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Abstract
Hyperbolic space embeddings have been shown
beneficial for many learning tasks where data
have an underlying hierarchical structure. Con-
sequently, many machine learning tools were ex-
tended to such spaces, but only few discrepan-
cies to compare probability distributions defined
over those spaces exist. Among the possible
candidates, optimal transport distances are well
defined on such Riemannian manifolds and en-
joy strong theoretical properties, but suffer from
high computational cost. On Euclidean spaces,
sliced-Wasserstein distances, which leverage a
closed-form solution of the Wasserstein distance
in one dimension, are more computationally ef-
ficient, but are not readily available on hyper-
bolic spaces. In this work, we propose to de-
rive novel hyperbolic sliced-Wasserstein discrep-
ancies. These constructions use projections on the
underlying geodesics either along horospheres or
geodesics. We study and compare them on dif-
ferent tasks where hyperbolic representations are
relevant, such as sampling or image classification.

1. Introduction
In recent years, hyperbolic spaces have received a lot of
attention in machine learning (ML) as they allow efficiently
processing data that present a hierarchical structure (Nickel
& Kiela, 2017; 2018). This encompasses data such as graphs
(Gupte et al., 2011), words (Tifrea et al., 2018) or images
(Khrulkov et al., 2020). Embedding in hyperbolic spaces
has been proposed for various applications such as drug
embedding (Yu et al., 2020), image clustering (Park et al.,
2021; Ghadimi Atigh et al., 2021), zero-shot recognition
(Liu et al., 2020), remote sensing (Hamzaoui et al., 2021)
or reinforcement learning (Cetin et al., 2022). Hence, many
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works proposed to develop tools to be used on such spaces,
such as generalization of Gaussian distributions (Nagano
et al., 2019; Galaz-Garcia et al., 2022), neural networks
(Ganea et al., 2018b; Liu et al., 2019) or normalizing flows
(Lou et al., 2020; Bose et al., 2020).

Optimal Transport (OT) (Villani, 2003; 2009) is a popu-
lar tool used in ML to compare probability distributions.
Among others, it has been used for domain adaptation
(Courty et al., 2016), learning generative models (Arjovsky
et al., 2017) or document classification (Kusner et al., 2015).
However, the main tool of OT is the Wasserstein distance
which exhibits an expensive, super-cubical computational
cost w.r.t. the number of samples of each distribution.
Hence, many workarounds have been proposed to allevi-
ate the computational burden such as entropic regulariza-
tion (Cuturi, 2013), minibatch OT (Fatras et al., 2020) or
the sliced-Wasserstein (SW) distance (Rabin et al., 2011).
In particular, SW is a popular variant of the Wasserstein
distance that computes the expected distance between one
dimensional projections on some lines of the two distribu-
tions. Its computational advantages and theoretical prop-
erties make it an efficient and popular alternative to the
Wasserstein distance. For example, it has been used for tex-
ture synthesis (Heitz et al., 2021) or for generative modeling
with SW autoencoders (Kolouri et al., 2018), SW GANs
(Deshpande et al., 2018), SW flows (Liutkus et al., 2019) or
SW gradient flows (Bonet et al., 2022).

The theoretical study of the Wasserstein distance on
Riemannian manifolds is well developed (McCann, 2001;
Villani, 2009). When it comes to hyperbolic spaces, some
optimal transport attempts aimed at aligning distributions
of data which have been embedded in a hyperbolic
space (Alvarez-Melis et al., 2020; Hoyos-Idrobo, 2020).
Regarding SW, it is originally defined using Euclidean
distances and projections, which are not well suited to other
manifolds. Recently, Rustamov & Majumdar (2020) pro-
posed to defined a SW distance on compact manifolds using
the eigendecomposition of the Laplace-Beltrami operator
while Bonet et al. (2023) proposed a SW distance to tackle
this problem for measures supported on the sphere by using
only objects intrinsically defined on this specific manifold.
Contrary to the elliptical geometry of the sphere, the
negative curvature of hyperbolic spaces calls for drastically
different strategies to define geodesics and the associated
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projection operators. This work proposes to close this gap
by proposing new SW constructions on these spaces.

Contributions. We extend sliced-Wasserstein to data living
in hyperbolic spaces. Analogously to Euclidean SW, we
project the distributions on geodesics passing through the
origin. Interestingly enough, different projections can
be considered, leading to several new SW constructions
that exhibit different theoretical properties and empirical
benefits. We make connections with Radon transforms
already defined in the literature and we show that hyperbolic
SW are (pseudo-) distances. We provide the algorithmic
procedure and discuss its complexity. We illustrate the
benefits of these new hyperbolic SW distances on several
tasks such as sampling or image classification.

2. Background
In this Section, we first provide some background on
Optimal Transport with the Wasserstein and the sliced-
Wasserstein distance. We then review two common
hyperbolic models, namely the Lorentz and Poincaré ball
models, on which we will define new OT discrepancies in
the next section.

2.1. Optimal Transport

Optimal transport is a popular field which allows comparing
distributions of probabilities by determining a transport plan
minimizing some ground cost. The main tool of OT is the
Wasserstein distance which we introduce now.

Wasserstein Distance on Riemannian Manifolds. Let
M be a Riemannian manifold endowed with a Rieman-
nian distance d. For p ≥ 1, the p-Wasserstein distance
between two probability measures µ, ν ∈ Pp(M) = {µ ∈
P(M),

∫
M

d(x, x0)
p dµ(x) < ∞ for any x0 ∈ M} is de-

fined as

W p
p (µ, ν) = inf

γ∈Π(µ,ν)

∫
M×M

d(x, y)p dγ(x, y), (1)

where Π(µ, ν) = {γ ∈ P(M ×M), π1
#γ = µ, π2

#γ = ν}
is the set of couplings, π1(x, y) = x, π2(x, y) = y and
# is the pushforward operator defined as, for all borelian
A ⊂ M , T#µ(A) = µ(T−1(A)). For more details about
OT, we refer to (Villani, 2009).

The main bottleneck of the Wasserstein distance is its com-
putational complexity. Indeed, for two discrete probability
measures with n samples, it can be solved using linear pro-
grams (Peyré et al., 2019) with a complexity of O(n3 log n),
which prevents its use when large amount of data are
at stake. Hence, a whole literature consists at deriving
alternative OT metrics with a smaller computational cost.

Sliced-Wasserstein Distance on Euclidean Space. On
Euclidean spaces, a popular proxy of the Wasserstein
distance is the so-called sliced-Wasserstein distance. On
the real line, for p ≥ 1, the p-Wasserstein distance between
µ, ν ∈ Pp(R) admits the following closed-form (Peyré
et al., 2019, Remark 2.30) :

W p
p (µ, ν) =

∫ 1

0

|F−1
µ (u)− F−1

ν (u)|p du (2)

where F−1
µ and F−1

ν denote the quantile functions of µ and
ν. This can be approximated in practice very efficiently as
it only requires to sort the samples, which has a complexity
of O(n log n). Therefore, Rabin et al. (2011) defined
the sliced-Wasserstein distance by projecting linearly the
probabilities on all the possible directions. For a direction
θ ∈ Sd−1, denote, for all x ∈ Rd, P θ(x) = ⟨x, θ⟩ the pro-
jection in direction θ, and λ the uniform measure on Sd−1.
Then, the SW distance between µ, ν ∈ Pp(Rd) is defined as

SW p
p (µ, ν) =

∫
Sd−1

W p
p (P

θ
#µ, P

θ
#ν) dλ(θ). (3)

Using a Monte-Carlo approximation, this can be approx-
imated in O(Ln(d + log n)) where L is the number of
projections and n the number of samples.

Moreover, the slicing process has many appealing prop-
erties, such as having a sample complexity independent
of the dimension (Nadjahi et al., 2020), being topologi-
cally equivalent to Wasserstein (Bonnotte, 2013) and being
an actual distance. For the latter point, it can be shown
to be a pseudo-distance using that Wp is a distance. The
indiscernible property relies on the link between the pro-
jection used in SW and the Radon transform (Bonneel
et al., 2015; Kolouri et al., 2019) which is injective on the
space of measures (Boman & Lindskog, 2009, Theorem
A). More precisely, let f ∈ L1(Rd), then its Radon trans-
form R : L1(Rd) → L1(R × Sd−1) is defined for t ∈ R,
θ ∈ Sd−1 as,

Rf(t, θ) =

∫
Rd

f(x)1{⟨x,θ⟩=t} dx. (4)

This transform admits a dual operator R∗ : C0(R ×
Sd−1) → C0(Rd), with C0(R × Sd−1) the set of con-
tinuous functions that vanish at infinity, such that for all
g ∈ C0(R×Sd−1), ⟨Rf, g⟩R×Sd−1 = ⟨f,R∗g⟩Rd (Bonneel
et al., 2015). This allows defining the Radon transform of a
measure µ ∈ M(Rd) as the measure Rµ ∈ M(R × Sd−1)
satisfying for all g ∈ C0(R × Sd−1), ⟨Rµ, g⟩R×Sd−1 =
⟨µ,R∗g⟩Rd (Boman & Lindskog, 2009). Then, it was shown
in (Bonneel et al., 2015) that, by denoting by (Rµ)θ the dis-
integration w.r.t. to the uniform distribution on Sd−1,

SW p
p (µ, ν) =

∫
Sd−1

W p
p

(
(Rµ)θ, (Rν)θ

)
dλ(θ). (5)
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Therefore, SW p
p (µ, ν) = 0 implies that, for λ-ae θ,

(Rµ)θ = (Rν)θ, which implies that µ = ν by injectivity of
the Radon transform on measures.

Many variants of this distance were recently proposed.
Most lines of work considered different subspaces for
projecting the data: hypersurfaces (Kolouri et al., 2019),
Hilbert curves (Li et al., 2022) or subspace of higher
dimensions (Lin et al., 2020; 2021). When it comes to data
living on Riemannian manifolds, Rustamov & Majumdar
(2020) defined a variant on compact manifolds and Bonet
et al. (2023) extended SW for spherical data.

2.2. Hyperbolic Spaces

Hyperbolic spaces are Riemannian manifolds of negative
constant curvature (Lee, 2006). They have received recently
a surge of interest in machine learning as they allow
embedding efficiently data with a hierarchical structure
(Nickel & Kiela, 2017; 2018). A thorough review of the
recent use of hyperbolic spaces in machine learning can be
found in (Peng et al., 2021).

There are five usual parameterizations of a hyperbolic man-
ifold (Peng et al., 2021). They are equivalent (isometric)
and one can easily switch from one formulation to the other.
Hence, in practice, we use the one which is the most conve-
nient, either given the formulae to derive or the numerical
properties. In machine learning, the two most used models
are the Poincaré ball and the Lorentz model (also known
as the hyperboloid model). Each of these models has its
own advantages compared to the other. For example, the
Lorentz model has a distance which behaves better w.r.t.
numerical issues compared to the distance of the Poincaré
ball. However, the Lorentz model is unbounded, contrary to
the Poincaré ball. We introduce in the following these two
models as we will use both of them in our work.

Lorentz model. First, we introduce the Lorentz model
Ld ⊂ Rd+1 of a d-dimensional hyperbolic space. It can be
defined as

Ld = {(x0, . . . , xd+1) ∈ Rd, ⟨x, x⟩L = −1, x0 > 0} (6)

where

∀x, y ∈ Rd+1, ⟨x, y⟩L = −x0y0 +

d∑
i=1

xiyi (7)

is the Minkowski pseudo inner-product (Boumal, 2022,
Chapter 7). The Lorentz model can be seen as the upper
sheet of a two-sheet hyperboloid. In the following, we
will denote x0 = (1, 0, . . . , 0) ∈ Ld the origin of the hy-
perboloid. The geodesic distance in this manifold, which
denotes the length of the shortest path between two points,
can be defined as

∀x, y ∈ Ld, dL(x, y) = arccosh(−⟨x, y⟩L). (8)

At any point x ∈ Ld, we can associate a subspace of Rd+1

orthogonal in the sense of the Minkowski inner product.
These spaces are called tangent spaces and are described
formally as TxLd = {v ∈ Rd+1, ⟨v, x⟩L = 0}. Note
that on tangent spaces, the Minkowski inner-product is a
real inner product. In particular, on Tx0Ld, it is the usual
Euclidean inner product, i.e. for u, v ∈ Tx0Ld, ⟨u, v⟩L =
⟨u, v⟩. Moreover, for all v ∈ Tx0Ld, v0 = 0.

We can draw a connection with the sphere. Indeed, by
endowing Rd+1 with ⟨·, ·⟩L, we obtain R1,d the so-called
Minkowski space. Then, Ld is the analog in the Minkowski
space of the sphere Sd in the regular Euclidean space (Brid-
son & Haefliger, 2013).

Poincaré ball. The second model of hyperbolic space we
will be interested in is the Poincaré ball Bd ⊂ Rd. This space
can be obtained as the stereographic projection of each point
x ∈ Ld onto the hyperplane {x ∈ Rd+1, x0 = 0}. More
precisely, the Poincaré ball is defined as

Bd = {x ∈ Rd, ∥x∥2 < 1}, (9)

with geodesic distance, for all x, y ∈ Bd,

dB(x, y) = arccosh

(
1 + 2

∥x− y∥22
(1− ∥x∥22)(1− ∥y∥22)

)
.

(10)
We see on this formulation that the distance can be subject
to numerical instabilities when one of the points is too close
to the boundary of the ball.

We can switch from Lorentz to Poincaré using the following
isometric projection (Nickel & Kiela, 2018):

∀x ∈ Ld, PL→B(x) =
1

1 + x0
(x1, . . . , xd) (11)

and from Poincaré to Lorentz by

∀x ∈ Bd, PB→L(x) =
1

1− ∥x∥22
(1+∥x∥22, 2x1, . . . , 2xd).

(12)

3. Hyperbolic Sliced-Wasserstein Distances
In this work, we aim at introducing sliced-Wasserstein type
of distances on hyperbolic spaces. Interestingly enough,
several constructions can be performed, depending on the
projections that are involved. The first solution we consider
is the extension of Euclidean SW between distributions
whose support lies on hyperbolic spaces. We also provide
variants that involve a geodesic cost. To do so, we first
define the subspace on which the Wasserstein distance can
be efficiently computed and then provide two different pro-
jection operators: geodesic and horospherical. We finally
define the related hyperbolic sliced-Wasserstein distances
and discuss some of their properties. All the proofs are
reported in Appendix A.

