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Abstract

In Open Information Extraction (OpenIE), the001
acquisition of manually annotated sentence-002
extraction pairs is expensive, while automat-003
ically labeled datasets may struggle to accu-004
rately reflect real-world requirements for Ope-005
nIE systems. Existing neural models often006
demonstrate impressive performance on large-007
scale training sets but falter when tested on008
smaller-scale datasets due to the discrepancy in009
attributes between the training and test sets. In010
real-world scenarios, it is crucial for OpenIE011
systems to align closely with test sets, even012
when faced with limited annotated data for013
training.014

This paper introduces CycleOIE, a novel train-015
ing framework applied to a pair of inverse016
text-to-text models. Through CycleOIE, we017
train a pair of T5 models on our curated018
dataset, LSOIE-g, achieving performance lev-019
els that surpass baselines trained on signifi-020
cantly larger fully supervised training sets. The021
ablation study offers a detailed comparison be-022
tween fully supervised training and CycleOIE,023
highlighting the effectiveness of CycleOIE on024
LSOIE-g as the primary factor in enhancing025
T5’s OpenIE performance.026

1 Introduction027

Open Information Extraction (OpenIE) is a type028

of Information Extraction task that extracts struc-029

tured information, such as triples (subject; rela-030

tion; object), from a given sentence (Yates et al.,031

2007; Angeli et al., 2015). This task is crucial for032

various downstream NLP applications, including033

summarization, knowledge graph construction, and034

knowledge base question answering.035

Neural models for OpenIE demand substan-036

tial training data, but manually labeling datasets037

meeting requirements of real-world applications038

is costly. Publicly available large-scale Ope-039

nIE datasets like OIE2016(Stanovsky and Da-040

gan, 2016), IMoJIE(Kolluru et al., 2020b) and041

LSOIE(Solawetz and Larson, 2021) are often 042

weakly labeled. Annotations of these datasets 043

are either high confidence extractions filtered out 044

of predictions of existing SOTA OpenIE sys- 045

tems or automatically converted from datasets 046

of other NLP tasks. Though these weakly la- 047

beled datasets are employed for training, they are 048

seldom used for evaluation for limited quality. 049

Some OpenIE benchmarks like WiRe57(Lechelle 050

et al., 2019), CaRB(Bhardwaj et al., 2019) and 051

BenchIE(Gashteovski et al., 2022) are presented. 052

The data scale of these benchmarks are so small 053

that they can only be used for evaluation. They 054

have no split for training set for their small scales 055

which are usually no more than 1k sentences. 056

Meanwhile, these small-scale test sets are either 057

labeled by experts or crowdsourcing under a explic- 058

itly stated annotation guidelines. Containing richer 059

and inferred relations(Pei et al., 2023), these small- 060

scale test sets play better roles in simulating the 061

scenarios of real world applications and evaluating 062

OpenIE systems. 063

Researchers design novel neural architectures to 064

fit large-scale weakly labeled training sets, aiming 065

to enhance performance on small-scale test sets 066

labeled by experts or crowdsourcing. However, 067

disparities in attributes between training and test 068

sets, such as the source and number of inferred 069

relations persist(Pei et al., 2023). Consequently, 070

model architectures, regardless of novelty, only 071

impact how well the model fits the training set. 072

Fine-tuning is then required for neural models to 073

align with test data, but obtaining annotated data 074

for fine-tuning is challenging in both academic and 075

real application scenarios. 076

This paper introduces CycleOIE, an unsuper- 077

vised training framework tailored for low-resource 078

scenarios. We first leverage gpt-3.5 to generate 079

extractions, constructing a training set for Cy- 080

cleOIE. Specifically, we instruct gpt-3.5 with the 081

prompt words consisting the sentence from LSOIE 082
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wiki1 validation set and annotation guidelines of083

