
Informed POMDP: Leveraging Additional
Information in Model-Based RL

Gaspard Lambrechts
Montefiore Institute, University of Liège
gaspard.lambrechts@uliege.be

Adrien Bolland
Montefiore Institute, University of Liège

adrien.bolland@uliege.be

Damien Ernst
Montefiore Institute, University of Liège

LTCI, Telecom Paris, Institut Polytechnique de Paris
dernst@uliege.be

Abstract

In this work, we generalize the problem of learning through interaction in a POMDP
by accounting for eventual additional information available at training time. First,
we introduce the informed POMDP, a new learning paradigm offering a clear
distinction between the training information and the execution observation. Next,
we propose an objective for learning a sufficient statistic from the history for the
optimal control that leverages this information. We then show that this informed
objective consists of learning an environment model from which we can sample
latent trajectories. Finally, we show for the Dreamer algorithm that the convergence
speed of the policies is sometimes greatly improved on several environments by
using this informed environment model. Those results and the simplicity of the
proposed adaptation advocate for a systematic consideration of eventual additional
information when learning in a POMDP using model-based RL.

1 Introduction

Reinforcement learning (RL) aims to learn to act optimally through interaction with environments
whose dynamics are unknown. A major challenge in this field is partial observability, where only
incomplete observation o of the Markovian state of the environment s is available for taking action a.
Such an environment can be formalized as a partially observable Markov decision process (POMDP).
In this context, an optimal policy η(a|h) generally depends on the history h of observations and past
actions, which grows linearly with time. Fortunately, it is theoretically possible to find a statistic f(h)
from the history h that summarizes all relevant information to act optimally, and that is recurrent.
Formally, a recurrent statistic is a statistic f(h) updated according to f(h′) = u(f(h), a, o′) each
time that an action a is taken and a new observation o′ is received, with h′ = (h, a, o′). A statistic
f(h) for which there exists an optimal policy η(a|h) = g(a|f(h)) is called a sufficient statistic from
the history for the optimal control.

Standard approaches have thus relied on learning a recurrent policy ηθ,ϕ(a|h) = gϕ(a|fθ(h)), using
a recurrent neural network (RNN) fθ for the statistic. Those policies are simply trained by stochastic
gradient ascent of a RL loss using backpropagation through time [Bakker, 2001, Wierstra et al., 2010,
Hausknecht and Stone, 2015, Heess et al., 2015, Zhang et al., 2016, Zhu et al., 2017]. In this case, the
RNN learns a sufficient statistic fθ(h) as it learns an optimal policy [Lambrechts et al., 2022, Hennig
et al., 2023]. Although those standard approaches are theoretically able to implicitly learn a statistic
that is sufficient for the optimal control, sufficient statistics can also be learned explicitly. Notably,
many works [Igl et al., 2018, Buesing et al., 2018, Han et al., 2019, Gregor et al., 2019, Guo et al.,

16th European Workshop on Reinforcement Learning (EWRL 2023).

mailto:gaspard.lambrechts@uliege.be
mailto:adrien.bolland@uliege.be
mailto:dernst@uliege.be

2020, Lee et al., 2020, Hafner et al., 2019, 2020, 2021, 2023, Guo et al., 2018, Gregor et al., 2019]
have focused on learning a recurrent statistic that is predictive sufficient [Bernardo and Smith, 2009]
for the reward and next observation given the action: p(r, o′|h, a) = p(r, o′|f(h), a). A recurrent and
predictive sufficient statistic is indeed proven to provide a sufficient statistic for the optimal control
[Subramanian et al., 2022]. It can be noted that in those works, this explicit sufficiency objective is
pursued jointly with the RL objective.

Whereas those methods allow one to learn sufficient statistics and optimal policies in the context
of POMDP, they learn solely from the partial observations. However, assuming the same partial
observability at training time and execution time is too pessimistic for many environments, notably
for those that are simulated. We claim that additional information about the state s, be it partial
or complete, can be leveraged during training for learning sufficient statistics more efficiently. To
this end, we generalize the problem of learning from interaction in a POMDP by introducing
the informed POMDP. This formalization introduces the training information i about the state s,
which is available at training time, but keeps the execution POMDP unchanged. Importantly, this
training information is designed such that the observation is conditionally independent of the state
given the information. Note that it is always possible to design such an information i, possibly by
concatenating the observation o with the eventual additional observations o+, such that i = (o, o+).
This formalization offers a new learning paradigm where the training information is used along the
reward and observation to supervise the learning of the policy.

In the context of informed POMDP, we show that recurrent statistics are sufficient for the optimal
control of the execution POMDP when they are predictive sufficient for the reward and next infor-
mation given the action: p(r, i′|h, a) = p(r, i′|f(h), a). We then derive a convenient objective for
finding a predictive sufficient statistic, which amounts to approximating the conditional distribution
p(r, i′|h, a) through likelihood maximization using a model qθ(r, i′|fθ(h), a), where fθ is a recurrent
statistic. Compared to the classic objective for learning sufficient statistics [Igl et al., 2018, Buesing
et al., 2018, Han et al., 2019, Hafner et al., 2019], this objective approximates p(r, i′|h, a) instead of
p(r, o′|h, a). In addition, we show that this learned generative model qθ(r, i′|fθ(h), a) can be adapted
as an environment model from which latent trajectories can be generated. Consequently, policies can
be optimized in a model-based RL fashion using those generated trajectories. This proposed approach
boils down to adapting model-based algorithms that allows sampling in latent space, such as PlaNet or
Dreamer [Hafner et al., 2019, 2020, 2021, 2023], by relying on a model of the information instead of
a model of the observation. We consider several standard environments that we formalize as informed
POMDPs (Mountain Hike, Flickering Atari, Velocity Control and Flickering Control). Our informed
adaptation of Dreamer is shown to provide a significant improvement in term of convergence speed
and performance on some environments, while hurting performances in others.

This work is structured as follows. In Section 2, we introduce the related literature in asymmetric
RL and in multi-agent RL. In Section 3, the informed POMDP is presented with the underlying
execution POMDP and its optimal policies. In Section 4, the learning objective for sufficient statistic
is presented in the context of informed POMDP. In Section 5, the model-based RL algorithm that is
used, Dreamer, is introduced along with our proposed adaptation to informed POMDPs. In Section 6,
we compare the performance and convergence speed of the Uninformed Dreamer and the Informed
Dreamer in several environments. Finally, in Section 7, we conclude by summarizing the contributions
and limitations of this work.

2 Related Works

Asymmetric learning consists of exploiting state information during training in RL for POMDP.
These approaches usually learn policies for the POMDP by imitating a policy conditioned on the
state [Choudhury et al., 2018]. However, these heuristic approaches lack a theoretical framework, and
the resulting policies are known to be suboptimal for the POMDP [Warrington et al., 2021, Baisero
et al., 2022]. Intuitively, optimal policies in POMDP might indeed need to consider actions that
reduce the state uncertainty. Warrington et al. [2021] addressed this issue by constraining the expert
policy so that its imitation results in an optimal policy in the POMDP. Alternatively, asymmetric
actor-critic approaches use a critic conditioned on the state [Pinto et al., 2018]. These approaches have
been proven to provide biased gradients [Baisero and Amato, 2022], and Baisero and Amato [2022]
proposed an unbiased actor-critic approach by introducing the history-state value function V (h, s).
Baisero et al. [2022] adapted this method to value-based RL, where the history-dependent value

2

function V (h) uses the history-state value function V (h, s) in its temporal difference target. On the
contrary, Nguyen et al. [2022] modified the RL objective by trading off the expert imitation objective
with respect to the return, resulting in an imitation bonus akin to the entropy in soft actor-critic
methods. Finally, in the work that is the closest to ours, Nguyen et al. [2021] proposed to enforce that
the statistic f(h) encodes the belief, a sufficient statistic for the optimal control [Åström, 1965]. It
requires making the strong assumption that beliefs b(s) = p(s|h) are available at training time.