3



Hyperbolic Sliced-Wasserstein via Geodesic and Horospherical Projections

(a) Euclidean. (b) Geodesics. (c) Horospheres. (d) Euclidean. (e) Geodesics. (f) Horospheres.

Figure 1: Projection of (red) points on a geodesic (black line) in the Poincaré ball and in the Lorentz model along Euclidean
lines, geodesics or horospheres (in blue). Projected points on the geodesic are in green.

3.1. Euclidean Sliced-Wasserstein on Hyperbolic Spaces

The support of distributions lying on hyperbolic space are
included in the ambient spaces Rd (Poincaré ball) or Rd+1

(Lorentz model). As such, Euclidean SW can be used for
such kind of data. On the Poincaré ball, the projections lie
onto the manifold as geodesics passing through the origin
are straight lines (see Section 3.2), but the initial geometry
of the data might not be fully taken care of as the orthogonal
projection does not respect the Poincaré geodesics. On the
Lorentz model though, the projections lie out of the man-
ifold. We will denote SWp and SWl the Poincaré ball and
Lorentz model version. These formulations allow inheriting
from the properties of SW, such as being a distance.

3.2. Projection Set and Wasserstein Distance

To generalize the sliced-Wasserstein distance on other
spaces, we first define on which subspace to project. Eu-
clidean spaces can be seen as Riemannian manifolds of
null constant curvature whose geodesics are straight lines.
Therefore, analogously to the Euclidean space , we project
on geodesics passing through the origin. We now describe
geodesics in the Lorentz model and in the Poincaré ball.

Geodesics. In the Lorentz model, geodesics passing through
the origin x0 can be obtained by taking the intersection
between Ld and a 2-dimensional plane containing x0 (Lee,
2006, Proposition 5.14). Any such plane can be obtained as
span(x0, v) where v ∈ Tx0Ld ∩ Sd = {v ∈ Sd, v0 = 0}.
The corresponding geodesic can be described by a geodesic
line (Bridson & Haefliger, 2013, Corollary 2.8), i.e. a map
γ : R → Ld satisfying for all t, s ∈ R, dL(γ(s), γ(t)) =
|t− s|, of the form

∀t ∈ R, γ(t) = expx0(tv) = cosh(t)x0 + sinh(t)v. (13)

On the Poincaré ball, geodesics are circular arcs perpendic-
ular to the boundary Sd−1 (Lee, 2006, Proposition 5.14). In
particular, geodesics passing through the origin are straight
lines. Hence, they can be characterized by a point ṽ on the
border Sd−1. Such points will be called ideal points.

Wasserstein distance on geodesics. In order to have an

efficient way to compute the discrepancy, we need a practi-
cal way to compute the Wasserstein distance on geodesics.
As the distance between any point on a geodesic line γ
and the origin can take arbitrary values on R+, we project
points from the geodesic to the real line R. Indeed, on
R, there exists a well known closed-form (see Section
2.1) that can be efficiently computed in practice. In the
Lorentz model, let v ∈ Tx0Ld ∩ Sd be a direction such that
γ(R) = Ld ∩ span(x0, v). Then, we propose to project a
point x ∈ γ(R) using

tvL(x) = sign(⟨x, v⟩)dL(x, x
0). (14)

The scalar product with v gives an orientation to the
geodesic, and the distance to the origin the coordinate
of x. We can do the same on the Poincaré ball with
tṽB(x) = sign(⟨x, ṽ⟩)dB(x, 0), where ṽ is one of the ideal
point to which the geodesic is perpendicular. In the remain-
der, we will remove the subscripts L and B when it is clear
from the context. Finally, we need to check that this projec-
tion keeps the geodesic Wasserstein distance unchanged. We
formulate the following proposition in the Lorentz model.

Proposition 3.1 (Wasserstein distance on geodesics.). Let
v ∈ Tx0Ld ∩ Sd and G = span(x0, v) ∩ Ld a geodesic
passing through x0. Then, for p ≥ 1 and µ, ν ∈ Pp(G),

W p
p (µ, ν) = W p

p (t
v
#µ, t

v
#ν)

=

∫ 1

0

|F−1
tv#µ(u)− F−1

tv#ν(u)|p du.
(15)

The last ingredient of hyperbolic SW is the way the points
lying in the manifold are projected onto the geodesic. We
introduce here two different projections that are illustrated
on Figure 1.

3.3. Hyperbolic Sliced-Wasserstein

With geodesic projections. We discuss here the results
in the Lorentz model, but we can also obtain all the re-
sults in the Poincaré ball. Let v ∈ Tx0 ∩ Sd and Gv =
{expx0(tv), t ∈ R} a geodesic passing through x0. As a
first generalization of the sliced-Wasserstein distance on hy-
perbolic spaces, we propose to use the geodesic projection
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P̃ v , which projects points on Gv following the shortest path
(geodesics), and which is defined as

∀x ∈ Ld, P̃ v(x) = argmin
y∈Gv

d(x, y). (16)

We report in Appendix A.2 the closed-form formulas on
both the Lorentz model and the Poincaré ball. Here, we are
mostly interested into the coordinate on R, which can be
obtained either by computing tv ◦ P̃ v , or as

∀x ∈ Ld, P v(x) = argmin
t∈R

dL

(
expx0(tv), x

)
. (17)

Regarding the implementation, we derive a closed-form in
the following proposition.

Proposition 3.2 (Coordinate of the geodesic projection).

1. Let Gv = span(x0, v) ∩ Ld where v ∈ Tx0Ld ∩ Sd.
Then, the coordinate P v of the geodesic projection on
Gv of x ∈ Ld is

P v(x) = arctanh

(
− ⟨x, v⟩L

⟨x, x0⟩L

)
. (18)

2. Let ṽ ∈ Sd−1 be an ideal point. Then, the coordi-
nate P ṽ of the geodesic projection on the geodesic
characterized by ṽ of x ∈ Bd is

P ṽ(x) = 2 arctanh
(
s(x)

)
, (19)

where

s(x) =

{
1+∥x∥2

2−
√

(1+∥x∥2
2)

2−4⟨x,ṽ⟩2
2⟨x,ṽ⟩ if ⟨x, ṽ⟩ ≠ 0

0 if ⟨x, ṽ⟩ = 0.
(20)

Now, we have all the tools to define the geodesic hyperbolic
sliced-Wasserstein discrepancy (GHSW) between µ, ν ∈
Pp(Ld) as, for p ≥ 1,

GHSW p
p (µ, ν) =

∫
Tx0Ld∩Sd

W p
p (P

v
#µ, P

v
#ν) dλ(v).

(21)
Note that Tx0Ld ∩ Sd ∼= Sd−1 and that v can be drawn by
first sampling ṽ ∼ Unif(Sd−1) and then adding a 0 in the
first coordinate, i.e. v = (0, ṽ) with ṽ ∈ Sd−1. Note also
that GHSWp(µ, ν) < ∞ for µ, ν ∈ Pp(Ld). We also have
the Poincaré formulation using P ṽ, and defined between
µ, ν ∈ P(Bd) as

GHSW p
p (µ, ν) =

∫
Sd−1

W p
p (P

ṽ
#µ, P

ṽ
#ν) dλ(ṽ). (22)

With horospherical projections. As we saw in Section
2.1, the projection on geodesics in the Euclidean space is

obtained by taking the inner product. A first viewpoint is to
see it as the geodesic projection of x ∈ Rd on the geodesic
span(θ):

⟨x, θ⟩θ = argmin
y∈span(θ)

∥x− y∥2. (23)

In this case, using a similar projection as (14), the coordi-
nates on the line are obtained as the inner product:

tθ(x) = sign(⟨x, θ⟩)∥⟨x, θ⟩θ − 0∥2 = ⟨x, θ⟩. (24)

However, the inner product ⟨x, θ⟩ can actually also be
seen directly as a coordinate on the line span(θ). This
can be translated by the Busemann function on unit-speed
geodesics, which can be generalized on certain Riemannian
manifolds. More precisely, the Busemann function associ-
ated to the geodesic ray γ, i.e. a geodesic from R+ to the
manifold satisfying d(γ(t), γ(s)) = |t − s|, is defined as
(Bridson & Haefliger, 2013, Definition 8.17)

Bγ(x) = lim
t→∞

(
d(x, γ(t))− t

)
, (25)

where x belongs to the corresponding manifold and d is
the geodesic distance. It can be checked that on Euclidean
spaces, Bspan(θ)(x) = −⟨x, θ⟩. While the Busemann func-
tion is not well defined on positively curved spaces such
as the sphere (as geodesics are periodic), closed-form are
available on hyperbolic spaces and provide different projec-
tions. We report them in the next proposition. As we only
work with geodesics passing through the origin, we put as
indices the directions which fully characterize them (either
v ∈ Tx0Ld in Ld, or ṽ ∈ Sd−1 in Bd).

Proposition 3.3 (Busemann function on hyperbolic space).
1. On Ld, for any direction v ∈ Tx0Ld ∩ Sd,

∀x ∈ Ld, Bv(x) = log(−⟨x, x0 + v⟩L). (26)

2. On Bd, for any ideal point ṽ ∈ Sd−1,

∀x ∈ Bd, Bṽ(x) = log

(∥ṽ − x∥22
1− ∥x∥22

)
. (27)

To conserve Busemann coordinates, it has been proposed by
Chami et al. (2021) to project points on a subset following
the level sets of the Busemann function. Those level sets
are known as horospheres, which can be seen as spheres
of infinite radius (Izumiya, 2009). In the Poincaré ball, a
horosphere is a Euclidean sphere tangent to an ideal point.
Chami et al. (2021) argued that this projection is beneficial
against the geodesic projection as it tends to better preserve
the distances. This motivates us to project on geodesics
following the level sets of the Busemann function in order
to conserve the Busemann coordinates, i.e. we want to have
Bṽ(x) = Bṽ(P ṽ(x)) (resp. Bv(x) = Bv(P v(x))) on the
Poincaré ball (resp. Lorentz model) where ṽ ∈ Sd−1 (resp.
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v ∈ Tx0Ld ∩ Sd) is characterizing the geodesic. We report
the closed-forms in Appendix A.5. In practice, noting that
Bγ(x) = Bγ(γ(t)) = −t, we obtain that the coordinate is
t = −Bγ(x).

Using the projections along the horospheres, we can define
a new hyperbolic sliced-Wasserstein discrepancy, called
horospherical, between µ, ν ∈ Pp(Ld) as, for p ≥ 1,

HHSW p
p (µ, ν) =

∫
Tx0Ld∩Sd

W p
p (B

v
#µ,B

v
#ν) dλ(v).

(28)
Note that HHSWp(µ, ν) < ∞ for µ, ν ∈ Pp(Ld) (see Ap-
pendix B.1). We also provide a formulation on the Poincaré
ball between µ, ν ∈ Pp(Bd), using Bṽ , as

HHSW p
p (µ, ν) =

∫
Sd−1

W p
p (B

ṽ
#µ,B

ṽ
#ν) dλ(ṽ). (29)

Using that the projections formula between Ld and Bd are
isometries, we show in the next proposition that the two
formulations are equivalent. Hence, we choose in practice
the formulation which is the more suitable, either from the
nature of data or from a numerical stability viewpoint.

Proposition 3.4. For p ≥ 1, let µ, ν ∈ Pp(Bd) and denote
µ̃ = (PB→L)#µ, ν̃ = (PB→L)#ν. Then,

HHSW p
p (µ, ν) = HHSW p

p (µ̃, ν̃), (30)

GHSW p
p (µ, ν) = GHSW p

p (µ̃, ν̃). (31)

3.4. Properties

It can easily be showed that GHSW and HHSW are pseudo-
distances as it only depends on the distance properties of the
Wasserstein distance. Whether or not they satisfy the indis-
cernible property remains an open question. As described
in the introduction for SW, we can derive the corresponding
Radon transform. More precisely, we can show that

GHSW p
p (µ, ν) =

∫
Sd−1

W p
p

(
(R̄µ)v, (R̄ν)v

)
dλ(v),

(32)
where R̄ is the hyperbolical Radon transform, first intro-
duced by Helgason (1959) and more recently studied e.g. in
(Berenstein & Rubin, 1999; 2004; Rubin, 2002). We can
also show a similar relation between HHSW and the horo-
spherical Radon transform studied e.g. by Bray & Rubin
(2019); Casadio Tarabusi & Picardello (2021). If these trans-
forms are injective on the space of measures, then we would
have that GHSW or HHSW are distances. However, to the
best of our knowledge, the injectivity of such transforms on
the space of measures has not been studied yet. We detail
the derivations in Appendix B.2.

We also provide in Appendix B.3 the sample complexity
and the projection complexity. We note that the results are

Algorithm 1 Guideline of GHSW

Input: (xi)
n
i=1 ∼ µ, (yj)nj=1 ∼ ν, (αi)

n
i=1, (βj)

n
j=1 ∈

∆n, L the number of projections, p the order
for ℓ = 1 to L do

Draw ṽ ∼ Unif(Sd−1), let v = [0, ṽ]
∀i, j, x̂ℓ

i = P v(xi), ŷℓj = P v(yj)

Compute W p
p (
∑n

i=1 αiδx̂ℓ
i
,
∑n

j=1 βjδŷℓ
j
)

end for
Return 1

L

∑L
ℓ=1 W

p
p (
∑n

i=1 αiδx̂ℓ
i
,
∑n

j=1 βjδŷℓ
j
)

102 103 104 105

Number of samples in each distribution

101

100

10−1

10−2

10−3

S
ec

on
d

s

GHSW2, L =200

HHSW2, L =200

SW2, L =200

Wasserstein

Sinkhorn

Figure 2: Runtime comparison in log-log scale between
Wasserstein and Sinkhorn using the geodesic distance, SW2,
GHSW2 and HHSW2 with 200 projections, including the
computation time of the cost matrices.

similar as in the Euclidean case (Nadjahi et al., 2020), i.e.
the sample complexity is independent of the dimension and
the projection complexity converges in O(1/

√
L) with L

the number of projections.

