
A Heavy-Tailed Algebra for Probabilistic
Programming

Feynman Liang
Department of Statistics

University of California, Berkeley
feynman@berkeley.edu

Liam Hodgkinson
School of Mathematics and Statistics
University of Melbourne, Australia
lhodgkinson@unimelb.edu.au

Michael W. Mahoney
ICSI, LBNL, and Department of Statistics

University of California, Berkeley
mmahoney@stat.berkeley.edu

Abstract

Despite the successes of probabilistic models based on passing noise through neural
networks, recent work has identified that such methods often fail to capture tail
behavior accurately—unless the tails of the base distribution are appropriately
calibrated. To overcome this deficiency, we propose a systematic approach for
analyzing the tails of random variables, and we illustrate how this approach can
be used during the static analysis (before drawing samples) pass of a probabilistic
programming language (PPL) compiler. To characterize how the tails change under
various operations, we develop an algebra which acts on a three-parameter family
of tail asymptotics and which is based on the generalized Gamma distribution. Our
algebraic operations are closed under addition and multiplication; they are capable
of distinguishing sub-Gaussians with differing scales; and they handle ratios suffi-
ciently well to reproduce the tails of most important statistical distributions directly
from their definitions. Our empirical results confirm that inference algorithms that
leverage our heavy-tailed algebra attain superior performance across a number of
density modeling and variational inference (VI) tasks.

1 Introduction

Within the context of modern probabilistic programming languages (PPLs), recent developments
in functional programming [51], programming languages [3], and deep variational inference (VI)
[4] combine to facilitate efficient probabilistic modelling and inference. But despite the broadening
appeal of probabilistic programming, common pitfalls such as mismatched distribution supports [32]
and non-integrable expectations [53, 55, 60] remain uncomfortably commonplace and remarkably
challenging to address. In particular, heavy-tailed distributions arise in a wide range of statistical
applications and are known to present substantial technical challenges [37, 55, 60]. Recent innovations
aiming to improve PPLs have automated verification of distribution constraints [32], tamed noisy
gradient estimates [16] as well as unruly density ratios [53, 55], and approximated high-dimensional
distributions with non-trivial bulks [39]. To address the issue of heavy-tailed targets, approaches
which initialize with non-Gaussian tails have been proposed [25, 33]. However, these methods
typically require the use of optimization and/or sampling strategies to estimate the tails of the target
distribution. Such strategies are often unstable, or fail to allow for a sufficiently wide array of possible
tail behaviours.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Analyze Target Calibrate Tails Refine Bulk

@bm.random_variable

def n():

return HalfNormal(1.0)

@bm.random_variable

def x():

return HalfNormal(1.0)

@bm.functional

def x2():

return x() / n()

−→

1.0

HalfNormal

 sigma

Sample

operand

Sample

 operand

/

 left right

Query

 operator

GGA−−−→ R2
−→

10 2 101

10 6

10 4

10 2

100

Fit
Samples

(1) (2) (3) (4)

Figure 1: Our heavy-tailed algebra ensures that the tails of density estimators and variational
approximations are calibrated to those of the target distribution. Here, a generative model expressed
in a PPL (1) is analyzed using the GGA without drawing any samples (2) to compute the tail
parameters of the target. A representative distribution with calibrated tails is chosen for the initial
approximation (3), and a learnable tail-invariant Lipschitz pushforward (see bottom of Table 1, and
Theorem 2) is optimized (4) to correct the bulk approximation.

Motivated by this, we introduce the first procedure for static analysis of a probabilistic program that
automates analysis of target distributions’ tails. In addition, we show how tail metadata obtained from
this procedure can be leveraged by PPL compilers to generate inference algorithms which mitigate a
number of pathologies. For example, importance sampling estimators can exhibit infinite variance if
the tail of the approximating density is lighter than the target; most prominent black-box VI methods
are incapable of changing their tail behaviour from an initial proposal distribution [25, 33]; and
Monte-Carlo Markov Chain (MCMC) algorithms may also lose ergodicity when the tail of the target
density falls outside of a particular family [42]. All of these issues could be avoided if the tail of the
target is known before runtime.

To classify tail asymptotics, we propose a three-parameter family of distributions which is closed under
most typical operations. This family is based on the generalized Gamma distribution (Equation (2)),
and it interpolates between established asymptotics on sub-Gaussian random variables [31] and
regularly varying random variables [35]. Algebraic operations on random variables can then be lifted
to computations on the tail parameters. This results in a heavy-tailed algebra that we designate as the
generalized Gamma algebra (GGA). Through analyzing operations like X + Y , X2, and X/Y at the
level of densities (e.g., additive convolution pX ⊕ pY), the tail parameters of a target density can be
estimated from the parameters of any input distributions using Table 1.

Operationalizing our GGA, we propose a tail inferential static analysis strategy analogous to tradi-
tional type inference. GGA tail metadata can be used to diagnose and address tail-related problems in
downstream tasks, such as employing Riemannian-manifold methods [17] to sample heavy tails or
preemptively detect unbounded expectations. Here, we consider density estimation and VI where
we use the GGA-computed tail of the target density to calibrate our density approximation. When
composed with a learnable Lipschitz pushforward map (Section 3.2), the resulting combination is a
flexible density approximator with tails provably calibrated to match those of the target.

Contributions. Here are our main contributions.

• We propose the generalized Gamma algebra (GGA) as an example of a heavy-tailed algebra for
probability distributions. This extends prior work on classifying tail asymptotics, while including
both sub-Gaussian / sub-exponentials [31] as well as power-law / Pareto-based tail indices [11].
Composing operations outlined in Table 1, one can compute the GGA tail class for downstream
random variables of interest.

