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Abstract
Recent advancements in time series forecasting
have explored augmenting models with text or
vision modalities to improve accuracy. While text
provides contextual understanding, it often lacks
fine-grained temporal details. Conversely, vision
captures intricate temporal patterns but lacks se-
mantic context, limiting the complementary po-
tential of these modalities. To address this, we
propose Time-VLM, a novel multimodal frame-
work that leverages pre-trained Vision-Language
Models (VLMs) to bridge temporal, visual, and
textual modalities for enhanced forecasting. Our
framework comprises three key components:
(1) a Retrieval-Augmented Learner, which ex-
tracts enriched temporal features through mem-
ory bank interactions; (2) a Vision-Augmented
Learner, which encodes time series as informa-
tive images; and (3) a Text-Augmented Learner,
which generates contextual textual descriptions.
These components collaborate with frozen pre-
trained VLMs to produce multimodal embed-
dings, which are then fused with temporal fea-
tures for final prediction. Extensive experiments
demonstrate that Time-VLM achieves superior
performance, particularly in few-shot and zero-
shot scenarios, thereby establishing a new di-
rection for multimodal time series forecasting.
Code is available at https://github.com/
CityMind-Lab/ICML25-TimeVLM.

1. Introduction
Time series data captures temporal signal evolution and
underpins forecasting in diverse domains such as finance
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Figure 1: Our Time-VLM combines text (Right) and vision
(Left) modalities to augment time series forecasting.

(Idrees et al., 2019), climate (Karevan & Suykens, 2020), en-
ergy (Deb et al., 2017), and transportation (Zheng & Huang,
2020). Accurate forecasting supports proactive risk mitiga-
tion, efficient resource allocation, and data-driven decision-
making. Traditional models like ARIMA, while historically
dominant, struggle to capture complex nonlinear patterns.
In contrast, deep learning methods—from recurrent neural
networks (RNNs) (Medsker et al., 2001) to Transformer-
based architectures (Li et al., 2019; Wu et al., 2021; Zhou
et al., 2021; Liu et al., 2022a; Zhou et al., 2022; Nie et al.,
2023)—leverage innovations such as patch-based feature
extraction, auto-correlation mechanisms, and frequency de-
composition to model complex temporal dynamics. Despite
their success, these models often fail to generalize across
domains or adapt to data-limited scenarios, particularly few-
shot and zero-shot settings (Liang et al., 2024).

To overcome these issues, researchers have turned to aug-
menting time series forecasting with additional modalities,
such as text and images, which provide complementary in-
formation that can enhance predictive accuracy:

• Text-Augmented Models: Textual data offers valuable
semantics crucial for accurate forecasting. For instance,
contextual descriptions or dataset statistics can signifi-
cantly enrich the understanding of time series patterns
(Figure 1, right). Methods like Time-LLM (Jin et al.,
2024) and UniTime (Liu et al., 2024b) leverage the supe-
rior pre-trained inference capabilities of Large Language
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Models (LLMs) by mapping time series into textual repre-
sentations. However, these approaches encounter two key
challenges: (1) the modality gap between continuous time
series and discrete text leads to information loss during
representation alignment, and (2) pre-trained language
knowledge is rare for capturing fine-grained temporal
patterns, limiting their ability to learn nuanced dynamics.

• Vision-Augmented Models: Visual representations of
time series—such as line graphs, recurrence plots, or
grayscale images—enable models to exploit spatial pat-
terns embedded within temporal data. By transforming
sequences into images, methods such as CNNs, ViTs, and
MAEs can extract hierarchical features that reveal latent
temporal relationships (Figure 1, left). Recent studies
(Wu et al., 2023b; Wang et al., 2024; Chen et al., 2024)
have demonstrated the natural alignment between time
series and vision, as both are continuous and share struc-
tural similarities, allowing pre-trained vision models to
effectively encode temporal hierarchies. However, these
methods lack semantic interpretability, restricting their
capacity to incorporate domain-specific knowledge.

Despite advancements in text- and vision-augmented mod-
els, integrating both modalities with time series remains
underexplored. Current approaches often focus on single
modalities, failing to harness their combined strengths. To
address this gap, we propose Time-VLM, a novel frame-
work that leverages pre-trained VLMs to enhance time se-
ries forecasting by unifying temporal, visual, and textual
information. VLMs provide a promising foundation, as they
excel at aligning visual and textual modalities, making them
well-suited for incorporating temporal information to unify
the three modalities. By projecting time series into a uni-
fied vision-language semantic space, Time-VLM enables
rich cross-modal interactions, combining the strengths of
both modalities while mitigating their individual limitations.
In this paradigm, each modality contributes uniquely: text
provides semantic context, vision captures spatial-temporal
patterns, and time series encodes sequential dynamics.

Specifically, Time-VLM introduces three key components:
(1) a Retrieval-Augmented Learner that processes raw time
series data through patch-based feature extraction and mem-
ory bank interactions to generate enriched temporal repre-
sentations, capturing both local and global dependencies;
(2) a Vision-Augmented Learner that adaptively transforms
time series into images using multi-scale convolution, fre-
quency encoding, and periodic encoding, preserving both
fine-grained details and high-level structures; and (3) a Text-
Augmented Learner that generates rich textual context (e.g.,
statistics and dataset descriptions) to complement the visual
representations. These modules collaborate with VLMs to
integrate temporal, visual, and textual modalities, producing
accurate forecasts through a fine-tuned predictor.

Our key contributions can be summarized as follows:

• We propose the first framework that unifies temporal, vi-
sual, and textual modalities by leveraging their comple-
mentary strengths for enhanced time series forecasting.

• We introduce a retrieval-augmented learner for hierarchi-
cal temporal feature enhancement, a vision-augmented
learner for adaptive time-series-to-image transformation,
and a text-augmented learner for contextual prompt gen-
eration, enabling seamless integration with VLMs.

• Extensive evaluations show Time-VLM’s strong perfor-
mance, especially under data-scarce conditions, offering a
brand new paradigm for multimodal time series research.

2. Related Work
Text-Augmented Models for Time Series Forecasting.

The success of LLMs has inspired their application to time
series forecasting. Methods like LLMTime (Gruver et al.,
2023) and LLM4TS (Chang et al., 2023) tokenize time se-
ries for autoregressive prediction but inherit limitations such
as poor arithmetic and recursive reasoning. Approaches
including GPT4TS (Zhou et al., 2023) and TimeLLM (Jin
et al., 2024) project time series into textual representations to
leverage LLMs’ reasoning capabilities, yet face challenges
like the modality gap and limited temporal adaptability of
word embeddings. UniTime (Liu et al., 2024b) and Tim-
eFFM (Liu et al., 2024a) incorporate domain knowledge
and federated learning, respectively, but remain constrained
by their exclusive dependence on textual modeling.

Vision-Augmented Models for Time Series Forecasting.

Vision provides a natural way to preserve temporal pat-
terns in time series data. Early approaches apply CNNs
to matrix-formed time series (Li et al., 2020; Sood et al.,
2021), while TimesNet (Wu et al., 2023b) introduces multi-
periodic decomposition for unified 2D modeling. Vi-
sionTS (Chen et al., 2024) pioneers the use of pre-trained
visual encoders with grayscale time series images, and
TimeMixer++ (Wang et al., 2024) advances the field through
multi-scale frequency-based time-image transformations.
Despite their effectiveness in temporal modeling, these
methods often lack semantic context, limiting their ability
to utilize high-level contextual information for prediction.

Vision-Language Models.

VLMs like ViLT (Kim et al., 2021), CLIP (Radford et al.,
2021), and ALIGN (Jia et al., 2021), have transformed mul-
timodal understanding by aligning image and text repre-
sentations. Recent progress, like BLIP-2 (Li et al., 2023)
and LLaVA (Liu et al., 2023), further enhance multimodal
reasoning. However, VLMs remain underexplored for time
series analysis. Our work bridges this gap by leveraging
VLMs to integrate temporal, visual, and textual modalities,
addressing the limitations of unimodal approaches.
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Figure 2: Overview of the Time-VLM framework.

3. Methodology
To address the limitations of single-modality approaches
and leverage the complementary strengths of visual, tex-
tual, and temporal modalities, we propose Time-VLM, a
unified framework that integrates these modalities for en-
hanced time series forecasting. As illustrated in Figure 2,
the framework comprises three core components:
• Retrieval-Augmented Learner (RAL): Extracts tempo-

ral features from raw time series patches and maintains a
memory bank to refine patch embeddings through multi-
head self-attention and pooling mechanisms, thereby pre-
serving rich temporal representations and enhancing long-
term dependency modeling for robust forecasting.

• Vision-Augmented Learner (VAL): Transforms time se-
ries into informative three-channel images through multi-
scale convolutions, frequency and periodic encoding. The
images are processed by a frozen VLM vision encoder to
extract hierarchical visual features, capturing both fine-
grained details and high-level temporal patterns.

• Text-Augmented Learner (TAL): Generates contextual
textual prompts for input time series, including statistical
features (e.g., mean, variance, trends), domain-specific
context (e.g., electricity consumption patterns), and image
descriptions. These prompts are encoded by a frozen
VLM text encoder to produce textual embeddings.

The image and text embeddings, extracted by the VLM,
are integrated with temporal memory features via a gated
fusion mechanism, effectively capturing complementary in-
formation to improve forecasting accuracy. These enriched
multimodal features are then processed by a fine-tuned pre-
dictor to generate precise and reliable forecasts.

3.1. Retrieval-Augmented Learner (RAL)

The RAL module extracts high-level temporal features via
patch-based processing and retrieval-augmented memory
mechanisms. It dynamically retrieves historical patterns
and integrates them with current observations, adapting to
complex time series structures. It operates in two key stages.

Patch Embedding: The input time series xenc ∈ RB×L×D

is divided into overlapping patches of length pl with stride
st, where B, L, and D denote the batch size, sequence
length, and number of variables, respectively. Each patch is
linearly projected into a dmodel-dimensional latent space, and
positional embeddings are added to preserve temporal order.
This yields patch embeddings Ep ∈ RB×Np×dmodel , where
Np = L−pl

st + 1 represents the total number of patches.

Retrieval-Augmented Memory: A memory bank with
maximum capacity M stores historical patch representa-
tions M ∈ RM×dmodel . During each forward pass, the cur-
rent patch embeddings are averaged across the temporal
dimension and added to the memory bank using a circular
buffer update strategy, ensuring that the most recent pat-
terns are retained. To better capture temporal dynamics, we
introduce a hierarchical memory structure:

• Local Memory: Given current patch embeddings P ∈
RB×Np×dmodel , we retrieve top-k similar patches from the
memory bank M based on cosine similarity:

sim(P,M) = P · M⊤, (1)

where M ∈ RM×dmodel stores historical patch represen-
tations. The retrieved patches are processed through a
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two-layer MLP to extract local memory features:

M
(i)
local = MLP(topk(E(i)

p )), i = 1, . . . , B. (2)

These features are averaged across patch dimension and
combined with the original P via a residual connection.

• Global Memory: To capture long-range dependencies,
we apply multi-head self-attention over the current patch
embeddings P , yielding contextualized representations:

Attn(P ) = MultiHead(Q,K, V ), (3)

where Q,K, V are linear projections of P . The global
memory is obtained by temporal averaging:

Mglobal =
1

Np

Np∑
i=1

Attn(P )i. (4)

The two memories are fused via a gated mechanism:

Mfused = α ·Mlocal + (1− α) ·Mglobal, (5)

where α is a learnable gating parameter that adaptively
balances the contribution of local and global memory.

The output Mfused ∈ RB×Np×dmodel captures high-level tem-
poral patterns. This fused representation supports dynamic
retrieval and integration with other modalities (e.g., vision
or text), enabling adaptive context-aware forecasting.

3.2. Vision-Augmented Learner (VAL)

The VAL module adaptively transforms the input time series
xenc ∈ RB×L×D into image representations, enabling fine-
grained and high-level temporal pattern extraction via the
VLM vision encoder. The process is in three steps:

Frequency and Periodicity Encoding: To capture spectral
and temporal dependencies, the VAL module applies two
complementary encoding techniques to the input time series,
explicitly adding frequency and time-domain information.
1. Frequency Encoding: A Fast Fourier Transform (FFT)

extracts frequency components from raw input xenc as:

FFT(xenc) =

L−1∑
t=0

xenc(t) · e−2πikt/L, (6)

where k is the frequency index. The resulting frequency
features are concatenated with the input time series, re-
sulting in a tensor of shape RB×L×D×2.