4. Implementation
In this Section, we discuss the implementation of GHSW
and HHSW, as well as their complexity.

Implementation. In practice, we only have access to dis-
crete distributions µ̂n =

∑n
i=1 αiδxi and ν̂n =

∑n
i=1 βiδyi

where (xi)i and (yi)i are sample locations in hyperbolic
space, and (αi)i and (βi)i belong to the simplex ∆n =
{α ∈ [0, 1]n,

∑n
i=1 αi = 1}. We approximate the inte-

gral by a Monte-Carlo approximation by drawing a finite
number L of projection directions (vℓ)Lℓ=1 in Sd−1. Then,
computing GHSW and HHSW amount at first getting the
coordinates on R by using the corresponding projections,
and computing the 1D Wasserstein distance between them.
We summarize the procedure in Algorithm 1 for GHSW.

Complexity. For both GHSW and HHSW, the projection
procedure has a complexity of O(nd). Hence, for L
projections, the complexity is in O(Ln(d + log n))
which is the same as for SW. In Figure 2, we compare
the runtime between GHSW, HHSW, SW, Wasser-
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Figure 3: Comparison of the Wasserstein distance (with the geodesic distance as cost), GHSW, HHSW and SW between
Wrapped Normal distributions. We gather the discrepancies together by scale of the values. SW on the Poincaré model has
very small values as it operates on the unit ball, while on the Lorentz model, it can take very high values. GHSW returns
small values as the geodesic projections tend to project the points close to the origin. HHSW has values which are closer to
the geodesic Wasserstein distance as the horospherical projection tends to better keep the distance between points.

stein and Sinkhorn with geodesic distances in L2 for
n ∈ {102, 103, 104, 5 · 104, 105} samples which are drawn
from wrapped normal distributions (Nagano et al., 2019),
and L = 200 projections. We used the POT library
(Flamary et al., 2021) to compute SW, Wasserstein and
Sinkhorn. We observe the quasi-linearity complexity of
GHSW and HHSW. When we only have a few samples,
the cost of the projection is higher than computing the 1D
Wasserstein distance, and SW is the fastest.

5. Application
In this Section, we perform several experiments which aim
at comparing GHSW, HHSW, SWp and SWl. First, we study
the evolution of the different distances between wrapped
normal distributions which move along geodesics. Then, we
illustrate the ability to fit distributions on L2 using gradient
flows. Finally, we use HHSW and GHSW for an image clas-
sification problem where they are used to fit a prior in the
embedding space. We add more informations about distribu-
tions and optimization in hyperbolic spaces in Appendix C.
Complete details of the experimental settings are reported
in Appendix D. We also report in Appendix D.4 preliminary
experiments on autoencoders with hierarchical latent priors.

Comparisons of the Different Hyperbolical SW Discrep-
ancies. On Figure 3, we compare the evolutions of GHSW,
HHSW, SW and Wasserstein with the geodesic distance be-
tween Wrapped Normal Distributions (WNDs), where one
is centered and the other moves along a geodesic. More
precisely, by denoting G(µ,Σ) a WND, we plot the evo-
lution of the distances between G(x0, I2) and G(xt, I2)
where xt = cosh(t)x0 + sinh(t)v for t ∈ [−10, 10] and
v ∈ Tx0L2 ∩ S2. We observe first that SW on the Lorentz
model explodes when the two distributions are getting far
from each other. Then, we observe that HHSW2 has values
with a scale similar to W2. We argue that it comes from
the observation of Chami et al. (2021) which stated that

Target distributions

−2

−1

0

log10(W 2
2 (µ̂n, ν))

GHSW

HHSW

SW on Poincaré

SW on Lorentz

0 1000 2000 3000 4000 5000

Iterations

−2
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0

1

−1.5

−1.0

−0.5

0 2000 4000 6000 8000 10000

Iterations

−0.5

0.0

0.5

Figure 4: Log 2-Wasserstein between a target and the gradi-
ent flow of GHSW, HHSW and SW (averaged over 5 runs).

the horospherical projection better preserves the distance
between points compared to the geodesic projection. As
SWp operates on the unit ball using Euclidean distances,
the distances are very small, even for distributions close
to the border. Interestingly, as geodesic projections tend
to project points close to the origin, GHSW tends also to
squeeze the distance between distributions far from the ori-
gin. This might reduce numerical instabilities when getting
far from the origin, especially in the Lorentz model. This
experiments also allows to observe that, at least for WNDs,
the indiscernible property is observed in practice as we only
obtain one minimum when both measures coincide. Hence,
it suggests that GHSW and HHSW are proper distances.

Gradient Flows. We now assess the ability to learn dis-
tributions by minimizing the hyperbolic SW discrepancies
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(HSW ). We suppose that we have a target distribution ν
from which we have access to samples (xi)

n
i=1. Therefore,

we aim at learning ν by solving the following optimization
problem: minµ HSW 2

2

(
µ, 1

n

∑n
i=1 δxi

)
. We model µ

as a set of n = 500 particles and propose to perform a
Riemannian gradient descent (Boumal, 2022) to learn the
distribution.

To compare the dynamics of the different discrepancies, we
plot on Figure 4 the evolution of the exact log 2-Wasserstein
distance, with geodesic distance as ground cost, between
the learned distribution at each iteration and the target, with
the same learning rate. We use as targets wrapped normal
distributions and mixtures of WNDs. For each type of target,
we consider two settings, one in which the distribution is
close to the origin and another in which the distribution lies
closer to the border. We observe different behaviors in the
two settings. When the target is lying close to the origin,
SWl and HHSW, which present the biggest magnitude, are
the fastest to converge. As for distant distributions however,
GHSW converges the fastest. Moreover, SWl suffers from
many numerical instabilities, as the projections of the gradi-
ents do not necessarily lie on the tangent space when points
are too far of the origin. This requires to lower the learning
rate, and hence to slow down the convergence. Interestingly,
SWp is the slowest to converge in both settings.

Deep Classification with Prototypes. We now turn
to a classification use case with real world data. Let
{(xi, yi)

n
i=1} be a training set where xi ∈ Rm and yi ∈

{1, . . . , C} denotes a label. Ghadimi Atigh et al. (2021)
perform classification on the Poincaré ball by assigning to
each class c ∈ {1, . . . , C} a prototype pc ∈ Sd−1, and then
by learning an embedding on the hyperbolic space using a
neural network fθ followed by the exponential map. Then,
by denoting by z = exp0

(
fθ(x)

)
the output, the loss to be

minimized is, for a regularization parameter s ≥ 0,

ℓ(θ) =
1

n

n∑
i=1

(
Bpyi

(
zi
)
− sd · log

(
1− ∥zi∥22

))
. (33)

The first term is the Busemann function which will draw
the representations of xi towards the prototype assigned to
the class yi, while the second term penalizes the overconfi-
dence and pulls back the representation towards the origin.
Ghadimi Atigh et al. (2021) showed that the second term can
be decisive to improve the accuracy. Then, the classification
of an input is done by solving y∗ = argmaxc ⟨ z

∥z∥ , pc⟩.
We propose to replace the second term by a global prior
on the distribution of the representations. More pre-
cisely, we add a discrepancy D between the distribution
(exp0 ◦fθ)#pX , where pX denotes the distribution of the
training set, and a mixture of C WNDs where the centers
are chosen as (αpc)Cc=1, with (pc)c the prototypes and 0 <

Table 1: Test Accuracy on deep classification with proto-
types (best performance in bold)

CIFAR10 CIFAR100

Dimensions 2 4 3 5 10

PeBuse 90.64±0.06 90.59±0.11 49.28±1.95 53.44±0.76 59.19±0.39

GHSW 91.39±0.23 91.66±0.27 53.97±1.35 60.64±0.87 61.45±0.41

HHSW 91.28±0.26 91.98±0.05 53.88±0.06 60.69±0.25 62.80±0.09

SWp 91.84±0.31 91.68±0.10 53.25±3.27 59.77±0.81 60.36±1.26

SWl 91.13±0.14 91.74±0.12 53.88±0.02 60.62±0.39 62.30±0.23

W 91.67±0.18 91.83±0.21 50.07±4.58 57.49±0.94 58.82±1.66

MMD 91.47±0.10 91.68±0.09 50.59±4.44 58.10±0.73 58.91±0.91

α < 1. In practice, we use D = GHSW 2
2 , D = HHSW 2

2 ,
D = SWp22 and D = SWl22 to assess their usability on a
real problem and compared with W 2

2 and MMD with Lapla-
cian kernel (Feragen et al., 2015). Let (wi)

n
i=1 be a batch of

points drawn from this mixture, then the loss we minimize is

ℓ(θ) =
1

n

n∑
i=1

Bpi(zi) + λD

(
1

n

n∑
i=1

δzi ,
1

n

n∑
i=1

δwi

)
.

(34)
On Table 1, we report the classification accuracy on the
test set for CIFAR10 and CIFAR100 (Krizhevsky, 2009),
using the exact same setting as (Ghadimi Atigh et al., 2021).
We rerun their method, called PeBuse here. We report
results averaged over 3 runs. We observe that the proposed
penalization outperforms the original method for all the
different dimensions.

6. Conclusion and Discussion
In this work, we propose different sliced-Wasserstein dis-
crepancies between distributions lying in hyperbolic spaces.
In particular, we introduce two new SW discrepancies
which are intrinsically defined on hyperbolic spaces. They
are built by first identifying a closed-form for the Wasser-
stein distance on geodesics, and then by using different
projections on the geodesics. We compare these metrics
on multiple tasks such as sampling and image classification.
We observe that, while Euclidean SW in the ambient space
still works, it suffers from either slow convergence on
the Poincaré ball or numerical instabilities on the Lorentz
model when distributions are lying far from the origin.
On the other hand, geodesic versions exhibit the same
complexity and converge generally better for gradient flows.
Further works will look into other tasks where hyperbolic
embeddings and distributions have been showed to be
beneficial, such as persistent diagrams (Carriere et al., 2017;
Kyriakis et al., 2021). Besides further applications, proving
that these discrepancies are indeed distances, and deriving
statistical results are interesting directions of work. One
might also consider different subspaces on which to project,
such as horocycles which are circles of infinite radius and
which can be seen as another analog object to lines in
hyperbolic spaces (Casadio Tarabusi & Picardello, 2021).
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Hyperbolic dimensionality reduction via horospherical
projections. In International Conference on Machine
Learning, pp. 1419–1429. PMLR, 2021.

Courty, N., Flamary, R., Tuia, D., and Rakotomamonjy, A.
Optimal transport for domain adaptation. IEEE transac-
tions on pattern analysis and machine intelligence, 39(9):
1853–1865, 2016.

Cuturi, M. Sinkhorn distances: Lightspeed computation
of optimal transport. Advances in neural information
processing systems, 26, 2013.

Deshpande, I., Zhang, Z., and Schwing, A. G. Generative
modeling using the sliced wasserstein distance. In Pro-
ceedings of the IEEE conference on computer vision and
pattern recognition, pp. 3483–3491, 2018.

Fatras, K., Zine, Y., Flamary, R., Gribonval, R., and
Courty, N. Learning with minibatch wasserstein :
asymptotic and gradient properties. In Chiappa, S.
and Calandra, R. (eds.), Proceedings of the Twenty
Third International Conference on Artificial Intelligence
and Statistics, volume 108 of Proceedings of Machine
Learning Research, pp. 2131–2141. PMLR, 26–28 Aug

9

http://www.nicolasboumal.net/book
http://www.nicolasboumal.net/book


Hyperbolic Sliced-Wasserstein via Geodesic and Horospherical Projections

2020. URL https://proceedings.mlr.press/
v108/fatras20a.html.

Feragen, A., Lauze, F., and Hauberg, S. Geodesic exponen-
tial kernels: When curvature and linearity conflict. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 3032–3042, 2015.

Flamary, R., Courty, N., Gramfort, A., Alaya, M. Z., Bois-
bunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras,
K., Fournier, N., et al. Pot: Python optimal transport. J.
Mach. Learn. Res., 22(78):1–8, 2021.

Fournier, N. and Guillin, A. On the rate of convergence in
wasserstein distance of the empirical measure. Probabil-
ity Theory and Related Fields, 162(3):707–738, 2015.

Galaz-Garcia, F., Papamichalis, M., Turnbull, K., Lu-
nagomez, S., and Airoldi, E. Wrapped distributions
on homogeneous riemannian manifolds. arXiv preprint
arXiv:2204.09790, 2022.

Ganea, O., Bécigneul, G., and Hofmann, T. Hyperbolic
entailment cones for learning hierarchical embeddings.
In International Conference on Machine Learning, pp.
1646–1655. PMLR, 2018a.

Ganea, O., Bécigneul, G., and Hofmann, T. Hyperbolic neu-
ral networks. Advances in neural information processing
systems, 31, 2018b.

Gelfand, I. M., Graev, M. I., and Vilenkin, N. I. Generalized
Functions-Volume 5. Integral Geometry and Representa-
tion Theory. Academic Press, 1966.

Ghadimi Atigh, M., Keller-Ressel, M., and Mettes, P. Hyper-
bolic busemann learning with ideal prototypes. Advances
in Neural Information Processing Systems, 34:103–115,
2021.

Gupte, M., Shankar, P., Li, J., Muthukrishnan, S., and Iftode,
L. Finding hierarchy in directed online social networks.
In Proceedings of the 20th international conference on
World wide web, pp. 557–566, 2011.

Hagberg, A. A., Schult, D. A., and Swart, P. J. Exploring net-
work structure, dynamics, and function using networkx.
In Varoquaux, G., Vaught, T., and Millman, J. (eds.), Pro-
ceedings of the 7th Python in Science Conference, pp. 11
– 15, Pasadena, CA USA, 2008.

Hamzaoui, M., Chapel, L., Pham, M.-T., and Lefèvre, S.
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glove: Hyperbolic word embeddings. arXiv preprint
arXiv:1810.06546, 2018.

Tolstikhin, I., Bousquet, O., Gelly, S., and Schoelkopf,
B. Wasserstein auto-encoders. arXiv preprint
arXiv:1711.01558, 2017.

Villani, C. Topics in optimal transportation, volume 58.
American Mathematical Soc., 2003.

Villani, C. Optimal transport: old and new, volume 338.
Springer, 2009.

Wilson, B. and Leimeister, M. Gradient descent in hyper-
bolic space. arXiv preprint arXiv:1805.08207, 2018.

Yu, K., Visweswaran, S., and Batmanghelich, K. Semi-
supervised hierarchical drug embedding in hyperbolic
space. Journal of chemical information and modeling, 60
(12):5647–5657, 2020.