• We implement GGA as abstract interpretation during the static analysis phase of a PPL compiler.
This unlocks the ability to leverage GGA metadata in order to better tailor MCMC and VI algorithms
produced by a PPL.

• Finally, we demonstrate that density estimators which combine our GGA tails with neural networks
(autoregressive normalizing flows [39] and neural spline flows [15]) simultaneously achieves
calibrated tails without sacrificing good bulk approximation.

2

2 The Generalized Gamma Algebra

First, we formulate our heavy-tailed algebra of random variables that is closed under most standard
elementary operations (addition, multiplication, powers). The central class of random variables under
consideration are those with tails of the form in Definition 1.
Definition 1. A random variable X is said to have a generalized Gamma tail if the Lebesgue density
of |X| satisfies

p|X|(x) = xνe−σxρ

, as x→∞, (1)
for some c > 0, ν ∈ R, σ > 0 and ρ ∈ R. Denote the set of all such random variables by G.

Consider the following equivalence relation on G: X ≡ Y if and only if 0 < p|X|(x)/p|Y |(x) < +∞
for all sufficiently large x. The resulting equivalence classes can be represented by their corresponding
parameters ν, σ, ρ. Hence, we denote the class of random variables X satisfying Equation (1) by
(ν, σ, ρ). In the special case where ρ = 0, for a fixed ν < −1, each class (ν, σ, 0) for σ > 0 is
equivalent, and is denoted by R|ν|, representing regularly varying tails. Our algebra operates on
these equivalence classes of G, characterizing the change in tail behaviour under various operations.
To incorporate tails which lie outside of G, we letR1 incorporate super-heavy tails, which denote
random variables with tails heavier than any random variable in G. All operations remain consistent
with this notation. Likewise, we let L denote super-light tails, which are treated in our algebra as a
class where ρ = +∞ (effectively constants).

Equation (1) and the name of the algebra are derived from the generalized Gamma distribution.
Definition 2. Let ν ∈ R, σ > 0, and ρ ∈ R\{0} be such that (ν+1)/ρ > 0. A non-negative random
variable X is generalized Gamma distributed with parameters ν, σ, ρ if it has Lebesgue density

pν,σ,ρ(x) = cν,σ,ρx
νe−σxρ

, x > 0, (2)

where cν,σ,ρ = ρσ(ν+1)/ρ/Γ((ν + 1)/ρ) is the normalizing constant.

The importance of the generalized Gamma form arises due to a combination of two factors:

(i) The majority of interesting continuous univariate distributions with infinite support satisfy
Equation (1), including Gaussians (ν = 0, ρ = 2), gamma/exponential/chi-squared (ν > −1,
ρ = 1), Weibull/Frechet (ρ = ν + 1), and Student T /Cauchy/Pareto (Rν). A notable exception
is the log-normal distribution (see Example 8 in Appendix C).

(ii) The set G is known to be closed under additive convolution, positive powers, and Lipschitz
functions. We prove it is closed under multiplicative convolution as well. This covers the
majority of elementary operations on independent random variables. Reciprocals, exponentials
and logarithms comprise the only exceptions, however, we will introduce a few “tricks” to
handle these cases as well.

The full list of operations in GGA is compiled in Table 1 and described in detail in Appendix A. GGA
classes for common probability distributions are provided in Appendix B. All operations in the GGA
can be proven to exhibit identical behaviour with their corresponding operations on random variables,
with the sole exception of reciprocals (marked by †), where additional assumptions are required. The
asymptotics for operations marked with an asterisk are novel to this work. For further details, refer to
Appendix A.

Repeated applications. Provided independence holds, composition of operations in the GGA
remain consistent unless one applies Lipschitz functions, logarithms, or exponentials. If one of these
operations is applied, the tail becomes an upper bound, which remains consistent under addition,
multiplication, and powers, but not reciprocals. Given that we are working with a fixed class of tails,
such behavior is inevitable, and it is possible to perform a sequence of operations for which the tail
no longer becomes accurate.

Posterior distributions. A primary application of PPLs is to perform Bayesian inference. To cover
this use case, it is necessary to prescribe a procedure to deal with posterior distributions. Consider
a setup where a collection of random variables X1, . . . , Xn are dependent on corresponding latent
random elements Z1, . . . , Zn as well as a parameter θ through functions fi by Xi = fi(θ, Zi). For

3

Ordering (ν1, σ1, ρ1) ≤
(ν2, σ2, ρ2)

⇐⇒ lim supx→∞
xν1e−σ1xρ1

xν2e−σ2xρ2 < +∞.

Addition
(ν1, σ1, ρ1)
⊕

(ν2, σ2, ρ2)
≡


max{(ν1, σ1, ρ1), (ν2, σ2, ρ2)} if ρ1 ̸= ρ2 or ρ1, ρ2 < 1

(ν1 + ν2 + 1,min{σ1, σ2}, 1) if ρ1 = ρ2 = 1

(ν1 + ν2 +
2−ρ
2 , (σ

− 1
ρ−1

1 + σ
− 1

ρ−1

2)1−ρ, ρ) if ρ = ρ1 = ρ2 > 1.

