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ABSTRACT

Large Multimodal Models (LMMs) have shown remarkable success in image un-
derstanding tasks. LMMs encode visual and textual inputs into tokens, which are
then fed into Large Language Models (LLMs). However, the large number of vi-
sual tokens poses a major bottleneck for inference efficiency and memory usage.
Reducing visual tokens is a promising training-free solution, but existing methods
remain limited: importance-based approaches often yield redundant selections,
diversity-based ones overlook differences among tokens themselves. Two-stage
hybrid methods inherit shortcomings form importance-based selection and result
in suboptimal choices. To address this, we formulate token reduction as an opti-
mal subset selection problem and identify two key criteria for a good subset: in-
formativeness and coverage, to guide the selection that best preserves LLM output
fidelity. Based on these principles, we propose CoIn, a token selection framework
that jointly optimizes both. CoIn integrates visual saliency, cross-modal relevance,
and representational novelty into a unified scoring function, enabling the selection
of a compact yet expressive token subset. It is efficient, model-agnostic, and com-
patible with modern inference accelerators. Experiments on multiple benchmarks
demonstrate that CoIn substantially reduces computation and memory cost while
maintaining strong task performance.

1 INTRODUCTION

In recent years, Large Language Models (LLMs) (Touvron et al., 2023; Achiam et al., 2023; Bai
et al., 2023) have transformed natural language processing. Building on this success, Large Multi-
modal Models (LMMs) (Liu et al., 2023; 2024a; Li et al., 2024) have emerged as a powerful exten-
sion that integrates visual and linguistic modalities for unified multimodal reasoning. By aligning
vision encoders (e.g. CLIP (Radford et al., 2021)) with language backbones, LMMs excel in tasks
like multimodal reasoning (Wang et al., 2024), and visual question answering (VQA).

Despite these advances, LMMs face a critical computational bottleneck. They typically encode input
images into a sequence of visual tokens that are then concatenated with text tokens for LLM pro-
cessing. The number of visual tokens grows with image resolution, leading to long input sequences.
Since LLM inference time and memory cost scale quadratically with sequence length (Dao et al.,
2022; Choromanski et al., 2020), this design leads to substantial latency and memory usage, hin-
dering the practical deployment of LMMs in real-world scenarios such as mobile devices and chat
assistants.

To alleviate this, previous works (Chen et al., 2024; Shang et al., 2024) have proposed various
token reduction techniques, which can be broadly divided into three categories. Importance-based
methods estimate token saliency using attention weights (Xing et al., 2024; Zhang et al., 2024b)
or [CLS]-similarity scores (Shang et al., 2024), retaining those with the highest individual scores.
While effective in preserving key details, they often yield redundant selections with low information
density. Moreover, their reliance on attention can introduce bias (Wen et al., 2025) and conflict
with efficient mechanisms like FlashAttention (Dao et al., 2022), while [CLS]-guided scoring limits
generalizability across vision encoders. Diversity-based methods (Alvar et al., 2025; Jeddi et al.,
2025) instead select a representative subset through clustering or pairwise similarity. However,
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What color are  

the  child’s shoes?

Figure 1: Comparison between baselines and CoIn.

they implicitly treat all tokens as equally important, overlooking intrinsic saliency and semantic
relevance, which leads to missing critical information. Hybrid methods (Yang et al., 2025; Shang
et al., 2024) attempt to combine both paradigms in a two-stage manner: first selecting salient tokens
via importance scoring, then applying token merging in the remained tokens. While this mitigates
some bias, it inherits the limitations of importance-based selection and fails to effectively reduce
redundancy. As illustrated in Figure 1, these shortcomings hinder existing approaches from selecting
an optimal token subset, ultimately degrading LMM responses.

To overcome these limitations, we rethink token reduction as a unified optimal subset selection
problem driven by two complementary criteria: informativeness and coverage. First, to address
the redundancy and bias issues in importance-based approaches, we define informativeness as a
token’s joint contribution to model prediction, integrating its intrinsic visual saliency and semantic
alignment with the accompanying text. Second, instead of patching importance-based selection with
a separate token merging step as in two-stage hybrids, we introduce coverage as a diversity-aware
criterion and integrate it directly into a single joint optimization process, ensuring preservation of
novel visual content. Building on these insights, we propose CoIn, a training-free framework that
simultaneously optimizes for informativeness and coverage, producing a compact token subset that
is both individually salient and collectively representative.

