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Abstract

In Open Information Extraction (OpenlE), the
acquisition of manually annotated sentence-
extraction pairs is expensive, while automat-
ically labeled datasets may struggle to accu-
rately reflect real-world requirements for Ope-
nlE systems. Existing neural models often
demonstrate impressive performance on large-
scale training sets but falter when tested on
smaller-scale datasets due to the discrepancy in
attributes between the training and test sets. In
real-world scenarios, it is crucial for OpenlE
systems to align closely with test sets, even
when faced with limited annotated data for
training.

This paper introduces CycleOIE, a novel train-
ing framework applied to a pair of inverse
text-to-text models. Through CycleOIE, we
train a pair of T5 models on our curated
dataset, LSOIE-g, achieving performance lev-
els that surpass baselines trained on signifi-
cantly larger fully supervised training sets. The
ablation study offers a detailed comparison be-
tween fully supervised training and CycleOIE,
highlighting the effectiveness of CycleOIE on
LSOIE-g as the primary factor in enhancing
T5’s OpenlE performance.

1 Introduction

Open Information Extraction (OpenlE) is a type
of Information Extraction task that extracts struc-
tured information, such as triples (subject; rela-
tion; object), from a given sentence (Yates et al.,
2007; Angeli et al., 2015). This task is crucial for
various downstream NLP applications, including
summarization, knowledge graph construction, and
knowledge base question answering.

Neural models for OpenlE demand substan-
tial training data, but manually labeling datasets
meeting requirements of real-world applications
is costly. Publicly available large-scale Ope-
nlE datasets like OIE2016(Stanovsky and Da-
gan, 2016), IMoJIE(Kolluru et al., 2020b) and

LSOIE(Solawetz and Larson, 2021) are often
weakly labeled. Annotations of these datasets
are either high confidence extractions filtered out
of predictions of existing SOTA OpenlE sys-
tems or automatically converted from datasets
of other NLP tasks. Though these weakly la-
beled datasets are employed for training, they are
seldom used for evaluation for limited quality.
Some OpenlE benchmarks like WiRe57(Lechelle
et al., 2019), CaRB(Bhardwaj et al., 2019) and
BenchlIE(Gashteovski et al., 2022) are presented.
The data scale of these benchmarks are so small
that they can only be used for evaluation. They
have no split for training set for their small scales
which are usually no more than 1k sentences.
Meanwhile, these small-scale test sets are either
labeled by experts or crowdsourcing under a explic-
itly stated annotation guidelines. Containing richer
and inferred relations(Pei et al., 2023), these small-
scale test sets play better roles in simulating the
scenarios of real world applications and evaluating
OpenlE systems.

Researchers design novel neural architectures to
fit large-scale weakly labeled training sets, aiming
to enhance performance on small-scale test sets
labeled by experts or crowdsourcing. However,
disparities in attributes between training and test
sets, such as the source and number of inferred
relations persist(Pei et al., 2023). Consequently,
model architectures, regardless of novelty, only
impact how well the model fits the training set.
Fine-tuning is then required for neural models to
align with test data, but obtaining annotated data
for fine-tuning is challenging in both academic and
real application scenarios.

This paper introduces CycleOIE, an unsuper-
vised training framework tailored for low-resource
scenarios. We first leverage gpt-3.5 to generate
extractions, constructing a training set for Cy-
cleOIE. Specifically, we instruct gpt-3.5 with the
prompt words consisting the sentence from LSOIE