Powers (ν, σ, ρ)β ≡ (ν+1
β − 1, σ, ρ

β) for β > 0

Reciprocal*† (ν, σ, ρ)−1 ≡
{
(−ν − 2, σ,−ρ) if (ν + 1)/ρ > 0 and ρ ̸= 0

R2 otherwise

Scalar
Multiplication c(ν, σ, ρ) ≡ (ν, σ|c|−ρ, ρ)

Multiplication*

(ν1, σ1, ρ1)⊗
(ν2, σ2, ρ2)

≡



(
1
µ

(
ν1

|ρ1| +
ν2

|ρ2| +
1
2

)
, σ,− 1

µ

)
if ρ1, ρ2 < 0(

1
µ

(
ν1

ρ1
+ ν2

ρ2
− 1

2

)
, σ, 1

µ

)
if ρ1, ρ2 > 0

R|ν1| if ρ1 ≤ 0, ρ2 > 0

Rmin{|ν1|,|ν2|} if ρ1 = 0, ρ2 = 0

where µ = 1
|ρ1| +

1
|ρ2| =

|ρ1|+|ρ2|
|ρ1ρ2|

σ = µ(σ1|ρ1|)
1

µ|ρ1| (σ2|ρ2|)
1

µ|ρ2| .

Product of
Densities*

(ν1, σ1, ρ1)&
(ν2, σ2, ρ2)

≡


(ν1 + ν2, σ1, ρ1) if ρ1 < ρ2
(ν1 + ν2, σ1 + σ2, ρ) if ρ = ρ1 = ρ2
(ν1 + ν2, σ2, ρ2) otherwise.

Exponentials*† exp(ν, σ, ρ) ≡
{
Rσ+1 if ρ ≥ 1

R1 otherwise.

Logarithms*† log(ν, σ, ρ) ≡
{
(0, |ν| − 1, 1) if ν < −1
L otherwise.

Functions
(L-Lipschitz) f(X1, . . . , Xn) ≡ Lmax{X1, . . . , Xn}

Table 1: The Generalized Gamma Algebra. Operations on random variables (e.g., X1 +X2) are
viewed as actions on density functions (e.g., convolution (ν1, σ1, ρ1) ⊕ (ν2, σ2, ρ2)) and the tail
parameters of the result are analyzed and reported. In this table, * denotes novel results, and † denotes
that additional assumptions are required.

simplicity, we assume that each fi = fi,k ◦ fi,k−1 ◦ · · · ◦ fi,1 where each fij is an elementary
operation in Table 1. To estimate the tail behaviour of θ conditioned on X , we propose an elementary
approach involving inverses. For each operation fij , if fij is a power, reciprocal, or multiplication
operation, let Rij be given according to the following:

Powers: fij(x) = xβ , Rij ≡ (1− β, 1, 0)
Reciprocals: fij(x) = x−1, Rij ≡ (2, 1, 0)

Multiplication: fij(x, y) = xy, Rij ≡ (1, 1, 0)
and otherwise, let Rij ≡ 1.

4

Letting f−1
i (x, z) denote the inverse of fi in the first argument, we show in Appendix A,

θ|X = x ≡
(n

&
i=1

f−1
i (x, Zi)

)
&

(n,k

&
i,j=1

Rij

)
&π,

where π denotes the prior for θ. Since the inverse of a composition of operations is a composition
of inverses, the tail of f−1

i (x, Zi) can be determined by backpropagating through the computation
graph for Xi and sequentially applying inverse operations. Consequently, the tail behaviour of the
posterior distribution for one parameter can be obtained using a single backward pass. Posterior
distributions for multiple parameters involve repeating this procedure one parameter at a time, with
other parameters fixed.

3 Implementation

3.1 Compile-time static analysis

To illustrate an implementation of GGA for static
analysis, we sketch the operation of the PPL com-
piler at a high-level and defer to the code in Sup-
plementary Materials for details. A probabilistic
program is first inspected using Python’s built-in
ast module and transformed to static single assign-
ment (SSA) form [43]. Next, standard compiler
optimizations (e.g., dead code elimination, con-
stant propagation) are applied and an execution of
the optimized program is traced [4, 58] and accu-
mulated in a directed acyclic graph representation.
A breadth-first type checking pass, as seen in Algo-
rithm 1, completes in linear time, and GGA results
may be applied to implement computeGGA() us-
ing the following steps:

Algorithm 1: GGA tails static analysis
pass
Data: Abstract syntax tree for a PPL

program
Result: GGA parameter estimates for all

random variables
frontier← [rv : Parents(rv) = ∅];
tails← {};
while frontier ̸= ∅ do

next← frontier.popLeft();
tails[next]← computeGGA(next.op,

next.parent);
frontier← frontier + next.children();

end
return tails

• If a node has no parents, then it is an atomic distribution and its tail parameters are known (Table 5);

• Otherwise, the node is an operation taking its potentially stochastic inputs (parents) to its output.
Consult Table 1 for the output GGA tails.

3.2 Representative distributions

For each (ν, σ, ρ), we make a carefully defined choice of p on R such that if X ∼ p, then X ≡
(ν, σ, ρ). This way, any random variable f(X), where f is 1-Lipschitz, will exhibit the correct tail,
and so approximations of this form may be used for VI or density estimation. Let X ≡ (ν, σ, ρ)
and 0 < ϵ ≪ 1 denote a small parameter such that tails e−xϵ

are deemed to be “very heavy” (we
chose ϵ = 0.1). Inspired by ideas from implicit renewal theory [5], our candidate distributions are as
follows.

(ρ ≤ 0) If ρ ≤ 0, then pX(x) ∼ cx−|ν|. One such density is the Student t distribution, in this case,
with |ν| − 1 degrees of freedom if ν < −1 (generate X ∼ StudentT(|ν| − 1)).

(ρ > ϵ) For moderately sized ρ > 0, the symmetrization of the generalized Gamma density (2).

