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Abstract: Recently, reinforcement learning has become a promising and polu-1

lar solution for robot legged locomotion. However, the corresponding learned2

gaits are in general overly conservative and unatural. In this paper, we propose a3

new framework for learning robust, agile and natural legged locomotion skills4

over challenging terrain. We incorporate an adversarial training branch based5

on real animal locomotion data upon a teacher-student training pipeline for ro-6

bust sim-to-real transfer. Empirical results on both simulation and real world7

of a quadruped robot demonstrate that our proposed algorithm enables robustly8

traversing challenging terrains such as stairs, rocky ground and slippery floor with9

only proprioceptive perception. Meanwhile, using diverse gait patterns, the gaits10

are more agile, natural, and energy efficient compared to the baselines. Both11

qualitative and quantitative results are presented in this paper. Videos are at:12

https://sites.google.com/view/adaptive-multiskill-locomotion.13

1 Introduction14

While sim-to-real reinforcement learning exhibits robust legged locomotion skills with appealing15

properties, in practice, directly optimizing a task reward can lead to policies that produce behav-16

iors undesirable to be applied in real robots, such as unnatural gaits, large contact forces, and high17

energy consumption. To address these challenges, previous studies have primarily employed intri-18

cate reward functions that penalize undesirable behaviors while promoting specific gait patterns[1].19

Nevertheless, the process of reward engineering is laborious, and the resulting gaits still frequently20

appear unnatural.21

To address the challenges posed by reward engineering and to achieve more natural gaits, adversarial22

motion priors (AMP) [2] a promising approach which leverages motion capture data and utilizes23

adversarial imitation learning to acquire locomotion tasks that closely resemble real-world motion24

data. While such method has demonstrated successful transfer from simulation to a real quadrupedal25

robot [3], the learned control policy is limited to traversing flat terrain in a laboratory environment,26

thereby lacking the capability to handle challenging terrains such as stairs or slippery ground. An27

intuitive extension is to train the control policy in simulation environments that incorporate different28

types of terrain. However, based on our experiment results, policies trained with this approach fail29

to achieve satisfied rewards even within simulation.

Figure 1: Experiments in real world.30

In this paper, we propose a new framework which enables learning not only robust, but also agile31

and natural legged locomotion skills over challenging terrains in the wild. We incorporate an adver-32
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sarial training branch based on real animal locomotion data upon a teacher-student training pipeline33

for robust sim-to-real transfer. Experiment results show that our method successfully learn legged34

locomotion skills to traverse challenging terrains such as stairs, rocky ground and slippery floor.35

In summary, our contributions are as follows:36

• We present a framework that empower the robot with robustness and naturalness to move in the37

wild. The learned policy is able to adaptively transit different gaits.38

• To the best of our knowledge, this is the first learning-based method enabling quadrupedal robots39

to gallop in the wild.40

2 Method41

The proposed approach comprises several building blocks which mainly support robust sim-to-real42

learning as well as natural gait learning from motion capture reference. An overview of the proposed43

framework is shown in Figure 2. We first have a phase 1 training process, which learns a teacher44

policy using both proprioceptive observation and the privileged information. An adversarial training45

process is running simultaneously to enforce agile and natural gait from motion capture reference46

data. Then at the phase 2 training process, we learn a student policy which takes the historical47

proprioceptive observations and output the final actions with the policy. This policy are directly48

deployed to the real robot which bridges the sim-to-real gap. In this section, we will introduce the49

details of each component.
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Figure 2: Overview of the traning and control framework. Figure 3: Terrains in simulation.50

Figure 4: Transition from the ’pace’ gait(frame 12) to the ’trot’ gait(frame 345), and eventually to
the ’gallop’ gait(frame 678).

2.1 Robust Sim-to-Real Locomotion Learning51

Teacher-Student Training Framework: Inspired by previous works for robust legged locomotion52

learning [4, 5], we integrate the teacher-student training paradigm into our framework. The teacher53

policy includes encoding privileged information of the environments and the robot from the simu-54

lation, while the student policy only takes observations directly available from sensors on the real55

robot. See appendix for more implementation details.56

1. Teacher Policy Training In our work, the state s is composed of both the proprioceptive ob-57

servation Ot and a latent vector lt. lt contains encoded privileged information using an encoder58

lt = µ(xt). Then a base policy π maps the concatenated state st = (lt, Ot) to the action com-59

mand at. µ and π are trained jointly using PPO[6].60
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2. Student Policy Training Since the privileged information is hard to obtain in real world, we61

train another encoder µ̂ (named ’predictor’), which takes a series of historical proprioceptive62

observations Ot−T , ..., Ot−1, Ot as inputs. The predictor is trained using supervised learning to63

minimize the error between the predictor output l̂t and the ground truth latent lt: ||l̂t − lt||2.64