12



Hyperbolic Sliced-Wasserstein via Geodesic and Horospherical Projections

A. Proofs
A.1. Proof of Proposition 3.1

Let γ a geodesic on Ld passing through x0 and with direction v ∈ Tx0Ld∩Sd, i.e. the geodesic is obtained as span(x0, v)∩Ld.
Let µ, ν probability measures on γ.

First, we need to show that for all x, y ∈ span(x0, v) ∩ Ld,

dL(x, y) = |tv(x)− tv(y)|, (35)

i.e. that tv is an isometry from span(x0, v) ∩ Ld to R.

As x and y belong to the geodesic γ, there exist s, t ∈ R such that

x = γ(s) = cosh(s)x0 + sinh(s)v, (36)

and
y = γ(t) = cosh(t)x0 + sinh(t)v. (37)

Then, on one hand, we have

dL(γ(s), γ(t)) = arccosh(−⟨γ(s), γ(t)⟩L)

= arccosh
(
− ⟨cosh(t)x0 + sinh(t)v, cosh(s)x0 + sinh(s)v⟩

)
= arccosh

(
cosh(t) cosh(s)− sinh(t) sinh(s)

)
= arccosh

(
cosh(t− s)

)
= |t− s|,

(38)

where we used that ⟨x0, x0⟩L = −1, ⟨x0, v⟩L = 0, ⟨v, v⟩L = ⟨v, v⟩ = 1 and cosh(t) cosh(s) − sinh(t) sinh(s) =
cosh(t− s).

On the other hand, we have

|tv(x)− tv(y)| =
∣∣sign(⟨x, v⟩)dL(x, x

0)− sign(⟨y, v⟩)dL(y, x
0)
∣∣

=
∣∣sign(⟨x, v⟩)dL(γ(s), γ(0))− sign(⟨y, v⟩)dL(γ(t), γ(0))

∣∣
=
∣∣sign(⟨x, v⟩)|s| − sign(⟨y, v⟩)|t|

∣∣
= |t− s|,

(39)

where we use at the last line that sign(⟨x, v⟩) = sign(s) (resp. sign(⟨y, v⟩) = sign(t)) and s = sign(s)|s| (resp.
t = sign(t)|t|) supposing that v is oriented in the same sense of γ.

Therefore, we have
|tv(x)− tv(y)| = dL(x, y). (40)

Now, we can show the equality for the Wasserstein distance:

W p
p (µ, ν) = inf

γ∈Π(µ,ν)

∫
Ld×Ld

dL(x, y)
p dγ(x, y)

= inf
γ∈Π(µ,ν)

∫
Ld×Ld

|tv(x)− tv(y)|p dγ(x, y)

= inf
γ∈Π(µ,ν)

∫
R×R

|x− y|p d(tv ⊗ tv)#γ(x, y)

= inf
γ̃∈Π(tv#µ,tv#ν)

∫
R×R

|x− y|p dγ̃(x, y)

= W p
p (t

v
#µ, t

v
#ν) =

∫ 1

0

|F−1
tv#µ(u)− F−1

tv#ν(u)|p du,

(41)

where we apply (Paty & Cuturi, 2019, Lemma 6).
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A.2. Geodesic Projection

Proposition A.1 (Geodesic projection).

1. Let Gv = span(x0, v) ∩ Ld where v ∈ Tx0Ld ∩ Sd. Then, the geodesic projection P̃ v on Gv of x ∈ Ld is

P̃ v(x) =
1√

⟨x, x0⟩2L − ⟨x, v⟩2L
(
− ⟨x, x0⟩Lx

0 + ⟨x, v⟩Lv
)

=
P span(x0,v)(x)√

−⟨P span(x0,v)(x), P span(x0,v)(x)⟩L

,

(42)

where P span(x0,v0) is the linear orthogonal projection on the subspace span(x0, v).

2. Let ṽ ∈ Sd−1 be an in ideal point. Then, the geodesic projection P̃ ṽ on the geodesic characterized by ṽ of x ∈ Bd is

P̃ ṽ(x) = s(x)ṽ, (43)

where

s(x) =

{
1+∥x∥2

2−
√

(1+∥x∥2
2)

2−4⟨x,ṽ⟩2
2⟨x,ṽ⟩ if ⟨x, ṽ⟩ ≠ 0

0 if ⟨x, ṽ⟩ = 0.
(44)

Proof.

1. Lorentz model. Any point y on the geodesic obtained by the intersection between E = span(x0, v) and Ld can be
written as

y = cosh(t)x0 + sinh(t)v, (45)

where t ∈ R. Moreover, as arccosh is an increasing function, we have

P̃ v(x) = argmin
y∈E∩Ld

dL(x, y)

= argmin
y∈E∩Ld

−⟨x, y⟩L.
(46)

This problem is equivalent with solving

argmin
t∈R

− cosh(t)⟨x, x0⟩L − sinh(t)⟨x, v⟩L. (47)

Let g(t) = − cosh(t)⟨x, x0⟩L − sinh(t)⟨x, v⟩L, then

g′(t) = 0 ⇐⇒ tanh(t) = − ⟨x, v⟩L

⟨x, x0⟩L
. (48)

Finally, using that 1− tanh2(t) = 1
cosh2(t)

and cosh2(t)− sinh2(t) = 1, and observing that necessarily, ⟨x, x0⟩L ≤ 0,
we obtain

cosh(t) =
1√

1−
(
− ⟨x,v⟩L

⟨x,x0⟩L

)2 =
−⟨x, x0⟩L√

⟨x, x0⟩2L − ⟨x, v⟩2L
, (49)

and

sinh(t) =
− ⟨x,v⟩L

⟨x,x0⟩L√
1−

(
− ⟨x,v⟩L

⟨x,x0⟩L

)2 =
⟨x, v⟩L√

⟨x, x0⟩2L − ⟨x, v⟩2L
. (50)
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2. Poincaré ball. A geodesic passing through the origin on the Poincaré ball is of the form γ(t) = tp for an ideal point
p ∈ Sd−1 and t ∈]− 1, 1[. Using that arccosh is an increasing function, we find

P̃ p(x) = argmin
y∈span(γ)

dB(x, y)

= argmin
tp

arccosh

(
1 + 2

∥x− γ(t)∥22
(1− ∥x∥22)(1− ∥γ(t)∥22)

)
= argmin

tp
log
(
∥x− γ(t)∥22

)
− log

(
1− ∥x∥22

)
− log

(
1− ∥γ(t)∥22

)
= argmin

tp
log
(
∥x− tp∥22

)
− log

(
1− t2

)
.

(51)

Let g(t) = log
(
∥x− tp∥22

)
− log

(
1− t2

)
. Then,

g′(t) = 0 ⇐⇒
{

t2 − 1+∥x∥2
2

⟨x,p⟩ t+ 1 = 0 if ⟨p, x⟩ ≠ 0,

t = 0 if ⟨p, x⟩ = 0.
(52)

Finally, if ⟨x, p⟩ ≠ 0, the solution is

t =
1 + ∥x∥22
2⟨x, p⟩ ±

√(
1 + ∥x∥22
2⟨x, p⟩

)2

− 1. (53)

Now, let us suppose that ⟨x, p⟩ > 0. Then,

1 + ∥x∥22
2⟨x, p⟩ +

√(
1 + ∥x∥22
2⟨x, p⟩

)2

− 1 ≥ 1 + ∥x∥22
2⟨x, p⟩

≥ 1,

(54)

because ∥x− p∥22 ≥ 0 implies that 1+∥x∥2
2

2⟨x,p⟩ ≥ 1, and therefor the solution is

t =
1 + ∥x∥22
2⟨x, p⟩ −

√(
1 + ∥x∥22
2⟨x, p⟩

)2

− 1. (55)

Similarly, if ⟨x, p⟩ < 0, then

1 + ∥x∥22
2⟨x, p⟩ −

√(
1 + ∥x∥22
2⟨x, p⟩

)2

− 1 ≤ 1 + ∥x∥22
2⟨x, p⟩

≤ −1,

(56)

because ∥x+ p∥22 ≥ 0 implies 1+∥x∥2
2

2⟨x,p⟩ ≤ −1, and the solution is

1 + ∥x∥22
2⟨x, p⟩ +

√(
1 + ∥x∥22
2⟨x, p⟩

)2

− 1. (57)

Thus,

s(x) =


1+∥x∥2

2

2⟨x,ṽ⟩ −
√(

1+∥x∥2
2

2⟨x,ṽ⟩

)2
− 1 if ⟨x, ṽ⟩ > 0

1+∥x∥2
2

2⟨x,ṽ⟩ +

√(
1+∥x∥2

2

2⟨x,ṽ⟩

)2
− 1 if ⟨x, ṽ⟩ < 0.

=
1 + ∥x∥22
2⟨x, ṽ⟩ − sign(⟨x, ṽ⟩

√(
1 + ∥x∥22
2⟨x, ṽ⟩

)2

− 1

=
1 + ∥x∥22
2⟨x, ṽ⟩ − sign(⟨x, ṽ⟩

2sign(⟨x, ṽ⟩⟨x, ṽ⟩
√
(1 + ∥x∥22)2 − 4⟨x, ṽ⟩2

=
1 + ∥x∥22 −

√
(1 + ∥x∥22)2 − 4⟨x, ṽ⟩2
2⟨x, ṽ⟩ .

(58)
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We observe that the projection on the geodesic in the Lorentz model can be done by first projecting on the subspace
span(x0, v) and then by projecting on the hyperboloid by normalizing. This is analogous to the spherical case studied in
(Bonet et al., 2023), the differences being that, in the hyperbolic case, we are on the Minkowski space and that the geodesics
are not periodic, contrary to the sphere. Moreover, we only integrate w.r.t. geodesics passing through the origin when Bonet
et al. (2023) integrate over all possible geodesics, as the sphere does not have a natural origin.

A.3. Proof of Proposition 3.2

1. Lorentz model. The coordinate on the geodesic can be obtained as

P v(x) = argmin
t∈R

dL

(
expx0(tv), x

)
. (59)

Hence, by using (48), we obtain that the optimal t satisfies

tanh(t) = − ⟨x, v⟩L

⟨x, x0⟩L
⇐⇒ t = arctanh

(
− ⟨x, v⟩L

⟨x, x0⟩L

)
. (60)

2. Poincaré ball. As a geodesic is of the form γ(t) = tanh
(
t
2

)
p for all t ∈ R, we deduce from Proposition A.1 that

s(x) = tanh

(
t

2

)
⇐⇒ t = 2arctanh

(
s(x)

)
. (61)

A.4. Proof of Proposition 3.3

1. Lorentz model.
The geodesic in direction v can be characterized by

∀t ∈ R, γv(t) = cosh(t)x0 + sinh(t)v. (62)

Hence, we have

∀x ∈ Ld, dL(γv(t), x) = arccosh(− cosh(t)⟨x, x0⟩L − sinh(t)⟨x, v⟩L)

= arccosh

(
−et + e−t

2
⟨x, x0⟩L − et − e−t

2
⟨x, v⟩L

)
= arccosh

(
et

2

(
(−1− e−2t)⟨x, x0⟩L + (−1 + e−2t)⟨x, v⟩L

))
= arccosh

(
x(t)

)
.

(63)

Then, on one hand, we have x(t) →
t→∞

±∞, and using that arccosh(x) = log
(
x+

√
x2 − 1

)
, we have

dL(γv(y), x)− t = log
((

x(t) +
√
x(t)2 − 1

)
e−t
)

= log

(
e−tx(t) + e−tx(t)

√
1− 1

x(t)2

)

=
∞

log

(
e−tx(t) + e−tx(t)

(
1− 1

2x(t)2
+ o

(
1

x(t)2

)))
.

(64)

Moreover,

e−tx(t) =
1

2
(−1− e−2t)⟨x, x0⟩L +

1

2
(−1 + e−2t)⟨x, v⟩L →

t→∞
−1

2
⟨x, x0 + v⟩L. (65)

Hence,
Bv(x) = log(−⟨x, x0 + v⟩L). (66)
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2. Poincaré ball.
Note that this proof can be found e.g. in the Appendix of (Ghadimi Atigh et al., 2021). We report it for the sake of
completeness.

Let p ∈ Sd−1, then the geodesic from 0 to p is of the form γp(t) = exp0(tp) = tanh( t2 )p. Moreover, recall that
arccosh(x) = log(x+

√
x2 − 1) and

dB(γp(t), x) = arccosh

(
1 + 2

∥ tanh( t2 )p− x∥22
(1− tanh2( t2 ))(1− ∥x∥22)

)
= arccosh(1 + x(t)), (67)

where

x(t) = 2
∥ tanh( t2 )p− x∥22

(1− tanh2( t2 ))(1− ∥x∥22)
. (68)

Now, on one hand, we have

Bp(x) = lim
t→∞

(dB(γp(t), x)− t)

= lim
t→∞

log
(
1 + x(t) +

√
x(t)2 + 2x(t)

)
− t

= lim
t→∞

log
(
e−t(1 + x(t) +

√
x(t)2 + 2x(t))

)
.

(69)

On the other hand, using that tanh( t2 ) =
et−1
et+1 ,

e−tx(t) = 2e−t
∥ et−1
et+1p− x∥22

(1− ( e
t−1

et+1 )
2)(1− ∥x∥22)

= 2e−t ∥etp− p− etx− x∥22
4et(1− ∥x∥22)

=
1

2

∥p− e−tp− x− e−tx∥22
1− ∥x∥22

→
t→∞

1

2

∥p− x∥22
1− ∥x∥22

.

(70)

Hence,

Bp(x) = lim
t→∞

log

(
e−t + e−tx(t) + e−tx(t)

√
1 +

2

x(t)

)
= log

(∥p− x∥22
1− ∥x∥22

)
, (71)

using that
√

1 + 2
x(t) = 1 + 1

x(t) + o( 1
x(t) ) and 1

x(t) →t→∞ 0.

A.5. Horospherical Projections

Proposition A.2 (Horospherical projection).
1. Let v ∈ Tx0Ld ∩ Sd be a direction and G = span(x0, v) ∩ Ld the corresponding geodesic passing through x0. Then,

for any x ∈ Ld, the projection on G along the horosphere is given by

B̃v(x) =
1 + u2

1− u2
x0 +

2u

1− u2
v, (72)

where u = 1+⟨x,x0+v⟩L

1−⟨x,x0+v⟩L
.

