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Figure 1: We introduce the emg2pose dataset and benchmark to facilitate the development of pose
estimation models from sEMG. Our vemg2pose model is capable of estimating in real-time hand
pose (lower) from held-out users wearing an sEMG wristband (top). See text for further details.

Abstract

Hands are the primary means through which humans interact with the world.
Reliable and always-available hand pose inference could yield new and intu-
itive control schemes for human-computer interactions, particularly in virtual
and augmented reality. Computer vision is effective but requires one or multi-
ple cameras and can struggle with occlusions, limited field of view, and poor
lighting. Wearable wrist-based surface electromyography (sEMG) presents a
promising alternative as an always-available modality sensing muscle activi-
ties that drive hand motion. However, sEMG signals are strongly dependent
on user anatomy and sensor placement; existing sEMG models have thus
required hundreds of users and device placements to effectively generalize for
tasks other than pose inference. To facilitate progress on sEMG pose inference,
we introduce the emg2pose benchmark, which is to our knowledge the first
publicly available dataset of high-quality hand pose labels and wrist sEMG
recordings. emg2pose contains 2kHz, 16 channel sEMG and pose labels from
a 26-camera motion capture rig for 193 users, 370 hours, and 29 stages with
diverse gestures - a scale comparable to vision-based hand pose datasets. We
provide competitive baselines and challenging tasks evaluating real-world
generalization scenarios: held-out users, sensor placements, and stages. This
benchmark provides the machine learning community a platform for exploring
complex generalization problems, holding potential to significantly enhance
the development of sEMG-based human-computer interactions.
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1 Introduction

Despite rapid progress in computing hardware and software, current input devices can be inefficient
and non-intuitive for new and emerging computing platforms. This is particularly evident for spatial
interactions, such as those encountered in virtual and augmented reality, where conventional input
devices like controllers, keyboards, and mice do not offer the necessary level of intuitive use across
the population (requiring extensive practice for proficiency) nor sufficient bandwidth to enable precise
control (e.g., object manipulation). Interactions based on hand movements offer a high-dimensional
continuous input that is instinctive, universal, and particularly well suited to spatial interactions.
Furthermore, existing inputs can be viewed as low dimensional summaries of hand movements (e.g.
a mouse click tells you that a finger has pressed a button). As such, hand kinematics is a potentially
holistic and encompassing modality, covering existing inputs and extending them in a natural manner.
High fidelity hand tracking enables various AR/VR applications including gaming [Han et al., 2020],
virtual teaching [Shrestha et al., 2022], teleoperations [Santos Carreras, 2012, Darvish et al., 2023],
haptics [Scheggi et al., 2015], embodied realism [Wang et al., 2020], sports analytics [Gatt et al.,
2020], and healthcare and rehabilitation [Krasoulis et al., 2017].

Given the high utility and broad appeal of effective hand pose estimation, there have been diverse
approaches developed across many sensing modalities from: optical approaches (e.g. monocular,
multi-view, depth-based, motion capture, infrared) using fixed [Cai et al., 2018, Mueller et al., 2018,
Ge et al., 2016, Supančič et al., 2018, Park et al., 2020] or head-mounted cameras [Han et al., 2018];
wearable data gloves using magnetic [Parizi et al., 2019], inertial [Yang et al., 2021], capacitative
[Truong et al., 2018], and stretch sensors [Shen et al., 2016, Tashakori et al., 2024, Luo et al., 2021];
smart rings [Parizi et al., 2019]; wrist and forearm wearables that use impedance tomography [Zhang
and Harrison, 2015], inertial measurement units [Laput and Harrison, 2019], acoustics [Laput et al.,
2016] or ultrasound [McIntosh et al., 2017]. Each modality comes with its own hardware constraints
and limitations. Optical approaches can struggle with occlusions, poor lighting conditions, and limited
field of view, and often require multiple cameras for effective inference, which places constraints on
the overall size of the device. On the other hand, glove wearables can hinder dexterous manipulation
[Roda-Sales et al., 2020] and forearm wearables typically only support discrete gesture classification.

Surface electromyography (sEMG) sensing on the wrist or forearm provides an appealing alternative
that does not struggle with occlusion, field of view, poor lighting, or physical encumberance. sEMG
uses electrodes on the skin to measure electrical potentials generated by muscles during movement
[Stashuk, 2001]. Specifically, sEMG detects the electrical activity that occurs when spinal motor
neurons activate the muscle fibers that drive motion [Merletti and Farina, 2016]. As such, sEMG is
particularly well suited for kinematic inference and numerous approaches have been developed [Liu
et al., 2021, Quivira et al., 2018, Sosin et al., 2018, Sîmpetru et al., 2022b]. Nevertheless, learning a
universal sEMG-to-pose model that generalizes to new participants and kinematics is particularly
challenging. This is due to sEMG sensing containing many axes of variation, primarily: user anatomy,
sensor placement, and hand kinematics [CTRL-labs at Reality Labs et al., 2024, Liu et al., 2021].
User anatomy and sensor placement both influence the locations of the sensors relative to the muscles.
Hand kinematics influence what combination of muscle activities are sensed. Given the number
of generative dimensions, sEMG models are particularly data-hungry [CTRL-labs at Reality Labs
et al., 2024], necessitating many samples across these axes to effectively learn universal models that
generalize (see Section 4.4 experiments). Existing datasets are not open sourced and are relatively
small (<20 participant) and brief (<20 minutes per participant), thus hindering the development of
generic models [Liu et al., 2021, Sîmpetru et al., 2022a].

Another complication of sEMG is that it encodes muscle activity, which relates more closely to
motion than the pose that we would like to recover. As such, direct pose inference from sEMG is
particularly challenging (see Section 4), potentially requiring reasoning over long historical sEMG
sequences to disambiguate pose from sequences of indirect motion measurements. Extracting relevant
information from long sequences, or contexts, in the presence of ambiguity has been extensively
explored in fields such as CV [Brunetti et al., 2018, Kirillov et al., 2023, Pan et al., 2018], natural
language [Achiam et al., 2023, Kojima et al., 2022, Gu et al., 2021], and robotics [Lauri et al., 2022,
Dunion et al., 2024, Jang et al., 2022]. Despite this, prior sEMG works have shown promising results
for personalized or single-user pose inference settings [Liu et al., 2021, Sîmpetru et al., 2022b].

To facilitate progress toward developing universal sEMG-to-pose models, we introduce the emg2pose
benchmark dataset, a large-scale dataset of simultaneously recorded high-fidelity wrist sEMG record-
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ings and hand pose labels. High resolution sEMG recordings are obtained with the sEMG-RD wrist
band [CTRL-labs at Reality Labs et al., 2024](see Section 3.1) and high precision pose labels are
obtained from a 26-camera motion capture rig that offers benefits compared to multi-view computer
vision [Liu et al., 2021, Sosin et al., 2018]. To our knowledge, this is the only publicly-available
wrist-based sEMG hand pose dataset, spanning 193 users, 370 hours, and 29 diverse kinematic
categories, called stages, each containing diverse low-level behaviors, called gestures. In addition,
the 80M labelled frames that our dataset contains compares favourably with even the newest and
largest CV equivalents [Sener et al., 2022, Yu et al., 2020] in both number of frames as well as
subjects (see Table 2). We additionally provide three competitive baselines and challenging hand
pose inference benchmarks, investigating generalization to unseen users, stages, and user-stage
combinations. Instructions regarding accessing and using the emg2pose benchmark is provided in
https://github.com/facebookresearch/emg2pose. Given the high potential impact of sEMG
input devices, and the similar research challenges to existing fields, we believe this benchmark will
be of great value to the machine learning community.

