It has been pro-
posed that transformers might implicitly learn various learning algorithms, such as ridge regression,
gradient descent, and Bayesian inference, influenced by factors like task diversity and transformer
architecture (Xie et al., 2021; Akyürek et al., 2022; Von Oswald et al., 2023). Moreover, train-
ing regimes that deviate from Bayesian principles have been observed with increased task diversity
(Raventós et al., 2023) or the distribution of training data (Chan et al., 2022).

In the realm of reinforcement learning, in-context learning has garnered attention, particularly where
models are prompted with trajectories or timestep transitions in the hope of learning from demon-
strations. Signs of ICL in reinforcement learning has been shown to emerge through direct training
(Melo, 2022), prompt tuning (Hu et al., 2023), supervised training (Lee et al., 2023), and leveraging
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pretrained large language models (Reid et al., 2022; Li et al., 2022). Team et al. (2023) studies task
diversity in a closed-source domain where they do not share their trained models nor training code.
Furthermore, its online training of its agents renders its results unrelated for many domains that can
mostly focus on offline training (e.g., robotics). Lu et al. (2024) is another work that focuses on
online training. However, they also note that they achieve limited generalization to unseen control
tasks. Kirsch et al. (2023) train their agent as more of a learning-to-RL style on offline trajectories.
Their choice of simple augmentation to increase task diversity again results in limited performance
on unseen tasks. Raparthy et al. (2023) shows transformers trained on a sequence of expert trajecto-
ries can have limited generalization to unseen game levels. Furthermore, this work does not show the
scaling with massive task diversity. Since they only have at most 12-16 tasks, they cannot reliably
show the scaling as we can show in our experiments for more than 16k tasks. Despite these efforts,
a comprehensive understanding of the generalization capabilities of these models, particularly the
factors contributing to such capabilities, remains elusive. While the Bayesian inference regime has
been achieved in some instances (Laskin et al., 2022; Lee et al., 2023; Lin et al., 2023), the gen-
eralization to unseen tasks continues to be a significant hurdle (Li et al., 2022; Liu et al., 2023).
Therefore, as far as we are aware, our work is the first that can show this transition with respect to
the number of tasks used in the pretraining.

In RL, agents learn by interacting with an environment, where they must make a series of deci-
sions that affect future states and rewards (Sutton & Barto, 2018). This dynamic nature introduces
complexities such as temporal credit assignment, where agents must learn which actions lead to
rewards over time (Mnih et al., 2015), and the exploration-exploitation dilemma (Auer et al., 2002;
Bellemare et al., 2016), which requires balancing the discovery of new strategies against optimizing
known ones. The context in RL, therefore, involves understanding not just the immediate outcomes
of actions, but also their long-term effects and dependencies (De Asis et al., 2018). This makes in-
context learning in RL significantly more challenging, as models must infer not only the immediate
consequences of actions but also their impact on future states and rewards. Meta-RL shows that
learning new but similar environments can still be quite challenging even with the ability to finetune
the model. Therefore, if the environments are separate enough, we cannot hope to learn new policies
for those environments quickly in the in-context RL setting as well. Therefore, we utilize a common
idea in the NLP domain for LLMs, prompting with demonstrations. In ICRL, the demonstrations
are expert trajectories and the hope is that the pretrained model will be able to learn from those
to more quickly adapt to new environments. ICRL has several desired advantages over Meta-RL.
Firstly, the model does not need to be finetuned which is much more computationally expensive
than inferencing. Secondly, Meta-RL typically requires many episodes within the new environment
to adapt, whereas ICRL has the possibility to learn from a few trajectories, and in our experiments
section we show this to be true.

A crucial challenge we identify is the scarcity of task diversity in current RL environments. Our pre-
liminary investigations revealed that simple modifications in environments such as MuJoCo, such
as altering limb lengths and weights or setting different goal velocities, fall short in providing suf-
ficient task diversity for learning new behaviors when prompted. This observation has driven us to
develop a new RL environment with a vastly greater range of tasks. Our environment is designed to
probe the question, “What enables in-context reinforcement learning?” Through extensive experi-
mentation, we observe significant factors that lead to the emergence of non-Bayesian learning in RL
settings. Alongside increasing task diversity, we also explore additional dimensions that contribute
to this phenomenon, including model architecture and regularization techniques.

A critical discovery of our study is the intricate relationship between task diversity and the per-
formance of transformers in RL settings. When the task diversity is limited, transformers tend to
emulate a form of Bayesian inference or posterior sampling based predominantly on the tasks they
have encountered. This approach, while effective in known scenarios, leads to suboptimal outcomes
when dealing with out-of-distribution, unseen tasks. However, our research reveals a significant shift
in this pattern as we increase task diversity. With a broader spectrum of tasks during the pretraining
phase, transformers demonstrate remarkable improvements in handling unseen tasks, exhibiting en-
hanced adaptability and efficiency. This observation is not only pivotal in understanding transformer
behavior in RL environments but also illuminates a new pathway for designing RL environments.
By prioritizing task diversity, we can develop environments that nurture more robust and versatile
agents, capable of superior performance in a wide array of scenarios.
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Transformer

Task1

in-context behavior learning

Obs1 Act1 Obs2 Act2 ... Task2 Obs1 Act1 Obs2 Act2 ...

