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ABSTRACT

Single-shot auctions take place all the time, for example when selling ad space or
allocating radio frequencies. Devising mechanisms for auctions with many bidders
and multiple items can be complicated. It has been shown that neural networks can
be used to approximate these mechanisms by satisfying the constraints that an auc-
tion be strategyproof and revenue maximizing. We show that despite such auctions
maximizing revenue, they do so at the cost of revealing private bidder information.
While randomness is often used to build in privacy, in this context it comes with
complications if done without care. Specifically, it can violate rationality and
feasibility constraints and can fundamentally change the incentive structure of the
mechanism, and/or harm top-level metrics such as revenue or social welfare. We
propose a method based on stochasticity that ensures privacy and meets the require-
ments for auction mechanisms. Furthermore, we analyze the cost to the auction
house in expected revenue that comes with introducing privacy of various degrees.

1 INTRODUCTION

An auction is an economic mechanism that elicits bids from bidders and allocates goods in exchange
for a fee. In the private-value auction setting, bidder valuations are drawn from some known prior
probability distribution, while their true valuations are kept private from the mechanism and other
bidders. Therefore, when the auctioneer elicits bids, the bidders may bid strategically by misreporting
their valuations in order to benefit themselves. The auctioneer’s goal is to design an auction that has
desirable properties in the face of such strategic behavior.

Auctions designers generally want mechanisms to ensure two properties: auctions should be strate-
gyproof and maximize revenue in expectation. An auction mechanism is considered strategyproof
when bidders are no better off bidding anything other than their true valuations for the goods. Given
this hard constraint of strategyproofness, the auctioneer would want to maximize expected revenue.
However, strategyproof auctions inherently leak information about a bidders true valuation; by
incentivizing bidders to bid truthfully, it might be possible to learn private bidder information by
observing the resulting allocations and payments of a strategyproof auction.

In this work, we explore bidder privacy in neural auctions, auction mechanisms that are parameterized
by neural networks and learned from data. Dütting et al. (2019) propose finding optimal auction
mechanisms using this technique showing that it is particularly powerful when no analytical solution
is known, which is the case in surprisingly many auction settings. The Myerson auction (Myerson,
1981) is optimal for selling one item to multiple bidders. Additionally, for selling multiple items to
one bidder, optimality is also somewhat well-understood (Manelli and Vincent, 2006; Pavlov, 2011;
Daskalakis et al., 2017; Kash and Frongillo, 2016). However, for selling multiple items to multiple
bidders, optimal mechanisms are known only in very simple cases (e.g., Yao, 2017). Even for selling
two items to two bidders with i.i.d. uniform valuations, the optimal mechanism is unknown.

The apparent intractability of finding analytic results is what motivates the work of Dütting et al.
(2019). Their neural network approximations of optimal auction mechanisms are not provably revenue
maximizing or strategyproof. However they approximately recover optimal mechanisms of known
auctions and, in settings without known optimal mechanisms, their revenues are higher than existing
alternatives and the associated regret (a measurement of strategyproofness) is sufficiently small.
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The strategyproofness and revenue maximizing properties of these neural auctions are reasonably
well understood, but bidders may also be concerned with privacy. If the mechanism is strategyproof,
bidders are incentivized to reveal their true valuations to the mechanism itself, but they may still
want their private valuations not to be revealed to other bidders or outside observers. For example,
a business may not want its willingness to pay for different items to be known to competitors or
counterparties. Yet if the mechanism’s rules, allocations, and payments are made public, it might be
possible to infer a large amount of information about a bidder’s bid.

We analyze neural auctions of several bidder-item sizes and show that they are not private. In particular,
using the outputs of the networks – the publicly available allocation and payment information – a
malicious actor can invert the models to extract information about agents’ valuations. Optimization-
based model inversion is a common security vulnerability of neural models used for tasks ranging
from facial recognition (Fredrikson et al., 2015) to natural language generation (Pan et al., 2020). In
most settings, however, the fear of the practitioner is that the training data is retrievable. Our case
deviates slightly in that we are concerned with protecting single input examples at test time.

After demonstrating that the mechanisms described in prior work are not private in this sense,
we propose a technique to introduce privacy. We employ stochasticity by adding noise to the
outputs to create private neural auctions, which we show empirically mitigates model inversion.
This randomization process is non-trivial, as the resulting network needs to satisfy rationality and
strategyproofness constraints. Furthermore, this method introduces a parameter – the standard
deviation of the noise – to control the degree of privacy. It is critical to give auction designers this
control since privacy comes at a cost. We analyze this cost by characterizing the relationship between
privacy and revenue and regret.