2. Let ṽ ∈ Sd−1 be an ideal point. Then, for all x ∈ Bd,

B̃ṽ(x) =

(
1− ∥x∥22 − ∥ṽ − x∥22
1− ∥x∥22 + ∥ṽ − x∥22

)
ṽ. (73)

17



Hyperbolic Sliced-Wasserstein via Geodesic and Horospherical Projections

Proof. 1. Lorentz model.

First, a point on the geodesic γv is of the form

y(t) = cosh(t)x0 + sinh(t)v, (74)

with t ∈ R.

The projection along the horosphere amounts at following the level sets of the Busemann function Bv . And we have

Bv(x) = Bv(y(t)) ⇐⇒ log(−⟨x, x0 + v⟩L) = log(−⟨cosh(t)x0 + sinh(t)v, x0 + v⟩L)

⇐⇒ log(−⟨x, x0 + v⟩L) = log(− cosh(t)∥x0∥2L − sinh(t)∥v∥2L)
⇐⇒ log(−⟨x, x0 + v⟩L = log(cosh(t)− sinh(t))

⇐⇒ ⟨x, x0 + v⟩L = sinh(t)− cosh(t).

(75)

By noticing that cosh(t) = 1+tanh2( t
2 )

1−tanh2( t
2 )

and sinh(t) =
2 tanh( t

2 )

1−tanh2( t
2 )

, let u = tanh( t2 ), then we have

Bv(x) = Bv(y(t)) ⇐⇒ ⟨x, x0 + v⟩L =
2u

1− u2
− 1 + u2

1− u2
=

−(u− 1)2

(1− u)(1 + u)
=

u− 1

u+ 1

⇐⇒ u =
1 + ⟨x, x0 + v⟩L

1− ⟨x, x0 + v⟩L
.

(76)

We can further continue the computation and obtain, by denoting c = ⟨x, x0 + v⟩L,

B̃v(x) =
1 + u2

1− u2
x0 +

2u

1− u2
v

=
1 +

(
1+c
1−c

)2
1−

(
1+c
1−c

)2x0 + 2

(
1+c
1−c

)
1−

(
1+c
1−c

)2 v
=

(1− c)2 + (1 + c)2

(1− c)2 − (1 + c)2
x0 + 2

(1 + c)(1− c)

(1− c)2 − (1 + c)2
v

= −1 + c2

2c
x0 − 1− c2

2c
v

= − 1

2⟨x, x0 + v⟩L

(
(1 + ⟨x, x0 + v⟩2L)x0 + (1− ⟨x, x0 + v⟩2L)v

)
.

(77)

2. Poincaré ball.

Let p ∈ Sd−1. First, we notice that points on the geodesic generated by p and passing through 0 are of the form
x(λ) = λp where λ ∈]− 1, 1[.

Moreover, there is a unique horosphere S(p, x) passing through x and starting from p. The points on this horosphere
are of the form

y(θ) =

(
p+ x(λ∗)

2

)
+

∥∥∥∥p− x(λ∗)
2

∥∥∥∥
2

(
cos(θ)p+ sin(θ)

x− ⟨x, p⟩p
∥x− ⟨x, p⟩p∥2

)
=

1 + λ∗

2
p+

1− λ2

2

(
cos(θ)p+ sin(θ)

x− ⟨x, p⟩p
∥x− ⟨x, p⟩p∥2

)
,

(78)

where λ∗ characterizes the intersection between the geodesic and the horosphere.
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Since the horosphere are the level sets of the Busemann function, we have Bp(x) = Bp(λ∗p). Thus, we have

Bp(x) = Bp(λ∗p) ⇐⇒ log

(∥p− x∥22
1− ∥x∥22

)
= log

(∥p− λ∗p∥22
1− ∥λ∗p∥22

)
⇐⇒ ∥p− x∥22

1− ∥x∥22
=

(1− λ∗)2

1− (λ∗)2

⇐⇒ ∥p− x∥22
1− ∥x∥22

=
1− λ∗

1 + λ∗

⇐⇒ λ∗
(∥p− x∥22
1− ∥x∥22

+ 1

)
= 1− ∥p− x∥22

1− ∥x∥22
⇐⇒ λ∗ =

1− ∥x∥22 − ∥p− x∥22
1− ∥x∥22 + ∥p− x∥22

.

(79)

A.6. Proof of Proposition 3.4

First, we show some Lemma.

Lemma A.3 (Commutation of projections.). Let v ∈ span(x0)⊥ ∩ Sd of the form v = (0, ṽ) where ṽ ∈ Sd−1. Then, for all
x ∈ Bd, y ∈ Ld

PB→L

(
B̃ṽ(x)

)
= B̃v

(
PB→L(x)

)
, (80)

B̃ṽ(PL→B(y)) = PL→B(B̃
v(y)) (81)

PB→L

(
P̃ ṽ(x)

)
= P̃ v

(
PB→L(x)

)
, (82)

P̃ ṽ(PL→B(y)) = PL→B(P̃
v(y)). (83)

Proof. We first show (80). Let’s recall the formula of the different projections.

On one hand,

∀x ∈ Bd, B̃ṽ(x) =

(
1− ∥x∥22 − ∥ṽ − x∥22
1− ∥x∥22 + ∥ṽ − x∥22

)
ṽ, (84)

∀x ∈ Ld, B̃v(x) = − 1

2⟨x, x0 + v⟩L

(
(1 + ⟨x, x0 + v⟩2L)x0 + (1− ⟨x, x0 + v⟩2L)v

)
, (85)

and

∀x ∈ Bd, PB→L(x) =
1

1− ∥x∥22
(1 + ∥x∥22, 2x1, . . . , 2xd). (86)

Let x ∈ Bd. First, let’s compute PB→L

(
B̃ṽ(x)

)
. We note that ∥ṽ∥22 = 1 and therefore

∥B̃ṽ(v)∥22 =

(
1− ∥x∥22 − ∥ṽ − x∥22
1− ∥x∥22 + ∥ṽ − x∥22

)2

. (87)
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Then,

PB→L

(
B̃ṽ(x)

)
=

1

1−
(

1−∥x∥2
2−∥ṽ−x∥2

2

1−∥x∥2
2+∥ṽ−x∥2

2

)2
(
1 +

(
1− ∥x∥22 − ∥ṽ − x∥22
1− ∥x∥22 + ∥ṽ − x∥22

)2

, 2

(
1− ∥x∥22 − ∥ṽ − x∥22
1− ∥x∥22 + ∥ṽ − x∥22

)
ṽ

)

=
1

1−
(

1−∥x∥2
2−∥ṽ−x∥2

2

1−∥x∥2
2+∥ṽ−x∥2

2

)2
((

1 +

(
1− ∥x∥22 − ∥ṽ − x∥22
1− ∥x∥22 + ∥ṽ − x∥22

)2
)
x0 + 2

(
1− ∥x∥22 − ∥ṽ − x∥22
1− ∥x∥22 + ∥ṽ − x∥22

)
v

)

=

(
1− ∥x∥22 + ∥ṽ − x∥22

)2
4∥ṽ − x∥22(1− ∥x∥22)

(
2(1− ∥x∥22)2 + 2∥ṽ − x∥42(
1− ∥x∥22 + ∥ṽ − x∥22

)2 x0 + 2

(
1− ∥x∥22 − ∥ṽ − x∥22
1− ∥x∥22 + ∥ṽ − x∥22

)
v

)

=
1

2∥ṽ − x∥22(1− ∥x∥22)
((
(1− ∥x∥22)2 + ∥ṽ − x∥42

)
x0 + (1− ∥x∥22 − ∥ṽ − x∥22)(1− ∥x∥22 + ∥ṽ − x∥22)v

)
=

1

2∥ṽ − x∥22(1− ∥x∥22)
(
(1− ∥x∥22)2 + ∥ṽ − x∥42

)
x0 +

(
(1− ∥x∥22)2 − ∥ṽ − x∥42

)
v
)
.

(88)

Now, let’s compute B̃v
(
PB→L(x)

)
. First, let’s remark that for all y ∈ Ld, ⟨y, x0 + v⟩L = −y0 + ⟨y1:d, ṽ⟩. Therefore, for

all x ∈ Bd,

⟨PB→L(x), x
0 + v⟩L = ⟨ 1

1− ∥x∥22
(1 + ∥x∥22, 2x1, . . . , 2xd), x

0 + v⟩L

=
1

1− ∥x∥22
(
−1− ∥x∥22 + 2⟨x, ṽ⟩

)
= − 1

1− ∥x∥22
∥x− ṽ∥22.

(89)

Moreover,

⟨PB→L(x), x
0 + v⟩2L =

1

(1− ∥x∥22)2
∥ṽ − x∥42. (90)

Therefore, we have

B̃v
(
PB→L(x)

)
= B̃v

(
1

1− ∥x∥22
(1 + ∥x∥22, 2x1, . . . , 2xd)

)
= − 1− ∥x∥22

2 (−1− ∥x∥22 + 2⟨x, ṽ⟩)
((
1 + ⟨PB→L(x), x

0 + v⟩2L
)
x0 +

(
1− ⟨PB→L(x), x

0 + v⟩2L
)
v
)

=
1− ∥x∥22
2∥x− ṽ∥22

(
(1− ∥x∥22)2 + ∥ṽ − x∥4

(1− ∥x∥22)2
x0 +

(1− ∥x∥22)2 − ∥ṽ − x∥4
(1− ∥x∥22)2

v

)
=

1

2∥x− ṽ∥22(1− ∥x∥22)
(
(1− ∥x∥22)2 + ∥ṽ − x∥42

)
x0 +

(
(1− ∥x∥22)2 − ∥ṽ − x∥42

)
v
)

= PB→L

(
B̃ṽ(x)

)
.

(91)

For (81), we use that PB→L and PL→B are inverse from each other. Hence, for all x ∈ Bd, there exists y ∈ Ld such that
x = PL→B(y) ⇐⇒ y = PB→L(x), and we obtain the second equality by plugging it into (80).

Now, let’s show (82). The proof relies on the observation that {expx0(tv), t ∈ R} = PB→L ({exp0(tṽ), t ∈ R}) (i.e. the
images by PB→L of geodesics in the Poincaré ball are geodesics in the Lorentz model). Thus,

P̃ v(PB→L(x)) = argmin
z∈{expx0 (tv), t∈R}

dL(PB→L(x), z)

= PB→L

(
argmin

z∈{exp0(tṽ), t∈R}
dB(PL→L(x), PB→L(z))

)
= PB→L

(
argmin

z∈{exp0(tṽ), t∈R}
dB(x, z)

)
= PB→L

(
P̃ v(x)

)
.

(92)
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Similarly, we obtain (83).

Lemma A.4. Let v = (0, ṽ) ∈ span(x0)⊤. For all x ∈ Ld, y ∈ Bd,

Bv(x) = −tv
(
B̃v(x)

)
, (93)

Bṽ(y) = −tṽ(B̃ṽ(y)). (94)

Proof. First, let us show that
dL(B̃

v(x), x0) = |Bv(x)|. (95)

By recalling that Bv
(
P̃ v(x)

)
= Bv(x) = log

(
− ⟨x, x0 + v⟩L

)
and that by (77),

B̃v(x) = − 1

2⟨x, x0 + v⟩L

(
(1 + ⟨x, x0 + v⟩2L)x0 − ⟨x, x0 + v⟩2Lv

)
. (96)

Now, by remarking that ⟨x, x0 + v⟩L ≤ 0, then we have,

dL

(
B̃v(x), x0

)
= arccosh(−⟨B̃v(x), x0⟩L)

= arccosh

(
1

2⟨x, x0 + v⟩L
(1 + ⟨x, x0 + v⟩2L)⟨x0, x0⟩L

)
= arccosh

(
− 1

2⟨x, x0 + v⟩L
(1 + ⟨x, x0 + v⟩2L)

)
= log

(
1 + ⟨x, x0 + v⟩2L
−2⟨x, x0 + v⟩L

+

√
(1 + ⟨x, x0 + v⟩L)2

4⟨x, x0 + v⟩2L
− 1

)

= log

1 + ⟨x, x0 + v⟩2L +

√(
⟨x, x0 + v⟩2L − 1

)2
−2⟨x, x0 + v⟩L



(97)

If ⟨x, x0 + v⟩2L ≥ 1, then

dL

(
B̃v(x), x0

)
= log

(
1 + ⟨x, x0 + v⟩2L + ⟨x, x0 + v⟩2L − 1

−2⟨x, x0 + v⟩L

)
= log(−⟨x, x0 + v⟩L) = Bv(x).

(98)

And if ⟨x, x0 + v⟩2L ≤ 1, then

dL

(
B̃v(x), x0

)
= log

(
1 + ⟨x, x0 + v⟩2L + 1− ⟨x, x0 + v⟩2L

−2⟨x, x0 + v⟩L

)
= log

(
1

−⟨x, x0 + v⟩L

)
= −Bv(x).

(99)

Hence, we showed that for all x ∈ Ld,
dL

(
B̃v(x), x0

)
= |Bv(x)|. (100)

Then, using (77), we have

⟨B̃v(x), v⟩ = 1− ⟨x, x0 + v⟩2L
−2⟨x, x0 + v⟩L

. (101)

Then, on one hand, we can show that ⟨x, x0 + v⟩L ≤ 0 since x = λ0x
0 + λ1v + xspan(x0,v)⊥ . Thus,

⟨x, x0 + v⟩L = −λ0 + λ1. (102)

But, λ0 =
√
1 +

∑
i=1d λ

2
i ≥

√
λ2
1 ≥ λ1. Therefore, λ1 − λ0 = ⟨x, x0 + v⟩L ≤ 0.
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Therefore, we have −⟨x, x0 + v⟩L ≥ 0. And we have

⟨B̃v(x), v⟩ ≥ 0 ⇐⇒ 1− ⟨x, x0 + v⟩2L ≥ 0 ⇐⇒ 1 ≥ ⟨x, x0 + v⟩2L ⇐⇒ Bv(x) ≤ 0, (103)

using that Bv(x) = log(−⟨x, x0 + v⟩L).