Episode 1 Episode 2

... Taskn Obs1 Act1 Obs2 Act2 ...

Episode n

Act1 Act2 Act1 Act2 Act1 Act2

Figure 1: The transformer model is pretrained on multiple episodes autoregressively only for the
actions. In each observation, the model predicts the next action in that episode. Rewards for the
previous timesteps are included in the observations.

2 RELATED WORK

Meta-reinforcement learning The aim of meta-learning, also referred to as learning-to-learn, is
designing techniques that yield models that can quickly adapt to unseen tasks (Schmidhuber, 1987;
Finn et al., 2017). In reinforcement learning, new tasks can differ by transition probabilities, reward
functions, state-action spaces or constraints (Mitchell et al., 2021; Zintgraf et al., 2021; Khattar et al.,
2022). The possible ways of adapting meta models include finetuning (Gupta et al., 2018; Sel et al.,
2023b; Padalkar et al., 2023), using regressive models to extract latent features from demonstrations
(Zintgraf et al., 2019; Dorfman et al., 2021; Gehring et al., 2022; Khattar & Jin, 2023) or Bayesian
inference (Humplik et al., 2019; Rothfuss et al., 2021).

In-context learning. ICL is a form of meta-learning more attributed to autoregressive models such
as RNNs (Rumelhart et al., 1986; Hochreiter & Schmidhuber, 1997) and transformers (Vaswani
et al., 2017) underlining the parameter-update-free version of meta-learning. These models, when
trained on sufficiently diverse and large datasets, can learn new tasks only by being provided exam-
ples into their context (Brown et al., 2020; Wei et al., 2022; Sel et al., 2023a). Transformers can
also portray the ability to infer tasks when prompted with trajectories (Laskin et al., 2022; Xu et al.,
2022; Lee et al., 2023). In this paper, we investigate the emergence of in-context out-of-distribution
reinforcement learning through autoregressive pretraining.

3 IN-CONTEXT RL SETTING

We focus on some task distribution Ppre on an infinite set of finite-horizon Markov decision pro-
cesses (MDP) T . Each task T ∈ T is defined by the tuple (S,A, TT , RT , ρT , H), where S denotes
the state space, A is the action space, the transition function T : S×A → ∆(S), the reward function
R : S × A → ∆(R), ρ is the initial state distribution and H represents the finite horizon. For any
MDP T , we denote its optimal policy by πT : S → ∆(A). In the rest of the paper, we use tasks and
MDPs interchangeably.

3.1 PRETRAINING.

Let ϕ be a distribution on tasks T . The training dataset distribution Dϕ
pre consists of n concatenated

trajectories D = (τ1, . . . , τn), where each trajectory τk = {(sj , aj , rj , s′j)}
H−1
j=0 is sampled in task

T ∼ ϕ with its optimal policy πT for k ∈ [n]. Also let HD
k = {(sj , aj , rj , s′j)}kj=0 denote the

partial timesteps on the collection of n trajectories D, where k ∈ [nH − 1] with H−1 = ∅.

We represent the transformer model as M that take in the current state as well as the previous
timesteps to give a distribution over the action space. We train its parametrization Mθ on Dϕ

pre,
where θ ∈ Θ and Θ is the set of possible parameters, e.g., transformer weights:

min
θ∈Θ

ED∼Dϕ
pre(·)

∑
(Hj−1,sj ,aj)∈D

ℓ(Mθ(·|Hj−1, sj), aj), (1)
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where ℓ can be chosen to be the log likelihood loss function, − log(Mθ(aj |Hj−1, sj)). Now, we
investigate two cases: true-diversity pretraining with ϕ = Ppre and finite-diversity pretraining with
ϕ : X → [0, 1] where X ⊆ T and finite.

3.1.1 TRUE-DIVERSITY PRETRAINING

In true-diversity pretraining case, we assume the pretraining dataset task distribution ϕ is ex-
actly the pretraining task distribution Ppre. Assuming that the pretrained model is consistent, i.e.,
Dϕ

pre(aj |Hj−1, sj) = Mθ(aj |Hj−1, sj), we show that the model chooses its actions in a particular
state, by posterior sampling from T according to the partial trajectory in its context and executing
optimal policy for the current state.