Extensive experiments on multiple benchmarks demonstrate that CoIn significantly reduces com-
putation and memory costs while maintaining strong downstream task performance. For example,
when applied to LLaVA-1.5-7B model, CoIn achieves an average accuracy of 91.29% across 9
benchmarks with 94.4% visual tokens reduced. Beyond performance, CoIn offers practical deploy-
ment advantages: it is fully compatible with efficient inference techniques such as KV caching and
FlashAttention, and, by avoiding [CLS]-token dependency, remains model-agnostic across diverse
vision encoders.

To summarize, our main contributions are threefold:

• We recast token reduction as an optimal subset selection problem and introduce two princi-
pled criteria—informativeness and coverage—to jointly ensure token saliency and diver-
sity, thereby preserving the fidelity of the LMM output.

• We develop CoIn, a training-free framework that unifies visual saliency, cross-modal se-
mantic alignment, and representational diversity in a single joint selection process, over-
coming the bias, redundancy, and disjoint design issues of prior approaches.

• Through extensive experiments on diverse benchmarks and reduction ratios, we show that
CoIn achieves substantial token reduction (up to 94.4%) with minimal performance loss,
consistently outperforming state-of-the-art methods.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

2.1 LARGE MULTIMODAL MODELS

Recent advances in large multimodal models (LMMs) (Cheng et al., 2024; Team et al., 2024;
Achiam et al., 2023) have demonstrated strong performance across vision-language tasks by com-
bining pretrained vision encoders with large language models. These models, such as LLaVA (Liu
et al., 2023; 2024a), typically convert visual inputs into token sequences and feed them into LLMs
for unified processing. Specifically, LLaVA-1.5 (Liu et al., 2023) encodes a 336×336 image into
576 visual tokens, while LLaVA-NeXT (Liu et al., 2024a) supports higher-resolution and dynamic
input, producing up to 2,880 visual tokens per image. As the number of visual tokens increases
significantly with resolution or input length, it introduces substantial computational overhead, moti-
vating recent efforts to improve token efficiency and inference speed.

2.2 VISUAL TOKEN REDUCTION

A prominent line of work to improve the efficiency of LMMs focuses on reducing the number of
visual tokens. Existing methods can be broadly categorized into three types. The first type estimates
the importance of each visual token individually. One common approach relies on attention scores
within the language model to identify less important tokens (Chen et al., 2024; Ye et al., 2025).
However, these scores often suffer from attention bias (Wen et al., 2025), and are incompatible
with efficient attention mechanisms (Dao et al., 2022). An alternative strategy leverages encoder-
side signals, such as [CLS] token, to guide token selection (Shang et al., 2024). While effective
in certain settings, such methods typically depend on specific encoder architectures, limiting their
general applicability across different LMM frameworks. The second type emphasizes diversity,
aiming to eliminate redundant tokens based on feature similarity (Jeddi et al., 2025; Alvar et al.,
2025). These approaches treat all visual tokens equally, without considering differences among
tokens themselves, which can result in the omission of critical information. The third category
attempts to combine importance and diversity in a two-stage manner. PruMerge+(Shang et al., 2024)
first uses [CLS] token to select important tokens, followed by clustering to retrieve complementary
tokens. Similarly, VisionZip (Yang et al., 2025) first selects tokens based on attention weights, and
then merges remaining ones based on similarity. While this mitigates some bias, it inherits the
limitations of importance-based selection and fails to effectively reduce redundancy.

3 METHODOLOGY

3.1 PRELIMINARY

Large Multimodal Models (LMMs) typically consist of four main components: a vision encoder Ev ,
a projector P , a text encoder Et, and an LLM fϕ. These modules work together to enable the fusion
and reasoning over visual and textual information. Given an input image xv , the vision encoder first
extracts visual features, which are then mapped into the LLM-compatible embedding space via the
projector, resulting in visual embeddings V = P (Ev(xv)). Meanwhile, the text input xt is encoded
by the Text Encoder into language tokens T = Et(xt). The projected visual embeddings V are then
concatenated with the text tokens T to form an input sequence [V ;T ], which is fed into LLM to
perform downstream tasks:

y = fϕ([V ;T ]) (1)

Visual token reduction accelerates LMMs and lowers computational overhead by reducing the num-
ber of visual tokens. Given a projected visual token set V = P (Ev(xv)) = {v1, ..., vN}, our goal is
to select a subset V ′ ⊆ V of size K (K ≪ N ) such that the LLM output remains close to that with
full token set. Formally, we define the token selection objective as:

V ′ = argmin
V ′⊆V, |V ′|=K

D(fϕ([V ;T ]), fϕ([V
′;T ])), (2)

where D(·, ·) denotes LLM output difference.
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(a) Intrinsic saliency scores. (b) Text relevance scores. (c) Metric comparison.
Figure 2: Illustration of informativeness criteria: (a) and (b) visualize token scores for the prompt
“What color are the child’s shoes?”, based on intrinsic saliency and text relevance respectively. Red
indicates high scores, while blue denotes low scores. (c) reports performance of using visual saliency
only, text relevance only, and their combination.