In multi-agent RL, exploiting additional information available at training time was extensively studied
under the centralized training and decentralized execution (CTDE) framework. In CTDE, it is
assumed that the histories of all agents, or even the environment state, are available to all agents
at training time. To exploit this additional information, several asymmetric actor-critic approaches
have been developed by leveraging an asymmetric critic conditioned on all histories, including
COMA [Foerster et al., 2018], MADDPG [Lowe et al., 2017], M3DDPG [Li et al., 2019] and
R-MADDPG [Wang et al., 2020]. While efficient in practice, Lyu et al. [2022] showed that these
asymmetric actor-critic approaches provides biased gradient estimates, which generalizes results
developed for asymmetric learning in POMDP [Baisero and Amato, 2022] to the multi-agent setting.
In the cooperative CTDE setting, another line of work focuses on value decomposition to learn a
utility function for each agent, including QMix [Rashid et al., 2018], QVMix [Leroy et al., 2021]
and QPLEX [Wang et al., 2021]. These approaches use the additional information to modulate the
contribution of each utility function in the global value function, while ensuring that maximising the
local utility functions also maximize the global value function, a property known as individual global
max (IGM). Other methods relax this IGM requirement but still condition the value function on all
histories, including QTRAN [Son et al., 2019] and WQMix [Rashid et al., 2020]. Recently, Hong
et al. [2022] established that the IGM decomposition is not attainable in the general case.

In contrast to the existing literature on asymmetric learning in POMDP, we introduce a novel
approach that is guaranteed to provide a sufficient statistic for the optimal control, and that leverages
the additional information only through the objective. Moreover, our new learning paradigm is not
restricted to state supervision, but support any level of additional information. Finally, to the best of
our knowledge, our method is the first to exploit additional information for learning an environment
model in model-based RL for POMDPs. However, while our approach is probably adaptable to the
CTDE setting to learn sufficient statistics from the local histories of each agent, we do not study its
applicability and leave it as future work.

3 Informed Partially Observable Markov Decision Process

In Subsection 3.1, we introduce the informed POMDP and the associated training information, along
with the underlying execution POMDP. In Subsection 3.2, we introduce the optimal policies and the
reinforcement learning objective in the context of informed POMDPs.

3.1 Informed POMDP and Execution POMDP

o o oa a

i i ir r

s s s
P

Ĩ

Õ

R

T
. . .

training

execution

Figure 1: Informed POMDP: Bayesian net-
work of its execution, arrows represent condi-
tional dependencies.

Formally, an informed POMDP P̃ is defined as a
tuple P̃ = (S,A, I,O, T,R, Ĩ, Õ, P, γ) where S is
the state space, A is the action space, I is the informa-
tion space, and O is the observation space. The initial
state distribution P gives the probability P (s0) of
s0 ∈ S being the initial state of the decision process.
The dynamics are described by the transition dis-
tribution T that gives the probability T (st+1|st, at)
of st+1 ∈ S being the state resulting from action
at ∈ A in state st ∈ S. The reward function R
gives the immediate reward rt = R(st, at) obtained
at each transition. The information distribution Ĩ gives the probability Ĩ(it|st) to get information
it ∈ I in state st ∈ S. The observation distribution Õ gives the probability Õ(ot|it) to get observa-
tion ot ∈ O given information it. Finally, the discount factor γ ∈ [0, 1[gives the relative importance
of future rewards. The main assumption about an informed POMDP is that the observation ot
is conditionally independent of the state st given the information it: p(ot|it, st) = Õ(ot|it). In
other words, the random variables st, it and ot satisfy the Bayesian network st −→ it −→ ot. In

3

practice, it is always possible to define such a training information it. For example, the information
it = (ot, o

+

t) always satisfies the aforementioned conditional independence, whatever o+

t is. Taking
a sequence of t actions in the informed POMDP conditions its execution and provides samples
(i0, o0, a0, r0, . . . , it, ot) at training time, as illustrated in Figure 1.

For each informed POMDP, there is an underlying execution POMDP that is defined as P =

(S,A,O, T,R,O, P, γ), where O(ot|st) =
∫
I Õ(ot|i)Ĩ(i|st) di. Taking a sequence of t actions in

the execution POMDP conditions its execution and provides the history ht = (o0, a0, . . . , ot) ∈ H at
execution time, where H is the set of histories of arbitrary length. Note that the information samples
i0, . . . , it and reward samples r0, . . . , rt−1 are not included in the history, since they are not available
at execution time, as illustrated in Figure 1.

3.2 Reinforcement Learning Objective

A policy η ∈ H is defined as a mapping from histories to probability measures over the action space,
where H = H → ∆(A) is the set of such mappings. A policy is said to be optimal for an informed
POMDP when it is optimal in the underlying execution POMDP, i.e., when it maximizes the expected
return J(η), defined as,

J(η) = E
s0∼P (·)
ot∼O(·|st)
at∼η(·|ht)

st+1∼T (·|st,at)

[∞∑
t=0

γtR(st, at)

]
. (1)

The RL objective for an informed POMDP is thus to find an optimal policy η∗ ∈ argmaxη∈H J(η)
for the execution POMDP from interaction with the informed POMDP.

4 Optimal Control with Recurrent Sufficient Statistics

In Subsection 4.1, we introduce sufficient statistics for the optimal control and discuss their relation
with optimal policies. In Subsection 4.2, we derive an objective for learning in an informed POMDP
a recurrent statistic that is sufficient for the optimal control. In Subsection 4.3, we propose a joint
objective for learning an optimal recurrent policy with a sufficient statistic. For the sake of conciseness,
in this section, we simply use x to denote a random variable at the current time step and x′ to denote it
at the next time step. Moreover, we use the composition notation g◦f to denote the history-dependent
policy g(·|f(·)).

4.1 Recurrent Sufficient Statistics

Let us first define the concept of sufficient statistic, from which a necessary condition for optimality
can be derived.
Definition 1 (Sufficient statistic). In an informed POMDP P̃ and in its underlying execution POMDP
P , a statistic from the history f : H → Z is sufficient for the optimal control if, and only if,

max
g : Z→∆(A)

J(g ◦ f) = max
η : H→∆(A)

J(η). (2)

Corollary 1 (Sufficiency of optimal policies). In an informed POMDP P and in its underlying
execution POMDP P̃ , if a policy η = g ◦ f is optimal, then the statistic f : H → Z is sufficient for
the optimal control.

In this work, we focus on learning recurrent policies, i.e., policies η = g ◦ f for which the statistic f
is recurrent. Formally, we have,

η(a|h) = g(a|f(h)), ∀(h, a), (3)

f(h′) = u(f(h), a, o′), ∀h′ = (h, a, o′). (4)

This allows to process the history iteratively each time that a new action is taken and a new observation
is received. According to Corollary 1, when learning a recurrent policy η = g ◦ f , the objective can

4

thus be decomposed into two problems: finding a sufficient statistic f and an optimal conditional
distribution g conditioned on this statistic,

max
f : H→Z

g : Z→∆(A)

J(g ◦ f). (5)

4.2 Learning Recurrent Sufficient Statistics

Below, we provide a sufficient condition for a statistic to be sufficient for the optimal control of an
informed POMDP.
Theorem 1 (Sufficiency of recurrent predictive sufficient statistics). In an informed POMDP P̃ , a
statistic f : H → Z is sufficient for the optimal control if it is (i) recurrent and (ii) predictive sufficient
for the reward and next information given the action,

(i) f(h′) = u(f(h), a, o′), ∀h′ = (h, a, o′), (6)

(ii) p(r, i′|h, a) = p(r, i′|f(h), a), ∀(h, a, r, i′). (7)

We provide the proof for this theorem in Appendix A, generalizing earlier work by Subramanian et al.
[2022].