Bayesian Inference Also known as Thompson sampling or posterior sampling, can be used un-
der uncertain in MDPs although first being originated for multi-armed bandits (Thompson, 1933).
Briefly, the idea is to maintain a posterior distribution over the tasks, and then act optimally for the
task you sample from that distribution. After, observing the new information such as the reward and
the next state, the beliefs over the MDPs are updated accordingly.
Theorem 3.1. Assume that we use the log likelihood loss function in the pretraining objective
equation 1 over the dataset DPpre

pre . If the pretrained transformer model Mθ is consistent, i.e.,
DPpre

pre (aj |Hj−1, sj) = Mθ(aj |Hj−1, sj), then we have

P (aps = a|Ht−1, st) = Mθ(a|Ht−1, st), (2)

for all a ∈ A, and for all Ht−1, st generated in some task T ∼ Ppre(·) by unrolling its optimal
policy, where aps is the action chosen according to optimal policy for the sampled MDP from the
updated belief distribution according to the partial trajectory Ht−1.

Theorem 3.1 shows that this pretraining setup will result in a Bayesian inference decision making
when the pretraining dataset is generated by the exact pretraining task distribution. This is encour-
aging, because the transformer model can learn to reason under the uncertainty of the current MDP
it is in, only by supervised pretraining on the true task diversity.

3.1.2 FINITE-DIVERSITY PRETRAINING

We are also interested in the case where we have limited number of tasks, which is much more
common in practical scenarios. Let us update our pretraining dataset Dϕ

pre by assuming that it is
generated in N tasks X = T1, · · · , TN and their optimal policies π1, . . . , πN , respectively. Then ϕ
is a distribution over this finite set X . This time it is not straightforward to know how the model
would behave when prompted with context from tasks that do not appear in Dpre. One possible
option is Bayesian inference on this limited number of tasks:

MF−PS
θ (a|Ht−1, st) =

N∑
i=1

πi(a|st) ·
∏t−1

j=0 πi(aj |sj)Ri(rj |sj , aj)Ti(s
′
j |sj , aj)∑N

k=1

∏t−1
j=0 πk(aj |sj)Rk(rj |sj , aj)Tk(s′j |sj , aj)

, (3)

for all a ∈ A and any task T . Despite this model being able to identify the current task if it is seen
during pretraining given enough trajectories, it can still be arbitrarily bad for a general set of tasks
T . We see in Figure 2 that when the task diversity is low, the pretrained transformer model chooses
its actions very similarly to equation 3.

A more effective strategy is posterior sampling with an estimated prior P̂pre, that is non-zero for any
task T if Ppre(T ) is also non-zero:

ME−PS
θ (a|Ht−1, st) =

∫
T ′∈T

πT ′(a|st)ĝ(T ′|Ht−1)dT ′, (4)

where ĝ is the posterior over T after observing Ht−1:

ĝ(T |Ht−1) =

∏t−1
j=0 πT (aj |sj)RT (rj |sj , aj)TT (s

′
j |sj , aj)P̂pre(T )∫

T ′∈T
∏t−1

j=0 πT ′(aj |sj)RT ′(rj |sj , aj)TT ′(s′j |sj , aj)P̂pre(T ′)dT ′
· (5)
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Figure 2: Transformer trained autoregressively on
policy trajectories to run at 1 m/s. When prompted
with out-of-distribution data (ICRL-OOD), it per-
forms Bayesian Inference only on seen tasks.

A notable aspect of this strategy is its adaptabil-
ity to the quality of policies encountered dur-
ing testing. Even when presented with trajec-
tories from suboptimal policies, the model can
leverage environmental cues—such as reward
signals and transition dynamics—to discern the
underlying task structure and infer the optimal
policy. This result is distinguished from pure
imitation learning paradigms. Instead, it em-
bodies a form of reinforcement learning where
the pretrained transformer has the potential to
surpass the performance of the demonstrator
policy used for prompting. However, we want
to underline that the prompted policy is still im-
portant, and it being optimal or close to optimal
results in better task recognition, since under
this few-shot setting, only rewards or transition
dynamics are not enough to learn quickly. This
phenomena is also dominant in language pretrained transformers (Min et al., 2022). In the remainder
of this section, we analyze the in-context reinforcement learning behaviors of MF−PS

θ and ME−PS
θ .

3.2 REGRET IMPLICATIONS

A natural choice for the performance of an RL policy µ is total reward difference between the
optimal policy and itself on task T , which can be denoted by the single-episode regret RT (µ):

RT (µ) := Es0∼ρT [V
∗
T ,0(s0)− V µ

T ,0(s0)], (6)

where V ∗
T ,0(s) and V π

T ,0(s) are the expected value functions at state s of task T at the first time step
of the optimal policy and µ, respectively.

Expected n-th episode regret. Since the models MF−PS
θ and ME−PS

θ can be prompted with
trajectories, we can also consider the expected single-episode regret over the pretraining tasks after
being prompted with some number of trajectories, which we denote by Rn

T :

Rn
T (π) = ET ∼Ppre

Eτn∼Dpre(·|T )Es0∼ρT [V
∗
T ,0(s0)− V

π(τn)
T ,0 (s0)], (7)

where τn = (τ1, . . . , τn). Now we can establish the relation between the finite posterior sampling
and the posterior sampling with estimated prior with the following result.