Similarly,
⟨B̃v(x), v⟩ ≤ 0 ⇐⇒ 1− ⟨x, x0 + v⟩2L ≤ 0 ⇐⇒ 1 ≤ ⟨x, x0 + v⟩2L ⇐⇒ Bv(x) ≥ 0. (104)

Hence,
sign(⟨B̃v(x), v⟩) = −sign(Bv(x)). (105)

Finally, we deduce that
tv
(
B̃v(x)

)
= sign(⟨B̃v(x), v⟩)dL

(
B̃v(x), x0

)
= −Bv(x). (106)

For the second equality, let y ∈ Bd, then,

tṽ(B̃ṽ(y)) = sign(⟨B̃ṽ(y), ṽ⟩) dB(B̃
ṽ(y), 0)

= sign(⟨PB→L(B̃
ṽ(y)), v⟩)dL(PB→L(B̃

ṽ(y)), x0)

= sign(⟨B̃v(PB→L(y)), v⟩)dL(B̃
v(PB→L(y)), x

0) using Lemma A.3

= tv(B̃v(PB→L(y))) by definition of tv

= −Bv(PB→L(y)) by (106)

= −Bṽ(y),

(107)

where the last line comes from

Bv(PB→L(y)) = lim
t→∞

(
dL(expx0(tv), PB→L(y))− t

)
= lim

t→∞

(
dL(PB→L(PL→B(expx0(tv))), PB→L(y))− t

)
= lim

t→∞

(
dB(PL→B(expx0(tv)), y)− t

)
= lim

t→∞

(
dB(exp0(tṽ), y)− t

)
= Bṽ(y).

(108)

Proof of Proposition 3.4. Let µ, ν ∈ P(Bd), µ̃ = (PB→L)#µ, ν̃ = (PB→L)#ν, ṽ ∈ Sd−1 an ideal point and v = (0, ṽ) ∈
span(x0)⊥.

First, by Lemma A.4, Bv = −tv ◦ B̃v . Using the proof A.1, tv is an isometry and we have that (by using the invariant of the
Wasserstein distance),

W p
p (B

v
#µ̃, B

v
#ν̃) = W p

p (B̃
v
#µ̃, B̃

v
#ν̃). (109)

Then,

W p
p (B

v
#µ̃, B

v
#ν̃) = W p

p (B̃
v
#µ̃, B̃

v
#ν̃)

= W p
p (B̃

v
#(PB→L)#µ, B̃

v
#(PB→L)#ν)

= inf
γ∈Π(µ,ν)

∫
Bd×Bd

dL

(
B̃v(PB→L(x)), B̃

v(PB→L(y))
)p

dγ(x, y) by (Paty & Cuturi, 2019, Lemma 6)

= inf
γ∈Π(µ,ν)

∫
Bd×Bd

dL

(
PB→L(B̃

ṽ(x)), PB→L(B̃
ṽ(y))

)p
dγ(x, y) by Lemma A.3

= inf
γ∈Π(µ,ν)

∫
Bd×Bd

dB

(
B̃ṽ(x), B̃ṽ(y)

)p
dγ(x, y) as PB→L is an isometry

= W p
p (B̃

ṽ
#µ, B̃

ṽ
#ν) by (Paty & Cuturi, 2019, Lemma 6)

= W p
p (B

ṽ
#µ,B

ṽ
#ν),

(110)
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where for the last line, we use that by Lemma A.3, Bṽ = −tṽ ◦ B̃ṽ and that tṽ is an isometry. Indeed,

∀x, y ∈ {exp0(tṽ), t ∈ R, |tṽ(x)− tṽ(y)| = |sign(⟨x, ṽ⟩)dB(x, 0)− sign(⟨y, ṽ⟩)dB(y, 0)|
= |sign(⟨PB→L(x), v⟩)dL(PB→L(x), x

0)− sign(⟨PB→L(y), v⟩)dL(PB→L(y), x
0)|

= |tv(PB→L(x))− tv(PB→L(y))|
= dL(PB→L(x), PB→L(y)) by Proposition 3.1
= dB(x, y) as PB→L is an isometry.

(111)

It is true for all ṽ ∈ Sd−1, and hence for λ-almost all ṽ ∈ Sd−1. Therefore, we have

HHSW p
p (µ, ν) = HHSW p

p (µ̃, ν̃). (112)

Similarly, with the same reasonment, using that tv and tṽ are isometries and Lemma A.3, we obtain

GHSW p
p (µ, ν) = GHSW p

p (µ̃, ν̃). (113)

B. Properties
We derive in this section additional properties of HHSW and GHSW. First, we will start by showing that for µ, ν ∈ Pp(Ld),
we have well GHSWp(µ, ν) < ∞ and HHSWp(µ, ν) < ∞. We also show that the Busemann coordinates can directly be
used in HHSW to compute the coordinates on R. Then, we continue by showing that GHSW and HHSW are pseudo-distances.
And finally, we make connections with Radon transforms known in the literature.

B.1. Finiteness of GHSW and HHSW

Proposition B.1. Let p ≥ 1, then for µ, ν ∈ Pp(Ld), GHSWp(µ, ν) < ∞ and HHSWp(µ, ν) < ∞.

Proof. First, we will deal with GHSW and then with HHSW. Let p ≥ 1 and µ, ν ∈ Pp(Ld) = {µ ∈
P(Ld),

∫
Ld dL(x, x0)

pdµ(x) < ∞ for some x0 ∈ Ld}. Note that the choice of x0 is arbitrary, since for any x, y ∈ Ld, we
have by the triangular inequality

dL(x, y) ≤ dL(x, x0) + dL(x0, y). (114)

Then, both proofs will follow from (Villani, 2009, Definition 6.4) using that

∀x, y ∈ Ld, dL(x, y)
p ≤ 2p−1

(
dL(x, x0)

p + dL(x0, y)
p
)
. (115)

GHSW. Let µ, ν ∈ Pp(Ld). Then, using (115), we have, denoting γ ∈ Π(µ, ν) an arbitrary coupling and using (Paty &
Cuturi, 2019, Lemma 6),

W p
p (P

v
#µ, P

v
#ν) = W p

p (P̃
v
#µ, P̃

v
#ν) = inf

π∈Π(P̃v
#µ,P̃v

#ν)

∫
Ld×Ld

dL(x, y)
p dπ(x, y)

= inf
π∈Π(µ,ν)

∫
Ld×Ld

dL

(
P̃ v(x), P̃ v(y)

)p
dπ(x, y)

≤
∫

Ld×Ld

dL

(
P̃ v(x), P̃ v(y)

)p
dγ(x, y)

≤ 2p−1

∫
Ld×Ld

(
dL

(
P̃ v(x), x0

)p
+ dL

(
P̃ v(y), x0

)p)
dγ(x, y)

= 2p−1
(∫

Ld

dL

(
P̃ v(x), x0

)p
dµ(x) +

∫
Ld

dL

(
P̃ v(y), x0

)p
dν(y)

)
.

(116)
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If we take x0 belonging to the geodesic, then necessarily, dL

(
P̃ v(x), x

)
≤ dL(x0, x) using that P v(x) =

argminy∈span(x0,v)∩Ld dL(x, y). Hence, by using again (115), we have

W p
p (P

v
#µ, P

v
#ν) ≤ 22p−2

(∫
Ld

dL(P̃
v(x), x)pdµ(x) +

∫
Ld

dL(x, x0)
pdµ(x)

+

∫
Ld

dL(P̃
v(y), y)pdν(y) +

∫
Ld

dL(y, x0)
pdν(y)

)
≤
(∫

Ld

dL(x0, x)
pdµ(x) +

∫
Ld

dL(x, x0)
pdµ(y)

+

∫
Ld

dL(x0, y)
pdν(y) +

∫
Ld

dL(y, x0)
pdν(y)

)
< ∞.

(117)

And hence GHSWp(µ, ν) < ∞.

HHSW. Let’s take first x0 = x0 as the base point. Then, by using again (115), we have:

W p
p (B

v
#µ,B

v
#ν) ≤ 2p−1

(∫
Ld

dL

(
B̃v(x), x0

)p
dµ(x) +

∫
Ld

dL

(
B̃v(y), x0

)p
dν(y)

)
. (118)

Now, by recalling that Bv
(
B̃v(x)

)
= Bv(x) = log

(
− ⟨x, x0 + v⟩L

)
and

B̃v(x) = − 1

2⟨x, x0 + v⟩L

(
(1 + ⟨x, x0 + v⟩2L)x0 − ⟨x, x0 + v⟩2Lv

)
. (119)

Now, by remarking that ⟨x, x0 + v⟩L ≤ 0, then we have,

dL

(
B̃v(x), x0

)
= arccosh(−⟨B̃v(x), x0⟩L)

= arccosh

(
1

2⟨x, x0 + v⟩L
(1 + ⟨x, x0 + v⟩2L)⟨x0, x0⟩L

)
= arccosh

(
− 1

2⟨x, x0 + v⟩L
(1 + ⟨x, x0 + v⟩2L)

)
= log

(
1 + ⟨x, x0 + v⟩2L
−2⟨x, x0 + v⟩L

+

√
(1 + ⟨x, x0 + v⟩L)2

4⟨x, x0 + v⟩2L
− 1

)

= log

1 + ⟨x, x0 + v⟩2L +

√(
⟨x, x0 + v⟩2L − 1

)2
−2⟨x, x0 + v⟩L



(120)

If ⟨x, x0 + v⟩2L ≥ 1, then

dL

(
B̃v(x), x0

)
= log

(
1 + ⟨x, x0 + v⟩2L + ⟨x, x0 + v⟩2L − 1

−2⟨x, x0 + v⟩L

)
= log(−⟨x, x0 + v⟩L) = Bv(x).

(121)

And if ⟨x, x0 + v⟩2L ≤ 1, then

dL

(
B̃v(x), x0

)
= log

(
1 + ⟨x, x0 + v⟩2L + 1− ⟨x, x0 + v⟩2L

−2⟨x, x0 + v⟩L

)
= log

(
1

−⟨x, x0 + v⟩L

)
= −Bv(x).

(122)

Then, using that Bv is 1-lipschitz, we have

|Bv(x)−Bv(x0)| ≤ dL(x, x
0), (123)
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and therefore

|Bv(x)| ≤ dL(x, x
0), (124)

since Bv(x0) = log(−⟨x0, x0 + v⟩L) = 0. Hence we have well HHSWp(µ, ν) < ∞.

B.2. Pseudo-distance

Proposition B.2. Let p ≥ 1, then GHSWp and HHSWp are pseudo-distances.

Proof. Let p ≥ 1, then for all µ, ν ∈ Pp(Ld), it is straightforward to see that GHSWp(µ, ν) ≥ 0, HHSWp(µ, ν)p ≥ 0,
GHSWp(µ, ν) = GHSWp(ν, µ) and HHSWp(µ, ν) = HHSWp(ν, µ). It is also easy to see that µ = ν =⇒
GHSWp(µ, ν) = 0 and HHSWp(µ, ν) = 0 using that Wp is a distance.

Now, we can also derive the triangular inequality using the triangular inequality for Wp and the Minkowski inequality:

∀µ, ν, α ∈ P(Ld), GHSWp(µ, ν) =
(∫

Tx0Ld∩Sd

W p
p (P

v
#µ, P

v
#ν) dλ(v)

) 1
p

≤
(∫

Tx0Ld∩Sd

(
Wp(P

v
#µ, P

v
#α) +Wp(P

v
#α, P

v
#ν)

)p
dλ(v)

) 1
p

≤
(∫

Tx0Ld∩Sd

W p
p (P

v
#µ, P

v
#α) dλ(v)

) 1
p

+
(∫

Tx0Ld∩Sd

W p
p (P

v
#α, P

v
#ν) dλ(v)

) 1
p

= GHSWp(µ, α) +GHSWp(α, ν).

(125)

The same holds for HHSW.

Therefore, GHSWp and HHSWp are pseudo-distances.

To show that there are distances, we need additionally the positivity property, i.e. we need to show that GHSWp(µ, ν) =
0 =⇒ µ = ν. As Wp is a distance, we have that GHSWp(µ, ν) = 0 =⇒ P v

#µ = P v
#ν for λ-ae v. But showing that this

implies that µ = ν is not straightforward. Following derivations obtained with SW, we can draw connections with known
Radon transforms.

Radon transform for GHSW. Let f ∈ L1(Ld). Then, let’s define R̄ : L1(Ld) → L1(R × Sd−1) such that for all t ∈ R
and v ∈ Sd−1,

R̄f(t, v) =

∫
Ld

f(x)1{Pv(x)=t} dx. (126)

Let’s define a dual function R̄∗ : C0(R × Sd−1) → C0(Ld) as

R̄∗g(x) =
∫
Sd−1

g
(
P v(x), v

)
dλ(v), (127)

where g ∈ C0(R × Sd−1). Then, we can check that it well the dual.

Proposition B.3. For all f ∈ L1(Ld), g ∈ C0(R × Sd−1),

⟨R̄f, g⟩R×Sd−1 = ⟨f, R̄∗g⟩Ld . (128)
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Proof. Let f ∈ L1(Ld), g ∈ C0(R × Sd−1), then,

⟨R̄f, g⟩R×Sd−1 =

∫
R×Sd−1

R̄f(t, v)g(t, v)dtdλ(v)

=

∫
R

∫
Sd−1

∫
Ld

f(x)1{Pv(x)=t}g(t, v) dxdtdλ(v)

=

∫
Ld

f(x)

∫
Sd−1

∫
R
g(t, v)1{Pv(x)=t} dtdλ(v)dx

=

∫
Ld

f(x)

∫
Sd−1

g
(
P v(x), v

)
dλ(v)dx

= ⟨f, R̄g⟩Ld .

(129)

Then, we can as in (Boman & Lindskog, 2009), define the corresponding Radon transform of a measure µ ∈ M(Ld) as the
measure R̄µ ∈ M(R × Sd−1), such that for all g ∈ C0(R × Sd−1), ⟨R̄µ, g⟩R×Sd−1 = ⟨µ, R̄∗g⟩Ld .

Next, denoting for v ∈ Sd−1, (R̄µ)v the disintegrated measure w.r.t. λ, i.e. the measure satisfying for all ϕ ∈ C(R × Sd−1),∫
R×Sd−1

ϕ(t, v)d(R̄µ)(t, v) =

∫
Sd−1

∫
R
ϕ(t, v)(Rµ)v(dt) dλ(v), (130)

we can show that (R̄µ)v = P v
#µ.

Proposition B.4. Let µ ∈ M(Ld), then for λ-almost every v ∈ Sd−1, (R̄µ)v = P v
#µ.