2 Related Work

Table 1: The largest publicly available sEMG datasets
Dataset # Sess. # Subj. # Sess. / subj # Gest. Inc. Pose

Palermo et al. [2017] 100 10 10 7 No
Amma et al. [2015] 25 5 5 27 No
Du et al. [2017] 69 23 3 22 No
Jiang et al. [2021] 40 20 2 34 No

Ours 751 193 4 50 Yes

sEMG Datasets: There are sev-
eral publicly available sEMG datasets
for tasks other than pose regression,
specifically pose (sequence) classifi-
cation. Data have been collected with
either clinical-grade high-density elec-
trode arrays and amplifiers [Amma
et al., 2015, Du et al., 2017, Malešević et al., 2021, Jiang et al., 2021] or the MyoBand, a consumer-
grade hardware that has fewer channels and lower temporal resolution [Atzori et al., 2012, Pizzolato
et al., 2017, Lobov et al., 2018]. Clinical-grade hardware offers hundreds of recording channels and
acquisition rates >1 kHz but are impractical due to lengthy donning procedures that include shaving
the skin before applying conductive gel and the electrode arrays. In contrast, existing consumer-grade
hardware is easier to deploy, but is limited by low bandwidth (200 Hz) and channel counts (8) and
thus may not provide the level of fidelity required for pose estimation. In contrast, our dataset uses
the sEMG-RD band [CTRL-labs at Reality Labs et al., 2024], that can be quickly donned, can record
16 channels at >2 kHz and has proven performant for generalized pose classification modelling.

Of the aforementioned datasets, most only include single recording sessions per subject [Atzori et al.,
2012, 2014, Pizzolato et al., 2017, Lobov et al., 2018, Malesevic et al., 2020, Malešević et al., 2021],
limiting the ability to develop models that generalize across device placements. Palermo et al. [2017],
Amma et al. [2015], Du et al. [2017], Jiang et al. [2021] include 10, 5, 23, 20 subjects and up to
10, 5, 3, 2 sessions per subject, respectively. Our dataset includes 193 users and 751 sessions, allowing
us train models that generalize favourably across these axes (see Table 1, reporting upper bound
statistics for Du et al. [2017]). In Table 1, # gestures represents the number of pose classification
categories. Category definitions may vary significantly across datasets and thus comparisons should
be taken with a pinch-of-salt. Our dataset contains gesture categories as well as joint angles.

Pose Regression from sEMG: Several papers have studied pose regression from sEMG, although
without open sourcing datasets. Liu et al. [2021] use the MyoBand to estimate hand pose across
diverse movements in an 11 participant dataset. They test sEMG decoding models of hand pose across
users and sessions with both convolutional (NeuroPose; see Section 3.5) and LSTM architectures.
Sîmpetru et al. [2022a] (SensingDynamics; see Section 3.5) use a clinic-grade system to collect
several dozen minute datasets in a set of 13 participants. They use a custom 3D convolutional
architecture to predict hand joint angles, landmark positions, and grip force, reporting tracking with
low error in a held-out test set within each participant. Existing datasets have been limited in scale,
with only 11 or 13 participants, and 15 or 20 minutes of data per participant for Liu et al. [2021],
Sîmpetru et al. [2022a], respectively, likely limiting generalization across users. In contrast, our
dataset includes 193 users and 370 hours, aiding the development of generic models that generalize
across users (see Section 4.4).

Pose from Computer Vision: Computer vision (CV) based hand pose estimation has received
considerable attention in recent years, usually taking depth, RGB, or both as input, and leveraging
large open-sourced datasets [Mueller et al., 2017, 2018, Spurr et al., 2018, 2020, 2021, Wan et al.,
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2019, Boukhayma et al., 2019]. Labels are either obtained using marker-based motion capture
[Fan et al., 2023] - whose markers create an input distributional shift due to lack of markers during
deployment - or using alternate approaches with lower quality labels or inputs, such as multi-view
cameras [Zimmermann et al., 2019, Moon et al., 2024], synthetic data [Zimmermann and Brox, 2017],
and magnetic sensors [Yuan et al., 2017]. In contrast, motion capture markers afford high quality
labels for sEMG, but they do not affect the data from which predictions are generated.

Table 2: Largest CV hand datasets. The per
hand row counts the data from the left and
right hands independently, whereas the across
hands row pools those data.

Dataset # Frames # Subjects # FPS

Yuan et al. [2017] 2.2M 10 60
Moon et al. [2020] 2.6M 27 5-30
Moon et al. [2024] 1.5M 10 5-30
Samarth et al. [2020] 2.9M 50 n/a
Fan et al. [2023] 2.1M 10 30
Liu et al. [2022] 2.4M 4 n/a
Sener et al. [2022] 111M 53 n/a
Yu et al. [2020] 24M 453 60

Ours (per hand) 80M 193 60
Ours (across hands) 40M 193 60

The gestural diversity of CV-based datasets mostly
focuses on exploring the full static pose space of
the hand [Yuan et al., 2017, Zimmermann and Brox,
2017, Zimmermann et al., 2019], interaction with
objects [Fan et al., 2023, Samarth et al., 2020, Ham-
pali et al., 2020] or hand-hand interactions [Moon
et al., 2020, 2024]. Conversely, our dataset focuses
on movements of the hand because sEMG, unlike CV,
is more closely related to motion than pose. Further-
more, our dataset has 80M frames and 193 subjects,
comparing favorably to CV datasets (see Table 2,
reporting million frames, subjects and fps).

Pose from Other Modalities: In addition to vision
and sEMG, there exists a diverse range of additional
wearable approaches to pose inference (see Section 1), which typically focus on pose (sequence)
classification. For example, Achenbach et al. [2023] released a dataset for pose classification using
commercially available sensor gloves. Other datasets typically use bespoke hardware and are small
in scale, with the exception of a large (50 participant, 25 class) dataset available for classification
using commercially available smartwatches [Laput and Harrison, 2019].

3 emg2pose Benchmark

3.1 sEMG Device

Data are collected using the 16 channel bipolar sEMG-RD wrist band from CTRL-labs at Reality
Labs et al. [2024]. They demonstrate the effectiveness of this device for generalized pose sequence
classification across 6400 participants, the largest study to date. This high performance is achieved
without the need for high-density sEMG platforms [Amma et al., 2015], with a similar form factor
and ease of use to other low-density platforms [Rawat et al., 2016] (see Figs. 1 and 2 for a visual
depiction of the device). In contrast to the previously used low-density Thalmic Labs Myo band [Liu
et al., 2021] that streams data at 200Hz, across 8 channels and with 8-bits, sEMG-RD senses at 2kHz,
across 16 channels and with 12-bits. For more details see Appendix B.1.

3.2 Dataset

Table 3: emg2pose dataset statistics, reporting mean and standard deviation. Three separate test sets
measure generalization to new users, types of behaviors (stages), and user-behavior combinations
(user, stage). Note that the overall hours is the sum of the hours across all splits. The number of hours
counts the right-handed and left-handed data separately for each participant.