3.2 DESIDERATA FOR A GOOD TOKEN SUBSET

Selecting a subset of visual tokens that faithfully preserves the LMMs output is non-trivial. Unlike
textual inputs, where syntactic cues and token order offer strong priors for importance estimation,
visual tokens derived from image patches lack such explicit structures. Therefore, identifying which
tokens to retain must be guided by principles that maintain the fidelity of the original input. Toward
this goal, we identify two key desiderata:

Informativeness. This criterion refers to the degree that a visual token contributes to the model’s
prediction. A token’s informativeness stems from two sources: its intrinsic saliency within the vi-
sual modality, and its alignment with the accompanying text. Tokens that are visually prominent or
semantically correlated with the text are more likely to play a pivotal role in the reasoning process.
To highlight the complementary nature of these two factors, we visualize token scores when using
only intrinsic saliency or only text relevance (Figure 2(a) and 2(b)), demonstrating that each crite-
rion emphasizes different regions. We further evaluate three selection strategies: relying solely on
intrinsic saliency, solely on text relevance, and their combination. As reported in Figure 2(c), the
combined consistently achieves superior results, indicating that neither criterion alone is sufficient
to capture all informative tokens.

Coverage. In addition to individual informativeness, a high-quality token subset should offer com-
prehensive coverage. Visual inputs often contain redundancy (e.g., multiple similar patches in the
background), thus selecting only the most informative tokens may lead to overrepresentation of
those regions. The notion of coverage encourages the inclusion of tokens from distinct regions or
object parts, thereby preserving the holistic structure and context of the scene.

Taken together, informativeness and coverage ensure that the selected tokens are both informative
and representative, forming a minimal yet effective input for the LMMs.

3.3 THE DESIGN OF COIN

In this section, we instantiate an efficient algorithm for selecting a subset of visual tokens that jointly
satisfies the desiderata of informativeness and coverage, as discussed above. Our formulation can be
viewed as a greedy procedure for constructing a sparse and expressive subspace in the joint visual-
linguistic representation space. At the core of our method lies a composite scoring function that
integrates token-wise informativeness with global subspace diversification.

Scoring Function. Given the complete visual token set V = {v1, . . . , vN} and the text token set
T = {t1, . . . , tM}, we define a scoring function Score(vi) that evaluates the desirability of each
token vi based on the following two terms:

Informativeness Score. We quantify the informativeness of each visual token vi based on both visual
saliency and cross-modal alignment:

Info(vi) = β · ∥vi∥p + (1− β) · 1

M

M∑
j=1

cos(vi, tj), (3)
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Figure 3: Overview of our proposed method (CoIn), which iteratively selects the visual tokens with
the highest combined score.

where ∥vi∥p is the ℓp-norm of the token (default p = 2), serving as a proxy for visual saliency, while
the cosine similarity with each text token tj measures cross-modal relevance. The hyperparameter
β ∈ [0, 1] governs the trade-off between visual and textual cues.

Coverage Score. Inspired from volume-based subset selection methods (Deshpande & Rademacher,
2010), we define coverage as the degree of representational novelty, i.e., how much new information
a token contributes relative to the current selected subset. This is measured via orthogonal projection
in the feature space. Let S ⊂ V be the currently selected token set, and XS denote the matrix of
their embeddings. Performing a QR decomposition (Gander, 1980) on XS yields:

XS = QR, (4)

where the columns of Q form an orthonormal basis spanning the subspace of S. For any remaining
token vi ∈ V \ S, its coverage score is defined as the ℓ2 norm of its residual after projection onto
this subspace:

Cov(vi) =
∥∥vi −QQ⊤vi

∥∥
2
. (5)

This residual reflects how much additional information vi provides beyond what is already captured
by S, thereby quantifying its contribution to the overall representational diversity.

Combined Score. The final score used for selection is a convex combination of informativeness and
coverage:

Score(vi) = α · Cov(vi) + (1− α) · Info(vi), (6)

where α ∈ [0, 1] balances the emphasis between preserving informativeness and encouraging diver-
sity.

Selection Strategy. Starting from an empty set, our algorithm proceeds in a greedy manner. We
firstly select the token with the highest informativeness score. At each subsequent iteration, we
select the token with the highest combined score. After each selection, the coverage component is
incrementally updated to reflect the expanded token span. This process continues until a budget of
K tokens is reached.