Now, let us consider a distribution over the histories and actions whose probability density function
writes p(h, a). For example, we consider the stationary distribution induced by the current policy η in
the informed POMDP P̃ . Let us also assume that the probability density function p(h, a) is non-zero
everywhere. As shown in Appendix B, under mild assumption, any statistic satisfying the following
objective,

max
f : H→Z

q : Z×A→∆(R×I)

E
p(h,a,r,i′)

log q(r, i′|f(h), a), (8)

also satisfies (ii). This variational objective jointly optimizes the statistic function f : H → Z with
the conditional probability density function q : Z × A → ∆(R × I). According to Theorem 1, a
recurrent statistic satisfying objective (8) is thus sufficient for the optimal control.

In practice, both the recurrent statistic and the probability density function are implemented with
neural networks fθ and qθ, respectively. They are both parametrized by θ ∈ Rd, such that the objective
can be maximized by stochastic gradient ascent. Regarding fθ, it is implicitly implemented by an
RNN whose update function zt = uθ(zt−1;xt) is parametrized by θ. The inputs are xt = (at−1, ot),
with a−1 the null action, which is typically chosen to zero. The hidden state of the RNN zt = fθ(ht)
is thus a statistic from the history that is recurrently updated using uθ. Regarding qθ, it is implemented
by a parametrized probability density function estimator. The objective writes,

max
θ

E
p(h,a,r,i′)

log qθ(r, i
′|fθ(h), a)︸ ︷︷ ︸

L(fθ)

. (9)

We might wonder whether this informed objective is better than the classic objective, where i = o.
In this work, we hypothesize that regressing the information distribution instead of the observation
distribution is a better objective in practice. Indeed, according to the data processing inequality
applied to the Bayesian network s′ −→ i′ −→ o′, the information i′ is more informative than the
observation o′ about the Markovian state s′ of the environment,

I(s′, i′|h, a) ≥ I(s′, o′|h, a). (10)

We thus expect the statistic fθ(h) to converge faster towards a sufficient statistic, and the policy to
converge faster towards an optimal policy.

4.3 Optimal Control with Recurrent Sufficient Statistics

As seen from Corollary 1, sufficient statistics are needed for the optimal control of POMDPs.
Moreover, as we focus on recurrent policies implemented with RNNs, we can exploit objective (9) to
learn a sufficient statistic fθ. In practice, we jointly optimize the RL objective J(ηθ,ϕ) = J(gϕ ◦ fθ)

5

and the statistic objective L(fθ). This allows to use the information i to guide the statistic learning
through L(fθ). This joint objective writes,

max
θ,ϕ

J(gϕ ◦ fθ) + L(fθ). (11)

A policy ηθ,ϕ satisfying objectives (11) is guaranteed to satisfy (5) and the policy is thus optimal for
the informed and execution POMDP. Note however that there may exist policies satisfying (5) that do
not satisfy (11).

The objective L(fθ) provides a recurrent model of the reward and next information given the history
and action. In the following, we show that we can exploit this model to generate artificial trajectories,
called imagined trajectories, under conditions on qθ. Those imagined trajectories can then be used
to maximize the imagined return of the policy, which in turn maximizes J(gϕ ◦ fθ) if the model is
accurate.

5 Model-Based Reinforcement Learning through Informed World Models

Model-based RL focuses on learning a model of the dynamics p(r, o′|h, a) of the environment, known
as a world model. Since this approximate model allows one to generate imagined trajectories, a
near-optimal behaviour is usually derived either by online planning or by optimizing a policy based
on those trajectories [Sutton, 1991, Ha and Schmidhuber, 2018, Chua et al., 2018, Zhang et al., 2019,
Hafner et al., 2019, 2020]. In the following, we show that our informed model qθ(r, i′|fθ(h), a)
can be slightly modified to provide an informed world model from which latent trajectories can be
sampled. We then propose the Informed Dreamer algorithm, adapting the DreamerV3 algorithm
[Hafner et al., 2023] to informed POMDPs. This choice is motivated by the requirement of sampling
trajectories in latent space, and by the impressive sample efficiency and performance of Dreamer. In
Subsection 5.1, we introduce this informed world model and its training objective. In Subsection 5.2,
we present the Informed Dreamer algorithm exploiting this informed world model to train its policy.

5.1 Informed World Model

In this work, we implement the probability density function qθ with a variational autoencoder (VAE)
conditioned on the statistic of the RNN. Together, they form a variational RNN (VRNN) as proposed
in [Chung et al., 2015], also known as a recurrent state-space model (RSSM) in the RL context
[Hafner et al., 2019]. Formally, we have,

ê ∼ qpθ (·|z, a), (prior, 12)
r̂ ∼ qrθ(·|z, ê), (reward decoder, 13)

î′ ∼ qiθ(·|z, ê), (information decoder, 14)

where ê is the latent variable of the VAE. The prior qpθ and the decoders qiθ and qrθ are jointly trained
with the encoder,

e ∼ qeθ(·|z, a, o′), (encoder, 15)
to maximize the likelihood of reward and next information samples. The latent representation
e ∼ qeθ(·|z, a, o′) of the next observation o′ can be used to update the statistic to z′,

z′ = uθ(z, a, e). (recurrence, 16)
Note that the statistic z is no longer deterministically updated to z′ given a and o′, instead we have
z ∼ fθ(·|h), which is induced by uθ and qeθ . This key design choice allows sampling imagined
trajectories without reconstructing the imagined observation ô′ by using the latent ê in update (16),
as shown in the next subsection. This requirement of latent representation sampling restricts the class
of model-based algorithm that can be adapted using our method.

In practice, we maximize the evidence lower bound (ELBO), a tight variational lower bound on the
likelihood of reward and next information samples [Chung et al., 2015],

E
p(h,a,r,i′)
fθ(z|h)

log qθ(r, i
′|z, a) ≥ E

p(h,a,r,i′,o′)
fθ(z|h)

[
E

qeθ(e|z,a,o′)

[
log qiθ(i

′|z, e) + log qrθ(r|z, e)
]

−KL (qeθ(·|z, a, o′) ∥ qpθ (·|z, a))
]
. (17)

6

Despite the statistic fθ(·|h) being stochastic, the ELBO objective ensures that the stochastic statistic
fθ(·|h) becomes predictive sufficient for the reward and next information. Note that when i = o, it
corresponds to Dreamer’s world model and learning objective. Figure 2 shows, for a sample trajectory
(i0, o0, a0, r0, . . . , iT , oT), the update of the statistic z according to the update function uθ and the
encoder qeθ . Maximizing the ELBO maximizes the conditional log-likelihood qrθ(r|z, e) and qiθ(i|z, e)
of r and i′ for a sample of the encoder e ∼ qeθ(·|z, a, o′), and minimizes the KL divergence from
qeθ(·|z, a, o′) to the prior distribution qpθ (·|z, a), as highlighted in orange.

o o oa a

i i ir r

s s s

/

/

z z z
uθ

ê ê êqpθ

e e e
qeθ

o o oa a

i i ir r/

qrθ qiθ

−KL

Figure 2: Variational RNN: Bayesian graph of its evaluation for a given trajectory at training time
(dependence of qrθ and qiθ on z is omitted). The loss components are illustrated in orange.