Train Val Test Overall
User User, Stage User Stage User, Stage

Subjects 158 15 15 20 158 20 193
Unique stages 23 23 6 23 6 6 29
Hours 250.9 21.7 4.6 31.9 54.2 7.0 370.3
Hours / subject 1.6 ± 0.4 1.4 ± 0.5 0.3 ± 0.1 1.6 ± 0.3 0.3 ± 0.1 0.3 ± 0.0 1.9 ± 0.5
Sessions / subject 3.9 ± 0.6 3.8 ± 0.6 3.7 ± 0.6 3.9 ± 0.3 3.8 ± 0.7 3.8 ± 0.5 3.9 ± 0.6

Consenting participants (see Appendix A) stood in a 26 camera motion capture array (Appendix B.2).
A research assistant placed 19 motion capture markers on each of the participants’ hands (Han et al.
[2018]) and an sEMG-RD band on each wrist [CTRL-labs at Reality Labs et al., 2024]. All sEMG
and motion capture data were streamed to a real-time data acquisition system at 2kHz and 60 Hz,
respectively. We time-aligned device streams using software timestamps, which we found to show
less than 10ms relative latency between devices. Motion capture data were post-processed using

4



Figure 2: Dataset composition: a) sEMG-RD wrist-band and motion capture marker (white dots)
setup. b) Dataset breakdown. i) Users are prompted to perform a sequence of movement types
(gestures), such as counting up and down. sEMG and poses are recorded simultaneously. ii) Groups
of specific gesture types comprise a stage, such as counting. Stages are partitioned into train/val/test
splits (see Section 3.4). Our dataset consists of 29 diverse stages. iii) Each of the 193 users perform
various stages, donning on-and-off the wrist band. In total we record 370 hours of data.

an offline inverse kinematics (IK) solver to reconstruct the joint angles of the hand (Appendices A
and B.2). The IK solver failed for 12.7% of frames, typically due to simultaneously occluded markers.
Finally, joints angles were linearly interpolated to 2 kHz to match the sample rate of sEMG.

Participants followed a standardized data collection protocol across a diverse set of 45-120 s stages
in which participants were prompted to perform either a mix of 3-5 similar gestures in random
orderings (e.g. specific finger counting orderings such as ascending or descending) or unconstrained
freeform movements (see Appendices A and B.3 for further details). Stages can be viewed as a
categorization of gestures. For example, the Counting stage categorizes Counting Up and Counting
Down gestures (see Fig. 2). During data collection, the majority of users donned on-and-off the
device 4 times, with a small fraction only thrice. Each group of stages with a single band placement is
referred to as a session. We report the prompted movements for each stage in detail in Appendix B.3.
During each stage, we prompted participants using videos and verbal instructions by the research
assistant. Participants were instructed to move their hands across their body and between their waist
and shoulders to ensure a range of different postures were sampled. See Fig. 2 for a visualization of
the data collection.

The full dataset is organized hierarchically by participant, session, and stage. In total, we collected
data from 193 participants, spanning 370 hours, 751 sessions, 29 diverse stages (see Appendix B.3
for further details and Table 3 for statistics). Note that the number of hours counts the right-handed
and left-handed data separately for each participant, although they were collected simultaneously.
To our knowledge, this is the only open-sourced sEMG and motion capture dataset and is of similar
scale to those in the CV literature [Yuan et al., 2017, Brahmbhatt et al., 2020, Moon et al., 2020,
2024]. The entire dataset consists of 25, 253 HDF5 files, each consisting of time-aligned sEMG and
joint angles for a single hand in a single stage.

3.3 Tasks

The emg2pose benchmark includes two benchmark tasks: pose regression and pose tracking.

Regression: For this task, previously explored in Liu et al. [2021], Sîmpetru et al. [2022b], one must
regress from sEMG to hand joint angle sequences. Without knowledge of the initial hand pose and
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velocity, this is a partially observable task [Spaan, 2012], and thus particularly challenging for the
reasons mentioned in Section 1. Pose regression is the most challenging task and is meant to promote
continued research with applications including unimodal pose prediction in settings where computer
vision is infeasible or unreliable.

Tracking: For this simpler task, one must regress from sEMG to hand joint angle sequences whilst
being provided with the initial hand pose in the sequence. Providing the initial pose addresses
the partial observability dilemma. Nevertheless, this task still poses the generalization challenges
discussed in Section 1. The tracking task is meant to promote initial research and progress, and has
several real-world applications. An effective tracker would provide great value in settings where: the
user is prompted to match a given pose before tracking commences; visual pose prediction feedback
is provided, allowing the user to adjust their pose to correct for erroneous initial predictions; and
when ground truth pose estimates are intermittently available, such as from computer vision settings
whenever partial or full occlusions occur.

Evaluation: We evaluate on 5 second trajectories and report test set mean absolute joint angular
error (◦) and mean (Euclidean) landmark distance (mm). Landmarks correspond to joint and fingertip
Cartesians. We do not regress to wrist angles, which were not recorded for this dataset. Landmarks
corresponding to the most proximal joint for fingers other than the thumb always have zero error
because the wrist does not move. These landmarks are therefore excluded from our metrics. We
obtain landmark locations by passing joint angles through a default hand model. This introduces bias,
as it will not perfectly align with each user’s anatomy. We leave addressing this limitation for future
work. In real world applications, it will be important to not only improve mean performance for these
metrics, but also lower percentile scores across the population.

3.4 Held-Out Settings

Effective pose inference requires models that generalize across device placements, users, and hand
kinematics. Prior works have only investigated generalization across a subset of these axes, such as
user [Liu et al., 2021, CTRL-labs at Reality Labs et al., 2024] or device placement [Liu et al., 2021,
Palermo et al., 2017], but generalization to new types of kinematics has not been explicitly explored.
In contrast, we provide three separate test sets intended to measure these axes independently. The
statistics of each held-out scenario are reported in Table 3. In short, users corresponds to unseen
users, but in-distribution kinematics (stages). Stages represents unseen kinematic categories, but
in-distribution users. Finally, users, stages constitute held-out users and stages, and is of greatest
value as the most encompassing real-world deployment setting. Both held out user scenarios all
constitute new device placements, which vary across all sessions. We break down train, validation
and test splits roughly using 0.7 : 0.1 : 0.2 ratio with exact splits shown in Table 3. Held-out users
are randomly sampled and held-out stages are chosen to be visually out-of-distribution with respect
to the training stages. See Fig. 3 for a breakdown of which stages are in the training and held-out sets,
Table 6 for details regarding each stage, and Appendix B.2.1 for further dataset details.

3.5 Baselines

We provide three baselines: open-source re-implementations of the NeuroPose and SensingDynamics
network architectures [Liu et al., 2021, Sîmpetru et al., 2022a], and a new vemg2pose model.
Algorithm details can be found in Appendix C.

vemg2pose: sEMG meaures underlying muscle activity, and therefore relates more strongly to hand
movements than the static pose of the hand. Therefore, vemg2pose ("Velocity-based emg2pose")
predicts joint angular velocities, which are then integrated to produce joint angle predictions. sEMG is
first embedded via a causal strided convolutional featurizer, which temporally down-samples sEMG
from 2 kHz to 50 Hz. A Time-Depth Separable Convolution (TDS) network is used for the featurizer,
as it has been shown to be effective and parameter-efficient in the automatic speech recognition
literature [Hannun et al., 2019] (see Appendix C for implementation details). The features at each
time-step are then concatenated to the joint angle predictions at the previous time step and fed to
an LSTM decoder, which produces the next velocity prediction. Those velocities are added to the
previous joint angles to produce the next prediction. vemg2pose is therefore auto-regressive with
respect to its own predictions. Finally, predictions are linearly up-sampled to match the sample rate
of the joint angles targets. For the tracking task, the initial joint angles are set to the ground truth,
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according to the motion capture labels. For the regression task, the initial state is also predicted by
the decoder (see Appendix C for further details).