4 EXPERIMENT

4.1 EXPERIMENTAL SETTINGS

Models and Baselines. We conduct experiments on several popular MLLMs, including LLaVA-
1.5-7B (Liu et al., 2023), LLaVA-1.5-13B (Liu et al., 2023), and LLaVA-NeXT-7B (Liu et al.,
2024a), to demonstrate the generality of our approach. All tested MLLMs use the CLIP vision en-
coder (Radford et al., 2021). We consider four training-free baselines: importance-based method
PDrop (Xing et al., 2024), two-stage hybrid methods like PruMerge+ (Shang et al., 2024), Vi-
sionZip (Yang et al., 2025), and diversity-based method DivPrune (Alvar et al., 2025).
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Table 1: Performance on LLaVA-1.5-7B. “Avg.” indicates average performance relative to original
model across 9 benchmarks.

Method GQA MMB MME POPE VQAText VizWiz OCRB SQAIMG RWQA Avg.

Upper Bound, 576 Tokens

LLaVA-1.5-7B 62.0 64.1 1508 85.9 46.1 54.3 0.31 69.5 55.8 100%

Retained 128 tokens (↓77.8%)

PDrop (CVPR25) 57.1 61.7 1445 77.4 43.9 53.7 0.29 69.0 51.1 94.70%
PruMerge+(ICCV25) 57.6 60.1 1381 81.0 39.2 56.0 0.28 69.5 49.9 93.25%
VisionZip (CVPR25) 57.6 62.2 1445 82.9 43.6 54.1 0.30 68.6 51.9 95.93%
DivPrune (CVPR25) 59.2 62.3 1403 86.6 42.0 56.4 0.29 68.6 49.7 95.69%
CoIn (α=0.9, β=0.6) 59.3 62.4 1406 87.3 43.1 56.0 0.30 69.2 50.7 96.75%

Retained 64 tokens (↓88.9%)

PDrop (CVPR25) 46.3 48.1 984.3 41.3 39.6 50.4 0.27 68.7 49.3 79.45%
PruMerge+(ICCV25) 55.1 58.7 1295 75.5 37.7 56.7 0.27 69.5 48.2 90.19%
VisionZip (CVPR25) 55.2 60.1 1373 77.0 42.0 54.7 0.28 68.9 50.9 92.76%
DivPrune (CVPR25) 57.6 59.5 1348 85.8 39.1 57.5 0.27 68.0 49.2 93.14%
CoIn (α=0.9, β=0.7) 57.8 59.8 1378 86.2 41.0 57.6 0.28 68.2 49.8 94.49%

Retained 32 tokens (↓94.4%)

PruMerge+(ICCV25) 52.6 55.0 1202 70.4 33.3 56.7 0.24 68.8 45.1 84.93%
VisionZip (CVPR25) 51.7 57.0 1250 68.8 36.9 55.3 0.25 68.2 48.1 86.86%
DivPrune (CVPR25) 54.6 57.6 1268 81.2 34.9 56.8 0.25 67.6 47.2 88.87%
CoIn (α=0.9, β=0.8) 55.7 58.3 1326 84.0 37.4 57.5 0.26 69.0 48.2 91.29%

Datasets, Tasks and Metrics. We select a diverse set of representative multimodal understand-
ing and reasoning tasks, covering both image-text question answering and complex inference ca-
pabilities. Specifically, we evaluate on the following 9 datasets and benchmarks: GQA (Hud-
son & Manning, 2019), MMBench (Liu et al., 2024b), MME (Fu et al., 2023), POPE (Li et al.,
2023), TextVQA (Singh et al., 2019), VizWiz (Gurari et al., 2018), OCRBench (Liu et al., 2024c),
ScienceQA-IMG (SQA) (Lu et al., 2022), and RealWorldQA (rea, 2025). These datasets span vari-
ous task types, including multiple-choice question answering, open-ended question answering, and
comprehensive multimodal understanding involving both visual and textual inputs.

For performance evaluation, we adopt standard metrics based on the nature of each task, including
Accuracy, Exact Match (EM), F1 Score, Perception Score (P-score) (Fu et al., 2023) for QA tasks.
In all evaluation metrics reported in this work, higher values indicate better task performance. Please
refer to the appendix for additional details. For time and memory usage, lower values reflect better
efficiency.

Implementation Details. All experiments are conducted on 4 NVIDIA A800 80GB GPUs using
the lmms-evals package (Zhang et al., 2024a) for benchmarking all models and baselines. Results
are reported with a batch size of 1.

4.2 MAIN RESULTS

We first evaluate our method on LLaVA-1.5-7B and LLaVA-1.5-13B across nine diverse multimodal
benchmarks under varying levels of visual token retention. These benchmarks cover a wide spectrum
of tasks, including general-purpose VQA (GQA, TextVQA, VizWiz), OCR-heavy datasets (OCR-
Bench), commonsense reasoning (ScienceQA-img, RealWorldQA), hallucination detection (POPE),
and comprehensive instruction-following tests (MME, MMBench).