5.2 Informed Dreamer

While our informed world model does not learn the observation distribution, it can still generate
imagined trajectories. Indeed, the VRNN only uses the latent representation e ∼ qeθ(·|z, a, o′) of the
observation o′, trained to reconstruct the information i′, in order to update z to z′. Consequently, we
can use the prior distribution ê ∼ qpθ (·|z, a), trained to minimize the KL divergence from qpθ (·|z, a, o′)
in expectation, to generate latent trajectories. The Informed Dreamer algorithm uses this informed
world model, a critic vψ(z), and a latent policy a ∼ gϕ(·|z). Figure 3 illustrates the generation of
a latent trajectory on the left, along with imagined rewards r̂ ∼ qrθ(·|z, e) and approximate values
v̂ = vψ(z). During generation, the actions are sampled according to a ∼ gϕ(·|z), and any RL
algorithm can be used to maximize the imagined returns. Note that the mean imagined reward
and estimated values are given by functions that are differentiable with respect to ϕ, such that the
imagined return can be directly maximized by stochastic gradient ascent. In the experiments, we use
an actor-critic approach for discrete actions and direct maximization for continuous actions, following
DreamerV3 [Hafner et al., 2023].

/

/

z z z
uθ

ê ê êqpθ

gϕ
v̂ v̂ v̂/ a a/ r̂ r̂

qrθ vψ

o o oa a

i i ir r

s s s

/

/

z z z
uθ

e e e
qeθ

o o oa a
gϕ

Figure 3: Variational RNN: Bayesian graph of its evaluation when imagining a latent trajectory using
policy gϕ (left), Bayesian graph of its execution in the POMDP using the VRNN encoder qeθ and
update function ueθ to condition the latent policy gϕ (right). Dependence of qrθ and vψ on z is omitted.

A pseudocode for the adaptation of the Dreamer algorithm using this informed world model is given
in Appendix C. We also detail some divergences of our formalization with respect to the original
Dreamer algorithm [Hafner et al., 2023]. Like in DreamerV3, we uses symlog predictions, a discrete
VAE, KL balancing, free bits, reward normalisation, a distributional critic, and entropy regularization.

Finally, as shown on the right in Figure 3, when deployed in the execution POMDP, the encoder qeθ is
used to compute the latent representations of the observations and to update the statistic. The actions
are then selected according to a ∼ gϕ(·|z).

7

6 Experiments

In this section, we compare Dreamer to the Informed Dreamer on several control problems, for-
malized as informed POMDPs. Note that the Dreamer algorithm is exactly equivalent to the
Informed Dreamer when i = o. We use the implementation of DreamerV3 released by the
authors at github.com/danijar/dreamerv3, and release our adaptation to informed POMDPs at
github.com/glambrechts/informed-dreamer. For all environments, we use the same unique set of
hyperparameters as in DreamerV3, including for the Informed Dreamer.

6.1 Varying Mountain Hike

In the Varying Mountain Hike environments, the agent is tasked with walking throughout a mountain-
ous terrain. There exists four versions of this environment, depending on the initial state distribution
and the type of observation that is available. The agent has a position on a two-dimensional map
and can take actions to move relative to its initial orientation. The initial orientation is either always
North, or a random cardinal orientation, depending on the environment version. The initial orienta-
tion is never available to the agent, but the agent receives a noisy observation of its position or its
altitude, depending on the environment version. The reward is given by its altitude relative to the
mountain top, such that the goal of the agent is to obtain the highest cumulative altitude. Around
the mountain top, states are terminal. The optimal therefore consists in going as fast as possible
towards those terminal states while staying on the crests in order to get less negative rewards than in
the valleys. These environments use a discount factor of γ = 0.997, and the trajectories are truncated
at t = 160 in practice. We refer the reader to [Lambrechts et al., 2022] for a formal description of
these environments, heavily inspired from the Mountain Hike of [Igl et al., 2018].

For this environment, we consider the position and initial orientation to be available as additional
information. In other words, we consider the state-informed POMDP with i = s. As can be
seen from Figure 4, the speed of convergence of the policies is greatly improved when using the
Informed Dreamer in this informed POMDP. Moreover, as shown in Table 1 in Appendix C, the final
performance of the policy is always better than or similar to the Dreamer algorithm.

0.0 0.5 1.0

−150

−100

−50

Position, North

0.0 0.5 1.0

−150

−100

−50

Position, Varying

0.0 0.5 1.0

−150

−100

−50

Altitude, North

0.0 0.5 1.0

−150

−100

−50

Altitude, Varying

Time steps (M)

Uninformed Informed

Figure 4: Uninformed Dreamer versus Informed Dreamer (i = s) on the Varying Mountain Hike
environments: non-discounted return with respect to the number of million steps. Results show the
mean, minimum and maximum values over four runs.

6.2 Flickering Atari

In the Flickering Atari environments, the agent is tasked with playing the Atari games [Bellemare
et al., 2013] on a flickering screen. The dynamics are left unchanged, but the agent may randomly
observe a blank screen instead of the game screen, with probability p = 0.5. While the classic Atari
games are known to have low stochasticity and few partial observability challenges [Hausknecht
and Stone, 2015], their flickering counterparts have constituted a classic benchmark in the partially
observable RL literature [Hausknecht and Stone, 2015, Zhu et al., 2017, Igl et al., 2018, Ma et al.,
2020]. Moreover, regarding the recent advances in sample-effiency of model-based RL approaches,
we consider the Atari 100k benchmark, where only 100k actions can be taken by the agent for
generating samples of interaction. These environments use a discount factor of γ = 0.997.

For these environments, we consider the RAM state of the simulator, a 128-dimensional byte vector,
to be available as additional information for supervision. This information vector is indeed guaranteed
to satisfy the conditional independence of the informed POMDP: p(o|i, s) = p(o|i). Moreover, we
postprocess this additional information by only selecting the subset of variables that are relevant to the
game that is considered, according to the annotations provided in [Anand et al., 2019]. Depending on

8

https://github.com/danijar/dreamerv3
https://github.com/glambrechts/informed-dreamer

the game, this information vector might contain the number of remaining opponents, their positions,
the player position, its state, etc.

1000

2000

Asteroids

5000

10000

Battle Zone

50

100

Bowling

−25

0

25
Boxing

0

5

Breakout

0

500

Frostbite

0.0 0.1
0

5000

Hero

0.0 0.1

1000

2000
Ms Pacman

0.0 0.1

−20

−10

Pong

0.0 0.1

0

2500

Private Eye

0.0 0.1
0

1000

Qbert

0.0 0.1

200

400

Seaquest

Time steps (M)

Uninformed Informed

Figure 5: Uninformed Dreamer versus Informed Dreamer (i = ϕ(RAM)) on the Flickering Atari
environments: non-discounted return with respect to the number of million steps. Results show the
mean, minimum and maximum values over four runs.

Figure 5 shows that the speed of convergence and the performance of the policies is greatly improved
by considering additional information for three environments (Asteroids, Bowling, and Pong), while
degraded for four others (Boxing, Frostbite, Hero and Ms Pacman) and left similar for the rest. The
final non-discounted returns are given in Table 2 in Appendix C, offering similar conclusions.

6.3 Velocity Control

In the Velocity Control environments, we consider the standard DeepMind Control task [Tassa et al.,
2018] where only the joints velocities are available as observations, and not their absolute positions,
which is a standard benchmark in partially observable RL literature [Han et al., 2019, Lee et al.,
2020, Warrington et al., 2021]. These environments use a discount factor of γ = 0.997. For these
environments, we consider the complete state (including the positions) to be available as additional
information.

0

200

Acrobot Swingup

500

1000
Cartpole Balance

0

1000
Cartpole Balance Sparse

250

500

750

Cartpole Swingup

0

50

Cartpole Swingup Sparse

0

500

Cheetah Run

0

1000
Cup Catch

0

500

Finger Spin

0

1000
Finger Turn Easy

0

1000
Finger Turn Hard

0

200

Hopper Hop

0

500

Hopper Stand

0 1
0

500

Pendulum Swingup

0 1
0

1000
Reacher Easy

0 1
0

1000
Reacher Hard

0 1
0

500

Walker Run

0 1

500

1000
Walker Stand

0 1
0

1000
Walker Walk

Time steps (M)

Uninformed Informed

Figure 6: Uninformed Dreamer versus Informed Dreamer (i = s) on the Velocity Control environ-
ments: non-discounted return with respect to the number of million steps. Results show the mean,
minimum and maximum values over four runs.