NeuroPose: NeuroPose and vemg2pose differ in their prediction spaces and network architectures.
Whereas vemg2pose predicts angular velocities, NeuroPose predicts joint angles directly. NeuroPose
uses a U-Net architecture with residual bottleneck layers. Briefly, a convolutional encoder spatially
and temporally down-samples sEMG while extracting features which are then refined via a stack
of residual blocks. Finally, a decoder generates pose predictions at the original sample rate via
convolutions and up-sampling layers. Because our sEMG device measures at 10x the temporal
frequency and 2x the spatial frequency of the MyoBand used in Liu et al. [2021], we increase the
temporal and spatial down and up-sampling of NeuroPose’s featurizer and decoder (by 8x and 2x,
respectively), such that the receptive field remains comparable to the original model. See Liu et al.
[2021] for full model details and Appendix C for further details.

SensingDynamics: SensingDynamics and NeuroPose primarily differ in their architectures. Instead
of a U-Net, SensingDynamics’ featurizer comprises of 2d convolutions over sEMG channels and time,
with learnable SMU activations [Biswas et al., 2021], batch normalisation, circular padding across
channels, and dropout layers. The decoder comprises of a 3-layered MLP. Uniquely, SensingDynamics
additionally passes 20Hz low-passed filtered sEMG as input to the featurizer. See Sîmpetru et al.
[2022a] for full model details and Appendix C for further details.

Training Setup: All algorithms are trained to minimize the L1 error between predicted and ground
truth joint angles as well as the Euclidean error between between predicted and ground truth fingertip
locations. The joint angle loss term has a weight of 1 and the fingertip loss term has a weight of .01.
We train on 1-6 seconds of non-overlapping trajectories. The training trajectory length - in addition
to other hyperparameters - is optimized independently for each algorithm (see Table 7). We train for
500 epochs with a 50 epoch early stopping criterion. Time-points for which motion capture data are
not available are skipped during training and evaluation. We use a batch size of 64 per GPU. We train
on Amazon EC2 g5.48xlarge instances which have 8x NVIDIA T4 GPUs for less than a day.

4 Experiments

4.1 Benchmark Results

Table 4: Regression test set results. Mean and standard deviation are reported across users. Bold
indicates the significance of a Wilcoxon signed-rank test comparing vemg2pose to NeuroPose and
Sensing Dynamics for each metric and condition (.01 threshold adjusted to .0008 via Bonferroni
correction, see Appendix C.7 for details).

.
Test Set Baseline Angular Error (◦) Landmark Distance (mm)

User SensingDynamics 15.5 ± 1.4 21.8 ± 2.1
NeuroPose 13.2 ± 1.1 17.5 ± 1.3
vemg2pose 12.2 ± 1.3 15.8 ± 1.9

Stage SensingDynamics 18.8 ± 1.6 26.6 ± 2.0
NeuroPose 17.2 ± 1.7 24.0 ± 2.1
vemg2pose 15.2 ± 1.6 20.4 ± 2.2

User, Stage SensingDynamics 18.7 ± 1.6 27.2 ± 2.0
NeuroPose 17.5 ± 1.5 24.9 ± 1.7
vemg2pose 15.8 ± 1.4 21.6 ± 2.0

We report regression results in Table 4 and tracking results in Table 5. We do not report standard
deviation across model seeds, as we observed these to be negligible. Results are further broken down
by stage, finger, and joint in Figs. 3, 10 and 11, respectively. For the regression task, vemg2pose
outperforms both NeuroPose and SensingDynamics with respect to both angular errors and landmark
distances. In general, accuracy degrades most for the held-out user, stage combination, which is
the hardest of all transfer scenarios. For the tracking task - in which the initial ground truth pose
is provided - errors are lower overall, as expected (see Section 3.3). For this task, we do not report
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scores for NeuroPose and SensingDynamics, as these models were not originally designed to leverage
knowledge of the initial ground truth pose during inference.

Table 5: Tracking test set results. Mean and standard deviation are reported across users.

Test Set Baseline Angular Error (◦) Landmark Distance (mm)

User vemg2pose 7.7 ± 1.0 10.3 ± 1.5
Stage vemg2pose 11.2 ± 1.4 15.2 ± 1.9
User, Stage vemg2pose 11.0 ± 1.0 15.4 ± 1.4

Performance varies considerably across users for all models and tasks, potentially due to anatomical
differences (Tables 4 and 5). Performance varies significantly across stages (Fig. 3), which is
likely a result of the amount and type of movements in each stage. Stages with limited movement
(StaticHands, WristFlex) may be easier for the model track because they involve very limited postural
transitions. Stages with complex hand poses and dynamic articulation of individual fingers (Gesture2,
Pointing) are more challenging and have higher errors. Moreover, Fig. 10 shows that performance
varies significantly across fingers and finger joints, with the thumb the most reliably predicted,
followed by the index, middle, ring, and pinky fingers. We also find that proximal joint angles of the
fingers are easier to track than distal joint angles (Fig. 11). Together, this suggests that stages with
high amounts of thumb movements (e.g. ThumbRotations) may be easier to track than those with
more general finger movements (e.g. Freestyle1).

Figure 3: vemg2pose tracking performance break down by stage and generalization condition.
Distributions are over users. Note the variability in performance across stages. Each box shows the
median and interquartile range (IQR), and whiskers show the minimum and maximum values that are
within 1.5 times the IQR of the lower and upper quartiles.

4.2 Analysis on Challenging Stages for Vision-Based Systems

Figure 4: vemg2pose tracking results with/without occlusion (left) and physical interactions (right).
Distributions are over users. See Appendix D.1 for more details.

Some stages were specifically designed to test behaviors that are known to be challenging for vision-
based hand pose estimation (see Appendix D.1 for details). We found that stages with hand-hand
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interactions or hand-object interactions have similar model performance compared to stages without
such interactions (Fig. 4, right), although differences in behavioral distribution across these stages
makes direct comparison challenging. Furthermore, we find that visual occlusion does not impact
sEMG based pose reconstruction, as expected. Stages in which the hand is occluded from a CV based
headset tracking system have similar accuracy compared to stages without occlusion in which the
same behaviors are performed (Fig. 4, left).

4.3 Qualitative Analysis

Figure 5: Median percentile held-out user and stage (Counting2). Top: motion capture; bottom:
vemg2pose, tracking predictions. Clips unroll evenly left-to-right over a 2 second segment.

We plot vemg2pose, tracking real-time online and offline kinematic predictions for held-out users
and stages in Figs. 1 and 5 (see Appendix C.5 for online setup details). This is the most challenging
scenario, representing generalization to held-out kinematics, user anatomy, and device placement.
For Fig. 5, we plot a median-performance representative held-out stage (Counting2, see Table 6) and
user. As seen, individual finger movements are mostly tracked, but not always. We visualize top and
bottom percentile (15% and 85%) offline kinematics for the held-out users and stages generalization
setting in Figs. 12 to 15. In general, we observed three challenges specific to sEMG pose inference:
angular drift due to sensing that strongly relates to pose derivatives (see the ring finger in Fig. 15);
movements related to harder-to-sense intrinsic hand muscles, such as the finger adduction/abduction
present in the "vulcan" gesture (Table 6); movements related to smaller and fewer muscles, such as
pinky (see Fig. 10) and distal joint motion (see Fig. 1).