1.1 RELATED WORK

Differentiable economics Differentiable economics is an approach to automated mechanism design
that uses rich function approximators to learn good mechanisms (Sandholm, 2003). Dütting et al.
(2019) propose RegretNet, a neural auction, and show that neural networks can approximate optimal
auction mechanisms. While our work builds directly on theirs, there have been a number of other
recent contributions to topics within differentiable economics (many of which concurrently build
upon the same paper). Rahme et al. (2021) also expand on RegretNet, by proposing a new training
algorithm for similar auction networks as well as providing a metric for measuring performance.
Duan et al. (2022) and Ivanov et al. (2022) use attention layers to produce networks which are
permutation equivariant, generalize to unseen data, and perform better. Feng et al. (2018) extend the
RegretNet framework to consider private budget constraints as well as proving optimality for some
specific known auctions. Shen et al. (2019) design perfectly strategyproof auctions, but limited to
the single agent setting. Additionally, in settings with various bidder demands, mechanisms can be
learned with differentiable matching (Curry et al., 2021). Lastly, Curry et al. (2020) compute explicit
certificates for the degree to which strategyproofness is violated.

Other forms of mechanism design beyond auctions have been explored as well. Early work by
Narasimhan et al. (2016) sets the stage for RegretNet by exploring the use of machine learning to
learn strategyproof mechanisms that optimize social choice problems. Additionally, they introduce
the concept of optimizing stability within two-sided matching problems. Ravindranath et al. (2021)
further study the matching problem and quantify the trade-off between strategyproofness and stability.
Finally, Golowich et al. (2018) use deep learning to find strategyproof models for minimizing expected
social cost within multi-facility location mechanisms.

Privacy in mechanism design There is a longstanding thread of research on privacy in mechanism
design theory – see Pai and Roth (2013) for a survey and introduction.

The typical aim is to guarantee a differential privacy (DP) property with respect to the bids. Of
particular relevance is work that constructs mechanisms satisfying this property by averaging over
random noise, which shows that the resulting smoothness gives both privacy and some notion of
strategyproofness (McSherry and Talwar, 2007).

We do not directly deal with the differential privacy formalism – instead we view privacy from the
perspective of model inversion attacks in deep learning. Importantly, DP is concerned with recovering
training data and DP training algorithms aim to find models that would be no different with or without
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the inclusion of small amounts of data (Abadi et al., 2016). However, in practice, auctions can (and
are) trained with synthetic data and the exact training data can be made public without breaching any
personal privacy. The issue at hand in this paper is about inferring inputs at test time from publicly
available outputs – not a common issue in other domains. We do, however, make use of random
noise, which has some connections to DP (Lecuyer et al., 2019).

The setting we analyze includes outputs that are publicly available after the completion of the auction.
This also stands in contrast to cryptographically secure markets such as dark pools and transactions
that rely on secure multi-party computation (MPC). Jutla (2015) uses MPC to implement a framework
for stock market participants to avoid a potentially untrustworthy auctioneer. For analysis on using
MPC to privately clear transactions in continuous double auctions see (e.g., Cartlidge et al., 2019;
Asharov et al., 2020).

Model Inversion Inverting machine learning models to recover data used for training has been
studied extensively. Wu et al. (2016) formalize a framework for analyzing model inversion in both
the black box (oracle access) and white box (where the adversary has access to the composition of the
model) settings. Yang et al. (2019) show that an adversary can (with black box access to the model)
train an inversion model to effectively target a machine learning model by augmenting the inversion
training with auxiliary data.

While these works discuss the inversion of neural networks, the auction setting is unique in that the
test-time outputs are public and the adversary is attempting to recover test-time inputs, rather than
inverting the model to learn train-time data. In the mechanism design literature, we generally assume
white box access to the model for all participants. Additionally, we are unaware of any prior work
focusing on understanding the trade-off between model privacy and cost in terms of revenue.

2 PROBLEM SETTING

For ease of discussion, we define the problem of finding an optimal auction and review common
notation. Consider an auction consisting of a set of n bidders N = {1, ..., n} and a set of m items
M = {1, ...,m} where each bidder i has some private valuation vi ≥ 0 drawn from some distribution
Pi over Vi the possible valuations for each of the m goods. In general, bidders can either have
unit demand, where their valuation of S items is vi(S) = maxj∈S vi(j), or they can have additive
demands, where each bidder wants as many of the items as possible. The bidders each present bids to
the auction mechanism and these bids may not truthfully represent their valuations.

After eliciting bids from each of the n agents, the auction allocates the m goods to the bidders
charging each of them some payment. Formally, define an auction as f = (g, p) or a set of allocation
and payment rules g(b) and p(b) that take as input the bidders’ bids b = (b1, b2, ...bn). An auction
acts in its best interest, which is often some form of revenue maximization (more detail below).

Each bidder is trying to maximize their own utility, ui(vi; b) = vi(gi(b))− pi(bi), where vi is their
valuation, b is the bid profile of all the bids, and gi, pi are the allocations and payments for bidder i
given the bid profile b. Also, let b−i be the bid profile without bidder i. If bidder utility is maximized
by bidding truthfully even without knowledge of how other bidders are acting, then this is considered
a dominant strategy incentive compatible (DSIC), or strategyproof, auction. Formally, DSIC holds if
the following is satisfied.