wiki! validation set and annotation guidelines of
BenchlIE which adapts to both BenchlE and CaRB
dataset. The combination of LSOIE wiki validation
sentences and extractions generated by gpt-3.5 is
named as LSOIE-g. Subsequently, we train our
OpenlE model with CycleOIE. Though LSOIE-
g is an parallel dataset, during the cycle training
process, its sentences and extractions are shuffled
and loaded separately, which means only one side
of the sentence-extraction pair is utilized in train-
ing one model. This characteristic defines Cy-
cleOIE as unsupervised, aligning with the practical
consideration that acquiring one side of the data
is often more accessible in real-world scenarios.
In each epoch of CycleOIE, there are two cycles,
which are Sentence-Extraction-Sentence (SES) cy-
cle and Extraction-Sentence-Extraction (ESE) cy-
cle. Each cycle needs two models which are
Sentence-to-Extraction(S2E) model and Extraction-
to-Sentence(E2S) model. The data is input to
model-1? in eval mode. Then the prediction of the
model-1 is input to model-2 in train mode. So, only
model-2’s parameter is updated in a cycle by com-
puting the loss between the prediction of model-2
and the input data to model-1 which is from one
side of LSOIE-g. In SES cycle, S2E model is
model-1 and E2S model is model-2 while in ESE
cycle, E2S model is model-1 and S2E model is
model-2. In CycleOIE, we run SES cycle and ESE
cycle by turns so that E2S model and S2E model
can be trained as model-2 by turns. In evaluation,
only S2E model is needed to predict extractions.
The central idea behind CycleOIE is that a good
extraction should contain all facts appeared in the
sentence. Therefore, an extraction can be predicted
by an S2E model, and conversely, a sentence can be
predicted by an E2S model. No parallel annotation
data (i.e., sentence-extraction pair) is needed for
training, assuming a well-performing pretrained
model capable of predicting the other side of the
data. In a cycle, we freeze the parameters of model-
1 and train model-2. We use model-1 to predict
the other side of data so the input of model-2 is
obtained. Then compute the loss of model-2 with
the data pair composed up of the output of model-2
and the input of model-1 (i.e., the original input
data). We assume model-1 is a well performing
pretrained model, capable to predict data of the
other side while it is not. So, in the next cycle,

"https://huggingface.co/datasets/wardenga/lsoie/viewer/wiki
’In this ariticle, we use model-1 to refer to the first model
and model-2 to refer to the second model of current cycle.

we reverse the position of two models and let it get
trained as model-2. In CycleOIE, we run SES cycle
and ESE cycle by turns so that E2S model and S2E
model can be trained as model-2 by turns. After
each epoch, the parameters of model-2 is updated
and various intermediate products will be output
in the next cycle. So CycleOIE can be viewed as a
type of data augmentation along with the training
process. This approach eliminates the need for a
highly performing pretrained S2E or E2S model
at the outset and avoids the requirement for large-
scale, high-quality parallel data.

sentence Earlier today , Thailand ’s Prime Min-
ister Yingluck Shinawatra formally
dissolved the country ’s parliament

and called for new elections .

subject <is> the country ’s parliament
<and> relation <is> dissolved <and>
object <is> Earlier today Thailand
’s Prime Minister Yingluck Shinawa-
tra <then> subject <is> Thailand ’s
Prime Minister Yingluck Shinawatra
<and> relation <is> called <and> ob-
ject <is> Earlier today new elections

extraction

Table 1: <is>, <and>, <then> is added to format
dataset to comply with a text-to-text model.

Our S2E model and E2S model are both fine-
tuned from ﬂan—tS—base3(Chung et al., 2022), a
text-to-text transformer that utilizes textual input
and output. To adapt T5 for the S2E and E2S tasks,
we design a template for extractions with three ad-
ditional tokens: <is>, <and>, <then> respectively,
as illustrated in Table 1.

We conduct experiments on various OpenlE
benchmarks, revealing performance that surpasses
baselines trained on much larger-scale training set
in full supervision. Our contributions are summa-
rized as follows:

(1) We introduce CycleOIE, a training framework
that employs cycle training for the OpenlE task,
implemented on a text-to-text pretrained language
model, T5.

(ii)) We design a format for the extraction se-
quence to align with both the input and output for-
mat of a text-to-text model.

(iii) We construct LSOIE-g, a training set for
CycleOIE containing approximately 2k sentences,
significantly fewer than typical OpenlE training

3https://huggingface.co/google/flan-t5-base



sets. LSOIE-g can be used to mirror the highly
limited annotation data in real world scenarios.
(iv) We conduct extensive experiments demon-
strating that unsupervised CycleOIE is able to out-
perform some fully supervised OpenlE systems,
even with a very limited amount of training data.