4.4 Dataset Scale Analysis

Figure 6: Generalization vs. number of training users (left two) or stages (right three) for vemg2pose
tracking. We subsampled the training users/stages but evaluated on the same held-out users/stages. As
seen, performance improves with the number of training users/stages, demonstrating the importance
of our dataset scale for effective generalization. Box plots take the same format as Fig. 3.

We ran experiments to demonstrate the importance of the scale of our dataset for effective generaliza-
tion. In Fig. 6, we show that increasing the number of training users considerably reduces the error
for held-out users, perhaps because models are exposed to sEMG from users with a variety of wrist
anatomies. We also show that increasing the number of stages per-user improves performance across
all modes of generalization, demonstrating the importance of behavioural diversity.

4.5 Quantifying Generalization Difficulty across Users and Stages

To directly quantify the difficulty of generalizing across held-out stages and users, we performed
experiments in which a subset of the data from the held-out users and stages were either folded into
the training set or excluded entirely. Fig. 7 shows that excluding specific users and stages from the
training set markedly degrades performance, demonstrating the difficulty of generalizing across these
dimensions. Refer to Fig. 7 for a detailed description of the experimental setup.
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Figure 7: Excluding stages (left) or users (right) from the training set markedly decreases performance
for these stages/users. For the include stages/users condition, we include 70% of the data from the
held-out stages/users in the training set. For the exclude stages/users condition we exclude that 70%
entirely. Both test sets are identical allowing us to isolate the influence of holding out stages/users.
Data are from a tracking task with a vemg2pose model. Distributions are over users.

5 Limitations and Future Work

Modelling: We provide an initial investigation into generalized sEMG-to-pose modelling and
open-source our baselines to the community. Nevertheless, there remains a plethora of unexplored,
potentially fruitful sequence modelling directions, such as state space and diffusion-based methods.
Pose estimation in the presence of uncertainty introduced by sensor noise and anatomical variability
could also be addressed with probabilistic methods [Danelljan et al., 2020]. Model personalization
has also been shown to be beneficial [CTRL-labs at Reality Labs et al., 2024, Liu et al., 2021],
yet we do not explore this avenue here. In addition, our models obtain mean landmark distance
errors that are higher than reported in the CV literature [Boukhayma et al., 2019, Mueller et al.,
2017], despite having the advantage of not having to infer the wrist position or user’s anatomy.
Addressing this performance gap will be of great importance. Finally, the lack of broader access
to the sEMG-RD wrist-band [CTRL-labs at Reality Labs et al., 2024] might be limiting, as this
precludes human-in-the-loop testing of models.

Metrics: Our landmark distance metrics use a default hand model to convert joint angles to
joint positions. The mismatch between the hand model and user anatomy will bias this metric. In
general, our metrics do not capture the physical plausibility of model predictions. For example,
we have observed that vemg2pose sometimes predicts unfeasible kinematics, such as intra-finger
penetration. Providing metrics that capture these failure modes will be of value, especially for
embodied applications [Yuan et al., 2023]. Simulators of the hand [Caggiano et al., 2022] could
be leveraged in a manner similar to Yuan et al. [2023] to ensure physical constraints are adhered
to. Finally, our held-out user, stage test scenario is meant to best represent real-world in the wild
performance. Nevertheless, it does not cover a potential range of signal aggressors such as: electrode-
skin contact artifacts; impedance changes from sweat; electrical interference from external devices;
and non-stationarity due to muscle fatigue. While these aggressors likely play a minor role in sEMG
variability, they may be important to include in future datasets and test sets.

Dataset: We discuss dataset limitations in Appendix B.4.

Ethical and Societal Implications: We discuss ethical and societal implications in Appendix B.5.

6 Conclusion

We introduce the emg2pose benchmark, the first large, diverse, and open-source dataset of high-
fidelity sEMG recordings and hand pose labels. We introduce competitive benchmark models that can
track or regress to hand pose for held-out users, stages and sessions, although there remains significant
room to improve these models in future research. Due to the myriad sources of variability in sEMG
signals, deciphering the relationship between sEMG and movement in a manner that generalizes
across people and kinematics will likely require new algorithmic advances, taking inspiration from
related machine learning fields. Large datasets like emg2pose should thus facilitate progress in both
sEMG decoding and machine learning applied to biosignals more broadly. Progress will enable
intuitive, high-dimensional human-computer interfaces that we perceive as extensions of ourselves.
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(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes] In Section 3.2 and Appendix A we discuss
how we remove personally identifiable information.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [No] We provide a detailed description of the experimental instructions and
a list of the movements participants were asked to perform (see Appendices A and B).

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [Yes] We discuss the consenting process in
Appendix A and the approval of all research under an external IRB

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A] We recruited all participants through a
third-party vendor that determined their compensation via market rates. We give details
in Appendix A.
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A Datasheet

We provide a datasheet in accordance with Gebru et al. [2021].

Motivation: The motivation for emg2pose is to address the lack of wide-spread, sufficiently large,
non-invasive surface electromyographic (sEMG) datasets with high-quality ground-truth annotations
for a concrete task. sEMG as a technology has the potential to revolutionize how humans interact
with computers, and this public dataset is motivated to facilitate progress in this domain without
needing specialized hardware. The task we consider is hand pose inference, as a potentially holistic
and encompassing modality, with many biomimetic applications. This dataset was created by the
CTRL-Labs research group within Reality Labs, Meta.

Composition: The entire dataset consists of 25, 253 HDF5 files, each consisting of time-aligned
sEMG and joint angles for a single hand in a single stage. In total, we collected data from 193
participants, spanning 370 hours and 29 diverse stages. The number of hours includes both the
right-handed and left-handed data for each participant, which were collected simultaneously. Each
HDF5 file includes sEMG data from one hand, the stage label, and the joint angles. sEMG is recorded
at 2kHz, high pass filtered at 40 Hz, and rescaled such that the noise floor has a standard deviation of
1. We also flip the sign of the left-handed EMG data to account for the reversal of polarity caused by
wearing the band on the left vs. right hand. Additionally, the dataset includes a metadata file in CSV
format containing dataset split information (train, val, and test). All metadata have been de-identified
to remove any personally identifiable information and does not identify any sub-population. See
Section 3 for additional details on the dataset and Table 3 for statistics about the dataset such as
the number of participants, total duration, number of sessions and stages. See Table 6 for further
details with regards to the stage composition. The configuration for the precise data splits used in
our experiments can be found in the following link: https://github.com/facebookresearch/
emg2pose.