After obtaining the latent l̂t, we use the same base policy π with the teacher policy to compute65

the action at.66

Enhancing Sim-to-Real Transfer: Upon the teacher-student training paradigm, we also incorpo-67

rate several important techniques to enhance the sim-to-real transfer performance. See appendix for68

more implementation details.69

• Noise and Domain Randomization: we incorporate observation noise to account for hardware70

sensor inaccuracies and transmission delays. We add randomization to physical factors and add71

perturbations to the robot to reduce the sim-to-real gap and enhance robustness.72

• Terrain Curriculum: similar to [1] we generate four terrain types with varying difficulty level:73

plane ground, uniform noise, discrete obstacles and stairs. We also adopt the game-inspired terrain74

curriculum.75

• Action Filtering: We apply a low-pass filter to the output actions which could smooth the motions76

and enable better sim-to-real transfer.77

2.2 Natural Gait Learning with Motion Capture Reference78

We hope the learned locomotion skills to be not only robust, but also natural and agile just like79

real animals. Inspired by adversarial motion priors (AMP) [2], we incorporate an adversarial mo-80

tion style matching process into our framework, in order to learn robust, agile, and natural legged81

locomotion skills. See appendix for implementation details.82

Motion Capture Data Reference: We utilize high-quality dog motion capture dataset provided by83

Zhang et al. [7]. To adapt the dog motion data to our robot, we apply inverse kinematics for motion84

retargeting as employed in Peng et al. [8]. Furthermore, we enhance the motion capture data by85

mirroring the dataset. We find that this is crucial for the sim-to-real transfer of gallop gait.86

Adversarial Motion Style Matching: In order to learn agile and natural gaits, our designed reward87

for the reinforcement learning problem consists of both a ”task” reward rgt and a ”style” reward rst .88

The overall reward function is given by rt = ωgrgt + ωsrst . The task reward consists of a linear89

velocity command tracking reward and an angular velocity command tracking reward.90

The style reward is generated by a discriminator Dϕ, which is trained to classify whether the given91

state transition samples are from the motion capture dataset or from the policy rollouts.92

3 Experiments93

We use Isaac Gym [9] simulator for training and use Unitree A1 as our robot platform in both94

simulation and real world. We compare the performance of our approach with two baselines:95

• Complex rewards: Policy trained with typical model-free RL method using complex hand-96

designed reward function as in [1].97

• AMP: Policy trained using adversarial motion priors as style reward to learn agile and natural98

legged locomotion skills [3].99

We conduct both simulation and real world experiments to evaluate out method, which demonstrate100

that our method outperforms baselines by learning robust, agile, natural and energy-efficient legged101

locomotion skills.102

3.1 Simulation Experiments103

Experimental setup:In simulation experiments, we compare our approach’s command tracking ac-104

curacy (reflected by the velocity command tracking reward) with the baselines. The experiments105
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were conducted on three kinds of challenging terrains (as shown in Fig 3): stairs with step height of106

14cm; ground randomly placed with discrete obstacles; uneven ground generated by adding uniform107

noise to the terrain heights.108

Results: Results of the evaluation metrics in simulations are shown in Table 1. We perform 1000109

independent experiments per policy using three distinct random seed-trained policies, reporting the110

average value and a 95% confidence interval. AMP fails to traverse stairs and discrete obstacles,111

while Complex Rewards fails to traverse discrete obstacles, so they are omitted in the table.112

Table 1: Comparison of Command Tracking Reward
Cmd

velocity
Uniform noise Stairs Discrete obstacles

Complex AMP Ours Complex Ours Ours

0.5 m/s 55.56±5.73 46.37±3.21 62.5±0.91 20.34±1.87 54.99±1.21 57.84±1.06
1.0 m/s 53.49±7.83 45.39±2.09 62.55±0.65 24.86±2.74 50.45±1.12 54.24±2.77
1.5 m/s 47.98±3.28 39.08±4.67 62.01±0.20 \ 30.28±2.75 40.64±3.67
2.0 m/s 59.39±7.34 25.37±3.34 54.89±1.47 \ 11.01±1.04 24.80±3.92
2.5 m/s 44.50±6.54 9.34±5.98 53.85±1.48 \ \ \