2. Periodicity Encoding: Temporal dependencies are en-
coded using sine and cosine functions for each time step:

encoding(t) =
[
sin

(
2πt

P

)
, cos

(
2πt

P

)]
, (7)

where P is the periodicity hyperparameter. These encod-
ings are concatenated with the input time series, resulting
in a tensor of shape RB×L×D×3. Complete periodic pa-
rameter settings can be found in Appendix A.

Multi-scale Convolution: The concat tensor is processed
through multiple convolutional layers to extract hierarchical
temporal patterns. A 1D convolutional layer captures local
dependencies, transforming the input into RB×D×Hhidden×L,
where Hhidden is the hidden dimension. Averaging along D
yields RB×Hhidden×L. Two 2D convolutional layers follow:
the first halves the channel dimension, and the second maps
features to C output channels, producing the final output
capturing both local and global temporal structures.

Image Interpolation & Normalization: The output tensor
is resized to the desired image dimensions (H,W ) using
bilinear interpolation. For a target pixel (x, y), the interpo-
lated value I(x, y) is computed as follows:

I(x, y) =

2∑
i=1

2∑
j=1

I(xi, yj) · wij , (8)

Inorm = 255 · Iraw − Min(Iraw)

Max(Iraw)− Min(Iraw) + ϵ
, (9)

where (xi, yj) are the coordinates of the four nearest neigh-
bors, wij are weights based on relative distances, and
ϵ = 10−5 prevents division by zero. Pixel values are scaled
to [0, 255] via min-max normalization, producing the nor-
malized image Inorm ∈ RB×C×H×W (C is the number of
channels). This ensures alignment with the VLM vision
encoder’s input distribution for effective feature extraction.
Example images and descriptions can see Appendix C.

3.3. Text-Augmented Learner (TAL)

The TAL module provides contextual textual representa-
tions, either pre-defined (e.g., expert annotations) or dynam-
ically generated, offering flexibility across diverse scenarios.

For dynamically generated prompts, TAL extracts key sta-
tistical properties from the input time series, including:

• Statistical Properties: Value range (min/max), central
tendency (median), and overall trend direction.

• Contextual Information: Periodic description, task-
specific parameters (input window length and forecasting
horizon), and domain-specific dataset characteristics.

These features are formatted into structured textual prompts,
such as the example shown in Figure 2(c). When domain-
specific knowledge is available (e.g., in medical diagnostics
or financial analysis), TAL incorporates pre-defined tex-
tual descriptions, which are combined with the dynamically
generated prompts to enhance contextual understanding.

The final textual inputs are processed by the VLM text
encoder, producing contextual embeddings that complement
both visual and temporal features. This dual-path design
supporting both static and dynamic textual ensures strong
generalization across a wide range of applications, from
generic forecasting tasks to specialized domain scenarios.
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3.4. Multimodal Fusion with VLMs

The multimodal fusion pipeline integrates visual (VAL),
textual (TAL), and temporal (RAL) information, leverag-
ing their complementary strengths to enhance time series
forecasting. It consists of three key steps:

Multimodal Embeddings Extraction: The generated im-
ages and text are processed by a frozen VLM (e.g., ViLT
or CLIP), producing multimodal embeddings of shape
RB×Lf×dh , where B is the batch size, Lf is the sequence
length, and dh is the VLM’s hidden dimension. These em-
beddings capture visual and textual context, leveraging the
VLM’s pre-trained multimodal understanding capabilities.

Temporal Feature Fusion: To address the distribution shift
between temporal and multimodal features, both modal-
ities are projected into a shared dmodel-dimensional space.
Temporal memory embeddings Ftem from RAL encode high-
level temporal patterns and serve as queries in a cross-modal
multi-head attention (CM-MHA) mechanism, while the mul-
timodal embeddings Fmm from the VLM serve as keys and
values. The CM-MHA is defined as:

CM-MHA(Q,K, V ) = Cat(head1, . . . , headh)WO, (10)

headi = softmax

(
QWQ

i (KWK
i )⊤√

dk

)
VWV

i . (11)

where Q = FtemW
Q, K = FmmW

K , and V = FmmW
V .

Here, WQ
i , WK

i , WV
i , and WO are learnable projection

matrices. dk = dmodel/h is the head dimension, and h is
the number of attention heads. This mechanism aligns and
integrates temporal and multimodal features, capturing both
fine-grained patterns and high-level context. A residual
connection and layer normalization stabilize training:

Fattn = LayerNorm(Ftem + CM-MHA(Q,K, V )). (12)

A gated fusion mechanism further enhances the output by
dynamically weighting each modality:

G = σ(Wg[Ftem;Fmm] + bg), (13)
Ffused = G⊙ Fattn + (1−G)⊙ Fmm, (14)

where Wg and bg are learnable parameters, and σ(·) is the
sigmoid function. This gated mechanism adaptively bal-
ances temporal and multimodal features for robust fusion.

Forecasting: The fused embedding is processed by a fine-
tuned predictor, consisting of fully connected layers, to gen-
erate forecasts ŷ ∈ RB×Tpred×D. By combining visual, tex-
tual, and temporal modalities, the pipeline captures both de-
tailed patterns and high-level context, leveraging pre-trained
VLMs for enhanced forecasting across diverse scenes.

3.5. Optimization

The model is trained end-to-end using mean squared error
(MSE). Given historical observations X ∈ RN×T (with N
variables and T time steps), the objective is to predict future
values Ŷ ∈ RN×H over H steps:

L =
1

H

H∑
h=1

∥Ŷh −Yh∥2, (15)

where Ŷh and Yh denote predicted and ground-truth values
at step h. The pre-trained VLM is kept frozen, and only
lightweight components are optimized during fine-tuning:

• RAL: Patch embedding, memory retrieval, and attention
modules for temporal pattern learning;

• VAL: Frequency/periodicity encoding and multi-scale
CNNs for visual representation generation;

• Prediction Head: A gate network and linear projection
fuse multimodal features to generate final forecasts.

This strategy adapts the VLM to time series forecasting,
achieving robust performance with minimal overhead.

4. Experiments
Datasets and Metrics. We evaluate Time-VLM on seven
widely used time series datasets across diverse domains: en-
ergy (ETTh1, ETTh2, ETTm1, ETTm2), weather, electricity
(ECL), and traffic (Zhou et al., 2021; Lai et al., 2018). These
datasets are commonly used for benchmarking long-term
forecasting models (Wu et al., 2023a), and vary in frequency,
dimensionality, and temporal characteristics. For short-term
forecasting, we use the M4 benchmark (Makridakis et al.,
2018), which includes marketing data across multiple fre-
quencies. Performance is measured using Mean Absolute
Error (MAE) and Mean Squared Error (MSE), following
standard evaluation practices in this field. Additional details
are provided in Appendices A.1 and A.3.

Baselines. We compare Time-VLM with state-of-the-art
time series models, including text-augmented methods like
TimeLLM (2024), GPT4TS (2023), and LLMTime (2023);
vision-augmented methods like TimesNet (2023b); tra-
ditional deep models like PatchTST (2023), ESTformer
(2022), Non-Stationary Transformer (2022b), FEDformer
(2022), Autoformer (2021), Informer (2021), and Reformer
(2020); and recent competitive models like DLinear (2023),
LightTS (2022), N-HiTS (2023), and N-BEATS (2020). No-
tably, Time-VLM is the first framework combining three
modalities for time series forecasting. Performance results
for some baselines are cited from (2024a) where applicable.

Implementation Details. We compare Time-VLM against
superior baselines using a unified evaluation pipeline un-
der the same configurations as (Wu et al., 2023a) to
ensure a fair comparison. ViLT (Kim et al., 2021)
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Table 1: Few-shot learning on 5% training data. Results are averaged over forecasting horizons H ∈{96, 192, 336, 720}. Lower values
indicate better performance. Full results see Section B.1. Red: best, Blue: second best.

Methods
Time-VLM143M Time-LLM3405M GPT4TS DLinear PatchTST TimesNet FEDformer Autoformer Stationary ETSformer LightTS Informer Reformer

(Ours) (2024) (2023) (2023) (2023) (2023a) (2022) (2021) (2022b) (2022) (2022) (2021) (2020)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.442 0.453 0.627 0.543 0.681 0.560 0.750 0.611 0.694 0.569 0.925 0.647 0.658 0.562 0.722 0.598 0.943 0.646 1.189 0.839 1.451 0.903 1.225 0.817 1.241 0.835

ETTh2 0.354 0.402 0.382 0.418 0.400 0.433 0.694 0.577 0.827 0.615 0.439 0.448 0.463 0.454 0.441 0.457 0.470 0.489 0.809 0.681 3.206 1.268 3.922 1.653 3.527 1.472

ETTm1 0.364 0.385 0.425 0.434 0.472 0.450 0.400 0.417 0.526 0.476 0.717 0.561 0.730 0.592 0.796 0.620 0.857 0.598 1.125 0.782 1.123 0.765 1.163 0.791 1.264 0.826

ETTm2 0.262 0.323 0.274 0.323 0.308 0.346 0.399 0.426 0.314 0.352 0.344 0.372 0.381 0.404 0.388 0.433 0.341 0.372 0.534 0.547 1.415 0.871 3.658 1.489 3.581 1.487

Weather 0.240 0.280 0.260 0.309 0.263 0.301 0.263 0.308 0.269 0.303 0.298 0.318 0.309 0.353 0.310 0.353 0.327 0.328 0.333 0.371 0.305 0.345 0.584 0.527 0.447 0.453

ECL 0.218 0.315 0.179 0.268 0.178 0.273 0.176 0.275 0.181 0.277 0.402 0.453 0.266 0.353 0.346 0.404 0.627 0.603 0.800 0.685 0.878 0.725 1.281 0.929 1.289 0.904

Traffic 0.558 0.410 0.423 0.298 0.434 0.305 0.450 0.317 0.418 0.296 0.867 0.493 0.676 0.423 0.833 0.502 1.526 0.839 1.859 0.927 1.557 0.795 1.591 0.832 1.618 0.851

Table 2: Few-shot learning on 10% training data. We use the same protocol in Table 1. Full results see Section B.1.

Methods
Time-VLM143M Time-LLM3405M GPT4TS DLinear PatchTST TimesNet FEDformer Autoformer Stationary ETSformer LightTS Informer Reformer

(Ours) (2024) (2023) (2023) (2023) (2023a) (2022) (2021) (2022b) (2022) (2022) (2021) (2020)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.431 0.442 0.556 0.522 0.590 0.525 0.691 0.600 0.633 0.542 0.869 0.628 0.639 0.561 0.702 0.596 0.915 0.639 1.180 0.834 1.375 0.877 1.199 0.809 1.249 0.833

ETTh2 0.361 0.405 0.370 0.394 0.397 0.421 0.605 0.538 0.415 0.431 0.479 0.465 0.466 0.475 0.488 0.499 0.462 0.455 0.894 0.713 2.655 1.160 3.872 1.513 3.485 1.486

ETTm1 0.360 0.382 0.404 0.427 0.464 0.441 0.411 0.429 0.501 0.466 0.677 0.537 0.722 0.605 0.802 0.628 0.797 0.578 0.980 0.714 0.971 0.705 1.192 0.821 1.426 0.856

ETTm2 0.263 0.323 0.277 0.323 0.293 0.335 0.316 0.368 0.296 0.343 0.320 0.353 0.463 0.488 1.342 0.930 0.332 0.366 0.447 0.487 0.987 0.756 3.370 1.440 3.978 1.587

Weather 0.233 0.274 0.234 0.273 0.238 0.275 0.241 0.283 0.242 0.279 0.279 0.301 0.284 0.324 0.300 0.342 0.318 0.323 0.318 0.360 0.289 0.322 0.597 0.495 0.546 0.469

ECL 0.198 0.291 0.175 0.270 0.176 0.269 0.180 0.280 0.180 0.273 0.323 0.392 0.346 0.427 0.431 0.478 0.444 0.480 0.660 0.617 0.441 0.489 1.195 0.891 0.965 0.768

Traffic 0.484 0.357 0.429 0.306 0.440 0.310 0.447 0.313 0.430 0.305 0.951 0.535 0.663 0.425 0.749 0.446 1.453 0.815 1.914 0.936 1.248 0.684 1.534 0.811 1.551 0.821

Table 3: Zero-shot learning results. Full results see Section B.2.