Theorem 3.2. Assume that |RT (s, a)| ≤ rmax for s, a and T . Then, the relation between the
average n-th episode regret of MF−PS

θ and ME−PS
θ for the worst family of tasks T is:

Rn
T (ME−PS

θ ) ≤ O

(
H|S|rmax

√
|A| log(|S||A|)√
n

)
≤ 2Hrmax ≤ Rn

T (MF−PS
θ ). (8)

The result in Theorem 3.2 indicates that posterior sampling on the finite pretraining tasks can exhibit
arbitrarily bad performance, due to only being able to represent some weighted version of the pre-
training policies. When presented with a new task, this estimation can lead to suboptimalities that
cannot be handled by increasing the in-context trajectories. On the other hand, posterior sampling
with an estimated prior covering the task space, does benefit from increased in-context examples.
Furthermore, this result is independent on the quality of the prior at estimating the true pretraining
distribution.

In cases where the test task appears in the pretraining tasks, we can have a similar result to Theorem
3.2 for MF−PS

θ as well. This can be easily seen by setting the true tasks T to the tasks in the
pretraining dataset. Then, it directly follows that finite posterior sampling is efficient in this case.
Since the posterior sampling improves with more examples, we can also bound that worst case
performance difference between two methods.

5
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Corollary 3.3. Assume that task T is in the pretraining of MF−PS
θ . Then, the n-th episode expected

performance between MF−PS
θ and ME−PS

θ can be bounded as:

Es0∼ρT

[
V

ME−PS
θ

T ,0

]
≥ Es0∼ρT

[
V

MF−PS
θ

T ,0

]
−O

(
H|S|

√
|A| log(|S||A|)√

n

)
. (9)

4 EXPERIMENTS

In this section, we embark on a comprehensive exploration to investigate the impact of pretraining
task diversity on the generalization capabilities of transformers in reinforcement learning (RL) en-
vironments, especially concerning their adaptability to tasks not encountered during training. This
inquiry is crucial for advancing our understanding of in-context learning (ICL) within the domain of
RL.

Our experimental framework is designed to address a fundamental question: “How does increas-
ing task diversity in RL environments enable transformers to surpass the limitations of traditional
learning paradigms?” To explore this, we recognized the necessity of an RL environment capable
of presenting a vast array of distinct tasks and allowing control over their diversity. However, our
attempts to find or adapt existing RL environments such as MuJoCo (Todorov et al., 2012), follow-
ing a number of prior meta-RL works that studied quick adaptation in similar settings (Nagabandi
et al., 2018; Rakelly et al., 2019; Yu et al., 2020; Pong et al., 2022), proved inadequate. While these
environments permit the creation of numerous variations by minor modifications in reward functions
or agent model configurations, they fall short in generating the level of task diversity required for
our study, leading to suboptimal generalization in unseen tasks during testing (see Figure 2).

Acknowledging this gap, we repurposed the Omniglot dataset, primarily utilized in supervised learn-
ing tasks, to develop a novel RL benchmark. This benchmark is tailored to provide the extensive task
variety essential for our question, enabling us to thoroughly examine how task diversity influences
transformers’ ability to learn and generalize beyond their training experiences. Our experiments
delve into multiple facets of this phenomenon. We meticulously evaluate how transformers, tradi-
tionally bounded by Bayesian inference, evolve in their learning capabilities as they are exposed
to an increasingly diverse range of tasks. This is akin to showing the transition from MF−PS

θ to
ME−PS

θ , where the latter might have been seen as unrealistic. We also investigate the effects of
model architecture, regularization techniques, and other relevant factors on this learning process.
The effect of action representation, such as continuous or discrete inputs is explored in Appendix
B.1 due to space constraints.

4.1 NOVEL ICRL ENVIRONMENT

The Omniglot dataset (Lake et al., 2019) serves as the foundation for our novel in-context reinforce-
ment learning (ICRL) environment. This dataset is a rich collection of over 19,000 handwritten
character images derived from a diverse range of alphabets and contributors. A unique feature
of Omniglot is the inclusion of ‘strokes’ data, which provides a sequential representation of how
each character is written. Leveraging this aspect, we have transformed Omniglot into an innovative
benchmark for few-shot ICRL.

In our setup, we select n examples from each character along with their corresponding stroke se-
quences. These are then concatenated to form the input for our transformer model. The primary
task in this environment is to learn the writing of a character based on provided demonstrations.
The action space for the agent involves deciding where to place strokes on a canvas decided by the
task transition dynamics, and the reward function is defined as the negative Euclidean distance from
the agent’s action to the ground truth stroke placement. Therefore, it is not possible for an agent to
write a character correctly when they only view the goal state. However, with provided demonstra-
tions, the learner can understand the transition dynamics together with the exact stroke sequence to
correctly write any new character. A key aspect of our environment is the control over task diver-
sity, which we manage by selecting specific characters for inclusion. As we increase the variety of
characters, the diversity of pretraining tasks correspondingly expands. This approach allows us to
systematically investigate how varying levels of task diversity impact the in-context learning abilities
of our models.