As shown in Table 1 and Table 2, we compare our method against several training-free baselines,
under 3 visual token budgets: 128, 64, and 32 (corresponding to 77.8%, 88.9%, and 94.4% pruning
rates from the full 576 tokens).

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Performance on LLaVA-1.5-13B. “Avg.” indicates average performance relative to original
model across 9 benchmarks.

Method GQA MMB MME POPE VQAText VizWiz OCRB SQAIMG RWQA Avg.

Upper Bound, 576 Tokens

LLaVA-1.5-13B 63.3 68.9 1523 85.9 48.7 56.6 0.34 72.8 55.0 100.00%

Retained 128 tokens (↓77.8%)

PDrop (CVPR25) 60.0 65.2 1476 85.4 42.5 56.7 0.30 73.2 50.3 94.99%
PruMerge+(ICCV25) 57.4 64.3 1400 80.8 41.2 54.9 0.29 73.0 50.1 92.18%
VisionZip (CVPR25) 57.8 65.2 1439 82.2 45.4 54.6 0.32 73.1 50.2 94.79%
DivPrune (CVPR25) 58.8 65.8 1450 86.2 43.2 56.5 0.31 72.8 50.0 94.89%
CoIn (α=0.9, β=0.6) 59.2 66.2 1466 87.0 44.6 56.6 0.32 73.4 50.9 96.22%

Retained 64 tokens(↓88.9%)

PDrop (CVPR25) 54.1 63.4 1240 66.1 39.0 53.2 0.28 69.1 49.0 86.27%
PruMerge+(ICCV25) 55.6 62.3 1316 74.1 39.5 55.8 0.29 72.6 49.4 89.45%
VisionZip (CVPR25) 56.0 63.7 1402 76.0 41.8 56.0 0.31 73.2 50.1 92.21%
DivPrune (CVPR25) 57.4 63.8 1486 85.0 40.9 58.3 0.30 71.5 48.5 93.48%
CoIn (α=0.9, β=0.6) 58.0 64.4 1482 86.1 42.2 58.0 0.30 72.0 50.6 94.57%

Retained 32 tokens (↓94.4%)

PruMerge+(ICCV25) 54.2 60.0 1253 68.0 34.4 55.3 0.26 71.3 47.7 84.92%
VisionZip (CVPR25) 52.8 61.6 1281 67.1 37.3 56.8 0.27 72.0 48.9 86.59%
DivPrune (CVPR25) 55.5 61.3 1390 75.7 35.1 57.8 0.27 70.8 49.1 88.58%
CoIn (α=0.8, β=0.9) 56.5 62.0 1402 82.2 37.4 58.3 0.28 71.5 49.8 91.04%

Performance on LLaVA-1.5-7B. When retaining 128 tokens, our method achieves 96.75% of
the original full-token performance, surpassing the best-performing baseline (DivPrune). As the re-
tention drops to 64, the gap between methods becomes more pronounced. PDrop suffer noticeable
degradation, losing over 20% of their original score. In contrast, our method maintains a robust
94.49% of the original performance, outperforming VisionZip and DivPrune by 1.73% and 1.35%,
respectively. This confirms the advantage of jointly considering both token importance and diversity
during selection. In the extreme case of only 32 tokens retained (i.e., 94.4% pruned), most base-
lines experience a drastic performance collapse due to the loss of essential semantic information and
excessive redundancy in retained tokens. Our method, however, still preserves 91.29% of the orig-
inal score, significantly outperforming DivPrune by 2.42%. We observe particularly strong results
on hallucination-sensitive tasks such as POPE and real-world QA datasets, indicating our method’s
ability to retain critical visual cues under aggressive pruning.

Performance on LLaVA-1.5-13B. Scaling to the larger LLaVA-1.5-13B, we observe a consistent
performance pattern. Our approach achieves 96.22%, 94.57%, and 91.04% retention rates at 128,
64, and 32 token settings, respectively—again outperforming all baselines by a substantial margin.
Notably, while LLaVA-13B tends to be more sensitive to visual information loss due to its higher
capacity and richer vision-language alignment, our method maintains stable performance, show-
casing its generalizability across model scales. We also note strong performance on POPE, where
hallucination control is critical. Our method’s ability to preserve factual grounding further under-
scores the semantic faithfulness of the retained token subset. Additionally, tasks such as MMBench
and ScienceQA—which require fine-grained visual reasoning—also see minimal drops, indicating
our approach’s ability to retain not just the most salient but also diverse and complementary visual
evidence.