∀i ∀v, b : ui(vi; vi, b−i) ≥ ui(vi; bi, b−i). (1)

Identifying a DSIC set of rules (g, p) that maximize revenue in expectation is an open problem
for multi-agent multi-item auctions. To address this, Dütting et al. (2019) propose RegretNet – a
neural network that can learn a near optimal mechanism from data. Recent advances in deep learning
for auctions include ALGNet (Rahme et al., 2021), which uses a modified training algorithm, as
well as RegretFormer (Ivanov et al., 2022) and CITransNet (Duan et al., 2022), both of which use
self-attention layers to make mechanisms that are expressive and permutation-equivariant. What all
of these approaches have in common is that they parameterize the auction with a neural network. In
this paper, we focus on the original RegretNet approach, where the network backbone is a simple
multi-layer perceptron.
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Learning problem To explicitly formulate strategyproof auctions as a deep learning problem in
terms of minimizing regret, we must first define the concepts of regret and bidder utility. An auction
f = (g, p) can be parameterized f(b; θ) = [g(b), p(b)], where θ denotes the trainable parameters.
Let bidder i have a utility function defined as follows – the welfare from items received, minus the
payment.

uθ
i (vi; b) = vi(g

θ
i (b))− pθi (b) (2)

Using this definition of bidder utility, we can define a bidder’s regret as the difference in utility
between bidding truthfully and bidding to maximize utility. For bidder i, rgt as a function of the
private valuations v is defined as follows.

rgti(v) = max
bi∈Vi

uθ
i (vi; (bi, v−i))− uθ

i (vi; (vi, v−i)) (3)

Where rgt without a specific index is the expected value of rgti for all i, which we compute as the
average regret value over a large sample of inputs. Also, agents are subject to individually rationality
(IR), and would not participate in an auction that could lead to negative utility.

Finally, the optimization problem to find a feasible, strategyproof, revenue-maximizing auction can
be formulated by minimizing the expected negated total payment subject to no-regret and IR.

min
θ∈Rd

E
v∼P

[
−
∑
i∈N

pθi (v)

]
s.t. rgti(v) ≈ 0,∀i ∈ N, v

ui(v) ≥ 0∑
i∈N

gi,j(v) ≤ 1,∀j ∈M

(4)

The neural architecture we use to solve this problem has three components. The backbone is a
multi-layer perceptron with ReLU activations where the depth and width are specified per auction
size below. This component takes as input the n×m bid array (bids from all bidders for all items)
and produces a feature vector. The other two components of the network are output modules, one
for allocations and one for payments. The allocation module takes the feature vector and passes it
through a single fully connected layer to produce an (n+ 1)×m output. We compute an item-wise
softmax over the allocations to ensure that no more than one unit of each item is allocated. Note,
the extra row in the allocation output allows for allocating less than a whole item to the bidders,
accounting for times when the auction house may not sell the entire good. The payment module is
similar, consisting of one fully connected layer to map the feature vector to a vector of length n, to
which we apply a entry-wise sigmoid. These values correspond to payments, which are a fraction
of bidder welfare. The actual fee each agent is charged is computed by multiplying their payment
fraction by their welfare.

To estimate the degree of regret, there is an inner loop during training, performing gradient steps on
the inputs to approximately maximize the utility from misreporting. Given these basic design choices,
RegretNet maximizes payment and includes the (estimated) regret in an augmented Lagrangian term
to enforce the constraints. For the complete training details, see the original paper (Dütting et al.,
2019). After training, we have allocation and payment networks that have very low regret (so the
mechanism is very nearly DSIC).

2.1 PERFORMANCE BASELINES

To contextuallize the benefit of using neural networks, it is critical to study the alternatives. Without
learning auctions from data, one might execute independent Myerson auctions. For m items, it is
possible to run m independent Myerson auctions, preserving strategyproofness. While these are not
revenue-optimal, they at least have revenue which is optimized separately for each item, and in the
limit of the number of bidders they approach optimality (Palfrey, 1983) so they are useful baseline
for learned mechanisms.

Table 1 shows the revenue and regret of the mechanisms we study. These figures are consistent
with the notion that without considering privacy, RegretNet provides the auction house with more
revenue than Myerson auctions and a nearly DSIC auction. We study the most common setting,
where bidders draw valuations independently from U [0, 1]. See Appendix A.1 for additional training
hyperparameters and model architecture details.
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Table 1: Average revenue and regret for the mechanisms we consider. All agents have additive
valuations drawn from U [0, 1]. For RegretNet metrics, we show averages over ten random seeds.

RegretNet Myerson

Size Revenue Regret Revenue Regret

1× 2 0.5720 0.0011 0.500 0.00
2× 2 0.8818 0.0008 0.833 0.00
3× 2 1.1284 0.0028 1.063 0.00
2× 3 1.3522 0.0040 1.250 0.00
3× 3 1.6837 0.0046 1.594 0.00

3 PRIVACY IN AUCTIONS

The central line of inquiry in our work aims in part to answer the question: Given the auction
mechanism and knowledge of the results of a particular auction, how easy is it to recover bidders’
private valuations using model inversion techniques?