2 Related Work

2.1 Open Information Extraction

Open Information Extraction is a fundamental NLP
task aiming at extracting structured information
from a given sentence. Early OpenlE methods
(Yates et al., 2007; Angeli et al., 2015; Del Corro
and Gemulla, 2013; Gashteovski et al., 2017) rely
on linguistic expertise for sentence parsing, while
recent neural methods harness deep neural net-
works to represent the semantics with hidden states.

Neural methods in OpenlE can be broadly cate-
gorized into sequence labeling and sequence gen-
eration methods. Sequence Labeling methods (Ro
et al., 2020; Kolluru et al., 2020a) usually use an
encoder (e.g., BERT) to encode the given sentence
into its embedding. A sequence labeling head con-
nected to the encoder labels each token in the se-
quence. On the other hand, sequence generation
methods (Cui et al., 2018; Kolluru et al., 2020b)
design prompts or generation templates to trans-
form information extraction task into text genera-
tion task. Generally, sequence labeling methods
offer faster predictions since they can be performed
in parallel while their extractions are limited to
tokens from the given sentence, potentially lead-
ing to incoherence or grammatical mistakes. In
contrast, sequence generation methods are slower
as the decoder generates from left to right sequen-
tially, while their generated outputs tend to be more
coherent and adaptive.

2.2 Cycle training

Cycle training, also known as cycle-consistency
training, is a training framework that use unpaired
data to train a pair of inverse models (i.e., out-
put and input of model-1 could become the input
and output of model-2 in reverse.). It is initially
introduced in the machine translation task as the
term iterative back-translation(Hoang et al., 2018)
to solve the challenge of lack of sentence pairs
composed of source language sentences and target
language sentences.

Cycle training is widely used in text generation
tasks. Hoang et al. (2018); Wei et al. (2020); Dou

et al. (2020) manage to use this method to over-
come the scarcity of paired sentence datasets in
machine translation area. Iovine et al. (2022b) in-
troduce CycleKQR, leveraging cycle training to
enhance Question Answering (QA) performance
by rewriting queries into appropriate forms while
retaining semantics. Wang et al. (2023) evaluate
the effectiveness of cycle training in ensuring con-
sistency between structured data and text, achiev-
ing performance comparable to fully supervised
approaches for data-to-text generation tasks. Re-
cently, cycle training has been applied to train in-
formation extraction models. Iovine et al. (2022a)
apply cycle training on TS to address the lack of in-
domain annotation data, achieving competitive per-
formance with fully supervised models on Named
Entity Recognition (NER) tasks. With NER and
many other information extraction tasks, OpenlE
share a similar challenges of insufficient in-domain
annotation data. this highlights the potential of
cycle training to handle OpenlE tasks. The key
lies in designing templates that induce extraction
generations consistent with their source sentences.

3 Method

3.1 CycleOIE

We present CycleOIE to address the challenge of
lack of paralleled training set and train our model
for OpenlE. CycleOIE is implemented by two text-
to-text models (with TS serving as our backbone
model), referred to as S2E(Sentence to Entity)
model and E2S(Entity to Sentence) model as shown
in Figure 1. S2E model (at the top-right corner of
Figure 1) is expected to predict the extraction given
a sentence as input. Each extraction is made up of
triples consisting a head entity, a relation entity
and a tail entity. (subject, relation and object
syntactically.) E2S model is expected to predict the
corresponding sentence given an extraction. Cy-
cleOlIE is trained through two cycles. In each cy-
cle, the first model is freezed and only the second
model’s weights will be updated.