6
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We assess the in-context learning capacity of the models by examining their performance on holdout
classes—character sets that were not seen during training, directly taken from the evaluation split of
the Omniglot dataset.

Trajectory representation. The task description, which is the goal image in our environment, is
added as a prefix to the time step inputs to the transformer as shown in Figure 1.

4.2 MODEL ARCHITECTURE

We use a GPT-2 transformer (Radford et al., 2019) with head and embedding layers removed. Ad-
ditionally, for processing images of handwritten characters, we finetune a pretrained ResNet model
(He et al., 2016). Our approach utilizes projection matrices for both the input and output actions
to match the dimensions of these different modalities, a technique employed commonly (Liu et al.,
2024). We show these parts in Figure 1, together with the trajectories are represented.

Image Embeddings. Our methodology incorporates a finetuned, pretrained ResNet model with
configurations of 18, 34, and 50 layers (He et al., 2016). The original pre-trained model lacked the
precision needed for accurately embedding the specific locations of strokes within the images. To
address this, we adopted a scaled-down version of our training setup. This involved only four inputs
to the entire model, consisting of two one-step horizon trajectories with corresponding images and
a random point within the strokes, along with another image matched to the same corresponding
image. Through this fine-tuning process, the ResNet model effectively learns to identify and extract
stroke locations from the images.

Action Embeddings. Despite the prevalence of individual tokenization of action dimensions in
existing literature (Janner et al., 2021; Brohan et al., 2022), we found no significant advantage in
applying this technique to our framework (see Figure 9). Instead, we implement a straightforward
projection layer to acquire the action embeddings. This involves the use of a single-layer perceptron
without an activation function.

Transformer. For our transformer model, we select a GPT-2 architecture (Radford et al., 2019)
and modify it by incorporating 4 to 16 layers with embedding dimensions ranging from 16 to 1024.
We exclude the original embedding and token head layers and introduce projection layers tailored
for image embeddings, input actions, and output actions. A decision was made against utilizing a
pre-trained GPT-2 model. The primary reason is the unavailability of pre-trained GPT-2 models in
the various layer and embedding dimension formats required for our study.

Action heads. We again employ a single-layer perceptron, this time to down-project the final
embedding produced by the transformer to derive the actions. The Mean Squared Error (MSE) loss
is used, as it allows us to directly obtain continuous actions without the need for tokenization per
each action dimension. Other possible choices could include per action dimension outputs (Janner
et al., 2021) or diffusion action heads (Chi et al., 2023).

4.3 TRAINING DETAILS

Unless specified otherwise, we utilize the AdamW optimizer (Loshchilov & Hutter, 2017) com-
bined with a cosine learning decay schedule (Loshchilov & Hutter, 2016). This schedule includes
1000 warmup steps and reaches a maximum learning rate of 1e-4 over 50,000 training steps. Each
sequence incorporates two episodes. For fine-tuning the ResNet models, we employ the AdamW
optimizer with a constant learning rate of 1e-5 over 10,000 training steps. While a single consumer-
grade GPU with 10 GB of VRAM suffices for the training of all models mentioned (albeit by using
gradient accumulation, we expedited our experiments using an 8x H100 node.

4.4 RESULTS

For the rest of this section, we provide extensive set of results with various ablation studies to
investigate the effects of each important components to in-context reinforcement learning.

7
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Figure 3: Training loss (top) and testing loss (bottom) for GPT-2 transformer with a layer count
of 8 and embedding size of 1024. The episode 2 performance represents the in-context learning
capability of the model, by transferring knowledge from episode 1.

4.4.1 EFFECT OF TASK DIVERSITY FOR ICRL

To investigate the effect of task diversity, we varied the number of tasks (64, 128, ..., 16384) while
maintaining a constant layer count and embedding size. We also evaluate the model in fixed intervals
on the holdout tasks. We provide the overall training loss during training for both training and test
tasks in Figure 3. In addition, to more clearly observe the transfer to zero-shot and one-shot setting,
we also give the episodic performance for the first and the second episodes. For tasks up to N = 512,
we see hints of in-context learning up to around 5,000-8,000 gradient steps, after which training loss
continues to drop while test loss steadily increases until the end of training. At N = 1024, we see a
sharp change in in-context learning capability of the model although it is still prone to overfitting by
further training. Starting with N = 2048 and on, test loss improves throughout the training together
with the training.

Zero-shot performance shown in the first episode in Figure 3, indicates small gains as we increase
the number of tasks. This is due to the nature of the environment, where the the task description
is not enough to get a good reward in the environment while still being integral part for the task.
Together with the previous episode, the goal of episode 2 is enough to perform the task as seen from
the significantly better performance seen in the one-shot setting.