Figure 6 shows that the speed of convergence and the performance of the policies is greatly improved
in this benchmark, for nearly all of the considered games. Moreover, the final non-discounted returns
are given in Table 3 in Appendix C, and show that the policies obtained after one million time steps
are generally better when considering additional information.

6.4 Flickering Control

In the Flickering Control environments, the agent performs one of the standard DeepMind Control
task from images but through a flickering screen. Like for the Flickering Atari environments, the

9

dynamics are left unchanged, except that the agent may randomly observe a blank screen instead of
the task screen, with probability p = 0.5. These environments use a discount factor of γ = 0.997.
For these environments, we consider the state to be available as additional information, as for the
Velocity Control environments.

0

500
Acrobot Swingup

500

1000
Cartpole Balance

0

1000
Cartpole Balance Sparse

0

500

Cartpole Swingup

0

500

Cartpole Swingup Sparse

0

500

Cheetah Run

0

1000
Cup Catch

0

500

Finger Spin

0

1000
Finger Turn Easy

0

1000
Finger Turn Hard

0

200

Hopper Hop

0

500

Hopper Stand

0 2
0

500

Pendulum Swingup

0 2
0

1000
Reacher Easy

0 2
0

500

Reacher Hard

0 2
0

500

Walker Run

0 2

500

1000
Walker Stand

0 2
0

1000
Walker Walk

Time steps (M)

Uninformed Informed

Figure 7: Uninformed Dreamer versus Informed Dreamer (i = s) on the Flickering Control
environments: non-discounted return with respect to the number of million steps. Results show the
mean, minimum and maximum values over four runs.

Regarding this benchmark, considering additional information seem to degrade learning, generally
resulting in worse policies. This suggests that not all information is good to learn, some might be
irrelevant to the control task and hinders the learning of optimal policies. The final returns are given in
Table 4 in Appendix C, and offer similar conclusions. We hypothesize that the flickering environments
may not be the most suitable benchmarks to measure the ability to handle partial observability, as
they probably do not require much memory. Moreover, in certain cases, the conditional information
distribution might be difficult to approximate or even irrelevant to the control task.

7 Conclusion

In this work, we introduced a new formalization for considering additional information available at
training time for POMDP, called the informed POMDP. In this context, we proposed an objective for
learning recurrent sufficient statistic for the optimal control. Next, we showed that this objective can
be slightly modified to provide an environment model from which latent trajectories can be generated.
We then adapted a successful model-based RL algorithm, known as Dreamer, with this informed
world model, resulting in the Informed Dreamer algorithm. By considering several environments
from the partially observable RL literature, we showed that this informed learning objective improves
the convergence speed and quality of the policies in several environments. However, we also observed
that this informed objective hurts performance in some environments, motivating further work in
which a particular attention is given to the design of the information i.

Acknowledgements

The authors would like to thank our colleagues Pascal Leroy, Arnaud Delaunoy, Renaud Vandeghen
and Florent De Geeter for their valuable comments on this manuscript. Gaspard Lambrechts gratefully
acknowledges the financial support of the Wallonia-Brussels Federation for his FRIA grant. Adrien
Bolland gratefully acknowledges the financial support of the Wallonia-Brussels Federation for his
FNRS grant. Computational resources have been provided by the Consortium des Équipements
de Calcul Intensif (CÉCI), funded by the National Fund for Scientific Research (F.R.S.-FNRS)
under Grant No. 2502011 and by the Walloon Region, including the Tier-1 supercomputer of the
Wallonia-Brussels Federation, infrastructure funded by the Walloon Region under Grant No. 1117545.

10

References
Ankesh Anand, Evan Racah, Sherjil Ozair, Yoshua Bengio, Marc-Alexandre Côté, and R Devon

Hjelm. Unsupervised State Representation Learning in Atari. Advances in Neural Information
Processing Systems, 32, 2019.

Karl Johan Åström. Optimal Control of Markov Processes with Incomplete State Information.
Journal of Mathematical Analysis and Applications, 10:174–205, 1965.

Andrea Baisero and Christopher Amato. Unbiased Asymmetric Reinforcement Learning under Partial
Observability. In Proceedings of the 21st International Conference on Autonomous Agents and
Multiagent Systems, pages 44–52, 2022.

Andrea Baisero, Brett Daley, and Christopher Amato. Asymmetric DQN for Partially Observable
Reinforcement Learning. In Uncertainty in Artificial Intelligence, pages 107–117. PMLR, 2022.

Bram Bakker. Reinforcement Learning with Long Short-Term Memory. Advances in Neural
Information Processing Systems, 14, 2001.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The Arcade Learning
Environment: an Evaluation Platform for General Agents. Journal of Artificial Intelligence
Research, 47:253–279, 2013.

José M Bernardo and Adrian FM Smith. Bayesian Theory, volume 405. John Wiley & Sons, 2009.

Lars Buesing, Theophane Weber, Sébastien Racaniere, SM Eslami, Danilo Rezende, David P Reichert,
Fabio Viola, Frederic Besse, Karol Gregor, Demis Hassabis, et al. Learning and Querying Fast
Generative Models for Reinforcement Learning. arXiv preprint arXiv:1802.03006, 2018.

Sanjiban Choudhury, Mohak Bhardwaj, Sankalp Arora, Ashish Kapoor, Gireeja Ranade, Sebastian
Scherer, and Debadeepta Dey. Data-driven planning via imitation learning. The International
Journal of Robotics Research, 37(13-14):1632–1672, 2018.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep Reinforcement
Learning in a Handful of Trials Using Probabilistic Dynamics Models. Advances in Neural
Information Processing Systems, 31, 2018.

Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron C Courville, and Yoshua
Bengio. A Recurrent Latent Variable Model for Sequential Data. Advances in Neural Information
Processing Systems, 28, 2015.

Vladimir Egorov and Alexei Shpilman. Scalable Multi-Agent Model-Based Reinforcement Learning.
In Proceedings of the 21st International Conference on Autonomous Agents and Multiagent
Systems, pages 381–390, 2022.

Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson.
Counterfactual Multi-Agent Policy Gradients. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32 (1), 2018.

Karol Gregor, Danilo Jimenez Rezende, Frederic Besse, Yan Wu, Hamza Merzic, and Aaron van den
Oord. Shaping Belief States with Generative Environment Models for RL. Advances in Neural
Information Processing Systems, 32, 2019.

Zhaohan Daniel Guo, Mohammad Gheshlaghi Azar, Bilal Piot, Bernardo A Pires, and Rémi Munos.
Neural Predictive Belief Representations. arXiv preprint arXiv:1811.06407, 2018.

Zhaohan Daniel Guo, Bernardo Avila Pires, Bilal Piot, Jean-Bastien Grill, Florent Altché, Rémi
Munos, and Mohammad Gheshlaghi Azar. Bootstrap Latent-Predictive Representations for Multi-
task Reinforcement Learning. In International Conference on Machine Learning, pages 3875–3886.
PMLR, 2020.

David Ha and Jürgen Schmidhuber. Recurrent World Models Facilitate Policy Evolution. Advances
in Neural Information Processing Systems, 31, 2018.

11

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning Latent Dynamics for Planning from Pixels. In International Conference on
Machine Learning, pages 2555–2565. PMLR, 2019.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to Control: Learning
Behaviors by Latent Imagination. In International Conference on Learning Representations, 2020.

Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering Atari with
Discrete World Models. In International Conference on Learning Representations, 2021.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering Diverse Domains
through World Models. arXiv preprint arXiv:2301.04104, 2023.