Methods
Time-VLM 143M Time-LLM3405M LLMTime GPT4TS DLinear PatchTST

(Ours) (2024) (2023) (2023) (2023) (2023)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1→ ETTh2 0.338 0.385 0.353 0.387 0.992 0.708 0.406 0.422 0.493 0.488 0.380 0.405

ETTh1 → ETTm2 0.293 0.350 0.273 0.340 1.867 0.869 0.325 0.363 0.415 0.452 0.314 0.360

ETTh2→ ETTh1 0.496 0.480 0.479 0.474 1.961 0.981 0.757 0.578 0.703 0.574 0.565 0.513

ETTh2 → ETTm2 0.297 0.353 0.272 0.341 1.867 0.869 0.335 0.370 0.328 0.386 0.325 0.365

ETTm1 → ETTh2 0.354 0.397 0.381 0.412 0.992 0.708 0.433 0.439 0.464 0.475 0.439 0.438

ETTm1→ ETTm2 0.264 0.319 0.268 0.320 1.867 0.869 0.313 0.348 0.335 0.389 0.296 0.334

ETTm2 → ETTh2 0.359 0.399 0.354 0.400 0.992 0.708 0.435 0.443 0.455 0.471 0.409 0.425

ETTm2→ ETTm1 0.432 0.426 0.414 0.438 1.933 0.984 0.769 0.567 0.649 0.537 0.568 0.492

("vilt-b32-finetuned-coco") serves as the de-
fault vision-language backbone; CLIP and BLIP-2 are also
supported. All models are trained with Adam (10−3 initial
learning rate, halved per epoch), batch size 32, for up to 10
epochs with early stopping. Experiments run on Nvidia RTX
A6000 GPU (48GB). More details are in Appendix A.2.

4.1. Few-shot Forecasting

Setting. We evaluate the few-shot long-term forecasting
capabilities of Time-VLM by testing its performance us-
ing only 5% or 10% of the training data. This setting as-
sesses how effectively Time-VLM integrates pre-trained
multimodal knowledge from the VLM with time series-
specific features under minimal task-specific supervision.

Results. As shown in Table 1 and Table 2, Time-VLM con-
sistently outperforms most baselines across datasets. For
example, on ETTh1 with 5% training data, Time-VLM re-
duces MSE by 29.5% and MAE by 16.6% compared to
the second-best model, TimeLLM. On ETTm1 with 10%
data, it surpasses TimeLLM by 11.1% in MSE and 10.5% in

MAE. On Weather with 5% data, Time-VLM outperforms
TimeLLM by 7.7% in MSE and 9.4% in MAE. The perfor-
mance gap between Time-VLM and traditional models (e.g.,
PatchTST, FEDformer) is particularly pronounced in few-
shot settings, demonstrating the effectiveness of multimodal
integration when data is scarce. This performance gain
stems from the model’s ability to leverage rich multimodal
priors from pre-trained VLMs, while effectively capturing
temporal patterns through memory-enhanced attention.

4.2. Zero-shot Forecasting

Setting. We evaluate the zero-shot forecasting capability of
Time-VLM in cross-domain settings, where the model pre-
dicts on unseen datasets by effectively transferring knowl-
edge from unrelated domains. To ensure a rigorous com-
parison, we conduct experiments using the ETT datasets as
source and target domains, following previous setup (Jin
et al., 2024). Results are summarized in Table 3.

Results. Time-VLM demonstrates strong generalizability,
consistently outperforming or matching state-of-the-art base-
lines while using fewer parameters. For example, in the
ETTh1->ETTh2 transfer setting, Time-VLM achieves a
4.2% lower MSE and 0.5% lower MAE than TimeLLM.
In ETTm1->ETTh2, it outperforms TimeLLM by 7.1% in
MSE and 3.6% in MAE. In ETTm2->ETTh2, Time-VLM
performs competitively, closely matching TimeLLM with
only a 1.4% difference in MSE and 0.3% in MAE. These
results highlight Time-VLM’s ability to generalize across
domains without fine-tuning, leveraging pre-trained vision-
language priors for effective knowledge transfer.
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Table 4: Short-term time series forecasting results on M4. The forecasting horizons are in [6, 48] and the three rows provided are weighted
averaged from all datasets under different sampling intervals. Full results see Section B.3.

Methods
Time-VLM143M Time-LLM3405M GPT4TS TimesNet PatchTST N-HiTS N-BEATS ETSformer LightTS DLinear FEDformer Stationary Autoformer Informer Reformer

(Ours) (2024) (2023) (2023a) (2023) (2023) (2020) (2022) (2022) (2023) (2022) (2022b) (2021) (2021) (2020)

SMAPE 11.894 11.983 12.690 12.880 12.059 12.035 12.250 14.718 13.525 13.639 13.160 12.780 12.909 14.086 18.200

MASE 1.592 1.595 1.808 1.836 1.623 1.625 1.698 2.408 2.111 2.095 1.775 1.756 1.771 2.718 4.223

OWA 0.855 0.859 0.940 0.955 0.869 0.869 0.896 1.172 1.051 1.051 0.949 0.930 0.939 1.230 1.775

Table 5: Long-term forecasting results. We use the same protocol in Table 1. Full results see in Section B.4.

Methods Time-VLM143M Time-LLM3405M GPT4TS DLinear PatchTST TimesNet FEDformer Autoformer Stationary ETSformer LightTS Informer Reformer
(Ours) (2024) (2023) (2023) (2023) (2023a) (2022) (2021) (2022b) (2022) (2022) (2021) (2020)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.405 0.420 0.408 0.423 0.465 0.455 0.422 0.437 0.413 0.430 0.458 0.450 0.440 0.460 0.496 0.487 0.570 0.537 0.542 0.510 0.491 0.479 1.040 0.795 1.029 0.805

ETTh2 0.341 0.391 0.334 0.383 0.381 0.412 0.431 0.446 0.330 0.379 0.414 0.427 0.437 0.449 0.450 0.459 0.526 0.516 0.439 0.452 0.602 0.543 4.431 1.729 6.736 2.191

ETTm1 0.347 0.377 0.329 0.372 0.388 0.403 0.357 0.378 0.351 0.380 0.400 0.406 0.448 0.452 0.588 0.517 0.481 0.456 0.429 0.425 0.435 0.437 0.961 0.734 0.799 0.671

ETTm2 0.248 0.311 0.251 0.313 0.284 0.339 0.267 0.333 0.255 0.315 0.291 0.333 0.305 0.349 0.327 0.371 0.306 0.347 0.293 0.342 0.409 0.436 1.410 0.810 1.479 0.915

Weather 0.224 0.263 0.225 0.257 0.237 0.270 0.248 0.300 0.225 0.264 0.259 0.287 0.309 0.360 0.338 0.382 0.288 0.314 0.271 0.334 0.261 0.312 0.634 0.548 0.803 0.656

Electricity 0.172 0.273 0.158 0.252 0.167 0.263 0.166 0.263 0.161 0.252 0.192 0.295 0.214 0.327 0.227 0.338 0.193 0.296 0.208 0.323 0.229 0.329 0.311 0.397 0.338 0.422

Traffic 0.419 0.303 0.388 0.264 0.414 0.294 0.433 0.295 0.390 0.263 0.620 0.336 0.610 0.376 0.628 0.379 0.624 0.340 0.621 0.396 0.622 0.392 0.764 0.416 0.741 0.422

4.3. Short-term Forecasting

Setting. For short-term forecasting, we evaluate Time-VLM
on the M4 benchmark, which includes marketing data at
various sampling frequencies. Performance is measured
using SMAPE, MASE, and OWA metrics, averaged across
datasets and sampling intervals (see Table 4).

Results. Time-VLM demonstrates strong performance, con-
sistently outperforming state-of-the-art baselines across all
metrics. For instance, it surpasses the second-best model,
Time-LLM, with improvements of 0.7% in SMAPE, 0.2%
in MASE, and 0.5% in OWA, all while utilizing significantly
fewer parameters and computational resources. Compared
to traditional models like PatchTST and N-HiTS, the perfor-
mance gains more, highlighting the benefit of multimodal
knowledge in short-term forecasting. These gains stem from
Time-VLM’s integration of temporal, visual, and textual
data, capturing richer features for improved accuracy.

4.4. Long-term Forecasting

Setting. We evaluate the long-term forecasting capabilities
of Time-VLM across multiple horizons and datasets.

Results. As shown in Table 5, Time-VLM achieves com-
petitive performance compared to state-of-the-art base-
lines. On ETTh1, Time-VLM improves upon TimeLLM
by 0.7% in both MSE and MAE. On ETTm2, it outperforms
TimeLLM by 1.2% in MSE and 0.6% in MAE. However,
on the Weather dataset, Time-VLM slightly underperforms
TimeLLM, with a 0.4% higher MSE and 2.3% higher MAE.

Overall, Time-VLM demonstrates robust performance
across diverse tasks and datasets, highlighting its generaliza-
tion and efficiency. By leveraging multimodal knowledge, it
consistently outperforms state-of-the-art baselines with sig-
nificantly fewer parameters (143M vs. TimeLLM’s 3405M),
making it a practical solution for real-world applications.

4.5. Model Analysis

Ablation Studies. Table 6 evaluates the contributions of key
components of Time-VLM, including the RAL (with Local
and Global Memory), VAL, and TAL. The study highlights
the importance of each module. Removing the RAL causes
a significant performance drop (35.6% in MSE), with its
local (RAL L) and global (RAL G) branches contributing
17.2% and 4.3%, respectively, validating our hierarchical
memory design. The VAL is also essential—removing it in-
creases MSE by 9.0%, demonstrating its ability to preserve
fine-grained temporal patterns via the VLM vision encoder.
In contrast, removing the TAL results in only minor degra-
dation (2.1% in MSE), likely due to the sparsity of textual
tokens in the VLM output; for example, ViLT produces
just 11 textual tokens out of 156 total, the rest being visual
embeddings. While the TAL provides useful semantic con-
text, its impact is limited by the scarcity of textual signals.
Future work may explore VLMs with stronger language
capabilities for better temporal-semantic alignment.

Table 6: Ablation study on multimodal components over forecast-
ing horizons H ∈ {96, 192, 336, 720} on Weather dataset, with
MSE performance degradation (%Deg) measured for each variant.

Horizon Full w/o RAL w/o RAL L w/o RAL G w/o VAL w/o TAL

96 0.160 0.273 0.185 0.165 0.213 0.165
192 0.203 0.297 0.235 0.210 0.237 0.208
336 0.253 0.325 0.295 0.265 0.255 0.258
720 0.317 0.369 0.375 0.330 0.309 0.322

Avg 0.233 0.316 0.273 0.243 0.254 0.238
%Deg – 35.6% ↑ 17.2% ↑ 4.3% ↑ 9.0% ↑ 2.1% ↑

Multimodal and Few-/Zero-shot Analysis. To under-
stand the source of Time-VLM’s strong performance in
data-scarce scenarios, we examine the relationship between
RAL (temporal) and TAL/VAL (multimodal) embeddings.
As shown in Figure 3, their complementary nature is evident.
The left panel illustrates balanced gate weight distributions,
indicating effective fusion of temporal and multimodal sig-
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nals. The right panel presents a UMAP visualization reveal-
ing distinct yet partially overlapping clusters, confirming
successful integration of multimodal information while pre-
serving modality-specific characteristics. The robust few-
shot and zero-shot capabilities of Time-VLM stem from
its integration of temporal, visual, and textual modalities.
Specifically, the RAL models temporal dependencies via
memory bank interactions, enabling robust feature extrac-
tion even with limited data. The VAL captures interpretable
visual patterns—such as trends, seasonality, and period-
icity—in domain-agnostic representations, while the TAL
generates semantic descriptions that enhance generalization.
Together, these components allow Time-VLM to leverage
pre-trained multimodal knowledge, making it highly adapt-
able to new tasks and domains with minimal fine-tuning.

a) UMAP Clustering Visualization b) Fusion Gate Weight Distributionsa) UMAP Clustering Visualization 
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Figure 3: UMAP visualization (left) and gate weight distri-
butions (right) of of multimodal and temporal embeddings.