In-context learning is also observed in the training tasks and the performance difference between the
zero-shot and one-shot settings increase as more tasks are considered during pretraining. This can
be more attributed to less overfitting in zero-shot as one-shot performances are very close regardless
of the task count.

4.4.2 VISUALIZATION OF THE TRANSITION FROM BAYESIAN INFERENCE

We qualitatively show the transition from Bayesian inference as task diversity increases in extensive
detail in Appendix C, which we cannot show those visualizations in the main paper due to space
constraints.

4.4.3 EFFECT OF MODEL CAPACITY

In this section, we focus on the dimensions of transformer architecture, specifically the number of
layers and the size of embeddings, as well as the depth of ResNet models used to process image
states. For image tokenization via ResNet models, we engage with structures pretrained on Ima-
geNet (Deng et al., 2009), featuring 18, 34, and 50 layers to gauge the influence of depth.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

16 32 64 128 256 5121024

Embedding Size

128

256

512

1024

2048

4096

8192

N

Layers = 4

16 32 64 128 256 5121024

Embedding Size

Layers = 8

16 32 64 128 256 5121024

Embedding Size

Layers = 12

16 32 64 128 256 5121024

Embedding Size

Layers = 16

Figure 4: Performance in a new RL environment on unseen tasks, based on the first episode prompts,
across models trained on different task counts. Darker shades indicate limited in-context learning,
while brighter reds reflect higher generalization ability. Detailed methodology is provided in the
appendix.

The performance trends, as depicted in the Figure 4, reveal a clear pattern: an escalation in layer
count and embedding size is positively associated with ICL emergence. The 4-layer transformer ne-
cessitates the highest task diversity (N = 8192) and the largest embedding size before ICL behavior
surfaces. With an 8-layer framework, the task diversity threshold for ICL is reduced to N = 2048,
yet this occurs only at the peak embedding size.

When the architecture is expanded to a 12-layer model, ICL is detectable at a lower task diversity of
N = 1024, marking a notable improvement. Moreover, this model is capable of ICL at a reduced
embedding size of 512, given a task diversity of N = 2048. Beyond this point, the expansion to 16
layers fails to produce a proportional decrease in the task diversity requirement for ICL, suggesting
a ceiling effect where additional layers offer minimal benefit as seen in Figure 4.

The larger models that possess ICL at test time and the smaller model that do not have similar ICL
capabilities during training as shown in Figure 5. This behavior is also seen in large language model
pretraining (Chowdhery et al., 2023; Driess et al., 2023). Furthermore, we also observe that 8-layer
transformer is performing worse than the 6-layer transformer. This can be attributed to potential
overfitting when pretraining task counts are not the highest in our environment. However, as we
increase the layer counts further, we see that models are able to obtain generalization. We believe
this hints at a potential double descent phenomenon.

Throughout the models tested, we observe that no model demonstrates ICL with an embedding
size smaller than 128. This finding underscores the pivotal role of embedding size. Even with the
minimal complexity of a 4-layer model, ICL is attainable with an embedding size of 1024. This
indicates that embedding size, rather than layer count, is a more significant factor for achieving ICL
in this task.

The analysis of the ResNet models tells a parallel story as shown in Figure 6. The pretrained models,
while proficient on a general dataset like ImageNet, were not immediately optimal for our environ-
ment’s image data. This misalignment necessitated fine-tuning to adjust the models to the specifics
of our image data, which includes not just the characters themselves but also the crucial positional
information not inherently prioritized in ImageNet training. This is in accordance with the literature
hinting at the lack of spatial awareness of vision models simply trained on images and their captions
(Gu et al., 2023; Chen et al., 2024).

4.4.4 EFFECT OF REGULARIZATION & AUGMENTATIONS

The core of our investigation, as detailed in the accompanying Table 7, revolves around the system-
atic removal of specific augmentations from the baseline model, which is initially equipped with a
full set of augmentations, to gauge their individual contributions to the model’s performance on un-
seen tasks. Our baseline model integrates a comprehensive array of augmentations including image
noise, action noise, translation, zoom, rotation, and shearing.
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Figure 5: Training and testing in-context RL
performance of transformers with various
layer counts. Task count N = 2048 and
embedding size is chosen to be 512.
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Figure 6: The effect of finetuning and size of ResNet
models to in-context reinforcement learning: The
base transformer model is chosen to be 8-layer GPT-
2 with embedding size of 512. The reward is calcu-
lated to be the total reward during the second episode
in the environment.

Regularization & Augmentation Test Loss
Base Model 0.13± 0.01

- weight decay 0.17± 0.01
- shear 0.25± 0.02
- zoom in/out 0.29± 0.03
- rotation 0.43± 0.02
- noise 0.62± 0.04

Figure 7: Base model is 8-layer GPT-2 with 1024
hidden size trained with the all of the augmentations,
weight decay, shear zooming in and out, rotation and
addition of noise to images and the actions. The
ResNet image embedder is chosen to be the finetuned
18-layer model. We remove each augmentation to
see how much performance is lost without it.
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Figure 8: New task adaptation comparison
between MAML and One-Shot ICRL.