Collection Process: We recruited participants through a third-party vendor, who compensated
participants at market rates. All recruitment and on-boarding followed an external IRB-approved
protocol. We provided participants with information about the study, and before study initiation asked
them to review and sign an IRB-reviewed consent form. We gave all participants the opportunity
to ask questions before the study and were able to discontinue participation at any point. To
ensure participant well-being, on-site research administrators monitored participants during the study
protocol. All data have been de-identified to remove any personally identifiable metadata. Participants
stood in a 26 camera motion capture array (Appendix B.2). A research assistant placed 19 motion
capture markers on each of the participant’s hands (Han et al. [2018]) and an sEMG-RD band on each
wrist [CTRL-labs at Reality Labs et al., 2024](Appendix B.2). All sEMG and motion capture data
were streamed to a real-time data acquisition system at 2kHz and 60 Hz, respectively (Appendices B.1
and B.2). Participants followed a standardized data collection protocol across a diverse set of 30-120
s stages in which participants were prompted to perform a mix of 3-5 gestures. We organized the
data collection into two repetitions of two different groups of 15 and 26 stages with a different band
placement for each. Each group of stages with a single band placement is referred as a session. For
further stage and data collection details see Appendices B.2.1 and B.3.

Preprocessing/Cleaning/Labeling: sEMG recordings in the dataset are sampled at 2 kHz with a bit
depth of 12 bits, with a maximum signal amplitude of 6.6 mV, and are bandpass filtered with -3 dB
cutoffs at 20 Hz and 850 Hz before digitization (see Appendix B.1).

Joint angles were estimated from motion capture recordings using a custom inverse kinematics
pipeline using a personalized hand model according to Han et al. [2018]. Briefly, 19 reflective
markers were attached to each hand, and their 3D coordinates were tracked via a commercial
Optitrack system with 26 cameras around the participant. A ConvNet then assigned labels to each
marker. The labeled markers were registered to positions on a calibrated hand mesh to determine
landmark positions. An inverse kinematics solver produced the final joint angles. We applied a
conservative 15 Hz low pass filter (Ingram et al. [2008]) to the final joint angles to ensure there is no
residual jitter. The mean absolute difference between the filtered and unfiltered signal was only 0.32
degrees across 500 recordings.

This model produced an estimate of joint angles for the MCP, PIP and DIP joints for each finger as
well as the IP, MCP and CMC joints of the thumb. Each joint had a degree of freedom for flexion and
extension, while each MCP joint had an additional degree of freedom for abduction and adduction.
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Following joint angle estimation, we used a forward kinematic algorithm using a generic hand model
to produce estimates of landmark positions [Han et al., 2022]. We used the center of each joint,
as well as the fingertips, as landmark positions for evaluation. Finally, joint angles were low-pass
filtered at 15 Hz to remove tracking noise, and temporally upsampled to match to 2 kHz sample rate
of sEMG.

Uses: The dataset and the associated tooling are meant to be used only to advance sEMG-based
research topics of interest within the academic community for purely non-commercial purposes and
applications. Our code for baseline models, built on top of frameworks such as PyTorch, PyTorch
Lightning and Hydra, is designed such that it can be easily extended to the exploration of different
models and novel techniques for this task. The dataset and the associated code are not intended to be
used in conjunction with any other data types.

Distribution and Maintenance: The dataset and the code to reproduce the baselines are accessible
via https://github.com/facebookresearch/emg2pose. The dataset is hosted on Amazon S3
and the code to reproduce the baseline experiments on GitHub under the CC-BY-NC-SA 4.0 license.
We welcome contributions from the research community. Any future update, as well as ongoing
maintenance such as tracking and resolving issues identified by the broader community, will be
performed and distributed through the GitHub repository.

B Dataset Details

Figure 8: Participant demographic information. Train and val users are shown in the top row, and
test users on the bottom. Notice that test users are representative of the population of train/val users.

B.1 sEMG Sensing

sEMG data were collected using the sEMG-RD [CTRL-labs at Reality Labs et al., 2024] consisting
of 16 differential electrode pairs utilizing dry gold-plated electrodes. The 16 electrodes are arranged
on a rigid ribbon, leaving a gap between electrodes 0 and 15 on the ulnar side of the wrist close to the
ulnar styloid. Identical bands are worn on the left and right hands, with the same electrode indices
aligning with the same anatomical features, but the polarity of the differential sensing being reversed.
The band is tightened with an elastic strap and the size of the gap depends on the subject’s wrist size
and tightness. The band is manufactured in three different sizes to account for large changes in wrist
size and the electrodes themselves are spring-loaded to further adjust across small variations in wrist
sizes. In contrast, the previously used low-density Thalmic Labs Myo band [Rawat et al., 2016] only
streams data at 200Hz, across 8 channels and at 8-bits.

B.2 Motion Capture

All motion capture data were collected using a 26 camera motion camera array at 60 Hz (Prime13W
Optitrack) in an external data collection facility. Before data collection participants donned an sEMG
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band on each wrist and 19 3mm facial motion capture markers in order. We placed markers at the
base of each fingernail and between the DIP and PIP and PIP and MCP joints of each finger. For the
thumb we placed markers between the IP and MCP joint, on the MCP joint, and between the MCP
and CMC joints. We additionally placed markers in a triangular pattern on the dorsal side of the hand
[Han et al., 2018]. Participants additionally wore a 3D printed frame of an XR headset, tethered to a
PC, that was not relevant to the present data collection. Before collection, participants were asked to
perform a series of 17 calibration gestures with each hand. These gestures were used as input to a
custom optimization software that estimated the size of the hand and the position of motion capture
markers relative to joints [Han et al., 2018]. We saved personalized hand model information to a
separate file to be used offline to estimate joint angles from the collected motion capture data.

During data collection, sEMG data were streamed over Bluetooth to a real-time data collection
application. Motion capture data were recorded over ethernet using Motive2 (Naturalpoint) and then
streamed to the same data collection pipeline. sEMG and motion capture datastreams were assigned
software timestamps based on their arrival at the data pipeline. Internal testing bounded the relative
latency between the two recording pathways to below 10 ms, approximately the Nyquist limit of the
60 Hz Optitrack recording.

B.2.1 Data Collection Protocol

Data collection was divided into 4 different sessions (band placements). Participants performed two
repetitions of two different groups of prompted stages. In each stage participants were asked to
follow along a video of a set of example movements, either a mix of discrete gestures or freeform
unprompted movements. Stages lasted 45 to 60s, while freeform stages lasted 60 to 120s. During
data collection, users donned on-and-off the device on average 3.9 times in total, see Table 3. We call
these sessions and are clearly annotated in our dataset. Participants performed all movements while
standing or sitting on a tall stool. During each stage participants were asked to move their hand from
right to left and up and down to ensure a broad range of postures.

B.3 Stage Descriptions

The data collection protocol was designed to capture a wide range of kinematics. Each stage consistent
of a particular set of instructed kinematics. Descriptions of the kinematics performed in each stage
can be found in Table 6.

B.4 Dataset Limitations

While our dataset is the largest and highest fidelity open-sourced to date, it is smaller than those used
in CTRL-labs at Reality Labs et al. [2024], which may hinder generalization. While we provide high
quality pose labels from motion capture using the inverse kinematics approach from Han et al. [2018],
as a camera-based method it still suffers from occlusion, hindering label quality for gestures such
as fist clenching. We additionally do not track wrist movements, which are important for how we
interact with the world. Alternate labelling methods, such as stretch-sensing gloves, could address
these limitations, at the potential expense of lower quality labels and impaired dexterity. Finally,
future datasets could include both camera and sEMG sensors, which could be combined to improve
pose inference in contexts where camera-based tracking fails such as occlusion.