Specifically, in ESE cycle (the left part of Fig-
ure 1, the e is input to the E2S model in eval mode
to predict §. Then § is input to the S2E model (in
train mode) to predict €. Loss between é and e
is computed to update the parameters of the S2E
model through back propagation. After training
the S2E model for 1 epoch, the training process
comes to SES cycle. In SES cycle (the right part
of Figure 1, the s is input to the S2E model (in



subject<is>shallow artificial neural networks<and>relation<is>
are similar to<and>object<is>deep neural networks<then>
subject<is>deep neural networks<and>relation<is>can model
<and>object<is>complex non-linear relationships
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Recently , “ cross handed “ putting has become a popular
trend amongst professional golfers and amateurs .
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Figure 1: CycleOIE training framework

eval mode) to predict é. Then é is input to the E2S
model (in train mode) to predict 5. Loss between §
and s is computed to update the parameter of the
E2S model through back propagation. Once both
models have completed one epoch of training, Cy-
cleOIE is one epoch updated. Table 2 demonstrates
CycleOIE conducted on batched training data.

Algorithm: CycleOIE
Input: Dataset of sentences Dg extractions D g
Output: S2E model Msor and E2S model Mga2s
while Ms2r and Mg2s have not converged do
for every batch S'in Ds:
Transform S into E’ using Ms2E
Train Mpgas with (E’,S)
end for
for every batch E in Dg:
Transform E into S’ using Mgas
Train Msop with (S’ E)
end for
end while

Table 2: Algorithm: CycleOIE

3.2 OpenlE as sequence generation

For taking better advantages of pretrained text-to-
text model, we design a generation template that
guides the language model to generate textual ex-
tractions. The model’s tokenizer is extended with
three additional tokens: <is>, <and>, <then>. As
illustrated in Table 1 , <is> is utilized, in combi-
nation with its previous token, to indicate which
part of a triple should be generated next; <and>
is used to separate head entity, relation entity and
tail entity; <then> is used to delimit triples in a
extraction.

For training the S2E model, the extraction se-

quence, denoted as e = {ey, e, €3, ..., €, }, is input
to the freezed E2S model, letting E2S model to pre-
dict a sentence sequence § = {31, 82, 83, ..., $, }.
The generated sentence sequence § is then fed
into the S2E model, aiming to predict ¢ =
{é1, é2, €3, ..., €, } that aligns with the original ex-
traction sequence e. The loss is computed between
é and e.

Ly(E,FE) = —

1 3 Y i<le| P(ei)log p(é;)
le]
©)
Here, E represents a batch of e and | E| is the batch
size, 6 denotes the parameter of S2E model, p(.)
signifies probability of token, e; is the i-th token in
e and é; is the i-th token in ¢, and |e| represents the
length of the sequence of extractions.
For training E2S model, the sentence sequence
s = {s1,52,83,...,8,} is input to the freezed
S2E model, letting S2E model to predict the ex-
traction sequence é = {éi,é9,€s3,...,6,}. The
generated extraction sequence ¢ is then fed into
the E2S model, expecting its prediction § =
{51, 82, 83, ..., 8, } to fit s. The loss is then cal-
culated between 5 and the gold s.

Z z<|s|p Sl)logp<sl)

£4(5,5) 2)

BEF= 5]

Here S represents a batch of s and |S| is the batch
size, ¢ denotes the parameters of the E2S model, s;
is the i-th token in s, §; is the i-th token in §, and |s|
represents the length of text sequence of the given
sentence.



3.3 Build CycleOIE Dataset

As pointed out by Pei et al. (2023), attribute dis-
crepancies generally exists between weakly la-
beled large-scale training sets and manually la-
beled small-scale test sets. These discrepancies
manifest in factors such as the source of sentences
and the proportion of inferred relations and N-ary
relations they retain. Table 3 illustrates these dif-
ferences; LSOIE lacks inferred relations presented
in WiRe57, CaRB, while IMoJIE lacks N-ary re-
lations found in WiRe57 and CaRB. Both IMoJIE
and LSOIE sentences originate from sources dif-
ferent from CaRB. Achieving high performance
on these human-labeled test sets through training
on weakly labeled training sets poses a challenge.
To address this, we utilize gpt-3.5 to generate ex-
tractions adhere to the annotation guidelines of
BenchIE* given LSOIE wiki validation set sen-
tences as input. Thus we obtain extractions for
those sentences. We name the dataset LSOIE-g
which comprises LSOIE wiki validation set sen-
tences and gpt-3.5 generated extractions. Although
LSOIE-g pairs these extractions with their input
sentences, during the cycle training, we use sen-
tences in the SES cycle and extractions in the ESE
cycle separately. Through experiments, we observe
that our model cycle trained on LSOIE-g outper-
forms some neural baselines fine-tuned in fully
supervised settings on much larger training sets.