Interpretability Analysis. We investigate how pre-trained
VLMs can be leveraged for time series forecasting by ana-
lyzing the alignment between visual, textual, and temporal
representations. To this end, we sample 400 image-text
pairs from MSCOCO, the primary pre-training dataset for
VLMs, and 200 samples each from time series datasets:
ETT, Traffic, Weather, and ECL. Using UMAP, we visualize
four types of embeddings in a shared 2D space:
• multimodal embeddings derived from COCO-Pair sam-

ples using VLM, reflecting the model’s general pretrained
cross-modal knowledge, which is Time-VLM’s main mo-
tivation of the time series project to.

• multimodal embeddings from time series-generated
image-text pairs processed through the same VLM, repre-
senting Time-VLM’s task-specific augmentation.

• Visual-only embeddings from COCO-Image samples ex-
tracted via ViT, reflecting pure visual knowledge.

• Text-only embeddings from COCO-Text samples encoded
with BERT, capturing linguistic knowledge.

As shown in Figure 4, both COCO-Image and COCO-Text
form distinct, separate clusters, remaining isolated from
time-series features. This suggests that while low-level vi-
sual patterns in COCO-Image resemble temporal dynamics,

Figure 4: Interpretability visualization of Time-VLM: mul-
timodal feature alignment via UMAP.

pure image representations retain modality-specific charac-
teristics. Similarly, COCO-Text forms a completely separate
cluster, highlighting significant modality gaps. In contrast,
COCO-Pair exhibits maximal overlap with time-series data,
demonstrating strong cross-modal complementarity. The
textual semantics in COCO-Pair bridge visual and temporal
modalities, enhancing their alignment. Notably, COCO-
Pair is positioned near the center of time-series clusters,
suggesting its role as a key mediator between modalities.

These observations motivate Time-VLM’s design: instead
of relying on single-modality projections, we embed time
series into multimodal space for richer semantic understand-
ing. The model’s strong performance in data-scarce settings
stems from pre-trained VLM knowledge. With more time
series data, better alignment of multimodal embeddings is
expected, further enhancing performance.

Computation Studies. Time-VLM demonstrates strong
computational efficiency, as shown in Table 7. With only
143.6M parameters (1/20 of Time-LLM’s 3404.6M), mem-
ory usage scales from 1968 MiB (Weather) to 24916 MiB
(Traffic), adapting to dataset complexity. Inference speed
ranges from 0.2057s/iter (ECL) to 0.4809s/iter (ETTh1),
efficiently handling varying loads. In contrast, Time-LLM
requires over 37GB of memory even for smaller datasets
like ETTh1 and ETTh2, making it infeasible for larger
datasets such as Weather, ECL, and Traffic. This highlights
Time-VLM’s lightweight design and practical scalability.

Table 7: Computational efficiency comparison between
Time-VLM and Time-LLM across datasets. “-” denotes memory
exceeds 49GB, infeasible on a single GPU. Results are averaged
over multiple prediction steps under consistent conditions.

Method Metric ETTh1 ETTh2 ETTm1 ETTm2 Weather ECL Traffic

Time-VLM
Param. (M) 143.6 143.6 143.6 143.6 143.6 143.6 143.6
Mem. (MiB) 2630 2630 2640 2640 1968 10818 24916
Speed (s/iter) 0.481 0.438 0.277 0.210 0.296 0.206 0.323

Time-LLM
Param. (M) 3404.6 3404.6 3404.6 3404.6 - - -
Mem. (MiB) 37723 37723 37849 37849 - - -
Speed (s/iter) 0.607 0.553 0.349 0.265 - - -

8



Time-VLM: Exploring Multimodal Vision-Language Models for Augmented Time Series Forecasting

Hyperparameter Studies. We analyze the impact of key
hyperparameters on performance, as shown in Figure 5. Se-
quence length performs best between 96 and 1024 timesteps,
with 512 being optimal for most datasets. Longer input
introduce noise without significant gains, indicating that lo-
cal temporal patterns are sufficient for accurate forecasting.
The normalization constant peaks at 0.4, reflecting a balance
between feature scaling and training stability. Model dimen-
sion shows dataset-dependent behavior: values of 128–256
suffice for short-term datasets like ETTh1 and ETTh2, while
longer horizons and higher-dimensional data (e.g., Traffic,
Weather) benefit from larger dimensions (up to 512), sug-
gesting greater capacity is needed to model complex dynam-
ics and variable interactions. Similarly, the gate network
dimension—responsible for multimodal fusion—achieves
optimal performance at 256 for medium-range forecasts.
For more challenging settings like long-horizon or high-
variable inputs, increasing it to 336 or 512 further improves
results, highlighting the importance of adaptive fusion in
capturing complex cross-modal relationships.
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Figure 5: Hyperparameters sensitivity analysis on input
length, normalization constant, dimension of model and
dimension of gate network, reflected by MAE.

VLM Variants Analysis. We conduct ablation studies
on different VLM backbones and custom combinations
to assess their impact on forecasting performance and
computational efficiency. We evaluate three widely-used
VLMs—ViLT, CLIP, and BLIP-2—with varying size, and
find that increased model size does not improve accuracy.
Notably, although BLIP-2 is the largest (3.7B parame-
ters, 25GB+ memory), it underperforms ViLT and CLIP
in terms of MSE (0.342 vs. 0.337) and exhibits slow train-
ing speed (0.98 s/iter), limiting its practical use. In con-
trast, lightweight models like ViLT (128.9M parameters,
1346 MiB memory) and CLIP (168.4M, 1174 MiB) achieve
comparable or better accuracy at a fraction of the cost. To

evaluate the benefit of VLMs’ pre-trained cross-modal align-
ment, we construct a modular baseline using separately
trained vision and language encoders: ViT-B/16 and BERT-
Base. As shown in Table 8, this custom combination un-
derperforms all pretrained VLMs across metrics, achieving
an average MSE of 0.348 versus 0.336 for ViLT, with no
compensating gain in speed (0.17 s/iter). These findings
highlight that the cross-modal alignment in VLMs offers a
key inductive bias for time series modeling. Modular ap-
proaches, lacking such a unified space, fail to match this
performance—demonstrating the value of pre-aligned mul-
timodal representations for efficient fusion and forecasting.

Table 8: Comparison of different VLM variants on ETTh2 in terms
of performance and computational efficiency.

VLM Type Params (M) Mem. (MiB) Speed (s/iter) MSE (avg) MAE (avg)

ViLT 128.9 1346 0.36 0.336 0.388
CLIP 168.4 1174 0.12 0.339 0.391
BLIP-2 3763.1 25200 0.98 0.342 0.393
Custom 213.2 1474 0.17 0.348 0.397

5. Conclusion
We presented Time-VLM, a novel framework that lever-
ages pretrained VLMs to unify temporal, visual, and textual
modalities for time series forecasting. By integrating the
RAL, VAL, and TAL modules, Time-VLM bridges modal-
ity gaps and enables rich cross-modal interactions. Notably,
it operates solely on raw time series data without requir-
ing external information, enabling fair comparisons and
demonstrating the ability to generate textual and visual rep-
resentations internally for self-augmentation. This design
not only improves accuracy but also highlights the frame-
work’s robustness—particularly in domains where auxiliary
data is scarce. Extensive experiments show that Time-VLM
achieves superior performance across diverse datasets, espe-
cially in few-shot and zero-shot settings, outperforming ex-
isting methods while maintaining computational efficiency.
Our work establishes a new direction in multimodal time
series forecasting by highlighting the potential of VLMs in
capturing both temporal dynamics and semantic context.

Limitations. Despite its strengths, Time-VLM has sev-
eral limitations. First, the TAL module provides semantic
context but has limited impact due to current VLMs’ con-
strained understanding of time series semantics. Second,
while excelling in low-data regimes, full-shot performance
slightly lags behind specialized unimodal models on cer-
tain tasks (e.g., ECL, Traffic), suggesting room for domain-
specific adaptation. Third, although computationally ef-
ficient compared to LLM-based methods, deployment on
resource-constrained devices remains challenging. These
limitations suggest promising directions for future work,
including temporally aware VLMs, improved time series
imaging, visual distillation, and enhanced text encoders with
stronger temporal reasoning. For details, see Appendix D.
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A. Experimental Details
A.1. Dataset Details

Table 9: Summary of benchmark datasets. Each dataset includes multiple time series (Dim.) with varying sequence lengths,
split into training, validation, and testing sets. Data are collected at different frequencies across various domains.

Tasks Dataset Dim. Series Length Dataset Size Frequency Domain Periodicity

ETTm1 7 {96, 192, 336, 720} (34465, 11521, 11521) 15 min Temperature 96

Long-term ETTm2 7 {96, 192, 336, 720} (34465, 11521, 11521) 15 min Temperature 96

Forecasting ETTh1 7 {96, 192, 336, 720} (8545, 2881, 2881) 1 hour Temperature 24

ETTh2 7 {96, 192, 336, 720} (8545, 2881, 2881) 1 hour Temperature 24

Electricity 321 {96, 192, 336, 720} (18317, 2633, 5261) 1 hour Electricity 24

Traffic 862 {96, 192, 336, 720} (12185, 1757, 3509) 1 hour Transportation 24

Weather 21 {96, 192, 336, 720} (36792, 5271, 10540) 10 min Weather 144

M4 - Yearly 1 6 (23000, 0, 23000) Yearly Demographic 1

M4 - Quarterly 1 8 (24000, 0, 24000) Quarterly Finance 4

Short-term M4 - Monthly 1 18 (48000, 0, 48000) Monthly Industry 3

Forecasting M4 - Weekly 1 13 (359, 0, 359) Weekly Macro 4

M4 - Daily 1 14 (4227, 0, 4227) Daily Micro 1

M4 - Hourly 1 48 (414, 0, 414) Hourly Other 24

The benchmark datasets used in our experiments are summarized in Table 9. These datasets span diverse domains, including
temperature monitoring (ETTm1, ETTm2, ETTh1, ETTh2), electricity consumption (Electricity), transportation (Traffic),
and weather forecasting (Weather). Each dataset contains multiple time series with varying sequence lengths, split into
training, validation, and testing sets. The datasets are collected at different frequencies, ranging from 15 minutes to yearly
intervals, and exhibit distinct periodic patterns. For short-term forecasting, we utilize the M4 benchmark, which includes
datasets with yearly, quarterly, monthly, weekly, daily, and hourly frequencies, covering domains such as finance, industry,
and demographics. This diverse collection of datasets ensures a comprehensive evaluation of our method.

A.1.1. DATASET DESCRIPTION

The datasets used in our experiments are described below:

• ECL: Measurements of electric power consumption in one household with a one-minute sampling rate over 4 years. It
includes various electrical quantities and sub-metering values, totaling 2,075,259 measurements from a house in Sceaux,
France (December 2006 to November 2010).

• ETT: The Electricity Transformer Temperature (ETT) dataset, crucial for electric power deployment, contains 2 years of
data from two counties in China. Subsets ETTh1 and ETTh2 provide 1-hour-level data, while ETTm1 offers 15-minute-level
data. Each point includes the target ”oil temperature” and 6 power load features, with a 12/4/4 month train/val/test split.

• Traffic: Hourly data from the California Department of Transportation, describing road occupancy rates measured by
sensors on San Francisco Bay area freeways.

• Weather: Recorded every 10 minutes throughout 2020, this dataset includes 21 meteorological indicators, such as air
temperature and humidity.

• M4: A collection of 100,000 time series from the Makridakis Forecasting Competition, including yearly, quarterly,
monthly, weekly, daily, and hourly data. The training sets have minimum observations of 13 (yearly), 16 (quarterly), 42
(monthly), 80 (weekly), 93 (daily), and 700 (hourly). Forecasts required are 6 (yearly), 8 (quarterly), 18 (monthly), 13
(weekly), 14 (daily), and 48 (hourly).

A.1.2. PERIODICITY PARAMETER

The Periodicity column in Table 9 specifies the periodicity hyperparameter P used in the periodicity encoding process. This
parameter is derived from the inherent characteristics of each dataset and reflects the dominant temporal patterns, such as
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daily, weekly, or seasonal cycles. For example, in the ETTm1 and ETTm2 datasets, which are sampled every 15 minutes,
the periodicity P = 96 corresponds to a daily cycle (24 hours × 4 samples per hour). Similarly, for the ETTh1 and ETTh2
datasets, sampled hourly, P = 24 represents a daily cycle. The Weather dataset, sampled every 10 minutes, has P = 144,
reflecting a daily cycle (24 hours × 6 samples per hour). For the M4 benchmark datasets, the periodicity values are set
based on their sampling frequencies: P = 1 for yearly data, P = 4 for quarterly and weekly data, P = 3 for monthly data,
and P = 24 for hourly data. These values are used in the periodicity encoding formula:

encoding(t) =
[
sin

(
2πt

P

)
, cos

(
2πt

P

)]
, (16)

where t is the time step and P is the periodicity hyperparameter. The resulting encodings are concatenated with the input
time series, enriching the model’s ability to capture temporal dependencies and periodic patterns.