BenchIE which adapts to both BenchIE and CaRB084

dataset. The combination of LSOIE wiki validation085

sentences and extractions generated by gpt-3.5 is086

named as LSOIE-g. Subsequently, we train our087

OpenIE model with CycleOIE. Though LSOIE-088

g is an parallel dataset, during the cycle training089

process, its sentences and extractions are shuffled090

and loaded separately, which means only one side091

of the sentence-extraction pair is utilized in train-092

ing one model. This characteristic defines Cy-093

cleOIE as unsupervised, aligning with the practical094

consideration that acquiring one side of the data095

is often more accessible in real-world scenarios.096

In each epoch of CycleOIE, there are two cycles,097

which are Sentence-Extraction-Sentence (SES) cy-098

cle and Extraction-Sentence-Extraction (ESE) cy-099

cle. Each cycle needs two models which are100

Sentence-to-Extraction(S2E) model and Extraction-101

to-Sentence(E2S) model. The data is input to102

model-12 in eval mode. Then the prediction of the103

model-1 is input to model-2 in train mode. So, only104

model-2’s parameter is updated in a cycle by com-105

puting the loss between the prediction of model-2106

and the input data to model-1 which is from one107

side of LSOIE-g. In SES cycle, S2E model is108

model-1 and E2S model is model-2 while in ESE109

cycle, E2S model is model-1 and S2E model is110

model-2. In CycleOIE, we run SES cycle and ESE111

cycle by turns so that E2S model and S2E model112

can be trained as model-2 by turns. In evaluation,113

only S2E model is needed to predict extractions.114

The central idea behind CycleOIE is that a good115

extraction should contain all facts appeared in the116

sentence. Therefore, an extraction can be predicted117

by an S2E model, and conversely, a sentence can be118

predicted by an E2S model. No parallel annotation119

data (i.e., sentence-extraction pair) is needed for120

training, assuming a well-performing pretrained121

model capable of predicting the other side of the122

data. In a cycle, we freeze the parameters of model-123

1 and train model-2. We use model-1 to predict124

the other side of data so the input of model-2 is125

obtained. Then compute the loss of model-2 with126

the data pair composed up of the output of model-2127

and the input of model-1 (i.e., the original input128

data). We assume model-1 is a well performing129

pretrained model, capable to predict data of the130

other side while it is not. So, in the next cycle,131

1https://huggingface.co/datasets/wardenga/lsoie/viewer/wiki
2In this ariticle, we use model-1 to refer to the first model

and model-2 to refer to the second model of current cycle.

we reverse the position of two models and let it get 132

trained as model-2. In CycleOIE, we run SES cycle 133

and ESE cycle by turns so that E2S model and S2E 134

model can be trained as model-2 by turns. After 135

each epoch, the parameters of model-2 is updated 136

and various intermediate products will be output 137

in the next cycle. So CycleOIE can be viewed as a 138

type of data augmentation along with the training 139

process. This approach eliminates the need for a 140

highly performing pretrained S2E or E2S model 141

at the outset and avoids the requirement for large- 142

scale, high-quality parallel data. 143

sentence Earlier today , Thailand ’s Prime Min-
ister Yingluck Shinawatra formally
dissolved the country ’s parliament
and called for new elections .

extraction subject <is> the country ’s parliament
<and> relation <is> dissolved <and>
object <is> Earlier today Thailand
’s Prime Minister Yingluck Shinawa-
tra <then> subject <is> Thailand ’s
Prime Minister Yingluck Shinawatra
<and> relation <is> called <and> ob-
ject <is> Earlier today new elections

Table 1: <is>, <and>, <then> is added to format
dataset to comply with a text-to-text model.

Our S2E model and E2S model are both fine- 144

tuned from flan-t5-base3(Chung et al., 2022), a 145

text-to-text transformer that utilizes textual input 146

and output. To adapt T5 for the S2E and E2S tasks, 147

we design a template for extractions with three ad- 148

ditional tokens: <is>, <and>, <then> respectively, 149

as illustrated in Table 1. 150

We conduct experiments on various OpenIE 151

benchmarks, revealing performance that surpasses 152

baselines trained on much larger-scale training set 153

in full supervision. Our contributions are summa- 154

rized as follows: 155

(i) We introduce CycleOIE, a training framework 156

that employs cycle training for the OpenIE task, 157

implemented on a text-to-text pretrained language 158

model, T5. 159

(ii) We design a format for the extraction se- 160

quence to align with both the input and output for- 161

mat of a text-to-text model. 162

(iii) We construct LSOIE-g, a training set for 163

CycleOIE containing approximately 2k sentences, 164

significantly fewer than typical OpenIE training 165

3https://huggingface.co/google/flan-t5-base
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sets. LSOIE-g can be used to mirror the highly166