B.5 Ethical and Societal Implications

The broader usage of sEMG and the specific development of sEMG pose estimation models may
pose novel ethical and societal considerations. A highly performant emg-to-pose model running on a
device placed on the wrist or forearm could store or transmit information about a person’s actions,
and appropriate safeguards to encrypt and limit access to this information may be warranted. There
are numerous societal benefits for the development of sEMG models for pose estimation. sEMG
allows one to directly interface a person’s neuromotor intent with a computing device. This can
be used to create novel device controls for the general population and can also be used to develop
adaptive controllers for those who struggle to use existing computer interfaces.
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Table 6: Stage descriptions. For video examples, visit https://github.com/facebookresearch/
emg2pose.

Stage Movements

FingerPinches1 Finger pinches (4)
D-pad style thumb swipes (4)
Thumb rotations

Object1 Drink from and rotate a cup
Squeeze a soft toy

Counting1 Fingers counting up and down (5)
Counting2 Fingers counting up and down (5)

Wiggling the fingers
Abducting and adducting the fingers

DoorknobGrab Mimic opening a doorknob
pull fingers into a loose fist
use index fingers as a trigger

Throwing Mimic swinging ping pong paddle
Mimic throwing a ball

Abduction Series of finger abduction movements
FingerFreeform Freeform movements of fingers
FingerPinches2 Single and multiple finger pinches (multiple fingers touching the thumb simultaneously) (7)
HandHandInteractions Slide fingers along the palm

Clap hands
Co-wiggle fingers

Wiggling1 Wiggling and spreading fingers
Punch Pull hand torwards body while grasping fingers

Punching motion
Gesture1 Form and unform a claw

Bring fingers together in loose fist
Flick fingers individually (4)

StaticHands Move hand from waist level to chest
Press hands together and move slowly

FingerPinches3 Like FingerPinches1, but with the hands occluding eachother
Wiggling2 Like Counting2, but with the hands occluding eachother
Unconstrained The hand that is not prompted to move during a particular stage
Gesture2 Extend index and pinky while curling middle fingers

Make scissor cutting motion
FingerPinches2 Index finger pinches

Middle finger pinches
D-pad style thumb swipes (4)

Pointing Point individual fingers (5)
Snap middle finger and thumb

Freestyle1 Free style movements with one hand
Object2 Play with blocks

Move chess pieces
Draw Poking

Mimic drawing
Pinching, rotating with hands both close and far

Poke Poking
Pinch and rotate wrist

Gesture3 Extend thumb and pinky, curl middle fingers
Vulcan salute
Peace sign

ThumbsSwipes D-pad style thumb swipes (4)
Slowly fold and unfold all fingers

ThumbRotations Thumb rotations
Freestyle2 Free style movement with both hands
WristFlex Wrist flexion

Wrist abduction

B.6 Dataset Instructions

Data is hosted on Amazon S3, and code with readme instructions as to how to reproduce experimental
results are found on: https://github.com/facebookresearch/emg2pose.
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C Algorithm details

C.1 vemg2pose

vemg2pose consists of a convolutional featurizer and an LSTM decoder. First, the featurizer converts
sEMG to features:

zt = f(et−R:t) (1)

where f is the featurizer, R is the featurizer receptive field, and et and zt are vectors of sEMG and
features at time t, respectively. Next, the decoder produces angular velocity predictions as a function
of the features and the previous joint angles. Velocities are integrated to produce angular predictions:

svt = π(zt, st−1) (2)
st = st−1 + svt (3)

where π is the decoder, st is the angular prediction at time t, and svt is the angular velocity prediction
at time t. For the tracking task, the ground truth first state is provided: s0 := s∗0. For regression, the
ground truth state is unknown. Therefore, the decoder produces angle and angular velocity predictions
(sp and sv, respectively). The angular predictions are used for the first P time steps (250 ms in our
case), and velocities are integrated thereafter:

spt , s
v
t = π(zt, st−1) (4)

st =

{
spt if t < P,

st−1 + svt if t ≥ P
(5)

The LSTM has two hidden layers of size 512. We scale its output by .01, as we find that this improves
training. A Time-Depth Separable Convolution (TDS) network is used for the featurizer, as it has
been shown to be effective in the automatic speech recognition literature [Hannun et al., 2019]. The
featurizer first applies three 1D convolutions over time with 256 features, kernel widths of 11, 5, and
17, and strides of 5, 2, and 4. There are then 4 TDS blocks with channel and feature widths of 16 and
kernel widths of 9, 9, 5, and 5. Overall, the featurizer reduces the sample rate to 25 Hz, and a final
linear up-sampling brings them to 50 Hz. We use layer norms as described in [Hannun et al., 2019].

C.2 NeuroPose

We implement the NeuroPose U-Net architecture as described in Liu et al. [2021], with minor
modifications to account for differences in recording device and joint angle targets. The encoder of
the original NeuroPose has 40x temporal down-sampling achieved via a series of strides. To account
for the 10x greater sample rate of our device, we double each of 3 temporal strides to yield 360x
down-sampling. Similarly, we double the spatial stride of the final encoder convolution to account for
the 2x spatial resolution of our device. We similarly modify the up-sampling in the decoder by the
same factors and add a final linear project to achieve 20 dimensional angular predictions.

Note that the original NeuroPose uses a velocity regularization term, which we do not explore here.
We find that predicting velocities rather than joint angles is sufficient to achieve smooth predictions,
and precludes having to tune the weight on the velocity regularization term.

C.3 SensingDynamics

The original SensingDynamics was designed for a high-density sEMG device with 320 electrodes
spread over 5 separate patches on the forearm and wrist [Sîmpetru et al., 2022a]. The architecture
uses 3d convolutions over channels, patches, and time. In contrast, the sEMG-RD wrist band from
CTRL-labs at Reality Labs et al. [2024] does not have separate patches and has distinct channel
densities and temporal resolutions. To account for these discrepancies, we use 2d convolutions over
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sEMG channels and time, and modified the convolutional kernel, strides and dilations to match the
effective receptive fields and strides of the original setup.

Note that the original SensingDynamics smooths the output predictions with a moving average filter
of 150 ms. We find that predicting velocities rather than joint angles is sufficient to achieve similarly
smooth predictions.

C.4 Training Setup

For each algorithm, we performed a hyperparamter sweep over the following parameters, with each
explored independently: training window length (2000-12000 samples at 2kHz, 3 different values),
learning rate (.001 or .0001), gradient norm clipping (none or 1), and whether the decoder used
an MLP or LSTM (for (v)emg2pose). The most performant setting was used for each algorithm,
as reported in Table 7 (for emg2pose explanation see Appendix D.2). A learning rate of 0.001
was universally optimal. To improve generalization across device placements, we use rotation
augmentation, wherein we spatially rotate the sEMG channels by 1, 0, or −1 (uniformly sampled).
Augmentation is only applied during training.

Table 7: Algorithm comparison. We extend the window lengths to account for receptive fields.

Baseline Predictions Network Grad clip Window

Tracking emg2pose Angles TDS + MLP 1 5790

vemg2pose Velocities TDS + LSTM 1 11790

Regression emg2pose Angles TDS + MLP 1 5790

vemg2pose Velocities TDS + LSTM 0 11790

NeuroPose Angles U-Net 0 4000

SensingDynamics Angles 2d Conv + MLP 0 10167

C.5 Online vemg2pose

To enable online deployment of vemg2pose it must be setup to handle sEMG data being received
sequentially in discrete packets of variable temporal lengths. As such, we created a variant of
vemg2pose that uses buffers to append the current packet of data to the previous ones. In addition to
storing all received data in a buffer, we additionally keep track of which data have been processed
already and which have not (this is a function of the network receptive field and the stride), so as
not to make duplicate predictions. For Fig. 1, we trained a vemg2pose, tracking model with this
internal variant. This internal variant achieved joint angular errors almost identical to those reported
in Table 5, as expected. We do not open-source this setup, as it is only useful with access to the
sEMG-RD band for online testing.