We can see that our controller can traverse a greater variety of complex terrains with higher com-113

mand tracking reward, this might be due to the diverse motion capture data that enables the robot to114

switch to the most suitable gait or blend different gaits at different terrains and speeds (see Fig.4).115

Meanwhile, the teacher-student training architecture plays an important role in state estimation and116

system identification.117

3.2 Real World Experiments118

Experimental setup: We compare our approach’s real-world performance with baselines on the119

following metrics: TTF: time to fall normalized by a threshold time; success rate: the ratio of the120

number of experiments without falling to the total number of experiments conducted; Distance: the121

distance the robot covers within the threshold time is normalized by the desired distance. If the robot122

reaches the desired distance within this time, it’s set to 1.123

We evaluate the performance of controllers on four types of terrain. Sample outcomes are shown in124

Figure 1, videos can be found on the website.125

Table 2: Results of Real World Experiments
Success rate TTF Distance

Complex AMP Ours Complex AMP Ours Complex AMP Ours

13-cm step 0.2 0 0.8 1 1 0.8 0.36 0.2 0.84
Grassland 0.8 0 1 1 0.1 1 0.92 0.1 1

Slippery ground 0 0.2 0.8 0.4 0.6 0.9 0.4 0.68 0.94
Staircase 0 0 1 0.98 0.68 1 0.56 0.1 1

Results: The quantitative results are shown in Table 2, each data is an average over 10 experiments.126

Note that the real world terrains are even more complex and diverse than that in simulation, with127

many unknown physical factors. Therefore, conducting real world experiments places high demands128

on the robustness of the controllers.129

Moreover, applying a low-pass filter to the output actions significantly enhances motion smoothness,130

leading to notable energy efficiency improvements. We performed ablation studies on the low-pass131

filter’s impact on energy efficiency. As depicted in Table 2, our approach demonstrates superior132

energy efficiency across varying velocity commands.133

Table 3: Comparison of Energy Efficiency
Cmd

velocity[m/s]
Avg power w/o filter [w] Avg power w/ filter [w]

Complex AMP Ours Complex AMP Ours

0.5 25.88 20.66 13.21 24.39 15.62 11.88
1 48.53 59.63 56.32 41.03 33.85 33.13
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A Implementation Details214

A.1 State and Action Spaces215

The output action at comprises a 12-dim target joint angle vector. The observation ot is a 46-dim216

vector containing the 3-dim velocity command, 12-dim joint positions, 12-dim joint velocities, 3-217

dim projected gravity, 4-dim binary foot-contact states, and 12-dim last actions. The privileged218

information xt is a 233-dim vector that includes the linear and angular velocity in the base frame (6-219

dim), friction coefficient, measured heights of some surrounding points (187-dim), external torque220

applied to the base (2-dim), stiffness and damping of each motor (24-dim), added mass to the base,221

and foot contact forces (4-dim). The encoder takes xt as input, while the predictor takes the history222

observation ot−T , ..., ot as input, where T = 50.223

In order to train and conduct inference on the discriminator, we introduce the AMP observation224

denoted as st, which is comprised of joint positions, joint velocities, foot positions in base frame,225

base linear velocities, base angular velocities, and base height, resulting in a 67-dimensional vector.226

The input provided to the discriminator consists of the state transition (st−1, st).227

A.2 Network Architecture228

The teacher encoder is a 2-layer multi-layer perceptron (MLP) that takes the privileged information229

xt ∈ R233 as input and outputs the latent vector zt ∈ R8. The hidden layers have dimensions230

[256,128].231

The base policy is a 3-layer multi-layer perceptron (MLP) that takes the current observation ot ∈ R46232

and the latent vector zt as input and generates a 12-dimensional target joint angle output. The hidden233

layers have dimensions [512, 256, 128].234

The student predictor begins by encoding each observation from recent steps into a 32-dimensional235

representation. Next, a one-dimensional convolutional neural network (1-D CNN) convolves these236

representations along the time dimension. The layer configurations, such as input channel number,237

output channel number, kernel size, and stride, are set to [32, 32, 8, 4], [32, 32, 5, 1], and [32, 32, 5,238