limited annotation data in real world scenarios.167

(iv) We conduct extensive experiments demon-168

strating that unsupervised CycleOIE is able to out-169

perform some fully supervised OpenIE systems,170

even with a very limited amount of training data.171

2 Related Work172

2.1 Open Information Extraction173

Open Information Extraction is a fundamental NLP174

task aiming at extracting structured information175

from a given sentence. Early OpenIE methods176

(Yates et al., 2007; Angeli et al., 2015; Del Corro177

and Gemulla, 2013; Gashteovski et al., 2017) rely178

on linguistic expertise for sentence parsing, while179

recent neural methods harness deep neural net-180

works to represent the semantics with hidden states.181

Neural methods in OpenIE can be broadly cate-182

gorized into sequence labeling and sequence gen-183

eration methods. Sequence Labeling methods (Ro184

et al., 2020; Kolluru et al., 2020a) usually use an185

encoder (e.g., BERT) to encode the given sentence186

into its embedding. A sequence labeling head con-187

nected to the encoder labels each token in the se-188

quence. On the other hand, sequence generation189

methods (Cui et al., 2018; Kolluru et al., 2020b)190

design prompts or generation templates to trans-191

form information extraction task into text genera-192

tion task. Generally, sequence labeling methods193

offer faster predictions since they can be performed194

in parallel while their extractions are limited to195

tokens from the given sentence, potentially lead-196

ing to incoherence or grammatical mistakes. In197

contrast, sequence generation methods are slower198

as the decoder generates from left to right sequen-199

tially, while their generated outputs tend to be more200

coherent and adaptive.201

2.2 Cycle training202

Cycle training, also known as cycle-consistency203

training, is a training framework that use unpaired204

data to train a pair of inverse models (i.e., out-205

put and input of model-1 could become the input206

and output of model-2 in reverse.). It is initially207

introduced in the machine translation task as the208

term iterative back-translation(Hoang et al., 2018)209

to solve the challenge of lack of sentence pairs210

composed of source language sentences and target211

language sentences.212

Cycle training is widely used in text generation213

tasks. Hoang et al. (2018); Wei et al. (2020); Dou214

et al. (2020) manage to use this method to over- 215

come the scarcity of paired sentence datasets in 216

machine translation area. Iovine et al. (2022b) in- 217

troduce CycleKQR, leveraging cycle training to 218

enhance Question Answering (QA) performance 219

by rewriting queries into appropriate forms while 220

retaining semantics. Wang et al. (2023) evaluate 221

the effectiveness of cycle training in ensuring con- 222

sistency between structured data and text, achiev- 223

ing performance comparable to fully supervised 224

approaches for data-to-text generation tasks. Re- 225

cently, cycle training has been applied to train in- 226

formation extraction models. Iovine et al. (2022a) 227

apply cycle training on T5 to address the lack of in- 228

domain annotation data, achieving competitive per- 229

formance with fully supervised models on Named 230

Entity Recognition (NER) tasks. With NER and 231

many other information extraction tasks, OpenIE 232

share a similar challenges of insufficient in-domain 233

annotation data. this highlights the potential of 234

cycle training to handle OpenIE tasks. The key 235

lies in designing templates that induce extraction 236

generations consistent with their source sentences. 237

3 Method 238

3.1 CycleOIE 239

We present CycleOIE to address the challenge of 240

lack of paralleled training set and train our model 241

for OpenIE. CycleOIE is implemented by two text- 242

to-text models (with T5 serving as our backbone 243

model), referred to as S2E(Sentence to Entity) 244

model and E2S(Entity to Sentence) model as shown 245

in Figure 1. S2E model (at the top-right corner of 246

Figure 1) is expected to predict the extraction given 247

a sentence as input. Each extraction is made up of 248

triples consisting a head entity, a relation entity 249

and a tail entity. (subject, relation and object 250

syntactically.) E2S model is expected to predict the 251

corresponding sentence given an extraction. Cy- 252

cleOIE is trained through two cycles. In each cy- 253

cle, the first model is freezed and only the second 254

model’s weights will be updated. 255

Specifically, in ESE cycle (the left part of Fig- 256

ure 1, the e is input to the E2S model in eval mode 257

to predict ŝ. Then ŝ is input to the S2E model (in 258

train mode) to predict ê. Loss between ê and e 259

is computed to update the parameters of the S2E 260

model through back propagation. After training 261

the S2E model for 1 epoch, the training process 262

comes to SES cycle. In SES cycle (the right part 263

of Figure 1, the s is input to the S2E model (in 264
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E2S

