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Communication subspaces align with training in ANNs
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Abstract

Communication subspaces have recently been identified as a promising mechanism for se-
lectively routing information between brain areas. In this study, we explored whether
communication subspaces develop with training in artificial neural networks (ANNs) and
explored differences across connection types. Specifically, we analyzed the subspace angles
between activations and weights in ResNet-50 before and after training. We found that
activations were more aligned to the weight layers after training, although this effect de-
creased in deeper layers. We also analyzed the angles between pairs of weight layers. We
found that for all branching, direct, and skip connections, weight layer pairs were more
geometrically aligned in trained versus untrained models throughout the entire network.
These findings indicate that such alignment is essential for the proper functioning of deep
networks and highlights the potential to enhance training efficiency through pre-alignment.
In biological data, our results motivate further exploration into whether learning induces
similar subspace alignment.
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1. Introduction

Given the brain’s vast complexity at many scales, understanding how information is com-
municated across networks, areas, neurons, and synapses has been quite challenging (Seguin
et al., 2023). One of the main questions pertains to how populations of neurons selectively
route information between brain regions that receive many inputs and have multiple out-
puts (Wang and Yang, 2018). Communication subspaces have emerged as one candidate
mechanism for this selective routing. Communication subspaces can be conceptualized as
low-dimensional projections of neuronal activity, capturing essential activity patterns of
functional relevance. The principal directions of these lower-dimensional manifolds may
dynamically rotate to achieve geometric alignment (Iyer et al., 2021), facilitating efficient
information transfer between brain areas. Some evidence that the brain may utilize commu-
nication subspaces to selectively route information has been found in several recent studies;
for instance, (Semedo et al., 2019) which first identified communication subspaces between
macaque V1 and V2 in the context of a visual discrimination task and one study by Kauf-
man et al. (2014) which found that preparatory motor responses lie in a ‘null space’ while
motor responses align with an ‘output-potent’ space.

As artificial neural networks often provide useful models for understanding principles of
neural computation, we wondered whether evidence for communication subspaces could be
found in them. Specifically, we were interested in whether geometrical alignment between
layers increases as a function of training and how alignment differs in different connection
types. To do this, we computed the angles between the singular vectors spanning the input
and weight layers as well as those between pairs of weight layers in convolutional neural
networks (CNNs). We focused our work on ResNet-50 for its architecture, consisting of
multiple branching connections and skip connections (see He et al. (2016) for more about
ResNet architectures).
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2. Methods
2.1. Computing the Angles between Subspaces

Computing alignment between convolutional weight layers involves several steps (Figure 1):

1) First, we reorganize the convolutional weights into 2D connection matrices that can
be applied to inputs via multiplication rather than convolution. This was achieved by
flattening and reorganizing the input features and kernels such that each row in the weight
matrix corresponds to the flattened kernels of a single output channel and each column in
the input matrix represents the patches of input features that align with the convolution
operation for an output channel as shown in A3 (Liu et al., 2019). The resulting matrix has
output channels along the rows and combined input channels and kernel dimensions across
the columns.

2) Second, we decompose the resultant 2D connection matrices into their constituent
singular vectors using SVD. When decomposing the weight matrix, the left singular vectors
span the output channel dimension resulting in an output space while the right singular
vectors span the input channel and kernel dimensions yielding an input space. Although our
analysis took place in feature space due to prohibitively large neuron connectivity (Toeplitz)
matrices in modern CNNs, ResNet’s 1x1 bottleneck kernels ensured that the input and
output spaces had the same dimensionality, making our method a good approximation of
the full Toeplitz matrix.

3) Finally, we compute the angles between the singular vectors. To measure alignment,
we used the principal or canonical angles between subspaces which represent the canonical
correlations of matrix pairs between the column space of two flats. Given two subspaces
X € RYP and Y € R™*4 there will be z principal angles, where z = min(p,q) (see
Knyazev and Argentati, 2002 for a mathematical overview of principle angles). We chose
our subspace dimensions based on the maximum amount of explained variance we could
attain while excluding extremely small angles within the null space of the matrices. This
resulted in subspaces retaining around 50% of the dimensions and >70% of the explained
variance of the original input and output spaces. We then took the mean of the principal
angles #, which gave us a single measure over multidimensional subspaces.

2.2. Training

Pre-training weights were randomly initialized from a Kaiming normal distribution. Trained
weights for ResNet-50 were obtained from torchvision.models. The model used was trained
to 76.13% accuracy on the ImageNet1K dataset.

2.3. Connection Types

We analyzed five different connection types in ResNet-50: direct connections, branching
connections, short and long skip connections, and indirect connections (see A4 for diagrams).
The simplest is a direct connection where the output of a convolutional layer is directly fed
to the next convolutional layer. The second type of connection is the branching connection
where a certain layer sends the same output to two different convolutional layers. There are
also skip connections implemented by element-wise addition whose output and input weight
layers can be compared. There are two possible arrangements for this, one which compares
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the output of the last convolutional layer with the input of the first convolutional layer of
the next block (short skip) and another which compares the first layers of each block to
each other (long skip). Finally, as a control, we compared the alignment between layers and
inputs that were indirectly connected (via connections to intermediate convolutional layers)
and whose activity did not belong to the same space. Thus, we did not expect alignment
to develop during training.