We show that in a neural auction, an outside observer can, in fact, retrieve information about the bids.
Furthermore, we show that a participant in the auction, who may use their own bid information in
the process, can recover even more information about other bidders. This vulnerability renders these
mechanisms flawed in settings where bidder information must remain private.

3.1 THREAT MODEL

We consider two cases where the adversary has varying degrees of information at their disposal. First,
we treat the case where an outside observer with no knowledge of any bids attempts to invert the
model after observing the allocations and payments. We also look at the situation where one of the
bidders, who knows their own bid, aims to recover other bidders’ information. In both cases, we
assume that the mechanism itself (i.e. the network weights) is publicly available – this is a reasonable
assumption as it is typically assumed that auction participants know what the mechanism is.

An adversary can attempt to guess bids x∗ by selecting the inputs that produce payments and
allocations close to the true payments and allocations. It is important to note that this strategy
assumes that for a given set of payment and allocation outputs, there is only one input – or that the
model is a bijective function. This assumption is strong for general mechanisms, but in practice we
find neural auctions to be invertible suggesting that it is often the case.

Therefore, identifying x∗ by solving the optimization problem below is akin to finding the true bids b.

x∗ = argmin
x∈supp(P )

∥g(x)− g(b)∥ℓ2 + ∥p(x)− p(b)∥ℓ2 (5)

As is standard in the auction literature, our implementation assumes the adversary knows the distri-
bution P from which agents draw their valuations – this is utilized by initializing the guess to be a
random sample from that distribution (see A.2 for more details). However it is worth mentioning
that even in settings without a view about the bid generating distribution, an adversary that initializes
their bids with zeros is able to successfully learn private information about bids (see appendix A.5)
Note that in the setting where the adversary is also participating in the mechanism as a bidder, the
free variables in the Equation (5) correspond only to the other bidders’ bids.

3.2 PRIVACY METRICS AND BASELINES

In order to quantify how successful an adversary is able to invert an auction we introduce privacy
metrics and baselines. We measure the adversary’s success in two ways. The first is by computing
the percentage of recovered bids that are within some tolerance of the true bids. The second method
is to compute the average absolute error in the bid reconstruction over some large set of examples.
Recall that our focus is the setting in which the adversary knows the distribution from which agents
draw their bids. Complete privacy would ensure that our inversion is more accurate than a random
draw from the bid generating distribution. However, a more applicable goal would be to beat the
privacy of the item-wise Myerson auctions, since they often serve as a baseline for comparison for
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learned mechanisms. Because we know that Myerson auctions are exactly strategyproof, any optimal
neural auction must be at least as private as a Myerson auction to be strictly more desirable. See
appendix A.3 for a discussion of the privacy of Myerson auctions.

4 NEURAL AUCTIONS ARE NOT PRIVATE

We examine auctions of five sizes and for each, we show how much information the adversary can
extract. When the mechanism is learned, and therefore differentiable, the adversary uses gradient-
based optimization to invert the model. Specifically, we execute gradient descent to solve the problem
in Equation (5), projecting the bids onto [0, 1]mn at each iteration. Section A.2 gives the model
inversion algorithm.

Table 2 shows the recovery rates for several sizes of auctions at both levels of information access.
We measure the recovery rates here as a percentage of bids that were successfully extracted from the
model inversion to within a tolerance of±0.02. These figures do not give the adversary any guarantees.
In particular, we do not claim a bound on the error for any given entry in their reconstructed bid
matrix. However, this is still a major vulnerability for the auction house since the adversary has a
high likelihood that their estimate of any particular bid is correct. While the figures below are for the
case where the adversary knows that the bids are drawn from a uniform distribution Pi ∼ U [0, 1] in
Section A.5 we show similar results even when the adversary has no information about P (except
that no types are negative) and instead initializes guesses to zeros.

Furthermore, we compare to the recovery rate one might get from randomly guessing bids from the
known valuation distribution. With the figures in the last row of Table 2, we highlight just how much
more information the adversary has as a direct result of inverting the mechanism.

Table 2: Bid recovery rates. For different auction sizes, we show the portion of the bids (in
percentage ± standard error) that the adversary can recover within a tolerance of ±0.02. Note, for
bids drawn i.i.d. from U [0, 1] a random guess sampled from the same distribution is within the
tolerance 3.96% of the time. Whether the adversary has any true bidder information or not, their
recovery rate is well above random.

Bidders × Items
1 × 2 2 × 2 3 × 2 2 × 3 3 × 3

W/ bids – 84.98± 0.50 82.62± 0.39 91.44± 0.45 82.97± 6.58
W/O any bids 77.92± 1.47 93.08± 0.64 78.27± 0.60 25.69± 1.40 53.53± 4.15

Table 3: Bid reconstruction error. Adversary’s MAE for different auctions. Note, for random guess
sampled from the same distribution as the valuations, the MAE is 1

3 on average. Also, the standard
error for every entry in this table is < 0.01.