1]. The flattened output from the CNN is then passed through a linear layer to predict ẑt.239

The discriminator employs an MLP with hidden layers of size [1024, 512].240

A.3 Adversarial Motion Style Matching241

The overall reward function is given by rt = ωgrgt + ωsrst . The ratio of these two part is quite242

critical to the robot’s performance. In this work, we chose ωg to be 0.35, while ωs = 0.65. The243

task reward is defined based on the specific task we aim to accomplish, here it consists of a linear244

velocity command tracking reward and an angular velocity command tracking reward:245

rgt = wv exp (− |v̂xyt − vxyt |) + wω exp (− |ω̂z
t − ωz

t |) (1)

where wv , wω , and wτ are the coefficients. ˆ⃗vxyt and ω̂z
t represent the linear and angular velocity246

commands, respectively. To ensure robustness and learn diverse gait patterns, different ranges of247

velocity commands are defined for each terrain type, as listed in A.6. The velocity commands are248

randomly sampled from the specified ranges.249

The style reward is generated by a discriminator Dϕ, which is trained to classify whether the given250

state transition samples are from the motion capture dataset or from the policy rollouts, where ϕ251

denotes the discriminator’s parameters. The optimization objective of the discriminator is as follows:252

argmin
ϕ

E(s,s′)∼D

[
(Dϕ (s, s

′)− 1)
2
]

+ E(s,s′)∼πθ(s,a)

[
(Dϕ (s, s

′) + 1)
2
]

+
wgp

2
E(s,s′)∼D

[
∥∇ϕDϕ (s, s

′)∥2
]
,

(2)
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where D denotes the motion capture dataset, The first two terms incentivize the descriminator to253

output 1 for transition pairs from the mo-cap dataset, while output -1 for transition pairs from the254

policy rollouts. ωgp is the coefficient for gradient penalty which reduces oscillations in the adver-255

sarial training process. The style reward is then defined as:256

rst (st, st+1) = max
{
0, 1− 0.25(Dϕ(st, st+1)− 1)2

}
(3)

Therefore, the policy is trained through reinforcement learning to maximize the reward function as a257

generator, while the discriminator is trained using both the motion dataset D and the data generated258

during policy rollouts, forming an adversarial motion style matching framework.259

A.4 Learning Algorithm260

We utilized Proximal Policy Optimization (PPO) as the reinforcement learning algorithm to train261

both the base policy and teacher encoder concurrently. The training process was composed of 50,000262

iterations, with each iteration involving the collection of a batch of 131,520 state transitions. These263

transitions were evenly divided into 4 mini-batches for processing. To maintain a desired KL diver-264

gence of KLdesired = 0.01, we automatically tuned the learning rate using the adaptive LR scheme265

proposed by [10]. The PPO clip threshold was set to 0.2. For the generalized advantage estimation266

[6], we set the discount factor γ to 0.99 and the parameter λ to 0.95.267

To optimize the objective defined in Eq (2), we trained the discriminator using supervised learning.268

We set the gradient penalty weight to wgp = 10. The style reward weight is ws = 0.65 and the task269

reward weight is wg = 0.35.270

The student encoder was trained with supervised learning, minimizing the mean squared error271

(MSE) loss between the latent vector zt output by the teacher encoder and the predicted latent vector272

ẑt output by the student encoder.273

Throughout all training phases, we utilized the Adam optimizer with β values set to (0.9, 0.999),274

and ϵ set to 1e− 8.275

A.5 Terrain Curriculum276

We utilize four types of terrains: plane ground, uniform noise, discrete obstacles, and stairs. Before277

proceeding to a more challenging type of terrain, the robot needs to successfully traverse the cur-278

rent terrain and achieve a satisfied task reward. The threshold we use to increase terrain difficulty279

consists: (1)The robot successfully crosses the center of a terrain block within a single episode;280

(2)The linear velocity tracking reward surpasses 80% of the maximum achievable reward which281

corresponds to ’perfectly’ accurate tracking.282

In contrast, the robots are reset to easier terrains if they fail to travel more than half of the distance283

required by their command linear velocity within an episode. This adaptive curriculum mechanism284

enables us to stably learn robust locomotion skills for the robot.285

A.6 Command Range286

Table 4: Command Ranges for Different Terrains
plane

ground stairs discrete
obstacles

uniform
noise

lin vel cmd (m/s) [-1.0,3.0] [0,1.6] [0,1.6] [-1.0,2.5]
ang vel cmd (rad/s) [-1.5,1.5] [-1.0,1.0] [-1.0,1.0] [-1.5,1.5]
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A.7 Noise and Domain Randomization287