S2E

S2E

E2S

Extraction-Sentence-Extraction cycle Sentence-Extraction-Sentence cycle

Recently , “ cross handed “ putting has become a popular 
trend amongst professional golfers and amateurs .

subject<is>cross handed putting<and>relation<is>has become
<and>object<is>a popular trend
<then>subject<is>cross handed putting<and>relation<is>is pop
ular among<and>object<is>professional golfers and amateurs

Cross-handed putting has become a popular trend, and it 
is popular among professional golfers and amateurs.

subject<is>shallow artificial neural networks<and>relation<is>
are similar to<and>object<is>deep neural networks<then>
subject<is>deep neural networks<and>relation<is>can model
<and>object<is>complex non-linear relationships

Similar to shallow artificial neural networks , deep 
neural networks can model complex non-linear 
relationships .

subject<is>deep neural networks<and>relation<is>can model 
<and>object<is>complex non-linear relationships

e

�

�

s

�

�

eval()

train()

Figure 1: CycleOIE training framework

eval mode) to predict ê. Then ê is input to the E2S265

model (in train mode) to predict ŝ. Loss between ŝ266

and s is computed to update the parameter of the267

E2S model through back propagation. Once both268

models have completed one epoch of training, Cy-269

cleOIE is one epoch updated. Table 2 demonstrates270

CycleOIE conducted on batched training data.271

Algorithm: CycleOIE
Input: Dataset of sentences DS extractions DE

Output: S2E model MS2E and E2S model ME2S

while MS2E and ME2S have not converged do
for every batch S in DS :

Transform S into E′ using MS2E

Train ME2S with (E′, S)
end for
for every batch E in DE :

Transform E into S′ using ME2S

Train MS2E with (S′, E)
end for

end while

Table 2: Algorithm: CycleOIE

3.2 OpenIE as sequence generation272

For taking better advantages of pretrained text-to-273

text model, we design a generation template that274

guides the language model to generate textual ex-275

tractions. The model’s tokenizer is extended with276

three additional tokens: <is>, <and>, <then>. As277

illustrated in Table 1 , <is> is utilized, in combi-278

nation with its previous token, to indicate which279

part of a triple should be generated next; <and>280

is used to separate head entity, relation entity and281

tail entity; <then> is used to delimit triples in a282

extraction.283

For training the S2E model, the extraction se-284

quence, denoted as e = {e1, e2, e3, ..., en}, is input 285

to the freezed E2S model, letting E2S model to pre- 286

dict a sentence sequence ŝ = {ŝ1, ŝ2, ŝ3, ..., ŝn}. 287

The generated sentence sequence ŝ is then fed 288

into the S2E model, aiming to predict ê = 289

{ê1, ê2, ê3, ..., ên} that aligns with the original ex- 290

traction sequence e. The loss is computed between 291

ê and e. 292

Lθ(E, Ê) = − 1

|E|
∑
e∈E

∑
i<|e| p(ei)log p(êi)

|e|
(1) 293

Here, E represents a batch of e and |E| is the batch 294

size, θ denotes the parameter of S2E model, p(.) 295

signifies probability of token, ei is the i-th token in 296

e and êi is the i-th token in ê, and |e| represents the 297

length of the sequence of extractions. 298

For training E2S model, the sentence sequence 299

s = {s1, s2, s3, ..., sn} is input to the freezed 300

S2E model, letting S2E model to predict the ex- 301

traction sequence ê = {ê1, ê2, ê3, ..., ên}. The 302

generated extraction sequence ê is then fed into 303

the E2S model, expecting its prediction ŝ = 304

{ŝ1, ŝ2, ŝ3, ..., ŝn} to fit s. The loss is then cal- 305

culated between ŝ and the gold s. 306

Lϕ(S, Ŝ) = − 1

|S|
∑
s∈S

∑
i<|s| p(si)log p(ŝi)

|s|
(2) 307

Here S represents a batch of s and |S| is the batch 308

size, ϕ denotes the parameters of the E2S model, si 309

is the i-th token in s, ŝi is the i-th token in ŝ, and |s| 310

represents the length of text sequence of the given 311

sentence. 312
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3.3 Build CycleOIE Dataset313