Proof. In the following, we will use that Sd−1 ∼= Tx0Ld ∩ Sd. And therefore, P v is well defined.

Let g ∈ C0(R × Sd−1), then∫
Sd−1

∫
R
g(t, v)(R̄µ)v(dt) dλ(v) =

∫
R×Sd−1

g(t, v) d(R̄µ)(t, v) = ⟨R̄µ, g⟩R×Sd−1

=

∫
Ld

R̄∗g(x) dµ(x)

=

∫
Ld

∫
Sd−1

g
(
P v(x), v

)
dλ(x)dµ(x)

=

∫
Sd−1

∫
Ld

g
(
P v(x), v

)
dµ(x)dλ(v)

=

∫
Sd−1

∫
R
g(t, v) d(P v

#µ)(x)dλ(v),

(131)

where we use the duality properties and Fubini.

From the previous proposition, we deduce that

∀µ, ν ∈ P(Ld), GHSW p
p (µ, ν) =

∫
Sd−1

W p
p

(
(R̄µ)v, (R̄ν)v

)
dλ(v). (132)

And GHSWp(µ, ν) = 0 =⇒ (R̄µ)v = (R̄ν)v for λ-almost every λ.

The transformation R̄ is not really clear written like that. In the next proposition, we identify the integration set, which will
give a connection to a known Radon transform.

Proposition B.5 (Set of integration). The integration set of R̄ is, for t ∈ R, v ∈ Sd−1,

{x ∈ Ld, P v(x) = t} = span(vz)
⊥ ∩ Ld, (133)

where vz = Rzv with Rz a rotation matrix in the plan span(v, x0) such that ⟨vz, z⟩ = 0.
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Proof. We will prove this proposition directly by working on the geodesics. As tv is an isometry (Proposition 3.1), for all
t ∈ R, there exists a unique z on the geodesic span(x0, v)∩Ld such that t = tv(z), and we can rewrite the set of integration
as

{x ∈ Ld, P v(x) = t} = {x ∈ Ld, P̃ v(x) = z}. (134)

For the first inclusion, let x ∈ {x ∈ Ld, P̃ v(x) = z}. By Proposition A.1 and hypothesis, we have that

P̃ v(x) =
1√

⟨x, x0⟩2L − ⟨x, v⟩2L
(
− ⟨x, x0⟩Lx

0 + ⟨x, v⟩Lv
)
= z. (135)

Let’s denote E = span(v, x0) the plan generating the geodesic. Then, by denoting PE the orthogonal projection on E, we
have

PE(x) = ⟨x, v⟩v + ⟨x, x0⟩x0

= ⟨x, v⟩Lv − ⟨x, x0⟩Lx
0

=

(√
⟨x, x0⟩2L − ⟨x, v⟩2L

)
z,

(136)

using that v0 = 0 since ⟨x0, v⟩ = v0 = 0, and hence ⟨x, v⟩L = ⟨x, v⟩, that ⟨x, x0⟩ = x0 = −⟨x, x0⟩L and (135). Then,
since vz ∈ span(v, x0) and ⟨z, vz⟩ = 0 (by construction of Rz), we have

⟨x, vz⟩ = ⟨PE(x), vz⟩

= ⟨
(√

⟨x, x0⟩2L − ⟨x, v⟩2L
)
z, vz⟩ = 0.

(137)

Thus, x ∈ span(vz)
⊥ ∩ Ld.

For the second inclusion, let x ∈ span(vz)
⊥ ∩ Ld. Since z ∈ span(vz)

⊥ (by construction of Rz), we can decompose
span(vz)

⊥ as span(vz)⊥ = span(z)⊕(span(z)⊥\span(vz)). Hence, there exists λ ∈ R such that x = λz+x⊥. Moreover,
as z ∈ span(x0, v), we have ⟨x, x0⟩L = λ⟨z, x0⟩L and ⟨x, v⟩L = ⟨x, v⟩ = λ⟨z, v⟩ = λ⟨z, v⟩L. Thus, the projection is

P̃ v(x) =
1√

⟨x, x0⟩2L − ⟨x, v⟩2L
(
− ⟨x, x0⟩Lx

0 + ⟨x, v⟩Lv
)

=
λ

|λ|
1√

⟨z, x0⟩2L − ⟨z, v⟩2L
(
− ⟨z, x0⟩Lx

0 + ⟨z, v⟩Lv
)

=
λ

|λ|z = sign(λ)z.

(138)

But, −z /∈ Ld, hence necessarily, P̃ v(x) = z.

Finally, we can conclude that {x ∈ Ld, P̃ v(x) = z} = span(vz)
⊥ ∩ Ld.

From the previous proposition, we see that the Radon transform R̄ integrates over hyperplanes intersected with Ld, which
are totally geodesic submanifolds. This corresponds actually to the hyperbolic Radon transform first introduced by Helgason
(1959) and studied more recently for example in (Berenstein & Rubin, 1999; Rubin, 2002; Berenstein & Rubin, 2004).
However, to the best of our knowledge, its injectivity over the set of measures has not been studied yet.

Radon transform for HHSW. We can derive a Radon transform associated to HHSW in the same way. Moreover, the
integration set can be intuitively derived as the level set of the Busemann function, since we project on the only point on
the geodesic which has the same Busemann coordinates. Since the level sets of the Busemann functions correspond to
horospheres, the associate Radon transform is the horospherical Radon transform. It has been for example studied by Bray
& Rubin (1999; 2019) on the Lorentz model, and by Casadio Tarabusi & Picardello (2021) on the Poincaré ball. Note that it
is also known as the Gelfand-Graev transform (Gelfand et al., 1966).
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B.3. Statistical Properties

Sample Complexity. By adapting the proof of (Nadjahi et al., 2020, Corollary 2), we derive a sample complexity in
Proposition B.6 for both GHSWp and HHSWp. Interestingly, they are similar up to some constant. Moreover, similarly as
the Euclidean SW distance, they are independent of the dimension.

Proposition B.6. Let p ≥ 1, q > p and µ, ν ∈ Pp(Ld). Denote µ̂n and ν̂n their counterpart empirical measures and
Mq(µ) =

∫
Ld d(x, x

0)q dµ(x) the moments of order q. Then, there exists Cp,q a constant depending only on p and q such
that

E [|GHSWp(µ̂n, ν̂n)−GHSWp(µ, ν)|] ≤ 2q/pC1/p
p,q (Mq(µ)

1/q +Mq(ν)
1/q)


n−1/(2p) if q > 2p

n−1/(2p) log(n)1/p if q = 2p

n−(q−p)/(pq) if q ∈ (p, 2p).

(139)

Similarly, with Cp,q a possible another constant,

E [|HHSWp(µ̂n, ν̂n)−HHSWp(µ, ν)|] ≤ 2C1/p
p,q (Mq(µ)

1/q +Mq(ν)
1/q)


n−1/(2p) if q > 2p

n−1/(2p) log(n)1/p if q = 2p

n−(q−p)/(pq) if q ∈ (p, 2p).

(140)

Proof. For this proof, we first need to recall the following lemma adapted from (Fournier & Guillin, 2015, Theorem 2) and
reported e.g. in (Rakotomamonjy et al., 2021).

Lemma B.7 (Lemma 1 in (Rakotomamonjy et al., 2021)). Let p ≥ 1 and η ∈ Pp(R). Denote M̃q(η) =
∫
|x|q dη(x) the

moments of order q and assume that Mq(η) < ∞ for some q > p. Then, there exists a constant Cp,q depending only on p, q
such that for all n ≥ 1,

E[W p
p (η̂n, η)] ≤ Cp,qM̃q(η)

p/q
(
n−1/21{q>2p} + n−1/2 log(n)1{q=2p} + n−(q−p)/q1{q∈(p,2p)}

)
. (141)

Now, we will first deal with GHSWp. First, let us observe that by the triangular and reverse triangular inequalities, as well
as Jensen for x 7→ x1/p (which is concave since p ≥ 1),

E [|GHSWp(µ̂n, ν̂n)−GHSWp(µ, ν)|] = E[|GHSWp(µ̂n, ν̂n)−GHSWp(µ̂n, ν) + GHSWp(µ̂n, ν)−GHSWp(µ, ν)|]
≤ E[|GHSWp(µ̂n, ν̂n)−GHSWp(µ̂n, ν)|] + E[|GHSWp(µ̂n, ν)−GHSWp(µ, ν)|]
≤ E[GHSWp(ν̂n, ν)] + E[GHSWp(µ̂n, µ)]

≤ E[GHSWp
p(ν̂n, ν)]

1/p + E[GHSWp
p(µ̂n, µ)]

1/p.
(142)

Moreover, by Fubini-Tonelli,

E[GHSWp
p(µ̂n, µ)] = E

[∫
Tx0Ld∩Sd

W p
p (P

v
#µ̂n, P

v
#µ) dλ(v)

]

=

∫
Tx0Ld∩Sd

E[W p
p (P

v
#µ̂n, P

v
#µ)] dλ(v).

(143)

By applying Lemma B.7, we get for q > p that there exists a constant Cp,q such that,

E[W p
p (P

v
#µ̂n, P

v
#µ)] ≤ Cp,qM̃q(P

v
#µ)

p/q
(
n−1/21{q>2} + n−1/2 log(n)1{q=2p} + n−(q−p)/q1{q∈(p,2p)}

)
. (144)

Furthermore, using (Villani, 2009, Defintion 6.4), i.e. that

∀x, y, x0 ∈ Ld, dL(x, y)
p ≤ 2p−1 (dL(x, x0) + dL(x0, y)) , (145)

we obtain
d(P̃ v(x), x0)q ≤ 2q−1

(
d(P̃ v(x), x)q + d(x, x0)q

)
, (146)
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and by definition of P̃ v , dL(P̃
v(x), x) ≤ dL(x

0, x). Hence, remembering that tv(x) = sign(⟨x, v⟩)dL(x, x
0) and P v(x) =

tv(P̃ v(x)), we have

M̃q(P
v
#µ) =

∫
R
|x|q d(P v

#µ)(x)

=

∫
Ld

|P v(x)|q dµ(x)

=

∫
Ld

|tv(P̃ v(x))|q dµ(x)

=

∫
Ld

dL(P̃
v(x), x0)q dµ(x)

≤ 2q−1

(∫
Ld

dL(P̃
v(x), x)q dµ(x) +

∫
Ld

dL(x, x
0)q dµ(x)

)
≤ 2q

∫
Lq

dL(x, x
0)q dµ(x) = 2qMq(µ).

(147)

Therefore, we have that

E[GHSWp
p(µ̂n, µ)] ≤ 2qCp,qMq(µ)

p/q
(
n−1/21{q>2p} + n−1/2 log(n)1{q=2p} + n−(q−p)/q1{q∈(p,2p)}

)
, (148)

and similarly

E[GHSWp
p(ν̂n, ν)] ≤ Cp,qMq(ν)

p/q
(
n−1/21{q>2p} + n−1/2 log(n)1{q=2p} + n−(q−p)/q1{q∈(p,2p)}

)
. (149)

Hence, we conclude that the sample complexity is

E [|GHSWp(µ̂n, ν̂n)−GHSWp(µ, ν)|] ≤ 2q/pC1/p
p,q

(
Mq(µ)

1/q +Mq(ν)
1/q
)

n−1/(2p) if q > 2p

n−1/(2p) log(n)1/p if q = 2p

n−(q−p)/(pq) if q ∈ (p, 2p).

(150)

Now, we can also do the same proof for HHSWp. By using pseudo-distance properties, we also get

E [|HHSWp(µ̂n, ν̂n)−HHSWp(µ, ν)|] ≤ E[HHSWp
p(ν̂n, ν)]

1/p + E[HHSWp
p(µ̂n, µ)]

1/p, (151)

and with Fubini-Tonelli,

E[HHSW p
p (µ̂n, µ)] =

∫
Sd−1

E[W p
p (t

v
#P̃

v
#µ̂n, t

v
#P̃

v
#µ)] dλ(v). (152)

Then, by Lemma B.7, we have that for q > p, there exists a constant Cp,q such that,

E[W p
p (B

v
#µ̂n, B

v
#µ)] ≤ Cp,qM̃q(B

v
#µ)

p/q
(
n−1/21{q>2} + n−1/2 log(n)1{q=2p} + n−(q−p)/q1{q∈(p,2p)}

)
. (153)

But, as Bv is 1-Lipschitz, and Bv(x0) = 0, we have that |Bv(x)−Bv(x0)| = |Bv(x)| ≤ dL(x, x
0) for all x ∈ Ld. Hence,

M̃q(B
v
#µ) =

∫
Ld

|Bv(x)|q dµ(x) ≤
∫

Ld

dL(x, x
0)q dµ(x) = Mq(µ), (154)

and therefore

E [|HHSWp(µ̂n, ν̂n)−HHSWp(µ, ν)|] ≤ 2C1/p
p,q (Mq(µ)

1/q +Mq(ν)
1/q)


n−1/(2p) if q > 2p

n−1/(2p) log(n)1/p if q = 2p

n−(q−p)/(pq) if q ∈ (p, 2p).

(155)
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Projection Complexity. The integral w.r.t the uniform measure on Sd−1 is unfortunately intractable, and therefore is
required to be approximated by a Monte-Carlo scheme. In Proposition B.8, we report the Monte-Carlo error of this
approximation. We call this error the projection complexity. We recover here the same rate as (Nadjahi et al., 2020) in
the Euclidean case. Since the proposition and the proof are the same for GHSWp and HHSWp, we do it for both in the
same time by denoting HSWp in place of GHSWp or HHSWp, and denoting by P v the corresponding projection with
v ∈ Tx0Ld ∩ Sd.