Bidders × Items
1 × 2 2 × 2 3 × 2 2 × 3 3 × 3

W/ bids – 0.02 0.03 0.01 0.021
W/O any bids 0.03 0.01 0.03 0.10 0.064

Recovery rates are a relatable figure and for this reason we choose to describe the adversary’s success
this way, but the results in Table 2 are dependant on the tolerance we set. For metrics that are perhaps
less relatable but that do not depend on any hand-picked tolerance, we look at the mean absolute error
(MAE). Specifically, Table 3 shows the average distance from the adversary’s reconstruction to the
true bid value. Whether considering MAE or recovery rates, it is clear that inverting neural auctions
to uncover private bidder information is a real privacy vulnerability.

5 NON-DETERMINISM FOR PRIVACY

With a clear picture of how vulnerable neural models are, we propose a method to prevent inversion.
Our technique, which employs stochasticity to help obscure the inputs, comes at a cost to the auction
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house in expected revenue. We describe our defense to inversion attacks and we characterize the
relationship between degrees of privacy and the cost to the auction house.

Figure 1: Privacy and revenue in 2× 2 auctions. The recovery rate measures how often the inverted
bids are within ±0.02 of the true values. With small σ values that barely affect the expected revenue,
we can mitigate model inversion. For example, note that when σ = 0.2, the revenue is steadily above
the Myerson baseline but the recovery rate is cut in half.

5.1 STOCHASTICITY THAT SATISFIES AUCTION CONSTRAINTS

Many previous works (e.g. Sandholm, 2003) discuss stochasticity in mechanisms, often for the sake
of computational efficiency. We use stochasticity to make inversion more difficult – we perturb the
allocations and payments output by the network. To satisfy individual rationality and ensure that at
most one unit of each item is allocated, this perturbation requires care as follows.

RegretNet, by default, employs several architectural choices to meet the ex post individual rationality
criteria. Specifically, the model first allocates all items to n + 1 bidders, where the extra “ghost”
bidder accounts for portions not sold. Using this ghost bidder allows the network to enforce, via
softmax, that the allocations per item sum to one. We refer to the input to this softmax as allocation
logits and the output as allocations. RegretNet also generates a payment factor, or a positive fraction
less than one, and multiplies this by the value of items allocated to each bidder to compute payments
that are guaranteed to satisfy ex post individual rationality.

With this in mind, we choose to perturb the allocations matrix before the softmax is applied. If we
perturb the allocations after the softmax, we risk entries in the allocation matrix being negative or the
total allocation of a single item exceeding one unit.

We add independent mean zero Gaussian noise to each of the allocation logits and then use softmax
to constrain the allocations matrix to have entries between zero and one and column-wise sums equal
to one. The magnitude of this noise is controlled by the standard deviation σ and we explore how this
parameter affects the privacy metrics.

5.2 METRICS OF RANDOMIZED AUCTIONS

Measuring the payment and regret of a model, for example when evaluating performance after training,
requires estimating two expectations. First, we estimate the average regret rgt(θ) = E

v∼P
[rgt(v)] over

bidders (and samples). Second, we need to estimate the average payment p(θ) = E
v∼P

[∑
i∈N pθi (v)

]
.

Our models have stochasticity added “inside” the mechanism before the last layer. However, due
to the use of linear, additive utilities, the expected welfare from winning items averaged over the
stochasticity is the same as the welfare of the expected allocation. Thus, when estimating payments,
we can simply average over a large number of sampled bid profiles with sampled noise, as usual.
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To estimate regret under a single bid profile, we need to compute two utility terms in the regret for
a given set of bids. We sample bid profiles and compute optimized misreports for each one. Then,
given bids and misreports, we can compute expected allocations/payments in order to compute the
two utility terms in Equation (3).

5.3 COST OF PRIVACY

For an auction house interested in carrying out private auctions, our stochastic technique comes with
a trade-off. As the magnitude of the noise increases the auction becomes more private but it also
realizes less revenue on average. Consider the 2× 2 auction, where RegretNets offer bidders access
to nearly all of the other bidders’ bids. In Figure 1, we show that by adding a stochastic layer to the
network whose noise has standard deviation σ = 0.2 the auction becomes twice as private (see the
decay in the blue curves). Furthermore, with σ = 1.0, the adversary’s bid recovery rate drops to
around 10%. By examining the orange curve in Figure 1, we see that the cost to the auction house is
about 0.005 units or just over 0.5%.

Figure 2: Adversary’s MAE in 2 × 2 auctions. For a metric without a hand-picked parameter, we
show MAE. Lower values correspond to more privacy. With this metric, it is clear that a lot of privacy
can be gained with very little noise, but ensuring that the inversion is only as good as a random guess
requires a large σ value.

Figure 3: Privacy and revenue in 2× 3 auctions.
The recovery rate measures how often the inverted
bids are within ±0.02 of the true values.