These results collectively demonstrate that our joint coverage-informativeness pruning strategy is
highly effective across varying compression levels and model sizes. It avoids over-selecting salient
but redundant tokens and preserves a balanced representation of the visual scene. As demonstrated
on hallucination-sensitive tasks like POPE, our method mitigates common failure cases arising from
incomplete or biased visual grounding.
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Table 3: Performance on LLaVA-NEXT-7B. “Avg.” indicates average performance relative to origi-
nal model across 9 benchmarks.

Method GQA MMB MME POPE VQAText VizWiz OCRB SQAIMG RWQA Avg.

Upper Bound, 2880 Tokens

LLaVA-NeXT-7B 64.2 67.1 1519 86.5 64.9 60.8 0.52 70.4 57.7 100%

Retained 640 tokens (↓77.8%)

PDrop (CVPR25) 58.6 63.4 1471 81.8 56.3 53.3 0.37 65.9 50.7 89.27%
VisonZip (CVPR25) 59.7 64.2 1474 83.3 58.9 57.5 0.40 67.9 53.9 92.70%
DivPrune (CVPR25) 61.3 64.2 1467 85.9 54.7 58.7 0.37 67.6 52.4 91.78%
CoIn (α=0.7, β=0.9) 61.5 65.1 1500 86.3 58.4 58.4 0.41 67.8 54.12 93.97%

Retained 320 tokens (↓88.9%)

VisonZip(CVPR25) 58.4 62.7 1404 80.1 55.5 55.5 0.34 68.2 51.0 88.55%
DivPrune (CVPR25) 59.7 64.1 1410 83.4 49.5 57.3 0.32 67.3 49.7 87.92%
CoIn (α=0.9, β=0.8) 59.9 63.8 1449 85.4 53.1 57.6 0.34 68.1 51.5 89.92%

Retained 160 tokens (↓94.4%)

VisonZip (CVPR25) 56.3 59.5 1334 74.6 48.0 55.5 0.29 68.0 48.1 83.7%
DivPrune (CVPR25) 57.8 61.5 1354 79.8 45.2 57.8 0.27 67.7 49.3 84.53%
CoIn (α=0.9, β=0.7) 58.1 63.1 1369 82.2 49.2 57.5 0.30 68.0 49.4 86.55%

4.3 PUSHING TO HIGHER RESOLUTION

In this section, we apply our method to LLaVA-Next-7B, a large multimodal model capable of han-
dling high-resolution images with up to 2880 visual tokens. As the number of tokens increases, the
inference cost of the model rises significantly. We compare against PDro, VisionZip, and DivPrune
under various token retention settings (640, 320, and 160), as shown in Table3,

At 320 tokens, most methods experience moderate drops in performance. While DivPrune drops
to 87.92%, our method maintains 89.92%. Even under the extreme setting of 160 tokens (94.4%
pruned), our method still preserves 86.55%, outperforming DivPrune by 2.02% and VisionZip by
2.86%. Across all reduction levels, our method consistently outperforms prior baselines, demon-
strating strong robustness on high-resolution model LLaVA-Next. In particular, our method main-
tains better balance across both reasoning-oriented tasks (e.g., GQA, MME) and OCR-heavy bench-
marks (e.g., TextVQA, OCRBench), highlighting the benefit of our joint importance-diversity selec-
tion strategy.

4.4 EFFICIENCY ANALYSIS

Table 4: Efficiency Analysis.

Method Max GPU Prefill Decoding Score
Mem (GB) Time Time F1

Original 16.8 233ms 27ms 86.5
VisionZip 14.9 36ms 21ms 80.1
DivPrune 13.9 36ms 21ms 83.4
CoIn 14.1 36ms 21ms 85.4

In this section, we analyze the efficiency of our
proposed method from 3 perspectives: GPU
memory usage, prefill time, and decode time.
The experiment is conducted on the LLaVA-
NEXT-7B model using the POPE dataset on a
single NVIDIA A100-80GB GPU. The results
are summarized in Table 4, where we com-
pare our method against the original model as
well as PDrop, PruneMerge, VisionZip, and Di-
vPrune the number of visual tokens is reduced from 2880 to 320. In terms of CUDA latency, our
method reduces the prefill and decode time by 6.5× and 1.3× respectively. Beyond runtime latency,
our method also lowers GPU memory consumption.

4.5 ABLATION STUDIES

To better understand the contribution of each component in our visual token selection framework,
we conduct a series of ablation studies using the LLaVA-1.5-7B backbone. Specifically, we analyze
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Table 5: Ablation study on informativeness
(Info) and coverage (Cov).