As pointed out by Pei et al. (2023), attribute dis-314

crepancies generally exists between weakly la-315

beled large-scale training sets and manually la-316

beled small-scale test sets. These discrepancies317

manifest in factors such as the source of sentences318

and the proportion of inferred relations and N-ary319

relations they retain. Table 3 illustrates these dif-320

ferences; LSOIE lacks inferred relations presented321

in WiRe57, CaRB, while IMoJIE lacks N-ary re-322

lations found in WiRe57 and CaRB. Both IMoJIE323

and LSOIE sentences originate from sources dif-324

ferent from CaRB. Achieving high performance325

on these human-labeled test sets through training326

on weakly labeled training sets poses a challenge.327

To address this, we utilize gpt-3.5 to generate ex-328

tractions adhere to the annotation guidelines of329

BenchIE4 given LSOIE wiki validation set sen-330

tences as input. Thus we obtain extractions for331

those sentences. We name the dataset LSOIE-g332

which comprises LSOIE wiki validation set sen-333

tences and gpt-3.5 generated extractions. Although334

LSOIE-g pairs these extractions with their input335

sentences, during the cycle training, we use sen-336

tences in the SES cycle and extractions in the ESE337

cycle separately. Through experiments, we observe338

that our model cycle trained on LSOIE-g outper-339

forms some neural baselines fine-tuned in fully340

supervised settings on much larger training sets.341

4 Datasets342

As mentioned in the introduction, neural OpenIE343

systems are typically trained and tested on differ-344

ent datasets. Datasets used in our experiments are345

listed in Table 3.346

LSOIE(Solawetz and Larson, 2021) is a347

large-scale OpenIE dataset converted from QA-348

SRL 2.0 with similar conversion method to349

OIE2016(Stanovsky and Dagan, 2016). IMo-350

JIE(Kolluru et al., 2020b) aims to construct a351

high quality OpenIE dataset with Wikipedia sen-352

tences and high confidence extractions predicted353

by former OpenIE systems including OpenIE4,354

ClausIE, and RNNOIE. Wire57(Lechelle et al.,355

2019) releases a tiny dataset comprising 57 sen-356

tences from 5 documents and extractions annotated357

by 2 experts. CaRB(Bhardwaj et al., 2019) is358

4BenchIE samples 300 sentences and re-annotated by ex-
perts under their guideline. Through our research on CaRB
and BenchIE, we think the annotation guidelines of BenchIE
has many common requirements with CaRB and can instruct
gpt-3.5 to generate extraction annotations for CaRB sentences.

an OpenIE benchmark with 641 sentences in its 359

test set. Obtained through crowdsourcing, CaRB’s 360

annotations are generally considered as an noise 361

reduction from OIE2016(Stanovsky and Dagan, 362

2016). BenchIE(Gashteovski et al., 2022) releases 363

a dataset of 300 sentences. Two expert annotators 364

try to exhaust every possible extraction of facts in 365

a sentence. Annotations of the same fact are clas- 366

sified into one cluster. Unlike WiRE57 and CaRB 367

utilizing token-level scoring functions, BenchIE 368

judges an predicted triple to be true only when it ex- 369

actly matches a gold triple in the cluster of the fact. 370

we find this scoring function to be too strict, result- 371

ing in significant differences in results on BenchIE 372

compared to other benchmarks. To address this, 373

We introduce a new benchmark, CaRB-B, which 374

combines the scoring function of CaRB and the 375

dataset of BenchIE, replacing BenchIE’s scoring 376

function and retaining its dataset. 377

CaRB, due to its quantity advantage among those 378

human-labeled datasets, is selected as our main 379

target for evaluation. Considering the similarity 380

between LSOIE and CaRB5, we use sentences of 381

LSOIE wiki validation set to compose our train- 382

ing set for CycleOIE to simulate a real scenario 383

where the number of extraction annotations is very 384

limited. 385

5 Experiment 386

5.1 Baseline Systems 387

We compare our methods with 4 previous 388

OpenIE systems: ClausIE(Del Corro and 389

Gemulla, 2013), MINIE(Gashteovski et al., 390

2017), Multi2OIE(Ro et al., 2020), and Ope- 391

nIE6(Kolluru et al., 2020a). The former two are 392

classical rule-based methods while the latter two 393

are neural-based methods. 394

ClausIE(Del Corro and Gemulla, 2013) takes the 395

advantage of English grammatical knowledge to 396

extract information from a sentence without any 397

training. By its core step, Dependency Parsing, the 398

syntactic relation between words in a sentence is 399

analysed. Then matching the dependency to the 400

clauses, combining the properties of predicates and 401

the structure of clauses, extractions from clauses 402

are generated. Some worries are presented that the 403

extraction of ClausIE may consist multiple propo- 404

sitions merging into a over specific value(subject, 405

5OIE2016 is automatically converted from QA-SRL(He
et al., 2015) while LSOIE is automatically converted from
QA-SRL 2.0(FitzGerald et al., 2018). CaRB is a re-annotation
of OIE2016
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Dataset Source Sentences Extractions Inferred Relations N-ary relations