(ρ ≤ ϵ) If X ≡ (ν, σ, ρ) where ρ is small, then X will exhibit much heavier tails, and the generalized
Gamma distribution in Case 1 will become challenging to sample from. In these cases, we
expect that the tail of X should be well represented by a power law. The generalized Gamma
density (Equation (2)) satisfies EXr = σ−r/ρΓ(ν+1+r

ρ)/Γ(ν+1
ρ) for r > 0. Let α > 0 be

such that EXα = 2. By Markov’s inequality, the tail of X satisfies P(X > x) ≤ 2x−α.
Therefore, we can represent tails of this form by the Student t distribution with α+1 degrees
of freedom (generate X ∼ StudentT(α)).

5

3.3 Bulk correction by Lipschitz mapping

While a representative distribution will exhibit the desired tails, the target distribution’s bulk may
be very different from a generalized Gamma and result in poor distributional approximation. To
address this, we propose splicing together the tails from a generalized Gamma with a flexible density
approximation for the bulk. While many combinations are possible, in this work we rely on the
Lipschitz operation in the GGA (Theorem 2) and post-compose neural spline flows [15] (which
are identity functions outside of a bounded interval hence 1-Lipschitz) after properly initialized
generalized Gamma distributions. Optimizing the parameters of the flow results in good bulk
approximation while simultaneously preserving the tail correctness guarantees attained by the GGA.

0 5 10

0.5

1.0

1.5

2.0

D
en
si
ty

(i)

candidate
w/ flow
target

100 101 10 2
10−5

10−3

10−1

101

D
en
si
ty

(ii)

Figure 2: The candidate distribution chosen by the GGA calibrates tails to the target, but with
incorrect bulk. A Lipschitz normalizing flow corrects the bulk (i) without changing the tail behaviour,
as seen by the parallel tail asymptotics (black dashed lines) in (ii).

Example 1. Let A ∈ Rk×k, x, y ∈ Rk, with xi, yi, Aij
iid∼ N (−1, 1). The distribution of x⊤Ay =∑

i,j xiAijyj is a convolution of normal-powers [21] and lacks a closed form expression. Using the
GGA (Table 1), one can compute its tail parameters to be (k2 − 1, 3

2 ,
2
3). The candidate given by the

GGA representative distribution (Section 3.2) is a gamma distribution with correct tail behaviour,
but is a poor approximation otherwise. A learnable Lipschitz bijection is optimized to correct the
bulk approximation (Figure 2(i)). From the Lipschitz property, the slope of the tail asymptotics in
log-log scale remains the same before and after applying the flow correction (Figure 2(ii)): the tails
are guaranteed to remain calibrated.

Example 2. Consider
∑4

i=1 X
2
i where Xi ∼ StudentT(i). While we are not aware of a closed-form

expression for the density, this example is within the scope of our GGA. Empirical results illustrate
that our method (Figure 3(i)) accurately models both the bulk and the tail whereas Gaussian-based
Lipschitz flows (Figure 3(ii)) inappropriately impose tails which decay too rapidly.

4 Experiments

We now demonstrate that GGA-based density estimation yields improvements in tail estimation
across several metrics. Our experiments consider normalizing flows initialized from (i) the parametric
family defined in Section 3.2 against (ii) a normal distribution (status quo). To further contrast the
individual effect of using a GGA base distribution over standard normals against more expressive
pushforward maps [15], we also report ablation results where normalizing flows are replaced by
affine transforms, as originally proposed in [30]. All experiments are repeated for 100 trials, trained
to convergence using the Adam optimizer with manually tuned learning rate. Additional details are
available in Appendix D. All target distributions in this section are expressed as generative PPL
programs: Cauchy using a reciprocal normal; Chi2 (chi-squared) using a sum of squared normals; IG
(Inverse Gamma) using a reciprocal exponential; normal using a sum of normals; and StudentT using
a normal and Cauchy ratio. Doing so tasks the static analyzer to infer the target’s tails and makes the
analysis non-trivial.

Our results in the following tables share a consistent narrative where a GGA base distribution rarely
hurts and can significantly help with heavy tailed targets. Standard evaluation metrics such as negative
cross-entropy, ELBO, or importance-weighted autoencoder bounds [6] do not evaluate the quality of
tail approximations. Instead, we consider diagnostics which do: namely, an estimated tail exponent

6

Figure 3: Q-Q plots of density approximations of a heavy-tailed target (
∑4

i=1 X
2
i where Xi ∼

StudentT(i)) initialized by our GGA candidate (i) and the Gaussian distribution (ii). While the
expressive modeling capability of flows enables good approximation of the distribution bulk, Lipschitz
transformations of Gaussians inevitably impose miscalibrated squared exponential tails which are not
sufficiently heavy as evidenced in (ii).

α̂, and the Pareto k̂ diagnostic [60]. Except for when targets are truly light tailed (α =∞ in Chi2
and normal), GGA-based approximations are the only ones to reproduce appropriate GPD tail index
α̂ in density estimation and achieve a passing k̂ below 0.2 in VI. Less surprising is the result that
adding a flow improved approximation metrics, as we expect the additional representation flexibility
to be beneficial.

Density Estimation. Given samples {xi}Ni=1 from a target density p, we minimize a Monte-Carlo
estimate of the cross entropy H(p, q) = −Ep[log q(X)] ≈ − 1

N

∑N
i=1 log q(xi). The results are

shown in Table 2 and Table 3 along with power-law tail index estimates α̂ [11]. Closeness between
the target Pareto tail index α [11] and its estimate α̂ in q(x) suggest calibrated tails. Overall, we see
that normal (resp., Cauchy) based flows fails to capture heavy (resp., light) tails, while GGA-based
flows yield good tail approximations (lower NLL, α̂ closer to target) across all cases.

Table 2: Mean and standard errors (100 trials) of tail parameters α̂ (smaller for heavier tails) for
various density estimators and targets.