Variants Cov Info POPE GQA MME

Original - - 85.9 62.0 1508
(i) ✗ ✓ 73.7 51.2 1288
(ii) ✓ ✗ 74.4 53.0 1307

CoIn ✓ ✓ 86.2 57.8 1378

Table 6: Ablation of informativeness term.
IS: intrinsic saliency; TR: text relevance.

Variants IS TR VizWiz RealWorldQA

Original - - 54.3 55.8
(i) ✓ ✗ 51.4 39.7
(ii) ✗ ✓ 51.1 41.1

Combination ✓ ✓ 51.8 42.6

the impact of (1) combining coverage and informativeness, (2) the decomposition of informativeness
into intrinsic saliency and text relevance, and (3) different weighting strategies for α and β.

Impact of Combining Coverage and Informativeness. We conduct an ablation study to evaluate
the importance of the two components in our scoring function: informativeness and coverage. With
64 visual tokens retained, we compare CoIn with two simplified variants: (i) informativeness-only,
and (ii) coverage-only. As shown in Table 5, both variants lead to clear performance drops com-
pared to the full components. The informativeness-only variant performs the worst, likely due to
redundancy among selected tokens. The coverage-only variant preserves diversity but lacks focus
on informative content, resulting in suboptimal performance. In contrast, our full strategy, which
balances both aspects, achieves the best overall results across benchmarks. Notably, it even sur-
passes the original unpruned model on POPE, showing that compact yet well-chosen tokens can
improve grounding performance while reducing computational cost.

Effect of Intrinsic Saliency and Text Relevance. We conduct an ablation study to isolate the
contributions of the two components of the informativeness term, while disabling coverage by set-
ting α=0 (no coverage). We compare three settings: (i) using only intrinsic visual saliency (IS), (ii)
using only text-visual semantic relevance (TR), and (iii) combining both. In all cases, we keep 32
visual tokens based on the chosen variants. As shown in Table 6, using only intrinsic saliency or text
relevance yields similar performance on VizWiz, suggesting both visual and semantic signals are
useful for perception-focused tasks. However, on RealWorldQA, which requires strong language
grounding, text relevance outperforms saliency by a clear margin. Notably, combining both compo-
nents leads to consistent improvements across both benchmarks, highlighting their complementary
strengths: saliency brings spatial awareness, while text relevance ensures semantic alignment. These
results validate our design of jointly modeling both factors for more effective token selection.

Figure 4: Left: varying α with β=0.9;
Right: varying β with α=0.9.

Choice of α and β. We investigate the impact of dif-
ferent α and β values on task performance, as shown
in Figure 4. For a fixed β = 0.9, we vary α in
{0.5, 0.6, 0.7, 0.8, 0.9}. For a fixed α = 0.9, we vary β
from 0 to 1, and report the performance. The results sug-
gest that different tasks exhibit varying preferences for
intrinsic saliency, text relevance, and coverage. In prac-
tical applications, these parameters can be fine-tuned to
optimize performance for specific scenarios.

5 CONCLUSION

In this work, we reformulated the token reduction problem for large multimodal models as an op-
timal subset selection task. We introduced two key criteria: informativeness and coverage, and
proposed CoIn, a training-free framework that jointly optimizes these objectives to produce com-
pact yet representative token subsets. Extensive experiments across multiple benchmarks demon-
strate that CoIn achieves substantial token reduction with minimal performance degradation. These
results position CoIn as an effective approach for improving the efficiency and scalability of LMMs.
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A THE USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) were only used to assist with minor language polishing and for-
matting. No LLMs were used for data analysis, experiment design, or generation of original content.
All conceptualization, modeling, implementation, and evaluation were performed by the authors.

B ETHICS STATEMENT

This work does not involve human subjects, personally identifiable information, or sensitive data.
No proprietary or non-public datasets are used. The proposed methods and findings do not present
foreseeable harmful insights, applications, or security/privacy risks. There are no conflicts of inter-
est, sponsorships, or legal/ethical concerns associated with this study.

C REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our results. The experimental settings
and hyperparameter configurations are described in detail in Section 4.1. Complete mathematical al-
gorithm is provided in Appendix D.1. The source code will be submitted as supplementary material
and released publicly upon acceptance. All datasets used in our experiments are publicly available,
with data processing procedures specified in Section 4.1.

D APPENDIX

D.1 FAST INFERENCE ALGORITHM FOR COIN

The challenge of selecting the optimal subset of tokens is an NP-hard problem. Therefore, we use
a fast greedy algorithm to efficiently find an optimal solution. The core of this acceleration lies
in an incremental update method for the QR decomposition in each selection round. We select k
tokens iteratively. In each round, we select the token that maximizes a hybrid score, which balances
coverage and informativeness.