A.2. Optimization Settings

A.2.1. MODEL ARCHITECTURE PARAMETERS

Time-VLM consists of several key components, each with specific parameter configurations. Image representations are
set to a size of 64× 64, balancing computational efficiency and temporal information preservation. The model backbone
utilizes a hidden dimension of d model = 128, while the encoder-decoder structure comprises e layers = 2 encoder layers
and d layers = 1 decoder layer. A dropout rate of 0.1 is applied to mitigate overfitting during training. For efficient data
loading, the model employs num workers = 32 to parallelize data preprocessing tasks.

The gated fusion module is designed with a dimension of d fusion = 256, facilitating the effective integration of multimodal
features. The VLM component generates multimodal embeddings with a token length of vlm fused len = 156 and a
hidden dimension of vlm hidden dim = 768, ensuring seamless compatibility with the pre-trained VLM’s architecture.

Table 10: Default Model Architecture Parameters

Parameter Default Value Description

image size 64 Size of generated image representation

d model 128 Dimension of hidden embeddings

d fusion 256 Dimension of gated fusion module

num workers 32 Number of data loader workers

e layers 2 Number of encoder layers

d layers 1 Number of decoder layers

dropout 0.1 Dropout rate

vlm fused len 156 Token length of VLM multimodal embedding

vlm hidden dim 768 Hidden dimension of VLM

A.2.2. TRAINING PARAMETERS

We adopt a comprehensive training strategy with both general and task-specific parameters. The model is trained with
a batch size of 32 and an initial learning rate of 0.001, using the AdamW optimizer. Early stopping with a patience of 3
epochs is implemented to prevent overfitting. The training process employs Mean Squared Error (MSE) as the primary
loss function and runs for a maximum of 10 epochs. For time series processing, we use an input sequence length of 512
and prediction lengths of 96, 192, 336, or 720, depending on the task. The output dimension (c out) varies by dataset:
7 for ETTh1/h2/m1/m2, 21 for Weather, 321 for Electricity, and 862 for Traffic. The periodicity parameter is set to 24
for ETTh1/h2, Electricity, and Traffic; 96 for ETTm1/m2; and 144 for Weather, ensuring alignment with dataset-specific
temporal patterns. A normalization coefficient of 0.4 is applied to stabilize training dynamics. The patch embedding module
uses a patch length of 16, a stride of 8, and padding of 8 to process the input sequences. The temporal memory mechanism
employs 8 learnable queries and 4 attention heads to capture high-level dependencies. Additionally, the training process
leverages automatic mixed precision (AMP) to accelerate training while maintaining numerical stability.
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Table 11: Default Training Parameters

Parameter Default Value Description

batch size 32 Training batch size

learning rate 0.001 Initial learning rate

training epochs 10 Number of training epochs

patience 3 Early stopping patience

loss MSE Mean square error

seq len 512 Input sequence length

c out

7 (ETTh1/h2/m1/m2)
21 (Weather)

321 (Electricity)
862 (Traffic)

Output dimension (dataset-specific)

pred len 96/192/336/720 Prediction length

periodicity
24 (ETTh1/h2/Electricity/Traffic)

96 (ETTm1/m2)
144 (Weather)

Dataset periodicity (dataset-specific)

norm const 0.4 Normalization coefficient

patch len 16 Patch length

padding 8 Padding length

stride 8 Stride length

num queries 8 Number of learnable queries for temporal memory

n heads 4 Number of attention heads

A.3. Evaluation Metrics

For evaluation, we utilize mean squared error (MSE) and mean absolute error (MAE) for long-term forecasting. For
short-term forecasting on the M4 benchmark, we adopt symmetric mean absolute percentage error (SMAPE), mean absolute
scaled error (MASE), and overall weighted average (OWA), following the evaluation protocol of N-BEATS (Oreshkin et al.,
2020). OWA is a specific metric used in the M4 competition. The metrics are calculated as follows:

MSE =
1

H

T∑
h=1

(Yh − Ŷh)
2, MAE =

1

H

H∑
h=1

|Yh − Ŷh|,

SMAPE =
200

H

H∑
h=1

|Yh − Ŷh|
|Yh|+ |Ŷh|

, MAPE =
100

H

H∑
h=1

|Yh − Ŷh|
|Yh|

,

MASE =
1

H

H∑
h=1

|Yh − Ŷh|
1

H−s

∑H
j=s+1 |Yj −Yj−s|

, OWA =
1

2

[
SMAPE

SMAPENaı̈ve2
+

MASE
MASENaı̈ve2

]
,

where s is the periodicity of the time series, H is the prediction horizon, and Yh and Ŷh are the ground truth and prediction
at time step h, respectively.
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B. Complete results
B.1. Few-shot Forecasting

Table 12: Full few-shot learning results on 5% training data with forecasting horizons H ∈{96, 192, 336, 720}. A lower value indicates
better performance. ’-’ means that 5% time series is not sufficient to constitute a training set. Red: the best, Blue: the second best

Methods Time-VLM Time-LLM GPT4TS DLinear PatchTST TimesNet FEDformer Autoformer Stationary ETSformer LightTS Informer Reformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T
T
h
1

96 0.417 0.435 0.483 0.464 0.543 0.506 0.547 0.503 0.557 0.519 0.892 0.625 0.593 0.529 0.681 0.570 0.952 0.650 1.169 0.832 1.483 0.910 1.225 0.812 1.198 0.795
192 0.450 0.458 0.629 0.540 0.748 0.580 0.720 0.604 0.711 0.570 0.940 0.665 0.652 0.563 0.725 0.602 0.943 0.645 1.221 0.853 1.525 0.930 1.249 0.828 1.273 0.853
336 0.460 0.465 0.768 0.626 0.754 0.595 0.984 0.727 0.816 0.619 0.945 0.653 0.731 0.594 0.761 0.624 0.935 0.644 1.179 0.832 1.347 0.870 1.202 0.811 1.254 0.857
720 - - - - - - - - - - - - - - - - - - - - - - - - - -
Avg 0.442 0.453 0.627 0.543 0.681 0.560 0.750 0.611 0.694 0.569 0.925 0.647 0.658 0.562 0.722 0.598 0.943 0.646 1.189 0.839 1.451 0.903 1.225 0.817 1.241 0.835

E
T
T
h
2

96 0.302 0.365 0.336 0.397 0.376 0.421 0.442 0.456 0.401 0.421 0.409 0.420 0.390 0.424 0.428 0.468 0.408 0.423 0.678 0.619 2.022 1.006 3.837 1.508 3.753 1.518
192 0.361 0.406 0.406 0.425 0.418 0.441 0.617 0.542 0.452 0.455 0.483 0.464 0.457 0.465 0.496 0.504 0.497 0.468 0.845 0.697 3.534 1.348 3.975 1.933 3.516 1.473
336 0.398 0.434 0.405 0.432 0.408 0.439 1.424 0.849 0.464 0.469 0.499 0.479 0.477 0.483 0.486 0.496 0.507 0.481 0.905 0.727 4.063 1.451 3.956 1.520 3.312 1.427
720 - - - - - - - - - - - - - - - - - - - - - - - - - -
Avg 0.354 0.402 0.382 0.418 0.400 0.433 0.694 0.577 0.827 0.615 0.439 0.448 0.463 0.454 0.441 0.457 0.470 0.489 0.809 0.681 3.206 1.268 3.922 1.653 3.527 1.472

E
T
T
m
1 96 0.314 0.357 0.316 0.377 0.386 0.405 0.332 0.374 0.399 0.414 0.606 0.518 0.628 0.544 0.726 0.578 0.823 0.587 1.031 0.747 1.048 0.733 1.130 0.775 1.234 0.798

192 0.343 0.373 0.450 0.464 0.440 0.438 0.358 0.390 0.441 0.436 0.681 0.539 0.666 0.566 0.750 0.591 0.844 0.591 1.087 0.766 1.097 0.756 1.150 0.788 1.287 0.839
336 0.373 0.391 0.450 0.424 0.485 0.459 0.402 0.416 0.499 0.467 0.786 0.597 0.807 0.628 0.851 0.659 0.870 0.603 1.138 0.787 1.147 0.775 1.198 0.809 1.288 0.842
720 0.425 0.420 0.483 0.471 0.577 0.499 0.511 0.489 0.767 0.587 0.796 0.593 0.822 0.633 0.857 0.655 0.893 0.611 1.245 0.831 1.200 0.799 1.175 0.794 1.247 0.828
Avg 0.364 0.385 0.425 0.434 0.472 0.450 0.400 0.417 0.526 0.476 0.717 0.561 0.730 0.592 0.796 0.620 0.857 0.598 1.125 0.782 1.123 0.765 1.163 0.791 1.264 0.826

E
T
T
m
2 96 0.169 0.260 0.174 0.261 0.199 0.280 0.236 0.326 0.206 0.288 0.220 0.299 0.229 0.320 0.232 0.322 0.238 0.316 0.404 0.485 1.108 0.772 3.599 1.478 3.883 1.545

192 0.224 0.298 0.215 0.287 0.256 0.316 0.306 0.373 0.264 0.324 0.311 0.361 0.394 0.361 0.291 0.357 0.298 0.349 0.479 0.521 1.317 0.850 3.578 1.475 3.553 1.484
336 0.282 0.338 0.273 0.330 0.318 0.353 0.380 0.423 0.334 0.367 0.338 0.366 0.378 0.427 0.478 0.517 0.353 0.380 0.552 0.555 1.415 0.879 3.561 1.473 3.446 1.460
720 0.375 0.397 0.433 0.412 0.460 0.436 0.674 0.583 0.454 0.432 0.509 0.465 0.523 0.510 0.553 0.538 0.475 0.445 0.701 0.627 1.822 0.984 3.896 1.533 3.445 1.460
Avg 0.262 0.323 0.274 0.323 0.308 0.346 0.399 0.426 0.314 0.352 0.344 0.372 0.381 0.404 0.388 0.433 0.341 0.372 0.534 0.547 1.415 0.871 3.658 1.489 3.581 1.487

W
ea

th
er

96 0.176 0.231 0.172 0.263 0.175 0.230 0.184 0.242 0.171 0.224 0.207 0.253 0.229 0.309 0.227 0.299 0.215 0.252 0.218 0.295 0.230 0.285 0.497 0.497 0.406 0.435
192 0.216 0.263 0.224 0.271 0.227 0.276 0.228 0.283 0.230 0.277 0.272 0.307 0.265 0.317 0.278 0.333 0.290 0.307 0.294 0.331 0.274 0.323 0.620 0.545 0.446 0.450
336 0.264 0.298 0.282 0.321 0.286 0.322 0.279 0.322 0.294 0.326 0.313 0.328 0.353 0.392 0.351 0.393 0.353 0.348 0.359 0.398 0.318 0.355 0.649 0.547 0.465 0.459
720 0.327 0.342 0.366 0.381 0.366 0.379 0.364 0.388 0.384 0.387 0.400 0.385 0.391 0.394 0.387 0.389 0.452 0.407 0.461 0.461 0.401 0.418 0.570 0.522 0.471 0.468
Avg 0.246 0.284 0.260 0.309 0.263 0.301 0.263 0.308 0.269 0.303 0.298 0.318 0.309 0.353 0.310 0.353 0.327 0.328 0.333 0.371 0.305 0.345 0.584 0.527 0.447 0.453

E
le
ct
ri
ci
ty 96 0.185 0.296 0.147 0.242 0.143 0.241 0.150 0.251 0.145 0.244 0.315 0.389 0.235 0.322 0.297 0.367 0.484 0.518 0.697 0.638 0.639 0.609 1.265 0.919 1.414 0.855

192 0.194 0.302 0.158 0.241 0.159 0.255 0.163 0.263 0.163 0.260 0.318 0.396 0.247 0.341 0.308 0.375 0.501 0.531 0.718 0.648 0.772 0.678 1.298 0.939 1.240 0.919
336 0.210 0.315 0.178 0.277 0.179 0.274 0.175 0.278 0.183 0.281 0.340 0.415 0.267 0.356 0.354 0.411 0.574 0.578 0.758 0.667 0.901 0.745 1.302 0.942 1.253 0.921
720 0.251 0.346 0.224 0.312 0.233 0.323 0.219 0.311 0.233 0.323 0.635 0.613 0.318 0.394 0.426 0.466 0.952 0.786 1.028 0.788 1.200 0.871 1.259 0.919 1.249 0.921
Avg 0.218 0.315 0.179 0.268 0.178 0.273 0.176 0.275 0.181 0.277 0.402 0.453 0.266 0.353 0.346 0.404 0.627 0.603 0.800 0.685 0.878 0.725 1.281 0.929 1.289 0.904

T
ra

f
f
ic

96 0.550 0.408 0.414 0.291 0.419 0.298 0.427 0.304 0.404 0.286 0.854 0.492 0.670 0.421 0.795 0.481 1.468 0.821 1.643 0.855 1.157 0.636 1.557 0.821 1.586 0.841
192 0.552 0.408 0.419 0.291 0.434 0.305 0.447 0.315 0.412 0.294 0.894 0.517 0.653 0.405 0.837 0.503 1.509 0.838 1.856 0.928 1.688 0.848 1.596 0.834 1.602 0.844
336 0.572 0.414 0.437 0.314 0.449 0.313 0.478 0.333 0.439 0.310 0.853 0.471 0.707 0.445 0.867 0.523 1.602 0.860 2.080 0.999 1.826 0.903 1.621 0.841 1.668 0.868
720 - - - - - - - - - - - - - - - - - - - - - - - - - -
Avg 0.558 0.410 0.423 0.298 0.434 0.305 0.450 0.317 0.418 0.296 0.867 0.493 0.676 0.423 0.833 0.502 1.526 0.839 1.859 0.927 1.557 0.795 1.591 0.832 1.618 0.851

Table 13: Full few-shot learning results on 10% training data.