4.4.5 COMPARISON TO MAML

In order to portray the desired advantage of possible quick adaptation that cannot be attained via
finetuning on new examples, we trained a MAML agent that inputs the goal state together with the
last 5 strokes to output the action for the next stroke on the whole full task diversity setting. For
the test (unseen) tasks, we finetuned it for 16 steps with with 16 episodes in each step. As can be
seen in Figure 8, there is a significant performance gap compared to one-shot ICRL even after 256
episodes. More details about the training and evaluation is given in Appendix B.2.

5 CONCLUSION

In this study, we have examined the factors that lead to generalizable in-context reinforcement learn-
ing in transformers. We have introduced a novel RL environment to increase task diversity beyond
what is available in any of the other environments we have tested. We have observed that task di-
versity together with some architectural choices lead way to the emergence in-context learning in
unseen tasks. We believe, this work will show the importance of designing RL environments with
qualitatively diverse tasks.
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A PROOFS

In this section, we provide the omitted proofs in the main text.

A.1 PROOF OF THEOREM 3.1

Theorem A.1. If the pretrained transformer model Mθ is consistent, i.e., Mθ(a|Ht−1, st) =
Dpre(a|Ht−1, st), we have

P (aps = a|Ht−1, st) = Mθ(a|Ht−1, st), (10)

for all a ∈ A, and for all Ht−1 and st generated in some task T ∼ Ppre(·) by unrolling its optimal
policy.

Proof. Since Mθ is consistent, we have

Mθ(a|Ht−1, st) (11)
= Dpre(a|Ht−1, st) (12)

=

∫
T ∈T

πT (a|st)Dpre(T |Ht−1, st)dT (13)

=

∫
T ∈T

πT (a|st)
Dpre(Ht−1, st|T )Dpre(T )

Dpre(Ht−1, st)
dT (14)

=

∫
T ∈T

πT (a|st)
Dpre(Ht−1, st|T )Dpre(T )dT∫

T ′∈T
∏

(sj ,aj ,rj ,s′j)∈(Ht−1,st)
πT ′(aj |sj)TT ′(s′j |sj , aj)RT ′(rj |sj , aj)ρT ′(s0)Dpre(T ′)dT ′

(15)

=

∫
T ∈T

πT (a|st)
Dpre(Ht−1, st|T )Ppre(T )dT∫

T ′∈T
∏

(sj ,aj ,rj ,s′j)∈(Ht−1,st)
πT ′(aj |sj)TT ′(s′j |sj , aj)RT ′(rj |sj , aj)ρT ′(s0)Ppre/(T ′)dT ′

(16)

=

∫
T ∈T

πT (a|st)
P (Ht−1, st|T )Ppre(T )

P (Ht−1, st)
dT (17)

=

∫
T ∈T

πT (a|st)P (Tps = T |Ht−1, st)dT (18)

= P (aps = a|Ht−1, st). (19)

A.2 PROOF OF THEOREM 3.2

Theorem A.2. Assume that |RT (s, a)| ≤ rmax for s, a and T . Then, the relation between the
expected n-th episode regret of MF−PS

θ and ME−PS
θ for the worst family of tasks T is:

Rn
T (ME−PS

θ ) ≤ O

(
H|S|rmax

√
|A| log(|S||A|n)
n

)
≤ 2Hrmax = Rn

T (MF−PS
θ ). (20)
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Proof. We start by establishing the last inequality. Since the we consider the worst family of tasks
T , we need to take the maximum of such task families that appear in the regret definition:

max
T

Rn
T (MF−PS

θ ) = max
T

ET ∼Ppre(·)Eso∼ρT

[
V ∗
T ,0(s0)− V

MF−PS
θ

T ,0 (s0)

]
(21)

= max
T

ET ∼Ppre(·)Eso∼ρT

[
V ∗
T ,0(s0)− min

T ′∈{T1,...,TN}
V T ′

T ,0(s0)

]
(22)

= max
T

ET ∼Ppre(·)Eso∼ρT

[
Hrmax − min

T ′∈{T1,...,TN}
E

H−1∑
t=0

rT (st, πT ′(st))

]
(23)

= ET ∼Ppre(·)Eso∼ρT

[
Hrmax −

H−1∑
t=0

−rmax

]
(24)

= 2Hrmax. (25)

We have established that when Mθ is consistent, it is equivalent to posterior sampling in 3.1. Then,
ME−PS

θ is a posterior sampling with some estimated priori distribution P̂pre where P̂pre(T ) is non-
zero if Ppre(T ) is non-zero due to our assumption. Finally, we can use Theorem 1 on (Osband et al.,
2013) to get the first equality. Since 2Hrmax is the highest regret possible, we also have the second
inequality in the theorem statement.