Target α Cauchy (α = 2) Flow GGA Flow Normal (α =∞) Flow

Cauchy 2 2.1 (0.03) 2.1 (0.07) 7.7 (2.5)
IG 2 1.9 (0.03) 1.9 (0.092) 7.3 (1.7)
StudentT 3 2.0 (0.06) 3.3 (0.45) 7.7 (2.3)
Chi2 ∞ 2.1 (0.07) 5.2 (1.6) 6.8 (2.4)
Normal ∞ 2.9 (0.6) 8.2 (4.0) 8.4 (3.5)

Table 3: Mean and standard errors of log-likelihoods Ep log q(X) for various density estimators and
targets. While larger values imply a better overall approximation (row max bolded), log-likelihood
is dominated by bulk approximation so these results show that our method (GGA Flow) does not
sacrifice bulk approximation quality.

Target α Cauchy (α = 2) Flow GGA Flow Normal (α =∞) Flow

Cauchy 2 −2.53 (0.05) −3.22 (0.06) −1.2× 103 (6× 103)
IG 2 −3.55 (0.08) −3.26 (0.05) −2.6× 104 (6× 103)
StudentT 3 −2.12 (0.03) −2.75 (0.04) −2.92 (0.47)
Chi2 ∞ −2.30 (0.05) −2.03 (0.04) −2.24 (0.04)
Normal ∞ −1.53 (0.03) −1.41 (0.02) −1.42 (0.02)

Variational Inference. For VI, the bulk is corrected through the ELBO optimization objective
Eq log

p(X)
q(X) ≈

1
N

∑N
i=1 log

p(xi)
q(xi)

, xi ∼ q. Since the density p must also be evaluated, for simplic-
ity, experiments in Table 4 use closed-form marginalized densities for targets. The overall trends
also show that GGA yields consistent improvements; the k̂ diagnostic [60] indicates VI succeeds
(k̂ ≤ 0.2) when a GGA with appropriately matched tails is used and fails (k̂ > 1) when Gaussian
tails are erroneously imposed.

7

Table 4: Pareto k̂ diagnostic ([60]) to assess goodness of fit for VI (mean across 100 trials, standard
deviation in parenthesis) on targets of varying tail index (smaller α = heavier tails). A value > 0.2 is
interpreted as potentially problematic so only values not exceeding it are bolded.

Target α Normal Affine Normal Flow GGA Affine GGA Flow

Cauchy α = 2 0.62 (0.26) 0.22 (0.059) 0.68 (0.038) 0.091 (0.04)
IG α = 2 8.6 (1.8) 8.2 (2.3) 2.0 (0.4) 2.9 (0.71)
StudentT α = 3 1.2 (0.16) 1.0 (0.43) 1.5 (0.082) 1.3 (0.097)
Chi2 α =∞ 0.57 (0.081) 0.61 (0.067) 0.0093 (0.0067) 0.089 (0.044)
Normal α =∞ 0.53 (0.17) 0.21 (0.067) 0.4 (0.086) 0.2 (0.089)

Bayesian linear regression. As a practical example of VI applied to posterior distributions, we
consider the setting of one-dimensional Bayesian linear regression (BLR) with conjugate priors,
defined by the likelihood y|X,β, σ ∼ N (Xβ, σ2) with a Gaussian prior β|σ2 ∼ N (0, σ2) on the
coefficients, and an inverse-Gamma prior with parameters a0 and b0 on the residual variance σ2. The
posterior distribution for β conditioned on σ2 and X, y is Gaussian. However, conditional on the
pair (X, y), σ2 is inverse-Gamma distributed with parameters a0 + n

2 and b0 +
1
2 (y

⊤y − µ⊤Σµ)),
where µ = Σ−1X⊤Xβ̂ for β̂ the least-squares estimator, and Σ = X⊤X + I . Since σ2 is positive,
it is typical for PPL implementations to apply an exponential transformation. Hence, a Lipschitz
normalising flow starting from a Gaussian initialization will inappropriately approximate the inverse
Gamma distributed p(σ2|X, y) with log-normal tails. On the other hand, Lipschitz flows starting
from a GGA reference distribution will exhibit the correct tails. We assess this discrepancy in
Figure 4 under an affine transformation on four subsampled datasets: super (superconductor critical
temperature prediction dataset [23] with n = 256 and d = 154); who (life expectancy data from the
World Health Organisation in the year 2013 [41] with n = 130, d = 18); air (air quality data [14]
with n = 6941, d = 11); and blog (blog feedback prediction dataset [7] with n = 1024, d = 280).
In Figure 4(i), the GGA-based method seems to perfectly fit to the targets, while in Figure 4(ii), the
standard Gaussian approach fails to capture the tail behaviour.

(i) (ii)

10 1 100 101 102
200

150

100

50

0

lo
g 1

0
p(

|X
,y

)

supers
whos
air
blogs

10 1 100 101 102
200

150

100

50

0

lo
g 1

0
p(

|X
,y

)

super
who
air
blog

Figure 4: Estimated densities for the posterior distribution of σ2 in Bayesian linear regression under
optimised exponential + affine transformations from (i) GGA reference, and (ii) Gaussian reference.