Proposition B.8. Let p ≥ 1, µ, ν ∈ Pp(Ld). We denote HSWp for both HHSWp and GHSWp. Then, the error made by
the Monte Carlo estimate of HSWp with L projections can be bounded as follows

Ev

[
|ĤSW

p

p,L(µ, ν)−HSWp
p(µ, ν)|

]2
≤ 1

L

∫
Tx0Ld∩Sd

(
W p

p (P
v
#µ, P

v
#ν)−HSWp

p(µ, ν)
)2

dλ(v)

=
1

L
Varv∼λ

[
W p

p (P
v
#µ, P

v
#ν)

]
,

(156)

where ĤSW
p

p,L(µ, ν) =
1
L

∑L
i=1 W

p
p (P

vi
# µ, P vi

# ν) with (vi)
L
i=1 independent samples from λ.

Proof. Let (vi)
L
i=1 be iid samples of λ. Then, by first using Jensen inequality and then remembering that

Ev[W
p
p (P

v
#µ, P

v
#ν)] = HSWp

p(µ, ν), we have

Ev

[
|ĤSW

p

p,L(µ, ν)−HSWp
p(µ, ν)|

]2
≤ Ev

[∣∣∣ĤSW
p

p,L(µ, ν)−HSWp
p(µ, ν)

∣∣∣2]

= Ev

∣∣∣∣∣ 1L
L∑

i=1

(
W p

p (P
vi
# µ, P vi

# ν)−HSWp
p(µ, ν)

)∣∣∣∣∣
2


=
1

L2
Varv

[
L∑

i=1

W p
p (P

vi
# µ, P vi

# ν)

]

=
1

L
Varv

[
W p

p (P
v
#µ, P

v
#ν)

]
=

1

L

∫
Tx0Ld∩Sd

(
W p

p (P
v
#µ, P

v
#ν)−HSWp

p(µ, ν)
)2

dλ(v).

(157)

C. Hyperbolic Spaces
In this Section, we first recall different generalization of the Gaussian distribution on Hyperbolic spaces, with a particular
focus on Wrapped normal distributions. Then, we recall how to perform Riemannian gradient descent in the Lorentz model
and in the Poincaré ball.

C.1. Distributions on Hyperbolic Spaces

Let M be a manifold and denote G the corresponding Riemannian metric. For x ∈ M , G(x) induces an infinitesimal change
of volume on the tangent space TxM , and thus a measure on the manifold,

dVol(x) =
√
|G(x)| dx.

We refer to (Pennec, 2006) for more details on distributions on manifolds. Now, we recap different generalizations of
Gaussian distribution on Riemannian manifolds.

Riemannian normal. The first way of naturally generalizing Gaussian distributions to Riemannian manifolds is to use the
geodesic distance in the density, which becomes

f(x) ∝ exp

(
− 1

2σ2
dM (x, µ)2

)
.
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It is actually the distribution maximizing the entropy (Pennec, 2006; Said et al., 2014). However, it is not straightforward to
sample from such distribution. For example, Ovinnikov (2019) use a rejection sampling algorithm.

Wrapped normal distribution. A more convenient distribution, on which we can use the parameterization trick, is the
Wrapped normal distribution (Nagano et al., 2019). This distribution can be sampled from by first drawing v ∼ N (0,Σ)
and then transforming it into v ∈ Tx0Ld by concatenating a 0 in the first coordinate. Then, we perform parallel transport to
transport v from the tangent space of x0 to the tangent space of µ ∈ Ld. Finally, we can project the samples on the manifold
using the exponential map. We recall the formula of parallel transport form x to y:

∀v ∈ TxLd, PTx→y(v) = v +
⟨y, v⟩L

1− ⟨x, y⟩L
(x+ y). (158)

Since it only involves differentiable operations, we can perform the parameterization trick and e.g. optimize directly over the
mean and the variance. Moreover, by the change of variable formula, we can also derive the density (Nagano et al., 2019;
Bose et al., 2020). Let z̃ ∼ N (0,Σ), z = (0, z̃) ∈ Tx0Ld, u = PTx0→µ(z), then the density of x = expµ(u) is:

log p(x) = log p(z̃)− (d− 1) log

(
sinh(∥u∥L)

∥u∥L

)
. (159)

In the paper, we write x ∼ G(µ,Σ).

C.2. Optimization on Hyperbolic Spaces

For gradient descent on hyperbolic space, we refer to (Boumal, 2022, Section 7.6) and (Wilson & Leimeister, 2018).

In general, for a functional f : M → R, Riemannian gradient descent is performed, analogously to the Euclidean space, by
following the geodesics. Hence, the gradient descent reads as (Absil et al., 2009; Bonnabel, 2013)

∀k ≥ 0, xk+1 = expxk

(
− γgradf(xk)

)
. (160)

Note that the exponential map can be replaced more generally by a retraction. We describe in the following paragraphs the
different formulae in the Lorentz model and in the Poincaré ball.

Lorentz model. Let f : Ld → R, then its Riemannian gradient is (Boumal, 2022, Proposition 7.7)

gradf(x) = Projx(J∇f(x)), (161)

where J = diag(−1, 1, . . . , 1) and Projx(z) = z + ⟨x, z⟩Lx. Furthermore, the exponential map is

∀v ∈ TxLd, expx(v) = cosh(∥v∥L)x+ sinh(∥v∥L)
v

∥v∥L
. (162)

Poincaré ball. On Bd, the Riemannian gradient of f : Bd → R can be obtained as (Nickel & Kiela, 2017, Section 3)

gradf(x) =
(1− ∥θ∥22)2

4
∇f(x). (163)

Nickel & Kiela (2017) propose to use as retraction Rx(v) = x+ v instead of the exponential map, and add a projection, to
constrain the value to remain within the Poincaré ball, of the form

proj(x) =

{
x

∥x∥2
− ϵ if ∥x∥ ≥ 1

x otherwise,
(164)

where ϵ = 10−5 is a small constant ensuring numerical stability. Hence, the algorithm becomes

xk+1 = proj

(
xk − γk

(1− ∥xk∥22)2
4

∇f(xk)

)
. (165)
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(a) τ = 0.05 (b) τ = 0.25 (c) τ = 0.5 (d) τ = 0.8

Figure 5: Embeddings of trees using Sarkar’s algorithm with different τ .
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Figure 6: Comparison of the Wasserstein distance (with the geodesic distance as cost), GHSW, HHSW and SW between
embedded trees. We gather the discrepancies together by scale of the values.

A second solution is to compute directly the exponential map derived in (Ganea et al., 2018a, Corollary 1.1):

expx(v) =
λx

(
cosh(λx∥v∥2) + ⟨x, v

∥v∥2
⟩ sinh(λx∥v∥2)

)
x+ 1

∥v∥2
sinh(λx∥v∥2)v

1 + (λx − 1) cosh(λx∥v∥2) + λx⟨x, v
∥v∥2

⟩ sinh(λx∥v∥2)
, (166)

where λx = 2
1−∥x∥2

2
.

D. Additional Details and Experiments
D.1. Comparisons

In Section 5, we compare the evolution of GHSW, HHSW, SWl, SWp and the Wasserstein distance with geodesic cost
between wrapped normal distributions. Here, we add a more “hyperbolical” setting in the sense that we compare trees
embedded in hyperbolic space. Indeed, it is well known that hyperbolic spaces can be seen as a continuous analog of trees,
and are therefore a natural embedding space for trees.

More precisely, we generate balanced trees using NetworkX (Hagberg et al., 2008) and embed them with Sarkar’s algorithm
(Sarkar, 2011; Sala et al., 2018). This algorithm takes as input a scaling factor τ which determines how close to the border
will the leaves be. We illustrate such embeddings with different τ on Figure 5. We compare in Figure 6 the evolution of
GHSW, HHSW, SWl and SWp between a tree embedded very close to the origin with τ = 0.05 and τ growing towards 1.
We observe here the same evolution than in Section 5.

Sample complexity. We showed in Proposition B.6 that the sample complexity of HHSWp and GHSWp does not
depend on the dimension. We verify here on Figure 7 empirically this property for GHSW and HHSW between two set of
samples drawn from G(x0, I2), and computed with 1000 projections. In dimension 3 and 50, HHSW and GHSW have the
same convergence speed w.r.t. the number of samples, which is not the case for the Wasserstein distance which suffers from
the curse of dimensionality.
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Figure 7: Sample complexity of GHSW, HHSW and Wasserstein with geodesic distance. GHSW and HHSW have the same
convergence rate in dimension 3 and 50.

D.2. Gradient flows.

Denoting ν the target distribution from which we have access to samples (yi)
m
i=1, we aim at learning ν by solving the

following optimization problem:

µ = argmin
µ

HSW

(
µ,

1

m

m∑
i=1

δxi

)
. (167)

As we cannot directly learn µ, we model it as µ̂ = 1
n

∑n
i=1 δxi

, and then learn the sample locations (xi)
n
i=1 using a

Riemannian gradient descent which we described in Appendix C.2. In practice, we take n = 500 and use batchs of 500
target samples at each iteration. To compute the sliced discrepancies, we always use 1000 projections. On Figure 4, we plot
the log 2-Wasserstein with geodesic cost between the model measure µ̂k at each iteration k and ν. We average over 5 runs
of each gradient descent. Now, we describe the specific setting for the different targets.

Wrapped normal distribution. For the first experiment, we choose as target a wrapped normal distribution G(m,Σ).
In the fist setting, we use m = (1.5, 1.25, 0) ∈ L2 and Σ = 0.1I2. In the second, we use m = (8,

√
63, 0) ∈ L2 and

Σ = 0.1I2. The learning rate is fixed as 5 for the different discrepancies, except for SWl on the second WND which lies far
from origin, and for which we exhibit numerical instabilities with a learning rate too high. Hence, we reduced it to 0.1. We
observed the same issue for HHSW on the Lorentz model. Fortunately, the Poincaré version, which is equal to the Lorentz
version, did not suffer from these issues. It underlines the benefit of having both formulations.

On Figure 8, we plotted the evolution of the particles for HHSW and GHSW with a target with mean m = (8,
√
63, 0)

and Σ =

(
1 1

2
1
2 1

)
. For GHSW, we use a learning rate of 10, and for HSHW a learning rate of 100. We observe that the

trajectories are differents. With geodesic projections, the particles go towards the target by passing through the origin, while
with horospherical projections, the tend first to leave the origin.

Mixture of wrapped normal distributions. For the second experiment, the target is a mixture of 5 WNDs. The
covariance are all taken equal as 0.01I2. For the first setting, the outlying means are (on the Poincaré ball) m1 = (0,−0.5),
m2 = (0, 0.5), m3 = (0.5, 0), m4 = (−0.5, 0) and the center mean is m5 = (0, 0.1). In the second setting, the outlying
means are m1 = (0,−0.9), m2 = (0, 0.9), m3 = (0.9, 0) and m4 = (−0.9, 0). We use the same m5. The learning rate in
this experiment is fixed at 1 for all discrepancies.

D.3. Classification of Images with Busemann

Denote {(xi, yi)
n
i=1} the training set where xi ∈ Rm and yi ∈ {1, . . . , C} is a label. The embedding is performed by

using a neural network fθ and the exponential map at the last layer, which projects the points on the Poincaré ball, i.e. for
i ∈ {1, . . . , n}, the embedding of xi is zi = exp0

(
fθ(zi)

)
, where exp0 is given by (166), or more simply by

exp0(x) = tanh

(∥x∥2
2

)
x

∥x∥2
. (168)
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(a) With geodesic projection.

Iteration 0 Iteration 50 Iteration 100 Iteration 200 Iteration 400

(b) With horospherical projection.

Figure 8: Evolution of the particles along the gradient flow of HSW (with geodesic or horospherical projection).

The experimental setting of this experiment is the same as (Ghadimi Atigh et al., 2021). That is, we use a Resnet-32
backbone and optimize it with Adam (Kingma & Ba, 2014), a learning rate of 5e-4, weight decay of 5e-5, batch size of 128
and without pre-training. The network is trained for all experiments for 1110 epochs with learning rate decay of 10 after
1000 and 1100 epochs. Moreover, the C prototypes are given by the algorithm of (Mettes et al., 2019) and are uniform on
the sphere Sd−1.

For the additional hyperparameters in the loss (34), we use by default λ = 1, and a mixture of C wrapped normal
distributions with means αpc, where pc ∈ Sd−1 is a prototype, c ∈ {1, . . . , C} and α = 0.75, and covariance matrix σId
with σ = 0.1. The number of projection is by default set at L=1000.

D.4. Hyperbolic Sliced-Wassertein Autoencoder

As hyperbolic spaces allow to embed hierarchical data, it has been proposed in several works to put a prior on such space
for autoencoder tasks (Ovinnikov, 2019; Nagano et al., 2019; Mathieu et al., 2019). Usually, an uninformative prior
such as a Wrapped normal or a Riemannian normal distribution is used. For such distributions, the density is known and
hence the Kullback-Leibler divergence can be approximated by a Monte-Carlo scheme. Moreover, we can also use the
reparametrization trick. Then, a variational auto-encoder (Kingma & Welling, 2013) can be used. For more complicated
distributions or deterministic prior with no density, we can use Wasserstein autoencoders (Tolstikhin et al., 2017). In this
case, with a prior pZ for which we have access to samples, an encoder f mapping the distribution data µ to the latent space,
and a decoder g, we aim at minimizing the following loss:

L(f, g) =
∫

c(x, g(f(x))) dµ(x) +D(f#µ, pZ), (169)

with c some cost function and D some divergence. Several divergences D were proposed such as the MMD or SW (Kolouri
et al., 2018). We propose here to study the latent space when using a tree prior, for which we cannot use a variational
autoencoder. To learn the distribution in the latent space, we use a hyperbolic sliced discrepancy.

On Figure 9, we compare several priors on the Mnist dataset (LeCun & Cortes, 2010) with D = HHSW 2
2 , which we

denote HHSWAE. First, we use a Wrapped Normal distribution, and then a binary and a ternary tree as a prior. The trees are
generated with NetworkX and embedded using Sarkar’s algorithm, with τ = 0.6 for the ternary tree and τ = 0.4 for the
binary tree. Moreover, we use a height of 3 for the ternary tree and of 4 for the binary one. For the HHSWAE, we used 200
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Figure 9: Embedding and reconstruction for HHSWAE. In the first column, we plot the prior. In the second column, we
plot the embedding of MNIST and in the third column, we plot the reconstructed nodes of the tree or from samples of the
wrapped normal distribution. In the first row, the prior is a Wrapped Normal Distribution. In the second row, the prior is a
binary tree and in the third row a ternary tree.
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epochs with the same architectures as (Kolouri et al., 2018) with an exp map before the output of the encoder, and a log map
at the input of the decoder.

We observe that when using a tree prior, the points from the same class tend to be distributed around the same nodes. We
believe that such an hierarchical prior can be beneficial in cases where one already has an assumption about the natural
structure of the data. Next works will consider this question more thoroughly in different applicative settings.
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