Methods Time-VLM Time-LLM GPT4TS DLinear PatchTST TimesNet FEDformer Autoformer Stationary ETSformer LightTS Informer Reformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T
T
h
1

96 0.391 0.404 0.448 0.460 0.458 0.456 0.492 0.495 0.516 0.485 0.861 0.628 0.512 0.499 0.613 0.552 0.918 0.639 1.112 0.806 1.298 0.838 1.179 0.792 1.184 0.790
192 0.420 0.431 0.484 0.483 0.570 0.516 0.565 0.538 0.598 0.524 0.797 0.593 0.624 0.555 0.722 0.598 0.915 0.629 1.155 0.823 1.322 0.854 1.199 0.806 1.295 0.850
336 0.439 0.448 0.589 0.540 0.608 0.535 0.721 0.622 0.657 0.550 0.941 0.648 0.691 0.574 0.750 0.619 0.939 0.644 1.179 0.832 1.347 0.870 1.202 0.811 1.294 0.854
720 0.476 0.484 0.700 0.604 0.725 0.591 0.986 0.743 0.762 0.610 0.877 0.641 0.728 0.614 0.721 0.616 0.887 0.645 1.273 0.874 1.534 0.947 1.217 0.825 1.223 0.838
Avg 0.431 0.442 0.556 0.522 0.590 0.525 0.691 0.600 0.633 0.542 0.869 0.628 0.639 0.561 0.702 0.596 0.915 0.639 1.180 0.834 1.375 0.877 1.199 0.809 1.249 0.833

E
T
T
h
2

96 0.284 0.347 0.275 0.326 0.331 0.374 0.357 0.411 0.353 0.389 0.378 0.409 0.382 0.416 0.413 0.451 0.389 0.411 0.678 0.619 2.022 1.006 3.837 1.508 3.788 1.533
192 0.349 0.398 0.374 0.373 0.402 0.411 0.569 0.519 0.403 0.414 0.490 0.467 0.478 0.474 0.474 0.477 0.473 0.455 0.785 0.666 2.329 1.104 3.856 1.513 3.552 1.483
336 0.370 0.412 0.406 0.429 0.406 0.433 0.671 0.572 0.426 0.441 0.537 0.494 0.504 0.501 0.547 0.543 0.507 0.480 0.839 0.694 2.453 1.122 3.952 1.526 3.395 1.526
720 0.441 0.466 0.427 0.449 0.449 0.464 0.824 0.648 0.477 0.480 0.510 0.491 0.499 0.509 0.516 0.523 0.477 0.472 1.273 0.874 3.816 1.407 3.842 1.503 3.205 1.401
Avg 0.361 0.405 0.370 0.394 0.397 0.421 0.605 0.538 0.415 0.431 0.479 0.465 0.466 0.475 0.488 0.499 0.462 0.455 0.894 0.713 2.655 1.160 3.872 1.513 3.485 1.486

E
T
T
m
1 96 0.310 0.354 0.346 0.388 0.390 0.404 0.352 0.392 0.410 0.419 0.583 0.501 0.578 0.518 0.774 0.614 0.761 0.568 0.911 0.688 0.921 0.682 1.162 0.785 1.442 0.847

192 0.340 0.370 0.373 0.416 0.429 0.423 0.382 0.412 0.437 0.434 0.630 0.528 0.617 0.546 0.754 0.592 0.781 0.574 0.955 0.703 0.957 0.701 1.172 0.793 1.444 0.862
336 0.369 0.387 0.413 0.426 0.469 0.439 0.419 0.434 0.476 0.454 0.725 0.568 0.998 0.775 0.869 0.677 0.803 0.587 0.991 0.719 0.998 0.716 1.227 0.908 1.450 0.866
720 0.423 0.417 0.485 0.476 0.569 0.498 0.490 0.477 0.681 0.556 0.769 0.549 0.693 0.579 0.810 0.630 0.844 0.581 1.062 0.747 1.007 0.719 1.207 0.797 1.366 0.850
Avg 0.360 0.382 0.404 0.427 0.464 0.441 0.411 0.429 0.501 0.466 0.677 0.537 0.722 0.605 0.802 0.628 0.797 0.578 0.980 0.714 0.971 0.705 1.192 0.821 1.426 0.856

E
T
T
m
2 96 0.169 0.260 0.177 0.261 0.188 0.269 0.213 0.303 0.191 0.274 0.212 0.285 0.291 0.399 0.352 0.454 0.229 0.308 0.331 0.430 0.813 0.688 3.203 1.407 4.195 1.628

192 0.222 0.296 0.241 0.314 0.251 0.309 0.278 0.345 0.252 0.317 0.270 0.323 0.307 0.379 0.694 0.691 0.291 0.343 0.400 0.464 1.008 0.768 3.112 1.387 4.042 1.601
336 0.278 0.335 0.274 0.327 0.307 0.346 0.338 0.385 0.306 0.353 0.323 0.353 0.543 0.559 2.408 1.407 0.348 0.376 0.469 0.498 1.031 0.775 3.255 1.421 3.963 1.585
720 0.381 0.401 0.417 0.390 0.426 0.417 0.436 0.440 0.433 0.427 0.474 0.449 0.712 0.614 1.913 1.166 0.461 0.438 0.589 0.557 1.096 0.791 3.909 1.543 3.711 1.532
Avg 0.263 0.323 0.277 0.323 0.293 0.335 0.316 0.368 0.296 0.343 0.320 0.353 0.463 0.488 1.342 0.930 0.332 0.366 0.447 0.487 0.987 0.756 3.370 1.440 3.978 1.587

W
ea

th
er

96 0.174 0.228 0.161 0.210 0.163 0.215 0.171 0.224 0.165 0.215 0.184 0.230 0.188 0.253 0.221 0.297 0.192 0.234 0.199 0.272 0.217 0.269 0.374 0.401 0.335 0.380
192 0.217 0.262 0.204 0.248 0.210 0.254 0.215 0.263 0.210 0.257 0.245 0.283 0.250 0.304 0.270 0.322 0.269 0.295 0.279 0.332 0.259 0.304 0.552 0.478 0.522 0.462
336 0.263 0.296 0.261 0.302 0.256 0.292 0.258 0.299 0.259 0.297 0.305 0.321 0.312 0.346 0.320 0.351 0.370 0.357 0.356 0.386 0.303 0.334 0.724 0.541 0.715 0.535
720 0.326 0.340 0.309 0.332 0.321 0.339 0.320 0.346 0.332 0.346 0.381 0.371 0.387 0.393 0.390 0.396 0.441 0.405 0.437 0.448 0.377 0.382 0.739 0.558 0.611 0.500
Avg 0.245 0.282 0.234 0.273 0.238 0.275 0.241 0.283 0.242 0.279 0.279 0.301 0.284 0.324 0.300 0.342 0.318 0.323 0.318 0.360 0.289 0.322 0.597 0.495 0.546 0.469

E
le
ct
ri
ci
ty 96 0.160 0.269 0.139 0.241 0.139 0.237 0.150 0.253 0.140 0.238 0.299 0.373 0.231 0.323 0.261 0.348 0.420 0.466 0.599 0.587 0.350 0.425 1.259 0.919 0.993 0.784

192 0.174 0.279 0.151 0.248 0.156 0.252 0.164 0.264 0.160 0.255 0.305 0.379 0.261 0.356 0.338 0.406 0.411 0.459 0.620 0.598 0.376 0.448 1.160 0.873 0.938 0.753
336 0.190 0.294 0.169 0.270 0.175 0.270 0.181 0.282 0.180 0.276 0.319 0.391 0.360 0.445 0.410 0.474 0.434 0.473 0.662 0.619 0.428 0.485 1.157 0.872 0.925 0.745
720 0.229 0.323 0.240 0.322 0.233 0.317 0.223 0.321 0.241 0.323 0.369 0.426 0.530 0.585 0.715 0.685 0.510 0.521 0.757 0.664 0.611 0.597 1.203 0.898 1.004 0.790
Avg 0.198 0.291 0.175 0.270 0.176 0.269 0.180 0.280 0.180 0.273 0.323 0.392 0.346 0.427 0.431 0.478 0.444 0.480 0.660 0.617 0.441 0.489 1.195 0.891 0.965 0.768

T
ra

f
f
ic

96 0.465 0.349 0.418 0.291 0.414 0.297 0.419 0.298 0.403 0.289 0.719 0.416 0.639 0.400 0.672 0.405 1.412 0.802 1.643 0.855 1.157 0.636 1.557 0.821 1.527 0.815
192 0.468 0.350 0.414 0.296 0.426 0.301 0.434 0.305 0.415 0.296 0.748 0.428 0.637 0.416 0.727 0.424 1.419 0.806 1.641 0.854 1.207 0.661 1.454 0.765 1.538 0.817
336 0.483 0.356 0.421 0.311 0.434 0.303 0.449 0.313 0.426 0.304 0.853 0.471 0.655 0.427 0.749 0.454 1.443 0.815 1.711 0.878 1.334 0.713 1.521 0.812 1.550 0.819
720 0.520 0.373 0.462 0.327 0.487 0.337 0.484 0.336 0.474 0.331 1.485 0.825 0.722 0.456 0.847 0.499 1.539 0.837 2.660 1.157 1.292 0.726 1.605 0.846 1.588 0.833
Avg 0.484 0.357 0.429 0.306 0.440 0.310 0.447 0.313 0.430 0.305 0.951 0.535 0.663 0.425 0.749 0.446 1.453 0.815 1.914 0.936 1.248 0.684 1.534 0.811 1.551 0.821
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B.2. Zero-shot Forecasting

Table 14: Full zero-shot learning results on ETT datasets. A lower value indicates better performance.