4 Datasets

As mentioned in the introduction, neural OpenlE
systems are typically trained and tested on differ-
ent datasets. Datasets used in our experiments are
listed in Table 3.

LSOIE(Solawetz and Larson, 2021) is a
large-scale OpenlE dataset converted from QA-
SRL 2.0 with similar conversion method to
OIE2016(Stanovsky and Dagan, 2016). IMo-
JIE(Kolluru et al., 2020b) aims to construct a
high quality OpenlE dataset with Wikipedia sen-
tences and high confidence extractions predicted
by former OpenlE systems including OpenlE4,
ClauslE, and RNNOIE. Wire57(Lechelle et al.,
2019) releases a tiny dataset comprising 57 sen-
tences from 5 documents and extractions annotated
by 2 experts. CaRB(Bhardwaj et al., 2019) is

“BenchlIE samples 300 sentences and re-annotated by ex-
perts under their guideline. Through our research on CaRB
and BenchlE, we think the annotation guidelines of BenchIE
has many common requirements with CaRB and can instruct
gpt-3.5 to generate extraction annotations for CaRB sentences.

an OpenlE benchmark with 641 sentences in its
test set. Obtained through crowdsourcing, CaRB’s
annotations are generally considered as an noise
reduction from OIE2016(Stanovsky and Dagan,
2016). BenchIE(Gashteovski et al., 2022) releases
a dataset of 300 sentences. Two expert annotators
try to exhaust every possible extraction of facts in
a sentence. Annotations of the same fact are clas-
sified into one cluster. Unlike WiRE57 and CaRB
utilizing token-level scoring functions, BenchlE
judges an predicted triple to be true only when it ex-
actly matches a gold triple in the cluster of the fact.
we find this scoring function to be too strict, result-
ing in significant differences in results on BenchlE
compared to other benchmarks. To address this,
We introduce a new benchmark, CaRB-B, which
combines the scoring function of CaRB and the
dataset of BenchlE, replacing BenchIE’s scoring
function and retaining its dataset.

CaRB, due to its quantity advantage among those
human-labeled datasets, is selected as our main
target for evaluation. Considering the similarity
between LSOIE and CaRB?, we use sentences of
LSOIE wiki validation set to compose our train-
ing set for CycleOIE to simulate a real scenario
where the number of extraction annotations is very
limited.

5 Experiment

5.1 Baseline Systems

We compare our methods with 4 previous
OpenlE systems:  ClauslE(Del Corro and
Gemulla, 2013), MINIE(Gashteovski et al.,
2017), Multi?OIE(Ro et al., 2020), and Ope-
nIE6(Kolluru et al., 2020a). The former two are
classical rule-based methods while the latter two
are neural-based methods.

ClauslIE(Del Corro and Gemulla, 2013) takes the
advantage of English grammatical knowledge to
extract information from a sentence without any
training. By its core step, Dependency Parsing, the
syntactic relation between words in a sentence is
analysed. Then matching the dependency to the
clauses, combining the properties of predicates and
the structure of clauses, extractions from clauses
are generated. Some worries are presented that the
extraction of ClauslE may consist multiple propo-
sitions merging into a over specific value(subject,

SOIE2016 is automatically converted from QA-SRL(He
et al., 2015) while LSOIE is automatically converted from