Dongqi Han, Kenji Doya, and Jun Tani. Variational Recurrent Models for Solving Partially Observable
Control Tasks. In Internal Conference on Learning Representations, 2019.

Matthew Hausknecht and Peter Stone. Deep Recurrent Q-Learning for Partially Observable MDPs.
In 2015 AAAI Fall Symposium Series, 2015.

Nicolas Heess, Jonathan J Hunt, Timothy P Lillicrap, and David Silver. Memory-Based Control with
Recurrent Neural Networks. arXiv preprint arXiv:1512.04455, 2015.

Jay Hennig, Sandra A Romero Pinto, Takahiro Yamaguchi, Scott W Linderman, Naoshige Uchida,
and Samuel J Gershman. Emergence of belief-like representations through reinforcement learning.
bioRxiv, pages 2023–04, 2023.

Yitian Hong, Yaochu Jin, and Yang Tang. Rethinking Individual Global Max in Cooperative
Multi-Agent Reinforcement Learning. Advances in Neural Information Processing Systems, 35:
32438–32449, 2022.

Maximilian Igl, Luisa Zintgraf, Tuan Anh Le, Frank Wood, and Shimon Whiteson. Deep Variational
Reinforcement Learning for POMDPs. In International Conference on Machine Learning, pages
2117–2126. PMLR, 2018.

Gaspard Lambrechts, Adrien Bolland, and Damien Ernst. Recurrent Networks, Hidden States and
Beliefs in Partially Observable Environments. Transactions on Machine Learning Research, 2022.
ISSN 2835-8856.

Alex X Lee, Anusha Nagabandi, Pieter Abbeel, and Sergey Levine. Stochastic Latent Actor-Critic:
Deep Reinforcement Learning with a Latent Variable Model. Advances in Neural Information
Processing Systems, 33:741–752, 2020.

Pascal Leroy, Damien Ernst, Pierre Geurts, Gilles Louppe, Jonathan Pisane, and Matthia Sabatelli.
QVMix and QVMix-Max: Extending the Deep Quality-Value Family of Algorithms to Cooperative
Multi-Agent Reinforcement Learning. In AAAI Workshop on Reinforcement Learning in Games,
2021.

Shihui Li, Yi Wu, Xinyue Cui, Honghua Dong, Fei Fang, and Stuart Russell. Robust Multi-Agent
Reinforcement Learning via Minimax Deep Deterministic Policy Gradient. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 33 (01), pages 4213–4220, 2019.

Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi-Agent
Actor-Critic for Mixed Cooperative-Competitive Environments. Advances in Neural Information
Processing Systems, 30, 2017.

Xueguang Lyu, Andrea Baisero, Yuchen Xiao, and Christopher Amato. A deeper understanding of
state-based critics in multi-agent reinforcement learning. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 36 (9), pages 9396–9404, 2022.

Xiao Ma, Peter Karkus, David Hsu, Wee Sun Lee, and Nan Ye. Discriminative Particle Filter
Reinforcement Learning for Complex Partial Observations. In International Conference on
Learning Representations, 2020.

12

Hai Nguyen, Brett Daley, Xinchao Song, Christopher Amato, and Robert Platt. Belief-Grounded
Networks for Accelerated Robot Learning under Partial Observability. In Conference on Robot
Learning, pages 1640–1653. PMLR, 2021.

Hai Nguyen, Andrea Baisero, Dian Wang, Christopher Amato, and Robert Platt. Leveraging Fully
Observable Policies for Learning under Partial Observability. In Conference on Robot Learning,
2022.

Bei Peng, Tabish Rashid, Christian Schroeder de Witt, Pierre-Alexandre Kamienny, Philip Torr,
Wendelin Böhmer, and Shimon Whiteson. FACMAC: Factored Multi-Agent Centralised Policy
Gradients. Advances in Neural Information Processing Systems, 34:12208–12221, 2021.

Lerrel Pinto, Marcin Andrychowicz, Peter Welinder, Wojciech Zaremba, and Pieter Abbeel. Asym-
metric Actor Critic for Image-Based Robot Learning. In 14th Robotics: Science and Systems, RSS
2018. MIT Press Journals, 2018.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob Foerster, and
Shimon Whiteson. QMIX: Monotonic Value Function Factorisation for Deep Multi-Agent Rein-
forcement Learning. In International Conference on Machine Learning, pages 4295–4304. PMLR,
2018.

Tabish Rashid, Gregory Farquhar, Bei Peng, and Shimon Whiteson. Weighted QMix: Expanding
Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning. Advances
in Neural Information Processing Systems, 33:10199–10210, 2020.

Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung Yi. QTRAN:
Learning to Factorize with Transformation for Cooperative Multi-Agent Reinforcement Learning.
In International Conference on Machine Learning, pages 5887–5896. PMLR, 2019.

Jayakumar Subramanian, Amit Sinha, Raihan Seraj, and Aditya Mahajan. Approximate Information
State for Approximate Planning and Reinforcement Learning in Partially Observed Systems.
Journal of Machine Learning Research, 23(12):1–83, 2022.

Richard S Sutton. Dyna, an Integrated Architecture for Learning, Planning, and Reacting. ACM
Sigart Bulletin, 2(4):160–163, 1991.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,
Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind Control Suite. arXiv preprint
arXiv:1801.00690, 2018.

Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. QPLEX: Duplex Dueling
Multi-Agent Q-Learning. In International Conference on Learning Representations, 2021.

Rose E Wang, Michael Everett, and Jonathan P How. R-MADDPG for Partially Observable Environ-
ments and Limited Communication. arXiv preprint arXiv:2002.06684, 2020.

Andrew Warrington, Jonathan W Lavington, Adam Scibior, Mark Schmidt, and Frank Wood. Robust
Asymmetric Learning in POMDPs. In International Conference on Machine Learning, pages
11013–11023. PMLR, 2021.

Daan Wierstra, Alexander Förster, Jan Peters, and Jürgen Schmidhuber. Recurrent Policy Gradients.
Logic Journal of the IGPL, 18(5):620–634, 2010.

Marvin Zhang, Zoe McCarthy, Chelsea Finn, Sergey Levine, and Pieter Abbeel. Learning Deep
Neural Network Policies with Continuous Memory States. In IEEE International Conference on
Robotics and Automation (ICRA), pages 520–527. IEEE, 2016.

Marvin Zhang, Sharad Vikram, Laura Smith, Pieter Abbeel, Matthew Johnson, and Sergey Levine.
SOLAR: Deep Structured Representations for Model-Based Reinforcement Learning. In Interna-
tional Conference on Machine Learning, pages 7444–7453. PMLR, 2019.

Pengfei Zhu, Xin Li, Pascal Poupart, and Guanghui Miao. On Improving Deep Reinforcement
Learning for POMDPs. arXiv preprint arXiv:1704.07978, 2017.

13

A Proof of the Sufficiency of Recurrent Predictive Sufficient Statistics

In this section, we prove Theorem 1, that is recalled below.