Figure 4: Privacy and revenue in 3× 3 auctions.
The recovery rate measures how often the inverted
bids are within ±0.02 of the true values.

We show similar trends in the 3× 2 and 2× 3 auctions, whose privacy-revenue trade-offs are shown
in Figures 3 and 4. From these results, we identify two major take-aways. First, the cost to the auction
house to reduce the recovery rates to 10% is less than 1% of the average revenue from unperturbed
auctions; and these final reduced revenues are all above the Myerson threshold. Second, the scales on
the left-hand vertical axes of Figures 3 and 4 indicate that even with more items these mechanisms
leak private information.
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Figure 5: Wide view of 2× 2 auctions. The recovery rate, the MAE, and the revenue for large values
of σ show that privacy and revenue decay quickly with σ.

An auction house that requires complete privacy may be interested in finding a σ value large enough
that the adversary is not able to extract more information than a random guess. For example, for 2× 2
auctions, Figure 5 shows that the recovery rate decays exponentially but the revenue can fall below
the Myerson revenue. With this in mind, we show that for total privacy, σ must be large enough that
the revenue falls by around 20%. In other words, there is a huge cost for complete privacy in these
mechanisms. See Appendix A.4 for similar plots from other sizes of auctions.

6 DISCUSSION

We illuminate a privacy vulnerability of learned auction mechanisms that warrants attention. Auction
houses are interested in offering their bidders privacy and we show that with neural networks this
comes at a cost. We propose a defense for model inversion attacks that can introduce privacy to
already-trained models. Lastly, we analyze how much revenue the auction house can expect to lose
for various degrees of privacy and we find that total privacy comes at an extremely high cost.

We believe that privacy in auctions is a critical consideration when evaluating the efficacy of the
mechanism. As such, neural auctions lack of privacy should be considered a significant flaw and is
worth exploring further. In particular, there might be other inversion methods that would pose an even
greater threat to the privacy of neural auctions. Additionally, While Differential Privacy is outside the
scope of this paper given that it is primarily concerned with learning information about training data
rather than the mechanism, auctions trained on real data would have the additional requirement of
safeguarding training datasets.

Reproducibility Statement: It is critical for the field that experimental results like those in this
paper be reproducible. While it is our goal that the details given in Sections 3 - 5 and in Appendices
A.1 and A.2 are sufficient for an interested researcher to reproduce our results, we have take further
steps to make it easy to run exactly the code we use. To that end, we provide Python implementations
for all of our experiments in the Supplementary Material. Documentation included there should allow
for rerunning our experiments.

Ethics Statement: We see our approach as a proof of concept that neural auctions are not private.
To our knowledge, neural auction mechanisms have not yet been deployed in practice, so we do not
think that our proof-of-concept attacks pose an immediate risk to privacy. We view thinking through
the privacy of neural auctions as being of interest in itself, and important before they are deployed.
Even in the face of a very naive attack, it is quite easy to infer information about bids by looking at
the allocations. We present a method that can prevent this; however, our current model of an attacker
is relatively naive and it is possible that a craftier adversary may be successful yet. We do not give
any formal guarantees in the spirit of differential privacy, although this might be a fruitful direction
for future work (for example, by bounding the Lipschitz constants of the auction networks (Anil
et al., 2019; Yoshida and Miyato, 2017)). Future work might also wish to consider larger auctions,
and investigate the privacy properties of other neural auction architectures besides RegretNet (e.g.,
Duan et al., 2022; Ivanov et al., 2022; Rahme et al., 2021).
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A APPENDIX

A.1 TRAINING

In our experiments, we use MLPs to model 1 × 2, 2 × 2, 3 × 2, 2 × 3, and 3 × 3 approximately
optimal auctions, the details of which we provide here. Note that the training algorithm is a RegretNet
implementation as proposed by Dütting et al. (2019).

All of our models have ReLU activations. Additionally, the allocation network has a softmax to
ensure that each item’s allocations sum to one, and a sigmoid activation function on the payment
network so that the payments become a fraction between zero and one (to enforce IR). Models are
trained on 640,000 sample valuation profiles bi ∼ U [0, 1] (split into batches of 128) using the Adam
optimizer trained with an initial learning rate of 1e−3 for several epochs.

The training process includes adding an additional term for regret minimization (similar to the
augmented Lagrangian method used in (Dütting et al., 2019)). The corresponding weight for this
regret term is used to update the regret in the loss periodically and the value of ρ itself is also updated
periodically. Finally, the agents’ ex post regret is optimized in an inner loop, whose parameters are
the last three rows of Table 4. See the original RegretNet paper for more details and the derivation of
the loss function (Dütting et al., 2019).