Invariant distribution of SGD. For inputs X and labels Y from a dataset D, the least squares
estimator for linear regression satisfies β̂ = minβ

1
2EX,Y∼D(Y −Xβ)2. To solve for this estimator,

one can apply stochastic gradient descent (SGD) sampling over independent Xk, Yk ∼ D to obtain
the sequence of iterations

βk+1 = (I − δXkX
⊤
k)βk + δYkXk

for a step size δ > 0. For large δ, the iterates βk typically exhibit heavy-tailed fluctuations [24]. In
this regard, this sequence of iterates has been used as a simple model for more general stochastic
optimization dynamics [22, 24]. In particular, generalization performance has been tied to the
heaviness of the tails in the iterates [47]. Here, we use our algebra to predict the tail behaviour in
a simple one-dimensional setting where Xk ∼ N (0, σ2) and Yk ∼ N (0, 1). From classical theory
[5], it is known that Xk converges in distribution to a power law with tail exponent α > 0 satisfying
E|1− δX2

k |α = 1. In Figure 5, we plot the density of the representative for β104 obtained using our

8

algebra against a kernel density estimate using 106 samples when σ ∈ {0.4, 0.5, 0.6} and δ = 2. In
all cases, the density obtained from the algebra provides a surprisingly close fit.

10 5 0 5 10
10 5

10 2

D
en

si
ty

= 0.3

10 5 0 5 10
10 5

10 2

D
en

si
ty

= 0.4

10 5 0 5 10
10 5

10 2

D
en

si
ty

= 0.5

Figure 5: Kernel density estimate of iterates of SGD (blue) vs. GGA predicted tail behaviour (orange)

5 Related Work

Heavy tails and probabilistic machine learning. For studying heavy tails, methods based on subex-
ponential distributions [18] and generalized Pareto distributions (GPD) (or equivalently, regularly
varying distributions [49]) have received significant attention historically. For example, [35] presents
closure theorems for regularly varying distributions which are special cases of Proposition 1 and
Theorem 2. Heavy tails often have a profound impact on probabilistic machine learning methods: in
particular, the observation that density ratios p(x)

q(x) tend to be heavy tailed has resulted in new methods
for smoothing importance sampling [53], adaptively modifying divergences [55], and diagnosing VI
through the Pareto k̂ diagnostic [60]. These works are complementary to our paper, and our reported
results include k̂ diagnostics for VI and α̂ tail index estimates based on GPD.

Our work considers heavy-tailed targets p(x) which is the same setting as [25, 33]. Whereas those
respective works lump the tail parameter in as another variational parameter and may be more
generally applicable, the GGA may be applied before samples are drawn and leads to perfectly
calibrated tails when applicable.

Probabilistic programming. PPLs can be broadly characterized by the inference algorithms they
support, such as: Gibbs sampling over Bayes nets [13, 48], stochastic control flow [19, 58], deep
stochastic VI [4, 52], or Hamiltonian Monte-Carlo [8, 59]. Our implementation target beanmachine
[50] is a declarative PPL selected due to availability of a PPL compiler and support for static analysis
plugins. Similar to [4, 46], it uses PyTorch [40] for GPU tensors and automatic differentiation.
Synthesizing an approximating distribution during PPL compilation (Section 3) is also performed
in the Stan language by [30] and normalizing flow extensions in [57]. We compare directly against
these related density approximators in Section 4.

Static analysis. There is a long history of formal methods and probabilistic programming in the
literature [26, 29], with much of the research [10] concerned with defining formal semantics and
establishing invariants [54] (see [3] for a recent review). Static analysis uses the abstract syntax
tree (AST) representation of a program in order to compute invariants (e.g., the return type of a
function, the number of classes implementing a trait) without executing the underlying program.
It has traditionally been applied in the context of formalizing semantics [29], and has been used
to verify probabilistic programs by ensuring termination, bounding random values values [44]. As
dynamic analysis in a PPL is less reliable due to non-determinism, static analysis techniques for PPLs
become essential. As recent examples, [32] proposes a static analyzer for the Pyro PPL [4] to verify
distribution supports and avoid −Inf log probabilities. More relevant to our work are applications of
static analysis to improve inference. [38] and [12] both employ static analysis to inform choice of
inference method. However, both works do not account for heavy tails whereas the primary goal of
GGA-based analysis is to ensure tails are properly modelled.

6 Conclusion
In this work, we have proposed a novel systematic approach for conducting tail inferential static
PPL analysis. We have done this by defining a heavy-tailed algebra, and by implementing a three-
parameter generalized Gamma algebra into a PPL compiler. Initial results are promising, showing
that improved inference with simpler approximation families is possible when combined with tail

9

metadata. While already useful, the generalized Gamma algebra and its implementation currently has
some notable limitations:
• The most significant omission to the algebra is classification of log-normal tails. Addition may be

treated using [20], but multiplication with log-normal tails remains elusive.
• Since the algebra assumes independence, handling of dependencies between defined random

variables must be conducted externally. This can be addressed using a symbolic package to
decompose complex expressions into operations on independent random variables.

• Scale coefficients σ for conditional distributions may often be inexact, as exact marginalization in
general is NP-hard [28]. Treatment of disintegration using symbolic manipulations is a significant
open problem, with some basic developments [9, 45].

• Compile-time static analysis is only applicable to fixed model structures. Control flow, open-
universe models [36], and PPLs to support them [4] are an important future research direction.

References
[1] Søren Asmussen and Hansjorg Albrecher. Ruin probabilities, volume 14. World scientific,

2010.

[2] Søren Asmussen, Enkelejd Hashorva, Patrick J Laub, and Thomas Taimre. Tail asymptotics of
light-tailed Weibull-like sums. Probability and Mathematical Statistics, 37(2):235–256, 2017.

[3] Ryan Bernstein. Static analysis for probabilistic programs. arXiv preprint arXiv:1909.05076,
2019.

[4] Eli Bingham, Jonathan P Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan, Theofanis
Karaletsos, Rohit Singh, Paul Szerlip, Paul Horsfall, and Noah D Goodman. Pyro: Deep
universal probabilistic programming. The Journal of Machine Learning Research, 20(1):973–
978, 2019.