Theorem 1 (Sufficiency of recurrent predictive sufficient statistics). In an informed POMDP P̃ , a
statistic f : H → Z is sufficient for the optimal control if it is (i) recurrent and (ii) predictive sufficient
for the reward and next information given the action,

(i) f(h′) = u(f(h), a, o′), ∀h′ = (h, a, o′), (6)

(ii) p(r, i′|h, a) = p(r, i′|f(h), a), ∀(h, a, r, i′). (7)

Proof. From Proposition 4 and Theorem 5 of [Subramanian et al., 2022], we know that a statistic
is sufficient for the optimal control of an execution POMDP if it is (i) recurrent and (ii’) predictive
sufficient for the reward and next observation given the action: p(r, o′|h, a) = p(r, o′|f(h), a). Let
us consider a statistic f : H → A satisfying (i) and (ii). Now, let us show that it also satisfy (ii’). We
have,

p(r, o′|f(h), a) =
∫
I
p(r, o′, i′|f(h), a) di′ (18)

=

∫
I
p(o′|r, i′, f(h), a)p(r, i′|f(h), a) di′, (19)

using the law of total probability and the chain rule. As can be seen from the informed POMDP
formalization of Section 3 and the resulting Bayesian network in Figure 1, the Markov blanket of o′
is {i′}. As a consequence, o′ is conditionally independent of any other variable given i′. In particular,
p(o′|i′, r, f(h), a) = p(o|i′), such that,

p(r, o′|f(h), a) =
∫
I
p(o′|i′)p(r, i′|f(h), a) di′. (20)

From hypothesis (ii), we can write,

p(r, o′|f(h), a) =
∫
I
p(o′|i′)p(r, i′|h, a) di′. (21)

Finally, exploiting the Markov blanket {i′} of o′, the chain rule and the law of total probability again,
we have,

p(r, o′|f(h), a) =
∫
I
p(o′|i′, r, h, a)p(r, i′|h, a) di′ (22)

=

∫
I
p(o′, r, i′|h, a) di′ (23)

= p(r, o′|h, a). (24)

This proves that (ii) implies (ii’). As a consequence, any statistic satisfying (i) and (ii) is a sufficient
statistic from the history for the optimal control of the informed POMDP.

B Recurrent Sufficient Statistic Objective

First, let us consider a fixed history h and action a. Let us recall that two density functions p(r, i′|h, a)
and p(r, i′|f(h), a) are equal almost everywhere if, and only if, their KL divergence is zero,

E
p(r,i′|h,a)

log
p(r, i′|h, a)

p(r, i′|f(h), a) = 0. (25)

Now, let us consider a probability density function p(h, a) that is non zero everywhere. We have that
the KL divergence from p(r, i′|h, a) to p(r, i′|f(h), a) is equal to zero for almost every history h and
action a if, and only if, it is zero on expectation over p(h, a), since the KL divergence is non-negative,

E
p(r,i′|h,a)

log
p(r, i′|h, a)

p(r, i′|f(h), a)
a.e.
= 0 ⇔ E

p(h,a,r,i′)
log

p(r, i′|h, a)
p(r, i′|f(h), a) = 0. (26)

14

Rearranging, we have that p(r, i′|h, a) is equal to p(r, i′|f(h), a) for almost every h, a, r and i′ if,
and only if,

E
p(h,a,r,i′)

log p(r, i′|h, a) = E
p(h,a,r,i′)

log p(r, i′|f(h), a). (27)

Now, we recall the data processing inequality, allowing to write, for any statistic f ′,

E
p(h,a,r,i′)

log p(r, i′|h, a) ≥ E
p(h,a,r,i′)

log p(r, i′|f ′(h), a). (28)

since h(r, i′|h, a) = h(r, i′|h, f(h), a) ≤ h(r, i′|f(h), a), ∀(h, a), where h(x) is the differential
entropy of random variable x. Assuming that there exists at least one f : H → Z for which the
inequality is tight, we obtain the following objective for a predictive sufficient statistic f ,

max
f : H→Z

E
p(h,a,r,i′)

log p(r, i′|f(h), a). (29)

Unfortunately, the probability density p(r, i′|f(h), a) is unknown. However, knowing that the
distribution that maximizes the log-likelihood of samples from p(r, i′|f(h), a) is p(r, i′|f(h), a)
itself, we can write,

E
p(h,a,r,i′)

log p(r, i′|f(h), a) = max
q : Z×A→∆(R×I)

E
p(h,a,r,i′)

log q(r, i′|f(h), a). (30)

By jointly maximizing the probability density function q : Z ×A → ∆(R× I), we obtain,

max
f : H→Z

q : Z×A→∆(R×I)

E
p(h,a,r,i′)

log q(r, i′|f(h), a). (31)

This objective ensures that the statistic f(h) is predictive sufficient for the reward and next information
given the action. If f(h) is a recurrent statistic, then it is also sufficient for the optimal control,
according to Theorem 1.

C Informed Dreamer

The Informed Dreamer algorithm is presented in Algorithm 3. Differences with the Uninformed
Dreamer algorithm [Hafner et al., 2020] are highlighted in blue. In addition, it can be noted that in
the original Dreamer algorithm, the statistic zt encodes ht = (o0, a0, . . . , ot) and at, instead of ht
only. As a consequence, the prior distribution et ∼ qpθ (·|zt) can be conditioned on the statistic zt
only, instead of the statistic and last action. Similarly, the encoder distribution et ∼ qpθ (·|zt, ot+1)
can be conditioned on the statistic zt only, instead of the statistic and last action. On the other hand,
the latent policy at+1 ∼ g(·|zt, et) should be conditioned on the statistic zt and the new latent et
to account for the last observation, and the same is true for the value function vψ(zt, et). In the
experiments, we follow their implementation for both the Uninformed Dreamer and the Informed
Dreamer, according to the code that we released at github.com/glambrechts/informed-dreamer.

Following Dreamer, the algorithm introduces the continuation flag ct, which indicates whether state
st is terminal. A terminal state st is a state from which the agent can never escape, and in which any
further action provides a zero reward. It follows that the value function of a terminal state is zero, and
trajectories can be truncated at terminal states since we do not need to learn their value or the optimal
policy in those states. Alternatively, ct can be interpreted as an indicator that can be extracted from
the observation ot, but we have decided to make it explicit in the algorithm.

We provide the final non-discounted rewards obtained by Dreamer and the Informed Dreamer for the
Varying Mountain Hike environments in Table 1, for the Flickering Atari environments in Table 2, for
the Velocity Control environments in Table 3, and for the Flickering Control environments in Table 4.

Algorithm 1 Encode

Inputs: Update function uθ , encoder qeθ , and histories
{
(anw−1, o

n
w)
W−1
w=0

}N−1

n=0
.

Let zn−1 = 0.
for w = 0 . . .W − 1 do

Let enw−1 ∼ qeθ(·|znw−1, a
n
w−1, o

n
w).

Let znw = uθ(z
n
w−1, a

n
w−1, e

n
w−1).

end for
Returns:

{
(znw, e

n
w)
W−2
w=−1

}N−1

n=0
.

15

https://github.com/glambrechts/informed-dreamer

Algorithm 2 Imagine
Inputs: Update function uθ , prior qpθ , policy gϕ, statistics, encoded latents and actions{
(znw, e

n
w, a

n
w)
W−2
w=−1

}N−1

n=0
.

Let zn,w−1 = znw, ên,w−1 = enw, an,w−1 = anw.
for k = 0 . . .K − 1 do

Let zn,wk = uθ(z
n,w
k−1, a

n,w
k−1, ê

n,w
k−1).

Let ên,wk ∼ qpθ (·|z
n,w
k , an,wk).

Let an,wk ∼ gϕ(·|zn,wk).
end for
Returns:

{{
(zn,wk , ên,wk)K−1

k=0

}W−2

w=−1

}N−1

n=0
.

Algorithm 3 Informed Dreamer - Direct Reward Maximization
Hyperparameters: Environment steps S, steps before training F , train ratio R, backpropagation horizon W ,
imagination horizon K, batch size N , replay buffer capacity B.
Initialize neural network parameters θ, ϕ, ψ randomly, initialize empty replay buffer B.
Let g = 0, t = 0, a−1 = 0, r−1 = 0, z−1 = 0.
Reset the environment and observe o0 and c0 (true at reset).
for s = 0 . . . S − 1 do

// Environment interaction
Encode observation ot to et−1 ∼ qeθ(·|zt−1, at−1, ot).
Update zt = uθ(zt−1, at−1, et−1).
Given the current history ht, take action at ∼ gϕ(·|zt).
Observe reward rt, information it+1, observation ot+1 and continuation flag ct+1.
if ct+1 is false (terminal state) then

Reset t = 0.
Reset the environment and observe o0 and c0 (true at reset).

end if
Update t = t+ 1.
Add trajectory of last W time steps (aw−1, rw−1, iw, ow, cw)

t
w=t−W+1 to the replay buffer B.