Methods Time-VLM Time-LLM LLMTime GPT4TS DLinear PatchTST TimesNet Autoformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 → ETTh2

96 0.277 0.338 0.279 0.337 0.510 0.576 0.335 0.374 0.347 0.400 0.304 0.350 0.358 0.387 0.469 0.486
192 0.333 0.378 0.351 0.374 0.523 0.586 0.412 0.417 0.447 0.460 0.386 0.400 0.427 0.429 0.634 0.567
336 0.360 0.399 0.388 0.415 0.640 0.637 0.441 0.444 0.515 0.505 0.414 0.428 0.449 0.451 0.655 0.588
720 0.383 0.425 0.391 0.420 2.296 1.034 0.438 0.452 0.665 0.589 0.419 0.443 0.448 0.458 0.570 0.549
Avg 0.338 0.385 0.353 0.387 0.992 0.708 0.406 0.422 0.493 0.488 0.380 0.405 0.421 0.431 0.582 0.548

ETTh1→ ETTm2

96 0.207 0.297 0.189 0.293 0.646 0.563 0.236 0.315 0.255 0.357 0.215 0.304 0.239 0.313 0.352 0.432
192 0.258 0.329 0.237 0.312 0.934 0.654 0.287 0.342 0.338 0.413 0.275 0.339 0.291 0.342 0.413 0.460
336 0.310 0.360 0.291 0.365 1.157 0.728 0.341 0.374 0.425 0.465 0.334 0.373 0.342 0.371 0.465 0.489
720 0.398 0.412 0.372 0.390 4.730 1.531 0.435 0.422 0.640 0.573 0.431 0.424 0.434 0.419 0.599 0.551
Avg 0.293 0.350 0.273 0.340 1.867 0.869 0.325 0.363 0.415 0.452 0.314 0.360 0.327 0.361 0.457 0.483

ETTh2 → ETTh1

96 0.434 0.441 0.450 0.452 1.130 0.777 0.732 0.577 0.689 0.555 0.485 0.465 0.848 0.601 0.693 0.569
192 0.464 0.454 0.465 0.461 1.242 0.820 0.758 0.559 0.707 0.568 0.565 0.509 0.860 0.610 0.760 0.601
336 0.489 0.481 0.501 0.482 1.328 0.864 0.759 0.578 0.710 0.577 0.581 0.515 0.867 0.626 0.781 0.619
720 0.595 0.543 0.501 0.502 4.145 1.461 0.781 0.597 0.704 0.596 0.628 0.561 0.887 0.648 0.796 0.644
Avg 0.496 0.480 0.479 0.474 1.961 0.981 0.757 0.578 0.703 0.574 0.565 0.513 0.865 0.621 0.757 0.608

ETTh2→ ETTm2

96 0.204 0.297 0.174 0.276 0.646 0.563 0.253 0.329 0.240 0.336 0.226 0.309 0.248 0.324 0.263 0.352
192 0.255 0.328 0.233 0.315 0.934 0.654 0.293 0.346 0.295 0.369 0.289 0.345 0.296 0.352 0.326 0.389
336 0.311 0.362 0.291 0.337 1.157 0.728 0.347 0.376 0.345 0.397 0.348 0.379 0.353 0.383 0.387 0.426
720 0.420 0.425 0.392 0.417 4.730 1.531 0.446 0.429 0.432 0.442 0.439 0.427 0.471 0.446 0.487 0.478
Avg 0.297 0.353 0.272 0.341 1.867 0.869 0.335 0.370 0.328 0.386 0.325 0.365 0.342 0.376 0.366 0.411

ETTm1→ ETTh2

96 0.297 0.356 0.321 0.369 0.510 0.576 0.353 0.392 0.365 0.415 0.354 0.385 0.377 0.407 0.435 0.470
192 0.349 0.388 0.389 0.410 0.523 0.586 0.443 0.437 0.454 0.462 0.447 0.434 0.471 0.453 0.495 0.489
336 0.374 0.409 0.408 0.433 0.640 0.637 0.469 0.461 0.496 0.494 0.481 0.463 0.472 0.484 0.470 0.472
720 0.396 0.433 0.406 0.436 2.296 1.034 0.466 0.468 0.541 0.529 0.474 0.471 0.495 0.482 0.480 0.485
Avg 0.354 0.397 0.381 0.412 0.992 0.708 0.433 0.439 0.464 0.475 0.439 0.438 0.457 0.454 0.470 0.479

ETTm1 → ETTm2

96 0.178 0.264 0.169 0.257 0.646 0.563 0.217 0.294 0.221 0.314 0.195 0.271 0.222 0.295 0.385 0.457
192 0.226 0.298 0.227 0.318 0.934 0.654 0.277 0.327 0.286 0.359 0.258 0.311 0.288 0.337 0.433 0.469
336 0.279 0.329 0.290 0.338 1.157 0.728 0.331 0.360 0.357 0.406 0.317 0.348 0.341 0.367 0.476 0.477
720 0.373 0.385 0.375 0.367 4.730 1.531 0.429 0.413 0.476 0.476 0.416 0.404 0.436 0.418 0.582 0.535
Avg 0.264 0.319 0.268 0.320 1.867 0.869 0.313 0.348 0.335 0.389 0.296 0.334 0.322 0.354 0.469 0.484

ETTm2→ ETTh2

96 0.285 0.347 0.298 0.356 0.510 0.576 0.360 0.401 0.333 0.391 0.327 0.367 0.360 0.401 0.353 0.393
192 0.348 0.384 0.359 0.397 0.523 0.586 0.434 0.437 0.441 0.456 0.411 0.418 0.434 0.437 0.432 0.437
336 0.380 0.415 0.367 0.412 0.640 0.637 0.460 0.459 0.505 0.503 0.439 0.447 0.460 0.459 0.452 0.459
720 0.424 0.451 0.393 0.434 2.296 1.034 0.485 0.477 0.543 0.534 0.459 0.470 0.485 0.477 0.453 0.467
Avg 0.359 0.399 0.354 0.400 0.992 0.708 0.435 0.443 0.455 0.471 0.409 0.425 0.435 0.443 0.423 0.439

ETTm2 → ETTm1

96 0.370 0.390 0.359 0.397 1.179 0.781 0.747 0.558 0.570 0.490 0.491 0.437 0.747 0.558 0.735 0.576
192 0.400 0.409 0.390 0.420 1.327 0.846 0.781 0.560 0.590 0.506 0.530 0.470 0.781 0.560 0.753 0.586
336 0.426 0.420 0.421 0.445 1.478 0.902 0.778 0.578 0.706 0.567 0.565 0.497 0.778 0.578 0.750 0.593
720 0.531 0.487 0.487 0.488 3.749 1.408 0.769 0.573 0.731 0.584 0.686 0.565 0.769 0.573 0.782 0.609
Avg 0.432 0.426 0.414 0.438 1.933 0.984 0.769 0.567 0.649 0.537 0.568 0.492 0.769 0.567 0.755 0.591

B.3. Short-term Forecasting

B.4. Long-term Forecasting

C. Visualizations
C.1. Visualization of Generated Time Series Images

The image generation module employs advanced techniques—frequency and periodicity Encoding, multi-scale convolution,
interpolation and normalization—to create informative and discriminative image representations of time series data. These
representations enhance downstream VLMs for improved forecasting. As shown in Figure 6, the generated images capture
key temporal characteristics through the following features:

• Frequency-Domain Information: FFT integration captures frequency-domain characteristics, visualized as distinct
textures—fine-grained for high-frequency components and broader color regions for low-frequency components.

• Multi-scale Periodic Encoding: Temporal dependencies at multiple scales (e.g., daily, weekly) are encoded, visible as
regular patterns such as repeating vertical bands for daily cycles or broader horizontal patterns for weekly cycles.

• Image Interpolation: Bilinear interpolation ensures smooth and coherent images, preserving essential time series
characteristics through seamless transitions between color intensities.
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Table 15: Full short-term time series forecasting results. The forecasting horizons are in [6, 48] and the last three rows are weighted
averaged from all datasets under different sampling intervals. A lower value indicates better performance.

Methods Time-VLM Time-LLM GPT4TS TimesNet PatchTST N-HiTS N-BEATS ETSformer LightTS DLinear FEDformer Stationary Autoformer Informer Reformer

Y
ea

rl
y SMAPE 13.285 13.419 15.110 15.378 13.477 13.422 13.487 18.009 14.247 16.965 14.021 13.717 13.974 14.727 16.169

MASE 2.993 3.005 3.565 3.554 3.019 3.056 3.036 4.487 3.109 4.283 3.036 3.078 3.134 3.418 3.800
OWA 0.783 0.789 0.911 0.918 0.792 0.795 0.795 1.115 0.827 1.058 0.811 0.807 0.822 0.881 0.973

Q
ua

rt
er

ly SMAPE 10.218 10.110 10.597 10.465 10.380 10.185 10.564 13.376 11.364 12.145 11.100 10.958 11.338 11.360 13.313
MASE 1.203 1.178 1.253 1.227 1.233 1.180 1.252 1.906 1.328 1.520 1.350 1.325 1.365 1.401 1.775
OWA 0.903 0.889 0.938 0.923 0.921 0.893 0.936 1.302 1.000 1.106 0.996 0.981 1.012 1.027 1.252

M
on

th
ly SMAPE 12.788 12.980 13.258 13.513 12.959 13.059 13.089 14.588 14.014 13.514 14.403 13.917 13.958 14.062 20.128

MASE 0.942 0.963 1.003 1.039 0.970 1.013 0.996 1.368 1.053 1.037 1.147 1.097 1.103 1.141 2.614
OWA 0.886 0.903 0.931 0.957 0.905 0.929 0.922 1.149 0.981 0.956 1.038 0.998 1.002 1.024 1.927

O
th

er
s SMAPE 4.945 4.795 6.124 6.913 4.952 4.711 6.599 7.267 15.880 6.709 7.148 6.302 5.485 24.460 32.491

MASE 3.257 3.178 4.116 4.507 3.347 3.054 4.430 5.240 11.434 4.953 4.041 4.064 3.865 20.960 33.355
OWA 1.034 1.006 1.259 1.438 1.049 0.977 1.393 1.591 3.474 1.487 1.389 1.304 1.187 5.879 8.679

A
ve

ra
ge SMAPE 11.894 11.983 12.690 12.880 12.059 12.035 12.250 14.718 13.525 13.639 13.160 12.780 12.909 14.086 18.200

MASE 1.592 1.595 1.808 1.836 1.623 1.625 1.698 2.408 2.111 2.095 1.775 1.756 1.771 2.718 4.223
OWA 0.855 0.859 0.940 0.955 0.869 0.869 0.896 1.172 1.051 1.051 0.949 0.930 0.939 1.230 1.775

Table 16: Full long-term forecasting results. We use the same protocol as in Table 1.

Methods Time-VLM Time-LLM GPT4TS DLinear PatchTST TimesNet FEDformer Autoformer Stationary ETSformer LightTS Informer Reformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T
T
h
1

96 0.361 0.386 0.362 0.392 0.376 0.397 0.375 0.399 0.370 0.399 0.384 0.402 0.376 0.419 0.449 0.459 0.513 0.491 0.494 0.479 0.424 0.432 0.865 0.713 0.837 0.728
192 0.397 0.415 0.398 0.418 0.416 0.418 0.405 0.416 0.413 0.421 0.436 0.429 0.420 0.448 0.500 0.482 0.534 0.504 0.538 0.504 0.475 0.462 1.008 0.792 0.923 0.766
336 0.420 0.421 0.430 0.427 0.442 0.433 0.439 0.443 0.422 0.436 0.491 0.469 0.459 0.465 0.521 0.496 0.588 0.535 0.574 0.521 0.518 0.488 1.107 0.809 1.097 0.835
720 0.441 0.458 0.442 0.457 0.477 0.456 0.472 0.490 0.447 0.466 0.521 0.500 0.506 0.507 0.514 0.512 0.643 0.616 0.562 0.535 0.547 0.533 1.181 0.865 1.257 0.889
Avg 0.405 0.420 0.408 0.423 0.465 0.455 0.422 0.437 0.413 0.430 0.458 0.450 0.440 0.460 0.496 0.487 0.570 0.537 0.542 0.510 0.491 0.479 1.040 0.795 1.029 0.805

E
T
T
h
2

96 0.267 0.335 0.268 0.328 0.285 0.342 0.289 0.353 0.274 0.336 0.340 0.374 0.358 0.397 0.346 0.388 0.476 0.458 0.340 0.391 0.397 0.437 3.755 1.525 2.626 1.317
192 0.326 0.373 0.329 0.375 0.354 0.389 0.383 0.418 0.339 0.379 0.402 0.414 0.429 0.439 0.456 0.452 0.512 0.493 0.430 0.439 0.520 0.504 5.602 1.931 11.120 2.979
336 0.357 0.406 0.368 0.409 0.373 0.407 0.448 0.465 0.329 0.380 0.452 0.452 0.496 0.487 0.482 0.486 0.552 0.551 0.485 0.479 0.626 0.559 4.721 1.835 9.323 2.769
720 0.412 0.449 0.372 0.420 0.406 0.441 0.605 0.551 0.379 0.422 0.462 0.468 0.463 0.474 0.515 0.511 0.562 0.560 0.500 0.497 0.863 0.672 3.647 1.625 3.874 1.697
Avg 0.341 0.391 0.334 0.383 0.381 0.412 0.431 0.446 0.330 0.379 0.414 0.427 0.437 0.449 0.450 0.459 0.526 0.516 0.439 0.452 0.602 0.543 4.431 1.729 6.736 2.191