A.3 PROOF OF COROLLARY 3.3

Corollary A.3. Assume that task T is in the pretraining of MF−PS
θ . Then, the n-th episode expected

performance between MF−PS
θ and ME−PS

θ can be bounded as:

Es0∼ρT

[
V

ME−PS
θ

T ,0

]
≥ Es0∼ρT

[
V

MF−PS
θ

T ,0

]
−O

(
H|S|

√
|A| log(|S||A|n)

n

)
. (26)

Proof. If the task T ∈ {T1, . . . , TN}, we can have MF−PS
θ be πT given high enough n episodes

into its context. Then, its regret would be zero. Using the result from Theorem 3.2, we can directly
have the statement in the corollary.

B EXPERIMENT DETAILS

We provide all the hyperparameters used in our training in Table 1.

B.1 EFFECT OF ACTION REPRESENTATION

We tested the effect of discretizing each action dimension into 256 uniform bins and representing
the trajectories as:

D = (T 1
1 , s

1
1, a

1
1,1, a

1
1,2, s

1
2, . . . , T

2
2 , s

2
1) ∼ Dpre, (27)

where aki,j is the action token at time step i of dimension j at episode k. Since we no longer are using
the continuous embeddings directly for the actions, we also removed the input action projection
layer, and directly used the embedder of the GPT-2 to learn the embedding. We have chosen the
first 256 tokens to represent the action bins. In Figure 9, we plot the minimum loss obtained in the
second episode the assess the effect of discretizing actions to ICL performance. However, we do not
observe significant difference across a variety of number of tasks.

B.2 MAML TRAINING DETAILS

For MAML training, we utilize the same architecture for the images together with the concatenated
the last 5 strokes data as input to an MLP with 4 layers, each having 1024 neurons. We utilized Adam
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Parameter Default Value
Learning rate 1× 10−4

Batch size 1024
Number of iterations 5× 104

Number of warmup steps 1000
Clip gradient norm 1.0
Weight decay 0.0
Image noise value 10%
Stroke noise value 0.5%
Shift value 10 pixels
Zoom value 30%
Rotation value 360 degrees
Shear value 40%
Number of embeddings 512
Number of layers 8
Number of heads 8
Horizon 50

Table 1: Default Hyperparameter Values

26 28 210 212 214

N
0.00

0.02

0.04

0.06

0.08

IC
L 

Lo
ss

4 layers, Disc.
4 layers, Cont.

8 layers, Disc.
8 layers, Cont.

12 layers, Disc.
12 layers, Cont.

Figure 9: The minimum test loss obtained on the second episode during training. Embedding di-
mensions are chosen to be 512, and other hyperparameters is chosen to be the default one in our
experiments.

optimizer with learning rate 1e-4, batch size 1024 and 5 × 104 training steps to be comparable to
ICRL training. During evaluation, we again simply let the model output the next action, and in the
next step we let that action be the last action it has taken as input. The rest of the evaluation for the
rewards are the same as before. In Figure 8 we only plot the model trained with MAML that has
been trained on the full 16k task diversity. However, we still see a large performance gap showing
that finetuning indeed requires more examples compared to an ICRL setup.
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C THE TRANSITION FROM BAYESIAN INFERENCE

We give the motivation for our proposed RL benchmarks, by visualizing the Bayesian inference
on a limited number of tasks in Figure 2 in the MuJoCo HalfCheetah environment (please see the
explanation of that figure below). Further, in Figures 3-5 we show this transition from the Bayesian
inference on pretraining tasks to a Bayesian inference to a task distribution for the way transformers
change their in-context learning method as we increase task diversity by marking the gap in total
cumulative reward in training and test tasks.

In order to visualize our main takeaway, we have prompted our models pretrained with task diversity
from N = 2 to N = 2048 similar to the ones shown in Figure 3 in our paper, by the English letters.
More specifically, we choose two handwritten characters from each letter in the alphabet. We insert
the image and strokes sequence of the first one together with the image of the second one into the
context of our pretrained models. Then we let it generate the action sequences. We visualize this
in Figures 10-11. As can be seen, when the task diversity is lower than 2048, we see it a trajectory
generated a character from its pretraining dataset. In that figure, this is most obvious for N = 2,
N = 8 and N = 32 since the trajectories for some of them are similar. However, when N = 2048
we see a good representation of the true actions to the ones shown by the expert. We believe this is
a clear evidence of the shift in the in-context learning method. The visualizations are also consistent
with the Figure 3 in our paper, where we a sudden dropout going from N = 512 to N = 2048.
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Expert N = 2 N = 8 N = 32 N = 128 N = 512 N = 2048

Figure 10: Shift in in-context RL method as task diversity increases. Letters from “a” to “m”.
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Expert N = 2 N = 8 N = 32 N = 128 N = 512 N = 2048

Figure 11: Shift in in-context RL method as task diversity increases - continued. Letters from “n” to
“z”.
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