training sets IMoJIE wikipedia 71209 215K 3K 0
LSOIE(wiki) QA-SRL, wikipedia 12832 101K 0 32K

LSOIE-g LSOIE, gpt-3.5 2147 6820 383 0

test sets
WiRe57 Wikipedia, Newswire 57 343 173 79
CaRB OIE2016 641 2715 736 683

BenchIE CaRB 300 783 0 0

Table 3: Statistics of datasets used in our experiments

relation, or object) of a tuple representing an extrac-406

tion result. These extraction results of less concise-407

ness probably don’t meet the demand of its down-408

stream tasks like knowledge graph constructions.409

Minie(Gashteovski et al., 2017) is an OpenIE sys-410

tem built on the top of ClausIE, aiming to provide411

compact extractions, i.e., minimizing each value in412

the tuple representing extraction result.413

Multi2OIE(Ro et al., 2020) first leverages a pre-414

trained language model to encode the context of the415

sentence. Multi2OIE regards OpenIE as a kind of416

sequence labeling task. Predicates are first labeled417

by a predicate classifier head concatenated to the418

BERT model. Then arguments are predicted by419

an argument classifier given the output of BERT420

model including the hidden state vector and predi-421

cate average vector. Among neural methods, While422

methods of sequence labeling outputs predictions423

with faster speed, methods of generation produce424

extractions of better quality. OpenIE6(Kolluru425

et al., 2020a), using Iterative Grid Labeling archi-426

tecture to label a 2-D grid which represents an427

extraction result with a row, surpassing generative428

methods(Cui et al., 2018; Kolluru et al., 2020b)429

achieves SOTA at that time.430

5.2 Main results431

We compare our CycleOIE with baseline systems.432

As shown in Table 4, our unsupervised method,433

CycleOIE, achieves the highest precision and F1434

on both CaRB and CaRB-B benchmark, compar-435

ing with tradition rule-based methods and two fully436

supervised neural methods. When evaluating on437

WiRe57 CycleOIE’s F1 only defeats Multi2OIE.438

Neural methods’ performance can be influenced439

by various factors beyond model architecture, such440

as the scoring function and attribute discrepancies441

between the training set and the test set. In Ta-442

ble 5, we conduct additional experiments control-443

ling variables to evaluate the performances of neu-444

ral methods when they are trained on LSOIE whose445

6https://github.com/zhanjunlang/Span_OIE

sentences share a same source with our LSOIE-g. 446

We compare CycleOIE’s performance with neural 447

methods trained on LSOIE wiki training set. The 448

results indicate CycleOIE outperforms these two 449

OpenIE6 and Multi2OIE on WiRe577, CaRB8 and 450

WiRe57-C9 benchmark even though CycleOIE is 451

training on a dataset with a significantly smaller 452

scale than the LSOIE training set. Notably, when 453

evaluating on CaRB, the performance gap between 454

CycleOIE and other baseline methods becomes 455

more pronounced than the gap illustrated in Table4. 456

5.3 Ablation study 457

We conduct an ablation study and results are pre- 458