Algorithm 1 Fast Greedy Selection Algorithm

Require: Tokens X ∈ RN×D, Informativeness scores p ∈ RN×1, retained size k, hyperparameter
Λ.

Ensure: A set of selected token indices S.
1: S ← ∅, U ← {1, . . . , N}
2: C← 0 ∈ RN×k Cache for projection coefficients
3: Q← ∅, s← 0 Orthonormal basis and its size
4: j ← argmaxj∈U pj
5: for i = 1 to k do
6: S ← S ∪ {j}
7: U ← {1, . . . , N} \ S
8: xnew ← Xj

9: qnew ← GramSchmidt(xnew,Q)
10: Q← [Q | q⊺

new]
11: s← s+ 1
12: C:,s ← X · qnew

13: if i < k then
14: d2 ← 1−

∑s
m=1 C

2
j,m for j ∈ U

15: S← Λ · d′ + (1− Λ) · p for j ∈ U
16: j ← argmaxj∈U Sj

17: end if
18: end for
19: return S
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D.2 BENCHMARKS

GQA. A large-scale visual question answering benchmark designed to evaluate compositional
reasoning and visual understanding. It provides detailed question-answer pairs covering objects,
attributes, and relationships. We follow the standard test-dev balanced split for evaluation.

MMBench. A comprehensive benchmark designed to evaluate the multi-modal understanding ca-
pabilities of large language models. It consists of a diverse set of multiple-choice questions that
cover a wide range of tasks, from basic perception and object recognition to complex cognitive
reasoning and world knowledge.

MME. A comprehensive benchmark measures a model’s performance across 14 distinct subtasks,
which are divided into two main categories: perception and cognition. Perception tasks test a
model’s ability to recognize and understand basic visual elements like objects, text, or a scene’s
context. In contrast, cognition tasks evaluate its higher-level reasoning skills, such as applying
common sense, performing logical inference, or solving math and science problems based on an
image. The MME benchmark is designed to provide a detailed and fair comparison of MLLMs by
using carefully designed instruction-answer pairs and covering a wide range of domains to identify
a model’s strengths and weaknesses.

POPE. A benchmark designed to rigorously assess object hallucination in large vision-language
models. It systematically presents a model with a series of ”Yes or No” questions about the existence
of specific objects in an image. By strategically sampling objects that are not present, POPE effec-
tively measures a model’s tendency to incorrectly confirm or generate objects, providing a robust
method for evaluating a model’s honesty and accuracy.

TextVQA. A benchmark dataset for Visual Question Answering (VQA) that requires models to
answer questions by reading and reasoning about text within images. To succeed, a model must first
perform accurate Optical Character Recognition (OCR) to extract the text and then combine this
information with the visual context of the image. This makes TextVQA a crucial test for a model’s
ability to integrate visual perception with linguistic understanding.

VizWiz. A unique Visual Question Answering (VQA) dataset that focuses on questions asked
by people who are visually impaired. Its images are often of poor quality, including blurriness,
suboptimal framing, or occlusions, because they were captured by users seeking assistance. The
questions are also grounded in real-world needs and are often much more open-ended. The purpose
of the VizWiz benchmark is to push the development of VQA models that are robust to real-world
visual imperfections and can provide practical, useful information to assist people with vision loss.

OCRBench. A comprehensive evaluation benchmark designed to assess the optical character
recognition (OCR) capabilities of large multi-modal models. It tests a model’s ability to handle
a wide variety of tasks, including text localization, understanding handwritten content, and perform-
ing logical reasoning based on the text found in an image. The benchmark includes diverse scenarios
such as receipts, documents, and street scenes to provide a robust evaluation of a model’s visual and
linguistic understanding in real-world, text-rich environments.

ScienceQA. A large-scale benchmark designed to evaluate multi-modal reasoning by presenting
models with complex science questions. It includes not only images and text but also detailed
rationales—step-by-step explanations for the correct answers. This feature allows researchers to
assess a model’s underlying reasoning process, rather than just its final output. The questions cover
a diverse range of science topics from elementary to high school levels.

RealWorldQA. A benchmark designed to evaluate a multi-modal model’s real-world spatial un-
derstanding and common sense reasoning. The dataset consists of high-resolution images, often
captured from vehicles or other real-world scenarios, each paired with a question and a verifiable
answer. Unlike many other benchmarks, RealWorldQA focuses on challenging models to recog-
nize subtle details and perform complex reasoning based on their visual perception. This allows for
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a robust assessment of a model’s ability to comprehend our physical world and act as a practical
assistant.
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