QA-SRL 2.0(FitzGerald et al., 2018). CaRB is a re-annotation
of OIE2016



Dataset Source Sentences  Extractions Inferred Relations  N-ary relations
training sets IMoJIE wikipedia 71209 215K 3K 0
LSOIE(wiki)  QA-SRL, wikipedia 12832 101K 0 32K
LSOIE-g LSOIE, gpt-3.5 2147 6820 383 0
WiRe57 Wikipedia, Newswire 57 343 173 79
test sets CaRB OIE2016 641 2715 736 683
BenchlE CaRB 300 783 0 0

Table 3: Statistics of datasets used in our experiments

relation, or object) of a tuple representing an extrac-
tion result. These extraction results of less concise-
ness probably don’t meet the demand of its down-
stream tasks like knowledge graph constructions.
Minie(Gashteovski et al., 2017) is an OpenlE sys-
tem built on the top of ClauslE, aiming to provide
compact extractions, i.e., minimizing each value in
the tuple representing extraction result.

Multi?OIE(Ro et al., 2020) first leverages a pre-
trained language model to encode the context of the
sentence. Multi?OIE regards OpenlE as a kind of
sequence labeling task. Predicates are first labeled
by a predicate classifier head concatenated to the
BERT model. Then arguments are predicted by
an argument classifier given the output of BERT
model including the hidden state vector and predi-
cate average vector. Among neural methods, While
methods of sequence labeling outputs predictions
with faster speed, methods of generation produce
extractions of better quality. OpenlE6(Kolluru
et al., 2020a), using Iterative Grid Labeling archi-
tecture to label a 2-D grid which represents an
extraction result with a row, surpassing generative
methods(Cui et al., 2018; Kolluru et al., 2020b)
achieves SOTA at that time.

5.2 Main results

We compare our CycleOIE with baseline systems.
As shown in Table 4, our unsupervised method,
CycleOIE, achieves the highest precision and F1
on both CaRB and CaRB-B benchmark, compar-
ing with tradition rule-based methods and two fully
supervised neural methods. When evaluating on
WiRe57 CycleOIE’s F1 only defeats Multi?OIE.
Neural methods’ performance can be influenced
by various factors beyond model architecture, such
as the scoring function and attribute discrepancies
between the training set and the test set. In Ta-
ble 5, we conduct additional experiments control-
ling variables to evaluate the performances of neu-
ral methods when they are trained on LSOIE whose

®https://github.com/zhanjunlang/Span_OIE

sentences share a same source with our LSOIE-g.
We compare CycleOIE’s performance with neural
methods trained on LSOIE wiki training set. The
results indicate CycleOIE outperforms these two
OpenlE6 and Multi2?OIE on WiRe577, CaRB® and
WiRe57-C? benchmark even though CycleOIE is
training on a dataset with a significantly smaller
scale than the LSOIE training set. Notably, when
evaluating on CaRB, the performance gap between
CycleOIE and other baseline methods becomes
more pronounced than the gap illustrated in Table4.

5.3 Ablation study

We conduct an ablation study and results are pre-
sented in Table 6. Here are the details of our exper-
imental settings.

Setting (1) sft on LSOIE stands for training flan-
t5-base on LSOIE wiki training set in fully super-
vised fine-tuning and (2) sft on LSOIE+IMoJIE
stands for a similar setting except for training on
the union of LSOIE wiki and IMoJIE training set.

In (3) sft on LSOIE — sft on LSOIE-g setting,
we train the model by 2 steps. At step 1, we do the
same training as (1). At step 2, we train the weights
output by step 1 on LSOIE-g data with full super-
vision. In the step] of (4) sft on LSOIE+IMoJIE
— sft on LSOIE-g, we do the same training as (2),
and the other operations keep the same with the
previous one.

In (5) sft on LSOIE — CycleOIE setting, we
train flan-t5-base in fully supervised fine-tuning on
LSOIE wiki training set at step 1, then cycle trained
the model output by step 1 on LSOIE-g data. While
in setting (6) sft on LSOIE+IMoJIE — CycleOIE
the training set at step 1 is augmented.