sented in Table 6. Here are the details of our exper- 459

imental settings. 460

Setting (1) sft on LSOIE stands for training flan- 461

t5-base on LSOIE wiki training set in fully super- 462

vised fine-tuning and (2) sft on LSOIE+IMoJIE 463

stands for a similar setting except for training on 464

the union of LSOIE wiki and IMoJIE training set. 465

In (3) sft on LSOIE → sft on LSOIE-g setting, 466

we train the model by 2 steps. At step 1, we do the 467

same training as (1). At step 2, we train the weights 468

output by step 1 on LSOIE-g data with full super- 469

vision. In the step1 of (4) sft on LSOIE+IMoJIE 470

→ sft on LSOIE-g, we do the same training as (2), 471

and the other operations keep the same with the 472

previous one. 473

In (5) sft on LSOIE → CycleOIE setting, we 474

train flan-t5-base in fully supervised fine-tuning on 475

LSOIE wiki training set at step 1, then cycle trained 476

the model output by step 1 on LSOIE-g data. While 477

in setting (6) sft on LSOIE+IMoJIE → CycleOIE 478

the training set at step 1 is augmented. 479

Setting (10) CycleOIE stands for we cycle train 480

flan-t5-base on LSOIE-g without any supervised 481

fine-tuning to bootstrap. Setting (7), (8), (9) stands 482

for 1/4, 1/2, 3/4 of sentences and extractions in 483

7WiRe57 scoring function + Wire57 test set
8CaRB scoring function + CaRB test set
9WiRe57 scoring function + CaRB test set
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WiRe57 CaRB CaRB-B
P R F1 P R F1 P R F1

ClausIE 0.401 0.298 0.342 0.411 0.496 0.450 0.580 0.534 0.556
MINIE 0.400 0.323 0.358 0.429 0.382 0.404 0.466 0.436 0.441

OpenIE6 0.465 0.326 0.383 0.589 0.476 0.527 0.478 0.671 0.559
Multi2OIE 0.457 0.182 0.261 0.609 0.458 0.523 0.598 0.613 0.605
CycleOIE 0.388 0.205 0.268 0.691 0.427 0.528 0.603 0.613 0.608

Table 4: Overall evaluation. CaRB-B stands for combining the scoring function of CaRB and the dataset of BenchIE,
while WiRe57 and CaRB use the scoring function and dataset of their own. In this table, the author-published
baselines are evaluated, which means the training set is defined by their author and probably not unified. OpenIE6
was trained on the OpenIE4 training dataset used to train IMoJIE. Mult2OIE is trained on the training dataset of
SpanOIE6(Zhan and Zhao, 2020).

scoring function CaRB WiRe57

model training set test set P R F1 P R F1

OpenIE6 LSOIE WiRe57 0.311 0.247 0.275 0.311 0.194 0.239
Multi2OIE LSOIE WiRe57 0.440 0.202 0.276 0.440 0.128 0.198
CycleOIE LSOIE-g WiRe57 0.385 0.271 0.318 0.388 0.205 0.268
OpenIE6 LSOIE CaRB 0.403 0.389 0.396 - - -

Multi2OIE LSOIE CaRB 0.611 0.369 0.461 - - -
CycleOIE LSOIE-g CaRB 0.691 0.427 0.528 - - -

Table 5: Above the dashline, we compare our CycleOIE, which is trained on LSOIE-g to those models trained on
LSOIE wiki training set, on the test data of WiRe57 with CaRB’s scoring function and WiRe57’s scoring function
respectively. Below the dash line, we compare our CycleOIE, which is trained on LSOIE-g, to those models trained
on LSOIE wiki training set, on the test data of CaRB, with scoring function of CaRB.