C.6 Hand mesh visualizations of prediction trajectories

We generated the articulated hand meshes representing prediction trajectories (as depicted in Fig. 5
and Appendix D.5) from sequences of joint angles using the forward kinematic and a mesh-skinning
algorithms provided by UmeTrack [Han et al., 2022]. We use the generic, default hand model provided
by UmeTrack. To generate the figures, we render the meshes using the Plotly and Plotly-Kaleido
visualization packages [Plotly Technologies Inc., 2015].

C.7 Statistical Analysis

The Wilcoxon statistical analyses reported in Table 4 were performed on data aggregated across time
for each user. That is, metrics were computed at each temporal sample, then averaged across time for
each user within each experimental condition. Statistics aggregated within each user and condition
are similarly used to construct distributions for all other plots and tables.
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D Detailed Analyses

D.1 Analysis of Stages that are Challenging for Vision-Based Systems

We compared the same stages with and without occlusion, and found that occlusion did not negatively
impact model performance, as expected (Fig. 4, left). Each subject performed the CountingWiggling
and FingerPinches stages under two conditions: with the hands in front them - such that they would
be visible to a headset based CV tracking system - and with the hands very close to or very far away
from the body - such that they would be occluded.

We also compared stages with hand-object interactions, hand-hand interactions, and no interactions
(Fig. 4, right). Hand-object interactions consisted of the Object1 and Object2 stages, in which
participants interacted with a cup, a soft toy, blocks, and chess pieces. Hand-hand interactions
(HandHandInteractions stage) consisted of sliding the fingers across the opposite palm, clapping the
hands together, and wiggling the fingers such that the fingertips of opposite hands tap against one
another. These interaction types are known to be challenging for vision-based systems. Nonetheless,
performance for these stages was comparable or superior to performance in stages without any
interactions. Note, however, that the behavioral distributions are different across these stages, which
makes direct comparison of metrics challenging.

D.2 Velocity vs. Positional Predictions

Figure 9: vemg2pose vs. emg2pose for tracking and regression tasks. Distributions are over users.
Box plots take the same format as Fig. 3.

We compared vemg2pose to emg2pose, an otherwise identical algorithm that directly predicts joint
angles rather than joint angular velocities (Fig. 9). emg2pose has similar joint angular error in the
regression task, but much worse performance on the tracking task. This is likely because vemg2pose
is initialized to the ground truth initial state, whereas emg2pose is merely conditioned on the ground
truth initial state. For both tracking and regression tasks, vemg2pose has lower overall velocity than
emg2pose, suggesting that operating in velocity space encourages smoother predictions.
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Table 8: Regression ablation test set results. Mean and standard deviation are reported across users.

Test Set Ablation Angular Error (◦) Landmark Distance (mm)

User vemg2pose-tran 12.5 ± 1.3 16.3 ± 1.8
vemg2pose-lstm 12.2 ± 1.3 15.8 ± 1.9

Stage vemg2pose-tran 16.1 ± 1.6 21.7 ± 2.1
vemg2pose-lstm 15.2 ± 1.6 20.4 ± 2.2

User, Stage vemg2pose-tran 16.2 ± 1.3 22.3 ± 1.8
vemg2pose-lstm 15.8 ± 1.4 21.6 ± 2.0

D.3 LSTM vs Transformer Decoders

We ablated over decoder architectures, specifically LSTMs and transformers as the two most widely
adopted models for sequence modelling. For the transformer, we explored the widely adopted
transformer encoder BERT setup [Kenton and Toutanova, 2019]. We swept over the number of layers
(2, 4, 6) and number of heads (2, 4, 8) reporting the best for both regression and tracking tasks in
Tables 8 and 9. In order to fit into memory (Amazon EC2 g4dn.metal instances which have 8x
NVIDIA T4 GPUs) we had to halve the feature dimensionality of the transformer decoder. In general,
the transformer performs similarly or slightly worse than the LSTM.

Table 9: Tracking ablation test set results. Mean and standard deviation are reported across users.

Test Set Ablation Angular Error (◦) Landmark Distance (mm)

User vemg2pose-tran 8.0 ± 1.0 10.7 ± 1.6
vemg2pose-lstm 7.7 ± 1.0 10.3 ± 1.5

Stage vemg2pose-tran 11.7 ± 1.4 15.9 ± 1.9
vemg2pose-lstm 11.2 ± 1.4 15.2 ± 1.9

User, Stage vemg2pose-tran 11.4 ± 1.1 16.0 ± 1.5
vemg2pose-lstm 11.0 ± 1.0 15.4 ± 1.4

D.4 Performance Decomposition across Fingers and Joints

Figure 10: Performance decomposition per finger: for tracking task, vemg2pose. Error per finger
is measured by averaging the errors of the joints associated with each finger. Distributions are over
users. Box plots take the same format as Fig. 3.

We decompose vemg2pose tracking performance across fingers (Fig. 10), and proximal, mid, and
distal joint groups (Fig. 11). For the latter, proximal, mid, and distal joints are grouped according
to their distance from the palm. See Fig. 11 for further details. Reconstruction performance varies
across fingers and joint groups. Thumb and pinky fingers are consistently best and worst performers,
and proximal joints are more easily predicted than distal joints.
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Figure 11: Performance decomposition across joint groups: for tracking task, vemg2pose. Perfor-
mance broken down by joint according to their proximal-distal location. Proximal is CMC for the
thumb and MCP for other fingers; Mid is MCP for thumb and PIP for other fingers; and Distal is IP
for thumb and DIP for other fingers. Box plots take the same format as Fig. 3.

D.5 Tracking Trajectory Examples

We provide representative vemg2pose, tracking prediction trajectories for the 15%, 50% and 85% user
and stage percentiles for the held-out user, stage scenario described in Section 3.4. Performance varies
considerably across held-out users and stages, as seen in Figs. 12 to 15. We note that there may exist
large variance within stages, for which these kinematic plots do not reflect. Minimizing these variances
will be of great value. For video examples, visit https://github.com/facebookresearch/
emg2pose.
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Figure 12: Held-Out User, Stage tracking, top 15% stage (Gesture2), median user. Top: motion
capture; bottom: vemg2pose, tracking predictions. Clips unroll evenly left-to-right over a 2 seconds.

Figure 13: Held-Out User, Stage tracking, bottom 15% percentile stage (Counting1), median user.
Top: motion capture; bottom: vemg2pose, tracking predictions. Clips unroll evenly left-to-right over
a 2 seconds.

Figure 14: Held-Out User, Stage tracking, median stage (Counting2), top 15% percentile user. Top:
motion capture; bottom: vemg2pose, tracking predictions. Clips unroll evenly left-to-right over a 2
seconds.

Figure 15: Held-Out User, Stage tracking, median stage (Wiggling2), bottom 15% percentile user.
Top: motion capture; bottom: vemg2pose, tracking predictions. Clips unroll evenly left-to-right over
a 2 seconds.
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