[5] Dariusz Buraczewski, Ewa Damek, Thomas Mikosch, et al. Stochastic models with power-law
tails. Springer Ser. Oper. Res. Financ. Eng., Springer, Cham, 10:978–3, 2016.

[6] Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted autoencoders.
arXiv preprint arXiv:1509.00519, 2015.

[7] Krisztian Buza. Feedback prediction for blogs. In Data analysis, machine learning and
knowledge discovery, pages 145–152. Springer, 2013.

[8] Bob Carpenter, Andrew Gelman, Matthew D Hoffman, Daniel Lee, Ben Goodrich, Michael
Betancourt, Marcus Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell. Stan: A probabilistic
programming language. Journal of statistical software, 76(1), 2017.

[9] Kenta Cho and Bart Jacobs. Disintegration and Bayesian inversion via string diagrams. Mathe-
matical Structures in Computer Science, 29(7):938–971, 2019.

[10] Guillaume Claret, Sriram K Rajamani, Aditya V Nori, Andrew D Gordon, and Johannes
Borgström. Bayesian inference using data flow analysis. In Proceedings of the 2013 9th Joint
Meeting on Foundations of Software Engineering, pages 92–102, 2013.

[11] Aaron Clauset, Cosma Rohilla Shalizi, and Mark EJ Newman. Power-law distributions in
empirical data. SIAM review, 51(4):661–703, 2009.

[12] Marco F Cusumano-Towner, Feras A Saad, Alexander K Lew, and Vikash K Mansinghka. Gen:
a general-purpose probabilistic programming system with programmable inference. In Proceed-
ings of the 40th acm sigplan conference on programming language design and implementation,
pages 221–236, 2019.

[13] Perry de Valpine, Daniel Turek, Christopher J Paciorek, Clifford Anderson-Bergman, Dun-
can Temple Lang, and Rastislav Bodik. Programming with models: writing statistical algorithms
for general model structures with nimble. Journal of Computational and Graphical Statistics,
26(2):403–413, 2017.

10

[14] Saverio De Vito, Ettore Massera, Marco Piga, Luca Martinotto, and Girolamo Di Francia. On
field calibration of an electronic nose for benzene estimation in an urban pollution monitoring
scenario. Sensors and Actuators B: Chemical, 129(2):750–757, 2008.

[15] Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. Neural spline flows.
Advances in neural information processing systems, 32, 2019.

[16] SM Eslami, Nicolas Heess, Theophane Weber, Yuval Tassa, David Szepesvari, Geoffrey E
Hinton, et al. Attend, infer, repeat: Fast scene understanding with generative models. Advances
in Neural Information Processing Systems, 29, 2016.

[17] Mark Girolami and Ben Calderhead. Riemann manifold Langevin and Hamiltonian monte
carlo methods. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
73(2):123–214, 2011.

[18] Charles M Goldie and Claudia Klüppelberg. Subexponential distributions. A practical guide to
heavy tails: statistical techniques and applications, pages 435–459, 1998.

[19] Noah Goodman, Vikash Mansinghka, Daniel M Roy, Keith Bonawitz, and Joshua B Tenenbaum.
Church: a language for generative models. arXiv preprint arXiv:1206.3255, 2012.

[20] Archil Gulisashvili and Peter Tankov. Tail behavior of sums and differences of log-normal
random variables. Bernoulli, 22(1):444–493, 2016.

[21] Rameshwar D Gupta and Ramesh C Gupta. Analyzing skewed data by power normal model.
Test, 17(1):197–210, 2008.

[22] Mert Gurbuzbalaban, Umut Simsekli, and Lingjiong Zhu. The heavy-tail phenomenon in SGD.
In International Conference on Machine Learning, pages 3964–3975. PMLR, 2021.

[23] Kam Hamidieh. A data-driven statistical model for predicting the critical temperature of a
superconductor. Computational Materials Science, 154:346–354, 2018.

[24] Liam Hodgkinson and Michael W. Mahoney. Multiplicative noise and heavy tails in stochastic
optimization. In International Conference on Machine Learning, pages 4262–4274. PMLR,
2021.

[25] Priyank Jaini, Ivan Kobyzev, Yaoliang Yu, and Marcus Brubaker. Tails of Lipschitz triangular
flows. In International Conference on Machine Learning, pages 4673–4681. PMLR, 2020.

[26] Claire Jones and Gordon D Plotkin. A probabilistic powerdomain of evaluations. In Proceedings.
Fourth Annual Symposium on Logic in Computer Science, pages 186–187. IEEE Computer
Society, 1989.

[27] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[28] Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and techniques.
MIT press, 2009.

[29] Dexter Kozen. Semantics of probabilistic programs. In 20th Annual Symposium on Foundations
of Computer Science (sfcs 1979), pages 101–114. IEEE, 1979.

[30] Alp Kucukelbir, Dustin Tran, Rajesh Ranganath, Andrew Gelman, and David M Blei. Automatic
differentiation variational inference. Journal of machine learning research, 2017.

[31] Michel Ledoux. The concentration of measure phenomenon. American Mathematical Soc.,
2001.

[32] Wonyeol Lee, Hangyeol Yu, Xavier Rival, and Hongseok Yang. Towards verified stochastic
variational inference for probabilistic programs. Proceedings of the ACM on Programming
Languages, 4(POPL):1–33, 2019.

[33] Feynman Liang, Liam Hodgkinson, and Michael W. Mahoney. Fat-tailed variational inference
with anisotropic tail adaptive flows, 2022.

11

[34] Arakaparampil M Mathai, Ram Kishore Saxena, and Hans J Haubold. The H-function: theory
and applications. Springer Science & Business Media, 2009.