A.2 MODEL INVERSION

The adversary is able to invert the auctions by means of a white box attack. In this setting, the
adversary has access to the outputs (g, p) of the neural auctions as well as the weights of the
mechanisms. They are able to query the mechanism with bids, observing the outputs of the auction
each time. Using a set of simulated bids, output pairs (b→ (g, p)) the adversary is able to reverse the
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Table 4: Hyperparameters. We provide training hyperparameters for all auction sizes we study.
Auction Size 1×2 2×2 3×2 2×3 3×3

Epochs 10 30 20 20 30
Train Batch Size 128 128 128 128 128
Initial Learning Rate 0.001 0.001 0.001 0.001 0.001
Number of Hidden Layers 3 3 5 5 5
Hidden Layer size 100 100 100 100 100
ρ Update Period (Epochs) 2 2 2 2 8
Lagrange Weight Update Period (Iters) 100 100 100 100 100
Initial ρ 1 1 1 1 0
ρ Increment 10 5 1 1 1
Initial Lagrange Weight 5 5 5 5 5
Misreport Learning Rate (Training) 0.1 0.1 0.1 0.1 0.1
Misreport Iterations (Training) 25 25 25 25 25
Misreport Initializations (Training) 10 10 10 10 10

process, using true payments and allocations and recovering the corresponding bids: (g, p)→ b. The
inversion algorithm is outlined in Algorithm 1.

Algorithm 1 Invert Model
1: Input: Minibatches S1...ST of size B, Trained auction modelMw

2: Initialize:
3: b′ ∈ Rn ∼ P guessed bids, drawn from the same generating distribution as v
4: v′ ∈ Rn ∼ P misreported valuations
5: gw ∈ Rn, pw ∈ Rn, rgt ∈ Rn auction parameters
6: for t = 0 to T do
7: Receive minibatch St = {v1...vB}
8: Initialize misreports v′i = vi
9: for i = 0 to I (misreport iterations) do

10: v′i ← v′i + lr ∗ ∇v′i
11: gwt , p

w
t ←Mw(St)

12: Misreport utility u′
i(vi; v

′
i)← vi(g

w
i (v

′))− pwi (v
′)

13: True utility ui(vi)← vi(g
w
i (v))− pwi (v)

14: rgtt ← u′
i(vi; v

′
i)− ui(vi)

15: v′, gw, pw, rgt ∪ v′t, g
w
t , p

w
t , rgtt (append batch)

16: for j = 0 to J (privacy iterations) do
17: g′, p′ ←Mw(b′)
18: lossj ← ∥g′ − gw∥+ ∥p′ − pw∥
19: b′ ← b′ + ν ∗ ∇b′ lossj

The inversion algorithm is projected gradient descent using the Adam optimizer. It iteratively updates
its guessed bids, such that the difference between the resulting payments and allocations and the
true payments and allocations is minimized. This algorithm relies on access to the trained neural
auction model so that the guessed bids can move in the direction of the corresponding gradients
that minimize the inversion objective. We run the inversion with an initial learning rate of 0.002
for 50,000 iterations. We compare the recovered bid to the true bid to within a tolerance of 0.02 to
measure success.

A.3 PRIVACY IN MYERSON AUCTIONS

In order to understand the privacy ramifications of employing neural auctions we establish baselines
with Myerson auctions. For the valuation distributions we deal with, the Myerson auction is simply
a second price auction with reserve. A single item with a reserve price r is sold for a payment
p = max(b2, r), where b2 is the second highest price. If this price causes the auction to violate IR
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(if bi < r,∀i), then the auctioneer would prefer not to sell the item and the payment would be zero.
Like neural auctions, Myerson auctions leak some information that can help an adversarial observer,
(or active bidder), guess the bids of the market participants. The adversary’s inversion accuracy (A)
depends on the on their guessing strategy and the information they have.

A.3.1 NAIVE GUESSING

An adversary may deploy a naive guessing strategy by observing the public payments and allocations
and naively guessing that each bidder bid the payment amount. Such a bidding strategy would
produce a lower bound on A.

Lemma 1. By employing a naive strategy in which the adversary guesses that all bidders bid the
payment amount, their accuracy is bound from below as follows.

A ≥
(
1−

(
rn + (r)n−1(1− r)

))
∗

(
1

n

)
Proof. We can break down the expected guessability of the auction using this naive strategy by
analyzing the three separate cases. (I) All bids are less than the reserve price, or bi < r ∀i. This
occurs with probability rn, which results in no sale and limits the adversary to randomly guessing all
bids. (II) Only one of the bids is higher than the reserve price, which implies p = r. This case has a
probability of n(r)n−1(1− r) and the adversary will only learn the reserve price (which need not be
equivalent to any of the bids). (III) At least two bids are above the reserve price which occurs with
probability 1 − (rn + n(r)n−1(1 − r)). In this case the adversary is guaranteed to be right for at
least 1

n bids, since the payment amount is exactly the second highest bid. This produces the desired
lower bound on the adversary’s inversion accuracy A.

A.3.2 INTELLIGENT GUESSING

We can improve the inversion strategy with additional information gleaned from the payments and
allocations for cases (I) and (II). If the auction has no winner, as in case (I), the adversary knows that
all bids fall below the reserve price so they can adjust their distribution to assume that bi ∼ U [0, r].
Similarly, in case (II), when the payment price is equal to the reserve price, the adversary can deduce
that only one bid lies above the reserve price and the rest lie below. This improves the adversary’s
ability to guess bids when in cases (I) and (II).