Setting (10) CycleOIE stands for we cycle train
flan-t5-base on LSOIE-g without any supervised
fine-tuning to bootstrap. Setting (7), (8), (9) stands
for 1/4, 1/2, 3/4 of sentences and extractions in

"WiRe57 scoring function + Wire57 test set
8CaRB scoring function + CaRB test set
“WiRe57 scoring function + CaRB test set



WiRe57 CaRB CaRB-B
P R F1 P R F1 P R F1
ClauslE 0.401 0.298 0342 | 0411 0.496 0.450 | 0.580 0.534 0.556
MINIE 0.400 0.323 0.358 | 0.429 0.382 0.404 | 0.466 0.436 0.441
OpenlE6 | 0.465 0.326 0.383 | 0.589 0.476 0.527 | 0.478 0.671 0.559
Multi?OIE | 0.457 0.182 0.261 | 0.609 0.458 0.523 | 0.598 0.613 0.605
CycleOIE | 0.388 0.205 0.268 | 0.691 0.427 0.528 | 0.603 0.613 0.608

Table 4: Overall evaluation. CaRB-B stands for combining the scoring function of CaRB and the dataset of BenchlE,
while WiRe57 and CaRB use the scoring function and dataset of their own. In this table, the author-published
baselines are evaluated, which means the training set is defined by their author and probably not unified. OpenlE6
was trained on the OpenlE4 training dataset used to train IMoJIE. Mult2OIE is trained on the training dataset of

SpanOIE®(Zhan and Zhao, 2020).

scoring function CaRB WiRe57
model training set  test set P R F1 P R F1

OpenlE6 LSOIE WiRe57 0.311 0.247 0.275 0311 0.194 0.239
Multi2OIE LSOIE WiRe57 0.440 0.202 0.276 0.440 0.128 0.198

CycleOIE  LSOIE-g WiRe57 0.385 0.271 0.318 0.388 0.205 0.268

OpenlE6 LSOIE CaRB  0.403 0.389 0.396 - - -
Multi’OIE ~ LSOIE CaRB  0.611 0369 0461 - - -

CycleOIE LSOIE-g CaRB  0.691 0.427 0.528 - - -

Table 5: Above the dashline, we compare our CycleOIE, which is trained on LSOIE-g to those models trained on
LSOIE wiki training set, on the test data of WiRe57 with CaRB’s scoring function and WiRe57’s scoring function
respectively. Below the dash line, we compare our CycleOIE, which is trained on LSOIE-g, to those models trained
on LSOIE wiki training set, on the test data of CaRB, with scoring function of CaRB.

LSOIE-g is sampled as training set respectively.

In settings above, when models are trained on
LSOIE-g in supervised fine-tuning, the LSOIE-g is
paralleled, which means the sentences and the cor-
responding extractions are paired up. When mod-
els are trained on LSOIE-g in CycleOIE, LSOIE-g
is unpaired to simulate the real world scenarios,
which means sentences and extractions are shuffled
and loaded separately.

Table 6 indicates that the (10) CycleOIE set-
ting, without any supervised fine-tuning boot-
strap, achieves similar performance with (6) sft on
LSOIE+IMoJIE — CycleOIE, demonstrating the
promise of CycleOIE in real-world OpenlE scener-
i0s, where annotation data is often insufficient.

Comparing setting (1) and (2), we observe that
augmenting the training set with IMoJIE signifi-
cantly improves recall, albeit at the cost of preci-
sion. Comparing (3)(4) or (5)(6) to (1)(2), it is
observed that once the model is trained on LSOIE-
g (either in sft or CycleOIE), precision and f1 show
significant improvements. This suggests that our

built LSOIE-g is effective as a training dataset for
CaRB and CaRB-B. Our designed prompt words,
which are derived from BenchlE annotation guide-
lines, successfully instruct gpt-3.5 to be a qualified
annotator.