[35] T Mikosch. Regular variation subexponentiality and their applications in probability theory,
1999.

[36] Brian Milch and Stuart Russell. Extending Bayesian networks to the open-universe case.
Heuristics, Probability and Causality: A Tribute to Judea Pearl. College Publications, 2010.

[37] J. Nair, A. Wierman, and B. Zwart. The Fundamentals of Heavy Tails: Properties, Emergence,
and Estimation. Cambridge University Press, 2022.

[38] Aditya Nori, Chung-Kil Hur, Sriram Rajamani, and Selva Samuel. R2: An efficient MCMC
sampler for probabilistic programs. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 28, 2014.

[39] George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji
Lakshminarayanan. Normalizing flows for probabilistic modeling and inference. Journal of
Machine Learning Research, 22(57):1–64, 2021.

[40] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. Advances in neural information processing
systems, 32, 2019.

[41] Kumar Rajarshi. Life expectancy (who), 2018.

[42] Gareth O Roberts and Richard L Tweedie. Exponential convergence of Langevin distributions
and their discrete approximations. Bernoulli, pages 341–363, 1996.

[43] Barry K Rosen, Mark N Wegman, and F Kenneth Zadeck. Global value numbers and redundant
computations. In Proceedings of the 15th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 12–27, 1988.

[44] Sriram Sankaranarayanan, Aleksandar Chakarov, and Sumit Gulwani. Static analysis for
probabilistic programs: inferring whole program properties from finitely many paths. In
Proceedings of the 34th ACM SIGPLAN conference on Programming language design and
implementation, pages 447–458, 2013.

[45] Chung-chieh Shan and Norman Ramsey. Exact Bayesian inference by symbolic disintegration.
In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Lan-
guages, pages 130–144, 2017.

[46] N. Siddharth, Brooks Paige, Jan-Willem van de Meent, Alban Desmaison, Noah D. Goodman,
Pushmeet Kohli, Frank Wood, and Philip Torr. Learning disentangled representations with
semi-supervised deep generative models. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing
Systems 30, pages 5927–5937. Curran Associates, Inc., 2017.

[47] Umut Simsekli, Levent Sagun, and Mert Gurbuzbalaban. A tail-index analysis of stochastic
gradient noise in deep neural networks. In International Conference on Machine Learning,
pages 5827–5837. PMLR, 2019.

[48] David Spiegelhalter, Andrew Thomas, Nicky Best, and Wally Gilks. BUGS 0.5: Bayesian
inference using Gibbs sampling manual (version ii). MRC Biostatistics Unit, Institute of Public
Health, Cambridge, UK, pages 1–59, 1996.

[49] Nader Tajvidi. Confidence intervals and accuracy estimation for heavy-tailed generalized Pareto
distributions. Extremes, 6(2):111–123, 2003.

[50] Nazanin Tehrani, Nimar S Arora, Yucen Lily Li, Kinjal Divesh Shah, David Noursi, Michael
Tingley, Narjes Torabi, Eric Lippert, Erik Meijer, et al. Bean machine: A declarative probabilistic
programming language for efficient programmable inference. In International Conference on
Probabilistic Graphical Models. PMLR, 2020.

12

[51] David Tolpin, Jan-Willem van de Meent, Hongseok Yang, and Frank Wood. Design and
implementation of probabilistic programming language anglican. In Proceedings of the 28th
Symposium on the Implementation and Application of Functional programming Languages,
pages 1–12, 2016.

[52] Dustin Tran, Matthew W Hoffman, Dave Moore, Christopher Suter, Srinivas Vasudevan, and
Alexey Radul. Simple, distributed, and accelerated probabilistic programming. Advances in
Neural Information Processing Systems, 31, 2018.

[53] Aki Vehtari, Daniel Simpson, Andrew Gelman, Yuling Yao, and Jonah Gabry. Pareto smoothed
importance sampling. arXiv preprint arXiv:1507.02646, 2015.

[54] Di Wang, Jan Hoffmann, and Thomas Reps. Pmaf: an algebraic framework for static analysis
of probabilistic programs. ACM SIGPLAN Notices, 53(4):513–528, 2018.

[55] Dilin Wang, Hao Liu, and Qiang Liu. Variational inference with tail-adaptive f-divergence.
Advances in Neural Information Processing Systems, 31, 2018.

[56] George Neville Watson. A treatise on the theory of Bessel functions. Cambridge university
press, 1995.

[57] Stefan Webb, Jonathan P. Chen, Matrin Jankowiak, and Noah Goodman. Improving automated
variational inference with normalizing flows. In ICML Workshop on Automated Machine
Learning, 2019.

[58] David Wingate, Andreas Stuhlmüller, and Noah Goodman. Lightweight implementations of
probabilistic programming languages via transformational compilation. In Proceedings of the
Fourteenth International Conference on Artificial Intelligence and Statistics, pages 770–778.
JMLR Workshop and Conference Proceedings, 2011.

[59] Kai Xu, Hong Ge, Will Tebbutt, Mohamed Tarek, Martin Trapp, and Zoubin Ghahramani.
Advancedhmc. jl: A robust, modular and efficient implementation of advanced hmc algorithms.
In Symposium on Advances in Approximate Bayesian Inference, pages 1–10. PMLR, 2020.

[60] Yuling Yao, Aki Vehtari, Daniel Simpson, and Andrew Gelman. Yes, but did it work?: Evaluat-
ing variational inference. In International Conference on Machine Learning, pages 5581–5590.
PMLR, 2018.

13

	Introduction
	The Generalized Gamma Algebra
	Implementation
	Compile-time static analysis
	Representative distributions
	Bulk correction by Lipschitz mapping

	Experiments
	Related Work
	Conclusion