LSOIE-g is sampled as training set respectively.484

In settings above, when models are trained on485

LSOIE-g in supervised fine-tuning, the LSOIE-g is486

paralleled, which means the sentences and the cor-487

responding extractions are paired up. When mod-488

els are trained on LSOIE-g in CycleOIE, LSOIE-g489

is unpaired to simulate the real world scenarios,490

which means sentences and extractions are shuffled491

and loaded separately.492

Table 6 indicates that the (10) CycleOIE set-493

ting, without any supervised fine-tuning boot-494

strap, achieves similar performance with (6) sft on495

LSOIE+IMoJIE → CycleOIE, demonstrating the496

promise of CycleOIE in real-world OpenIE scener-497

ios, where annotation data is often insufficient.498

Comparing setting (1) and (2), we observe that499

augmenting the training set with IMoJIE signifi-500

cantly improves recall, albeit at the cost of preci-501

sion. Comparing (3)(4) or (5)(6) to (1)(2), it is502

observed that once the model is trained on LSOIE-503

g (either in sft or CycleOIE), precision and f1 show504

significant improvements. This suggests that our505

built LSOIE-g is effective as a training dataset for 506

CaRB and CaRB-B. Our designed prompt words, 507

which are derived from BenchIE annotation guide- 508

lines, successfully instruct gpt-3.5 to be a qualified 509

annotator. 510

Comparing (5) to (3), the former exhibits higher 511

performances in precision, recall and f1. Com- 512

paring (6) to (4), the former demonstrates advan- 513

tages in recall and F1, but the gap, taking F1 as 514

the main metric for comparison, is smaller than 515

the gap between (5) and (3). This aligns with our 516

understanding that cycle training can be considered 517

a form of continuous data augmentation along with 518

the training process, significantly improving the 519

performance when the model has not yet acquired 520

enough domain knowledge from existing training 521

data. Conversely, When the existing training data 522

contains sufficient domain knowledge for this task, 523

cycle training doesn’t have a prominent advantage 524

over sft. 525

We observe that (5), (6) and (10) have similar 526

performances, indicating the model cycle trained 527
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CaRB CaRB-B
P R F1 P R F1

(1) sft on LSOIE 0.573 0.339 0.426 0.488 0.459 0.473
(2) sft on LSOIE+IMoJIE 0.402 0.453 0.426 0.332 0.598 0.427

(3) sft on LSOIE → sft on LSOIE-g 0.654 0.418 0.51 0.592 0.576 0.584
(4) sft on LSOIE+IMoJIE → sft on LSOIE-g 0.704 0.415 0.523 0.636 0.576 0.604

(5) sft on LSOIE → CycleOIE 0.694 0.424 0.526 0.600 0.589 0.594
(6) sft on LSOIE+IMoJIE → CycleOIE 0.694 0.428 0.530 0.618 0.602 0.610

(7) CycleOIE(1/4 LSOIE-g) 0.557 0.386 0.456 0.521 0.56 0.54
(8) CycleOIE(1/2 LSOIE-g) 0.616 0.412 0.494 0.557 0.577 0.567
(9) CycleOIE(3/4 LSOIE-g) 0.651 0.419 0.510 0.594 0.598 0.596

(10) CycleOIE 0.691 0.427 0.528 0.603 0.613 0.608

Table 6: Ablation study
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Figure 2: Loss and F1 score of each epoch.

on LSOIE-g can acquire sufficient knowledge to528

solve the OpenIE task and hit the test data of CaRB.529

Supervised fine-tuning on wealky labeled large-530

scale training sets helps to bootstrap but provide531

almost no additional domain knowledge compared532

to CycleOIE on LSOIE-g.533

The bottom four lines demonstrates the perfor-534

mance of CycleOIE given different scale of LSOIE-535

g training data. We observe that the model per-536

forms better on every metric with an increasing537

scale of training data, indicating our built LSOIE-g538

is suitable as the training set of CycleOIE, espe- 539

cially when target benchmark is CaRB and CaRB- 540

B. More detailed influences caused by the training 541

data size is illustrated in Figure 2 where we record 542

the loss θ and F1 score of each epoch of CycleOIE. 543

We observe that training on 1.00LSOIE-g, the loss 544

descends in the fastest rate and then remains at the 545

lowest position and the F1 score converges in the 546

first place at after about 20 epochs. The fluctuation 547

of the F1 score also gets smaller when CycleOIE 548

is conducted on a larger training set. 549

6 Conclusion 550

In this paper, we present CycleOIE, a novel frame- 551

work training a pair of inverse text-to-text model 552

to address OpenIE. We design a template to ensure 553

extractions align with the input and output format 554

of T5. Leveraging the capabilities of gpt-3.5, we 555

construct LSOIE-g as the training set for CycleOIE. 556

Experimental results demonstrate that our approach 557

outperforms baselines trained under full supervi- 558

sion on much larger-scale OpenIE training sets. 559

Limitations 560

We implemented CycleOIE based on T5 without in- 561

troducing novel model structures or task pipelines 562

for further performance enhancement. Due to 563

current constraints related to available GPUs and 564

time limitations, we refrained from applying Cy- 565

cleOIE to fine-tune large language models such as 566

LLaMA(Touvron et al., 2023) and ChatGLM10(Du 567

et al., 2022), which are more powerful generative 568

models. A speculative avenue for future explo- 569

ration is the potential of large language models to 570

10https://github.com/THUDM/ChatGLM2-6B
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seamlessly transition between sentence-generating571

and extraction-generating modes by altering in-572

structions after instruction tuning. This implies573

the possibility of training a single model instead of574

a pair. We aspire to delve into this aspect of large575

language models in future research.576
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