A.3.3 ADVERSARIAL BIDDER

Another threat model is that of an active adversarial bidder that can use their own bid as an additional
piece of information to improve their guessing accuracy. If the bidder wins the auction, they learn no
additional information about the other bidders since they only know that everyone else bid at or below
the payment, information known to an external adversary as well. However, if the adversary observes
that the payment is equal to their bid, they know that they set the clearing price of the auction and
that every bidder, except the winner, bid at or below them. This private information, coupled with
the improved guessing strategy for when the reserve price affects the auction outcome make the
auction more invertible and therefore less private. These results are detailed in Table 5. Note, the
empirical success rates in Table 5 are all above the corresponding bounds computed with the formula
in Equation (1).

A.4 EXTENDED RESULTS

Figure 6 shows the MAE for the inversion of the 2 × 3 and 3 × 3 auction models. These results
compliment Figures 1 and 4 in the main body. Furthermore, Figures 7 and 8 show even more detail
on the 2 × 3 and 3 × 3 auction inversion results. As more noise gets added to the system (i.e. as
σ grows) the revenue decreases and and mean absolute error grows. It is worth noting that with
small values of σ, the auctions produce higher revenue than the Myerson auction while reducing bid
recovery rate exponentially.

Finally, Figures 9-12 show the same results for the remaining auction sizes we consider. We also
show how the regret changes with the magnitude of the noise in Figure 13.
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Table 5: Myerson auction bid recovery rates. Empirical measurements of the adversary’s success
rate (%) for multiple guessing strategies in an auction with a reserve price of 0.5 for all items show
that private information is leaked. Note that these numbers are from empirical experiments where
predictions that recover bids within ±0.02 of the true value are considered successful.

Bidders × Items
2 × 2 3 × 2 3 × 3

Naive (no bidder info) 16.493 20.655 20.580
Intelligent (no bidder info) 19.234 22.831 22.775
Intelligent (with bidder info) 19.219 23.519 23.520

Figure 6: MAE for 2× 3(left) and 3× 3 (right) auctions. For values of σ shown in Figures 3 and 4,
we show the corresponding MAE. With larger magnitude noise, the adversary’s error rises.

Figure 7: Wide view of 2 × 3 auctions. The recovery rate, the revenue, and the MAE for large
values of σ show that privacy and revenue decay with σ.

Figure 8: Wide view of 3 × 3 auctions. The recovery rate, the revenue, and the MAE for large
values of σ show that privacy and revenue decay with σ.
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Figure 9: Privacy and revenue of 1 × 2 auctions.

Figure 10: Wide view of 1 × 2 auctions. The recovery rate, the revenue, and the MAE for large
values of σ show that privacy and revenue decay with σ.

Figure 11: Privacy and revenue of 3 × 2 auctions.

Figure 12: Wide view of 3 × 2 auctions. The recovery rate, the revenue, and the MAE for large
values of σ show that privacy and revenue decay with σ.

A.5 ADVERSARIES WITH LIMITED KNOWLEDGE

While bidder valuation distribution is known in the general auction setting, one might wonder how
well an adversary attempting to invert auctions can do without this knowledge. In the inversion strategy
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Figure 13: Regret of noisy auctions.

we propose, the initial guess is a random sample from the valuation distribution P . Additionally, we
project the guess at each iteration onto the support of P in order to enforce that our guess/inversion is
feasible. If the adversary did not know P exactly, they would not be able to sample from the actual
distribution. Furthermore, if they do not even know the support of P – how well can they possibly
do?

To address this question, we modify the inversion strategy as follows. We initialize all guesses to
zeros and we only enforce that bids be positive – a reasonable assumption for any adversary. Even
without any information about P , these mechanisms are invertible. Table 6 shows the inversion
success rates when the adversary uses no distributional information alongside the results from above,
where we do use information about the bid distribution.

Table 6: Bid recovery rates without distributional knowledge. We show the portion of the bids (in
percentage ± standard error) that the adversary can recover within a tolerance of ±0.02.

Bidders × Items
1 × 2 2 × 2 3 × 2 2 × 3 3 × 3

W/ bids Sample P – 84.98± 0.50 82.62± 0.39 91.44± 0.45 82.97± 6.58
Zero Init. – 80.23± 1.16 60.14± 1.80 73.54± 2.57 62.25± 4.17

W/O bids Sample P 77.92± 1.47 93.08± 0.64 78.27± 0.60 25.69± 1.40 53.53± 4.15
Zero Init. 88.63± 1.16 95.39± 0.35 77.34± 0.94 26.93± 1.79 52.22± 4.06

A.6 COMPUTE RESOURCES

Experiments were run on an internal cluster as jobs each utilizing a single Nvidia 2080Ti GPU. All
of the training and testing took less than 840 total GPU-hours.
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