Comparing (5) to (3), the former exhibits higher
performances in precision, recall and fl. Com-
paring (6) to (4), the former demonstrates advan-
tages in recall and F1, but the gap, taking F1 as
the main metric for comparison, is smaller than
the gap between (5) and (3). This aligns with our
understanding that cycle training can be considered
a form of continuous data augmentation along with
the training process, significantly improving the
performance when the model has not yet acquired
enough domain knowledge from existing training
data. Conversely, When the existing training data
contains sufficient domain knowledge for this task,
cycle training doesn’t have a prominent advantage
over sft.

We observe that (5), (6) and (10) have similar
performances, indicating the model cycle trained



CaRB CaRB-B

P R F1 P R F1
(1) sft on LSOIE 0.573 0.339 0426 | 0488 0.459 0473
(2) sft on LSOIE+IMoJIE 0.402 0453 0.426 | 0.332 0.598 0427
(3) sft on LSOIE — sft on LSOIE-g 0.654 0.418 0.51 | 0.592 0.576 0.584
(4) sft on LSOIE+IMOoJIE — sft on LSOIE-g | 0.704 0.415 0.523 | 0.636 0.576 0.604
(5) sft on LSOIE — CycleOIE 0.694 0.424 0.526 | 0.600 0.589 0.594
(6) sft on LSOIE+IMolJIE — CycleOIE 0.694 0.428 0.530 | 0.618 0.602 0.610
(7) CycleOIE(1/4 LSOIE-g) 0.557 0.386 0.456 | 0.521 0.56 0.54
(8) CycleOIE(1/2 LSOIE-g) 0.616 0.412 0.494 | 0.557 0.577 0.567
(9) CycleOIE(3/4 LSOIE-g) 0.651 0.419 0.510 | 0.594 0.598 0.596
(10) CycleOIE 0.691 0.427 0.528 | 0.603 0.613 0.608

Table 6: Ablation study
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Figure 2: Loss and F1 score of each epoch.

on LSOIE-g can acquire sufficient knowledge to
solve the OpenlE task and hit the test data of CaRB.
Supervised fine-tuning on wealky labeled large-
scale training sets helps to bootstrap but provide
almost no additional domain knowledge compared
to CycleOIE on LSOIE-g.

The bottom four lines demonstrates the perfor-
mance of CycleOIE given different scale of LSOIE-
g training data. We observe that the model per-
forms better on every metric with an increasing
scale of training data, indicating our built LSOIE-g

is suitable as the training set of CycleOIE, espe-
cially when target benchmark is CaRB and CaRB-
B. More detailed influences caused by the training
data size is illustrated in Figure 2 where we record
the loss 8 and F1 score of each epoch of CycleOIE.
We observe that training on 1.00LSOIE-g, the loss
descends in the fastest rate and then remains at the
lowest position and the F1 score converges in the
first place at after about 20 epochs. The fluctuation
of the F1 score also gets smaller when CycleOIE
is conducted on a larger training set.

6 Conclusion

In this paper, we present CycleOIE, a novel frame-
work training a pair of inverse text-to-text model
to address OpenlE. We design a template to ensure
extractions align with the input and output format
of T5. Leveraging the capabilities of gpt-3.5, we
construct LSOIE-g as the training set for CycleOIE.
Experimental results demonstrate that our approach
outperforms baselines trained under full supervi-
sion on much larger-scale OpenlE training sets.

Limitations

We implemented CycleOIE based on T5 without in-
troducing novel model structures or task pipelines
for further performance enhancement. Due to
current constraints related to available GPUs and
time limitations, we refrained from applying Cy-
cleOlIE to fine-tune large language models such as
LLaMA (Touvron et al., 2023) and ChatGLM!°(Du
et al., 2022), which are more powerful generative
models. A speculative avenue for future explo-
ration is the potential of large language models to

https://github.com/THUDM/ChatGLM2-6B



seamlessly transition between sentence-generating
and extraction-generating modes by altering in-
structions after instruction tuning. This implies
the possibility of training a single model instead of
a pair. We aspire to delve into this aspect of large
language models in future research.
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