2.4. Measuring Activity Alignment

Activity, in the form of activation feature maps, represents inputs to convolutional layers.
As such, we used their left singular vectors to characterize their activity. In all cases,
we compared the left singular vectors of the activations to the right singular vectors of
the weight layers (the input space). Our inputs consisted of 100 random images from the
ImageNet 2012 validation set. We calculated the alignment between activations and weights
individually for all connection types.

2.5. Measuring Layer Alignment

To measure layer alignment, we compared the left singular vectors of a given layer (output
space) to the right singular vectors (input space) of the subsequent layer in all connection
types except for branching. For branching we compared the two input spaces of the branches
to each other which told us how aligned the branches were to each other.
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Figure 1: Schematic representation of the steps to compute subspace angles between weight
layers in a direct connection.

3. Results

We performed two distinct analyses. The first tested the alignment between activations and
weight layers while the second tested the alignment between the weight layers themselves
without any inputs. All code can be found at NeurReps 2024 Communication Subspaces.

3.1. Activation-to-weight alignment

We found that activations were more aligned in the trained model across all layers for
branching, short skip, and long skip connections (Fig.2b-d, Mann-Whitney U test; p <.001.
See B5 for exact p-values). Direct connection layers were significantly more aligned until
the last three blocks Fig.2a. This likely reflects an increased selectivity of information flow
in later layers as the network comes closer to classifying the image. The skip connections
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were less aligned than direct and branching connections due to the rotation of the space
introduced by intermediate layers which are added to the output. Nevertheless, the trained
layers remained significantly more aligned than the untrained layers, demonstrating the
effectiveness of the residual connections in maintaining alignment across multiple layers.
As expected, none of the indirect connections were significantly different between untrained
and trained models Fig.2e.

3.2. Weight-to-weight alignment

The alignment of weight layers closely resembled that of the activation-weight layer align-
ment (Figure 2 - bottom). Trained weight layers were significantly more aligned than
untrained layers across connection types (Fig.2f-i, Mann-Whitney U test; p <.05) except
for indirect connections (control). As with activation-weight layer alignment, direct con-
nections and branching connections were more aligned than skip connections. However,
unlike the alignment of the activation-weight layers, we did not find a decrease in alignment
with network depth. This suggests that weight alignment may be necessary throughout the
network to maintain functional connections.

b. c. d. e.
Direct Branching 70 Short Skip Long Skip Indirect

70
Model

—— Trained | 60 60 60 60
—— Untrained
50 50 50
- —_—

40 \/ 2 0 40
30 30 30 30

20 20 20 20 20

P

~
3

£y
g

g

8

8

Activations
Angle (Degrees)

N NN S T N

Resnet Block
f. g. h. i j.
Direct 70 Branching o Short Skip 70 Long Skip 70 Indirect
Model
—— Trained

J— | _———————————%
Untrained \/\ © M " ©

N

40 L 40 40

/\/\/\/\/\ 3 / ) 30 3
»

AN Y QY ad 42 N ol a? aP e N y¥ (LRI N G N AP NP Sa el Py Sy Y

SEENIN R RS R R NN SN SR L AR AR AR A N SR AR R R S N g

<o
2,
v,

~
3

Weights
Angle (Degrees)
2 g 3

o

8

3
N
3
N
3
N
8

IR N NI NS N
Resnet Block

A > W

Figure 2: Top: mean alignment between activation-to-weight connections. Bottom: mean
alignment for weight-to-weight connections across layers.

4. Conclusion

Our study found that communication subspaces develop and become aligned in ANNs over
training, with connection-specific differences. This finding supports the hypothesis that
training may improve inter-areal communication through subspace alignment, a theory we
are currently investigating using biological data in a visual change-detection and familiarity
task. In contrast to Iyer et al. (2021), who found that subspaces in mouse visual cortex are
relatively unaligned until stimuli are presented whereby they briefly align; CNNs maintain
alignment throughout as their only function is image classification. Our work provides
a framework for investigating selective routing between different types of connections in
the brain, especially in branching structures. Additionally, we see potential applications
in machine learning, where pre-alignment may be employed to improve training efficiency
in ANNs. Together, this study lays the groundwork for further research into inter-areal
communication and selective information routing via subspace alignment, offering further
avenues for both biological exploration and neural network training.
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Appendix A.

2D Convolution
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Figure 3: Panel a. visually depicts normal 2D convolution. Panel b. depicts the matrix
multiplication equivalent as in Liu et al., 2019.
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Figure 4: Diagramatic representation of various connection types for weight-to-weight and

activation-to-weight connections.
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Appendix B.

P-Value Heatmaps
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Figure 5: Heat maps of the exact p-values for each connection type and layer for both
analyses. All dark blue squares are statistically significant (Mann -Whitney U
test; p <.05). Blank spots indicate that either there is no connection of that
type in the given block, or the output and input spaces were not of the same row
dimensions and could not be compared (e.g. branching only occurs in layers 1.0,
2.0, 3.0, and 4.0 so the branching results are only for these blocks).
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