// Learning
while |B| ≥ F ∧ g < Rs do

// Environment learning
Draw N trajectories of length W

{
(anw−1, r

n
w−1, i

n
w, o

n
w, c

n
w)
W−1
w=0

}N−1

n=0
uniformly from the replay

buffer B.
Compute statistics and encoded latents{

(znw, e
n
w)
W−2
w=−1

}N−1

n=0
= Encode

(
uθ, q

e
θ ,
{
(anw−1, o

n
w)
W−1
w=0

}N−1

n=0

)
.

Update θ using ∇θ

∑N
n=0

∑W−2
w=−1 L

n
w, where an−1 = 0 and,

Lnw = log qiθ(i
n
w+1|znw, enw) + log qcθ(c

n
w+1|znw, enw) + log qrθ(r

n
w|znw, enw)

−KL (qeθ(·|znw, anw, onw+1) ∥ qpθ (·|z
n
w, a

n
w)) .

// Behaviour learning
Sample latent trajectories{{

(zn,wk , ên,wk)K−1
k=0

}W−2

w=−1

}N−1

n=0

= Imagine
(
uθ, q

p
θ , gϕ,

{
(znw, e

n
w, a

n
w)
W−2
w=−1

}N−1

n=0

)
.

Predict rewards rn,wk ∼ qrθ(·|zn,wk , ên,wk), continuations flags cn,wk+1 ∼ qcθ(·|zn,wk , ên,wk), and values
vn,wk = vψ(z

n,w
k).

Compute value targets using λ-returns, with Gn,wK−1 = vn,wK−1 and
Gn,wk = rn,wk + γcn,wk

(
(1− λ)vn,wk+1 + λGn,wk+1

)
.

Update ϕ using ∇ϕ

∑N−1
n=0

∑W−2
w=−1

∑K−1
k=0 Gn,wk .

Update ψ using ∇ψ

∑N−1
n=0

∑W−2
w=−1

∑K−1
k=0 ∥vψ(zn,wk) − sg(Gn,wk)∥2, where sg is the stop-gradient

operator.
Count gradient steps g = g + 1

end while
end for

16

Table 1: Final non-discounted reward on the Varying Mountain Hike environments.

ALTITUDE VARYING UNINFORMED INFORMED

FALSE FALSE −14.47 ± 03.27 −14.56 ± 03.45
FALSE TRUE −19.84 ± 03.91 −17.87 ± 01.18
TRUE FALSE −43.11 ± 59.89 −18.04 ± 11.94
TRUE TRUE −90.04 ± 35.57 −54.07 ± 54.87

Table 2: Final non-discounted reward on the Flickering Atari environments.

TASK UNINFORMED INFORMED

ASTEROIDS 1085.21 ± 236.29 1620.98 ± 579.77
BATTLE ZONE 5863.99 ± 2081.67 4258.01 ± 1000.00

BOWLING 55.08 ± 13.08 90.33 ± 04.51
BOXING 12.86 ± 03.21 −0.53 ± 10.69

BREAKOUT 03.38 ± 04.73 04.17 ± 01.53
FROSTBITE 413.95 ± 377.40 268.38 ± 490.85

HERO 4293.33 ± 2534.57 3133.27 ± 24.66
MS PACMAN 1262.75 ± 565.18 923.11 ± 665.01

PONG −19.24 ± 01.73 −9.08 ± 15.13
PRIVATE EYE −23.86 ± 57.74 448.28 ± 398.36

QBERT 879.47 ± 378.32 812.20 ± 1973.42
SEAQUEST 312.08 ± 80.83 302.60 ± 231.80

Table 3: Final non-discounted reward on the Velocity Control environments.

TASK UNINFORMED INFORMED

ACROBOT SWINGUP 66.21 ± 52.25 163.01 ± 139.63
CARTPOLE BALANCE 959.60 ± 08.13 967.45 ± 24.47

CARTPOLE BALANCE SPARSE 852.71 ± 53.15 810.24 ± 248.14
CARTPOLE SWINGUP 667.95 ± 54.72 701.96 ± 88.14

CARTPOLE SWINGUP SPARSE 01.53 ± 03.46 28.48 ± 109.70
CHEETAH RUN 619.95 ± 241.31 543.14 ± 136.00

CUP CATCH 732.09 ± 477.75 950.31 ± 48.63
FINGER SPIN 626.15 ± 211.54 640.60 ± 233.99

FINGER TURN EASY 579.49 ± 447.18 849.73 ± 102.69
FINGER TURN HARD 451.75 ± 479.93 828.81 ± 132.77

HOPPER HOP 158.88 ± 13.78 167.22 ± 34.24
HOPPER STAND 361.82 ± 22.89 595.42 ± 198.96

PENDULUM SWINGUP 355.11 ± 406.69 229.88 ± 479.81
REACHER EASY 931.37 ± 43.92 944.82 ± 44.94
REACHER HARD 853.13 ± 102.10 954.89 ± 14.17

WALKER RUN 430.21 ± 83.55 604.20 ± 75.88
WALKER STAND 883.65 ± 98.58 925.09 ± 56.47
WALKER WALK 867.97 ± 103.26 910.38 ± 21.88

Table 4: Final non-discounted reward on the Flickering Control environments.

TASK UNINFORMED INFORMED

ACROBOT SWINGUP 166.42 ± 117.81 333.86 ± 147.49
CARTPOLE BALANCE 988.09 ± 01.57 943.18 ± 39.97

CARTPOLE BALANCE SPARSE 971.12 ± 00.00 979.91 ± 00.00
CARTPOLE SWINGUP 838.44 ± 23.23 798.12 ± 28.26

CARTPOLE SWINGUP SPARSE 485.90 ± 334.90 677.38 ± 96.19
CHEETAH RUN 683.80 ± 53.87 590.43 ± 22.62

CUP CATCH 959.79 ± 12.75 946.11 ± 19.66
FINGER SPIN 708.31 ± 397.54 587.21 ± 188.07

FINGER TURN EASY 755.08 ± 483.89 925.93 ± 20.07
FINGER TURN HARD 568.66 ± 491.80 887.38 ± 32.84

HOPPER HOP 279.92 ± 30.22 213.99 ± 23.51
HOPPER STAND 450.49 ± 504.36 774.22 ± 120.96

PENDULUM SWINGUP 797.12 ± 70.80 741.94 ± 117.27
REACHER EASY 937.19 ± 16.79 926.02 ± 67.70
REACHER HARD 732.34 ± 168.36 556.36 ± 420.29

WALKER RUN 765.40 ± 21.11 580.77 ± 39.79
WALKER STAND 972.93 ± 39.72 933.29 ± 96.17
WALKER WALK 957.88 ± 26.84 898.33 ± 36.68

17

	Introduction
	Related Works
	Informed Partially Observable Markov Decision Process
	Informed POMDP and Execution POMDP
	Reinforcement Learning Objective

	Optimal Control with Recurrent Sufficient Statistics
	Recurrent Sufficient Statistics
	Learning Recurrent Sufficient Statistics
	Optimal Control with Recurrent Sufficient Statistics

	Model-Based Reinforcement Learning through Informed World Models
	Informed World Model
	Informed Dreamer

	Experiments
	Varying Mountain Hike
	Flickering Atari
	Velocity Control
	Flickering Control

	Conclusion
	Proof of the Sufficiency of Recurrent Predictive Sufficient Statistics
	Recurrent Sufficient Statistic Objective
	Informed Dreamer