Table 5: Ranges of Randomization and Perturbations

environmental
randomization

friction coefficient [0.25,1.5]
added mass [-1.0,1.0]kg

motor gain multiplier [0.85,1.15]

perturbation
external torque [-3.0,3.0]Nm

linear velocity perturbation [-1.0,1.0]m/s
angular velocity perturbation [-3.0,3.0]rad/s

sensor noise

joint position [-0.03,0.03]rad
joint velocity [-1.5,1.5]rad/s

base linear velocity [-0.1,0.1]m/s
base angular velocity [-0.3,0.3]m/s

gravity [-0.49,0.49]m2/s
height measurement [-0.01,0.01]m

B RELATED WORK288

B.1 Reinforcement Learning for Legged Locomotion289

Recent advancements in deep reinforcement learning for legged locomotion have demonstrated its290

promising future. Lee et al. [4] applied teacher-student training to the quadruped robot ANYmal,291

resulting in a robust controller capable of traversing challenging terrains, which is similar to the292

teacher-student training paradigm as ours. Peng et al. [8] introduced the use of Deep Mimic [11] to293

learn robotic locomotion skills by imitating animals. We adopted the similar motion retargeting tech-294

nique as [8]. Similar to [4], Kumar et al. [5] trained locomotion policies with rapid motor adaptation,295

enabling them to quickly adapt to environmental changes. Building upon this, Kumar et al. [12] ex-296

tended the RMA algorithm to the bipedal robot Cassie. Yang et al. [13] employed a cross-modal297

transformer to learn an end-to-end controller for quadrupedal navigation in complex environments.298

Ji et al. [14] trained a neural network state estimator to estimate robot states that cannot be directly299

inferred from sensory data. Escontrela et al. [3] utilized Adversarial Motion Priors (AMP) to train300

control policies for a quadrupedal robot, highlighting that AMP can effectively substitute complex301

reward functions. The relationship between [3] and ours is that ours further adapted the AMP algo-302

rithm to work on challenging terrains. Sharma et al. [15] trained a reinforcement learning controller303

using unsupervised skill discovery and successfully transferred it to a real quadruped robot. Xie et304

al. [16] revisited the necessity of dynamics randomization in legged locomotion and provided sug-305

gestions on when and how to employ dynamics randomization. Bohez et al. [17] trained a low-level306

locomotion controller for a quadruped robot by imitating real animal data, utilizing this controller to307

accomplish various tasks. Margolis et al. [18] trained policies to perform jumps from pixel inputs,308

while Miki et al. [19] trained a locomotion controller using observations of the height map of the309

terrain around the robot’s base. Rudin et al. [1] employed massively parallel simulation environ-310

ments to significantly accelerate the training process of a locomotion controller. Margolis et al. [20]311

trained a locomotion controller for the Mini Cheetah robot, enabling it to achieve speeds of up to312

3.9m/s, surpassing traditional controllers’ speeds by a large margin. Other notable works include313

directly learning locomotion skills in the real world [21, 22], as well as learning locomotion skills314

for bipedal robots [23, 24, 25].315

B.2 Motion Control from Real World Motion Data316

Imitating a reference motion dataset offers an approach to designing controllers for skills that are317

challenging to manually encode. Pollard et al. [26, 27, 28, 29] employ motion tracking techniques,318

where characters explicitly mimic the sequence of poses from reference trajectories. Learning from319

real-world motion provides an alternative to crafting complex rewards for synthesizing natural mo-320

tion. Peng et al. [11] adapt reinforcement learning (RL) methods to learn robust control policies321
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capable of imitating a wide range of example motion clips. Leveraging GAN-style training, Peng322

et al. [2] learn a ”style” reward from a reference motion dataset to control the character’s low-level323

movements, while allowing users to specify high-level task objectives. Escontrela et al. [3] utilize324

the framework proposed by Peng et al. [2] to train a locomotion policy for a quadrupedal robot to325

traverse flat ground. Additionally, Peng et al. [30] present a scalable adversarial imitation learning326

framework that enables physically simulated characters to acquire a wide repertoire of motor skills,327

which can be subsequently utilized to perform various downstream tasks.328
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