E
T
T
m
1 96 0.304 0.346 0.272 0.334 0.292 0.346 0.299 0.343 0.290 0.342 0.338 0.375 0.379 0.419 0.505 0.475 0.386 0.398 0.375 0.398 0.374 0.400 0.672 0.571 0.538 0.528

192 0.332 0.366 0.310 0.358 0.332 0.372 0.335 0.365 0.332 0.369 0.374 0.387 0.426 0.441 0.553 0.496 0.459 0.444 0.408 0.410 0.400 0.407 0.795 0.669 0.658 0.592
336 0.364 0.383 0.352 0.384 0.366 0.394 0.369 0.386 0.366 0.392 0.410 0.411 0.445 0.459 0.621 0.537 0.495 0.464 0.435 0.428 0.438 0.438 1.212 0.871 0.898 0.721
720 0.402 0.410 0.383 0.411 0.417 0.421 0.425 0.421 0.416 0.420 0.478 0.450 0.543 0.490 0.671 0.561 0.585 0.516 0.499 0.462 0.527 0.502 1.166 0.823 1.102 0.841
Avg 0.350 0.377 0.329 0.372 0.388 0.403 0.357 0.378 0.351 0.380 0.400 0.406 0.448 0.452 0.588 0.517 0.481 0.456 0.429 0.425 0.435 0.437 0.961 0.734 0.799 0.671

E
T
T
m
2 96 0.160 0.250 0.161 0.253 0.173 0.262 0.167 0.269 0.165 0.255 0.187 0.267 0.203 0.287 0.255 0.339 0.192 0.274 0.189 0.280 0.209 0.308 0.365 0.453 0.658 0.619

192 0.215 0.291 0.219 0.293 0.229 0.301 0.224 0.303 0.220 0.292 0.249 0.309 0.269 0.328 0.281 0.340 0.280 0.339 0.253 0.319 0.311 0.382 0.533 0.563 1.078 0.827
336 0.270 0.325 0.271 0.329 0.286 0.341 0.281 0.342 0.274 0.329 0.321 0.351 0.325 0.366 0.339 0.372 0.334 0.361 0.314 0.357 0.442 0.466 1.363 0.887 1.549 0.972
720 0.348 0.378 0.352 0.379 0.378 0.401 0.397 0.421 0.362 0.385 0.408 0.403 0.421 0.415 0.433 0.432 0.417 0.413 0.414 0.413 0.675 0.587 3.379 1.338 2.631 1.242
Avg 0.248 0.311 0.251 0.313 0.284 0.339 0.267 0.333 0.255 0.315 0.291 0.333 0.305 0.349 0.327 0.371 0.306 0.347 0.293 0.342 0.409 0.436 1.410 0.810 1.479 0.915

W
ea

th
er

96 0.148 0.200 0.147 0.201 0.162 0.212 0.176 0.237 0.149 0.198 0.172 0.220 0.217 0.296 0.266 0.336 0.173 0.223 0.197 0.281 0.182 0.242 0.300 0.384 0.689 0.596
192 0.193 0.240 0.189 0.234 0.204 0.248 0.220 0.282 0.194 0.241 0.219 0.261 0.276 0.336 0.307 0.367 0.245 0.285 0.237 0.312 0.227 0.287 0.598 0.544 0.752 0.638
336 0.243 0.281 0.262 0.279 0.254 0.286 0.265 0.319 0.245 0.282 0.280 0.306 0.339 0.380 0.359 0.395 0.321 0.338 0.298 0.353 0.282 0.334 0.578 0.523 0.639 0.596
720 0.312 0.332 0.304 0.316 0.326 0.337 0.333 0.362 0.314 0.334 0.365 0.359 0.403 0.428 0.419 0.428 0.414 0.410 0.352 0.288 0.352 0.386 1.059 0.741 1.130 0.792
Avg 0.224 0.263 0.225 0.257 0.237 0.270 0.248 0.300 0.225 0.264 0.259 0.287 0.309 0.360 0.338 0.382 0.288 0.314 0.271 0.334 0.261 0.312 0.634 0.548 0.803 0.656

E
le
ct
ri
ci
ty 96 0.142 0.245 0.131 0.224 0.139 0.238 0.140 0.237 0.129 0.222 0.168 0.272 0.193 0.308 0.201 0.317 0.169 0.273 0.187 0.304 0.207 0.307 0.274 0.368 0.312 0.402

192 0.157 0.260 0.152 0.241 0.153 0.251 0.153 0.249 0.157 0.240 0.184 0.289 0.201 0.315 0.222 0.334 0.182 0.286 0.199 0.315 0.213 0.316 0.296 0.386 0.348 0.433
336 0.174 0.276 0.160 0.248 0.169 0.266 0.169 0.267 0.163 0.259 0.198 0.300 0.214 0.329 0.231 0.338 0.200 0.304 0.212 0.329 0.230 0.333 0.300 0.394 0.350 0.433
720 0.214 0.308 0.192 0.298 0.206 0.297 0.203 0.301 0.197 0.290 0.220 0.320 0.246 0.355 0.254 0.361 0.222 0.321 0.233 0.345 0.265 0.360 0.373 0.439 0.340 0.420
Avg 0.172 0.273 0.158 0.252 0.167 0.263 0.166 0.263 0.161 0.252 0.192 0.295 0.214 0.327 0.227 0.338 0.193 0.296 0.208 0.323 0.229 0.329 0.311 0.397 0.338 0.422

T
ra

f
f
ic

96 0.393 0.290 0.362 0.248 0.388 0.282 0.410 0.282 0.360 0.249 0.593 0.321 0.587 0.366 0.613 0.388 0.612 0.338 0.607 0.392 0.615 0.391 0.719 0.391 0.732 0.423
192 0.405 0.296 0.374 0.247 0.407 0.290 0.423 0.287 0.379 0.256 0.617 0.336 0.604 0.373 0.616 0.382 0.613 0.340 0.621 0.399 0.601 0.382 0.696 0.379 0.733 0.420
336 0.420 0.305 0.385 0.271 0.412 0.294 0.436 0.296 0.392 0.264 0.629 0.336 0.621 0.383 0.622 0.337 0.618 0.328 0.622 0.396 0.613 0.386 0.777 0.420 0.742 0.420
720 0.459 0.323 0.430 0.288 0.450 0.312 0.466 0.315 0.432 0.286 0.640 0.350 0.626 0.382 0.660 0.408 0.653 0.355 0.632 0.396 0.658 0.407 0.864 0.472 0.755 0.423
Avg 0.419 0.303 0.388 0.264 0.414 0.294 0.433 0.295 0.390 0.263 0.620 0.336 0.610 0.376 0.628 0.379 0.624 0.340 0.621 0.396 0.622 0.392 0.764 0.416 0.741 0.422

• Color Trends: Color intensity corresponds to time series values—darker regions (e.g., deep blue) indicate lower values,
while brighter regions (e.g., yellow) represent higher values, enabling easy identification of trends.

• Abrupt Changes and Anomalies: Sudden shifts in color intensity (e.g., sharp transitions from dark to bright) highlight
abrupt changes or anomalies, crucial for identifying irregular events like traffic spikes or weather shifts.

C.2. Visualization of prediction results

The prediction results in Figures 7, 8, 9, and 10 demonstrate Time-VLM’s ability to accurately forecast time series across
diverse datasets and prediction horizons. For datasets with clear periodic structures, such as the daily cycles in ETTh1 and
ETTm1, Time-VLM captures both global trends and fine-grained temporal patterns effectively. This is evident in the close
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Figure 6: Time series transformed images, capturing key temporal characteristics, including trends, stationarity, seasonality,
sudden changes, and frequency-domain patterns.

alignment between the true values (solid lines) and predicted values (dashed lines) across all horizons. Similarly, for the
ECL dataset, which exhibits regular consumption patterns, Time-VLM delivers highly accurate forecasts, showcasing its
strength in handling structured environments.

a) ETTh1 b) ETTm1 c) Trafficc) ECL

a) ETTh1 b) ETTm1 c) Trafficc) ECL

a) ETTh1 b) ETTm1 c) Trafficc) ECL

a) ETTh1 b) ETTm1 c) Trafficc) ECL

Figure 7: Prediction results visualization for ETTh1, ETTm1, ECL, and Traffic datasets at 96 prediction lengths. True values
(solid line) and predicted values (dashed line) are shown for each dataset and horizon.

a) ETTh1 b) ETTm1 c) Trafficc) ECL
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Figure 8: Prediction results visualization for ETTh1, ETTm1, ECL, and Traffic datasets at 192 prediction lengths. True
values (solid line) and predicted values (dashed line) are shown for each dataset and horizon.

However, performance varies for datasets with irregular or abrupt changes. On the Traffic dataset, which is characterized by
non-stationary patterns, Time-VLM shows slight deviations in capturing sudden fluctuations, particularly at longer horizons
(e.g., 336 and 720). These deviations highlight the challenges of modeling highly irregular data and suggest opportunities
for refining the time series-to-image transformation process to better handle such scenarios.
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a) ETTh1 b) ETTm1 c) Trafficc) ECLFigure 9: Prediction results visualization for ETTh1, ETTm1, ECL, and Traffic datasets at 336 prediction lengths. True
values (solid line) and predicted values (dashed line) are shown for each dataset and horizon.
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Figure 10: Prediction results visualization for ETTh1, ETTm1, ECL, and Traffic datasets at 720 prediction lengths. True
values (solid line) and predicted values (dashed line) are shown for each dataset and horizon.

D. Future Work
D.1. Limitations

While Time-VLM demonstrates significant improvements in time series forecasting by integrating temporal, visual, and
textual modalities, it has some limitations.

First, the framework performs less robustly on datasets with highly volatile or irregular patterns, such as those with sudden
changes or non-stationary trends, compared to datasets with periodic structures. This limitation may arise from the current
visual transformation techniques, which may not adequately capture abrupt temporal dynamics or sudden shifts. Future
work could refine these transformations to better handle such irregularities.

Second, the current implementation relies on pre-trained VLMs like ViLT and CLIP, which are optimized for natural
vision-language tasks rather than time series forecasting. While these models excel in visual understanding, their textual
capabilities are limited, often supporting only shorter text inputs and lacking domain-specific knowledge relevant to time
series. This restricts their ability to fully utilize textual context for forecasting. Future work could involve developing larger,
domain-specific VLMs trained on multimodal time series datasets to address these limitations.

D.2. Future Work

Building on the current framework, several promising directions for future research emerge:

• Optimizing Visual Transformations: Future work could focus on developing adaptive visual transformation techniques
that better preserve temporal dynamics, especially for datasets with irregular or non-stationary patterns, to more effectively
highlight sudden changes and complex trends.

• Scaling Multimodal VLMs for Enhanced Forecasting: While the current framework uses smaller pre-trained Vision-
Language Models (VLMs), scaling to larger models could improve forecasting accuracy. Investigating trade-offs between
model size, computational efficiency, and performance is a promising direction for future research. Additionally, studying
different VLM architectures could identify optimal designs for temporal modeling.

• Interpretable Multimodal Learning for Time Series Analysis: Understanding the contributions of visual and textual
modalities in time series forecasting is crucial for improving model transparency. Future work could explore the

19



Time-VLM: Exploring Multimodal Vision-Language Models for Augmented Time Series Forecasting

interpretability of multimodal features, analyzing how different types of information contribute to performance gains.
This would provide deeper insights into temporal dependencies and enhance trust in multimodal forecasting models.

• Pre-training Multimodal Foundation Models for Time Series Analysis: Existing VLMs are not designed to handle
time series data, limiting their ability to capture domain-specific temporal context. Future research could focus on
constructing large-scale multimodal datasets that pair time series data with rich textual and visual annotations, enabling
the development of models specifically optimized for time series forecasting. Additionally, this multimodal framework
could be extended to support multi-task learning, enhancing the model’s versatility for tasks such as anomaly detection,
classification, or imputation. This would allow the model to capture a broader range of temporal patterns and dependencies,
improving its applicability across various domains.

By addressing these directions, future research can build on the foundation laid by Time-VLM, advancing the field of
multimodal time series forecasting while ensuring responsible and ethical deployment in real-world applications.
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